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Abstract We analyze the implications of environmental policy on pollution in a stochastic 
framework with finite horizon and sustainability concern. The social planner seeks to mini-
mize the social (environmental and economic) costs associated with pollution. We allow for 
the planner to attach different relative weights to the discounted and end-of-planning-
horizon costs in order to assess how sustainability concern might affect the optimal level of 
policy intervention. We show that the optimal environmental policy increases with the 
degree of sustainability concern, reducing thus the amount of pollution the society is forced 
to bear. A calibration based on world CO2 data supports our conclusions, further 
highlighting the impor-tance of higher degrees of sustainability concern to achieve greener 
long run outcomes. It also allows us to show that under a realistic model’s parametrization 
the optimal environmental policy tends to rise with higher degrees of uncertainty in a 
precautionary manner.
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1 Introduction

Economic activities give rise to several environmental problems and how to regulate such
an economic and environmental trade-off is still nowadays a critical open question. One of
the issues which has attracted the largest interest in literature is linked to how to optimally
control pollution. After decades of researches and debates, it is now clear to both academics
and policymakers that regulating polluting activities is all but trivial. This is due to the
fact that pollution contributes to several environmental problems, like those related to its
transnational diffusion (Ansuategi and Perrings 2000; Ansuategi 2003) and climate change
(Nordhaus 1982; Bollen et al. 2009), but it might also generate economic benefits, like
increasing competition and promoting technological progress (Porter and van der Linde
1995; Buonanno et al. 2001). Despite the very large body of studies that can be found in
literature, two aspects of the pollution control problem have been only marginally analyzed
thus far: the implications of uncertainty on pollution and environmental policy,1 and its
relation with sustainability and intertemporal equity. This paper tries exactly to fill these
gaps by developing a pollution control model which might help policymakers to make better
decisions in the determination of the optimal environmental policy in a stochastic framework
with rising sustainability concern.

The pollution control problem is quite dated and it consists of determining the optimal pol-
icy intervention in order to minimize the social costs (Bawa 1975) or alternatively maximize
the social benefits (Forster 1975) associated with economic activities, by taking into account
both economic and environmental effects. Some earlier studies include Forster (1972), and
Keeler et al. (1973), while more recent works are represented by van der Ploeg andWithagen
(1991), Athanassoglou and Xepapadeas (2012), and Saltari and Travaglini (2016). With the
exception of Athanassoglou and Xepapadeas (2012) who develop a quite sophisticated and
cumbersome robust pollution control model under Knightian uncertainty, all the aforemen-
tioned papers consider pollution to be perfectly known and deterministic. This is obviously
a very strong simplification of reality in which, due to the uncertainty surrounding environ-
mental and ecological dynamics, very little is known about the evolution of pollution. Since
several developing countries are nowadays experiencing substantial increases in their income
levels, accompanied by dramatic increases in emissions, energy demand and use of natural
resources (Olivier et al. 2012; U.S. Energy Information Administration 2014), the question
about how to determine environmental policy in a stochastic context is more relevant than
ever. As a preliminary attempt to analyze this issue,2 we develop a simple model of finite
horizon pollution control subject to random shocks. Differently from Athanassoglou and
Xepapadeas (2012), we do not focus either on the Knightian concept of uncertainty or on
society’s response to the worst-case scenario. Thus, the work most similar to ours is Saltari
and Travaglini’s (2016), which analyzes a (deterministic) pollution control problem over
a finite horizon. Differently from them, we do not focus on emission constraints and our
objective function represents the social costs of pollution. This specific setting allows us to

1 Note that the topic has been frequently analyzed from an empirical point of view, but very rarely considered 
from a theoretical standpoint. On the theoretical side, even if with goals substantially different from ours, see 
Baker (2005), and Athanassoglou and Xepapadeas (2012).
2 Very few papers analyze economic dynamics in a framework of stochastic pollution (Kijima et al. 2011; 
Saltari and Travaglini 2011; Privileggi and Marsiglio 2013). However, differently from our goals, these works 
either do not focus on environmental policy (Privileggi and Marsiglio 2013), or take it exogenously given 
(Kijima et al. 2011) or assume the evolution of pollution to be completely exogenous (Saltari and Travaglini 
2011).
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develop a tractable framework to analyze the impact of uncertainty on environmental policy
and pollution dynamics.

Apart from its implications on economic outcomes, the (optimal) regulation of polluting
activities has also important implications on our ability to eventually achieve a sustainable
development pathway. In fact sustainable development clearly requires us to ensure a certain
equity across present and future generations (WCED 1987), not only in terms of economic
opportunities but also in terms of environmental quality. In the sustainability literature, the
traditional economic discounted utilitarian approach has often been criticized for its inabil-
ity to take into account the welfare consequences of our today’s actions on (very) future
generations (Chichilnisky et al. 1995).3 Some alternatives have been proposed in order to
formally allow also future generations to be considered in the planning problem (Marsiglio
2011). Chichilnisky (1997) proposes to modify the objective function in order to accompany
the discounted sum of utilities with a long run utility level. In order to formally include
in our analysis a certain degree of concern for sustainability issues and future generations
we follow Chichilnisky’s (1997) approach4 and accompany discounted instantaneous costs
with an end-of-planning-horizon cost. We wish to understand how environmental policy and
pollution are related to the increases in the degree of sustainability concern (representing
the weight attached to the end-of-planning-horizon cost) that we are currently witnessing in
industrialized economies.

This brief paper proceeds as follows. Section 2 presents our model, which consists of a
finite horizon pollution control problem in which the stock of pollution is subject to random
shocks, and the planner cares for future generations and the level of pollution they will have
to bear. In Sect. 3 we explicitly solve the stochastic optimization problem andwe characterize
the optimal policy and the optimal dynamics of pollution, showing how they are affected by
different degrees of sustainability concern and different degrees of uncertainty (in a specific
limiting case of our model). Specifically, we show that the optimal environmental policy
increases with the degree of sustainability concern, reducing thus the amount of pollution
the society is forced to bear, and it rises with higher degrees of uncertainty in a precautionary
manner. In Sect. 4 we present a calibration of our model based on CO2 data at world level
to support our analysis. We thus illustrate the predictions of our model under a realistic
parametrization and we are able to assess how different degrees of uncertainty may affect
environmental policy and pollution even in our more general setup. In Sect. 5 we present an
extension of our baseline model in which we formally take into account, even if in a stylized
fashion, capital dynamics; we show that our results hold true even by allowing for a time-
varying capital growth rate. Section 6 contains concluding remarks and highlights directions
for future research. All mathematical technicalities are included in the Appendices 1, 2, 3
and 4.

3 Specifically, the presence of a positive discount factor (a necessarily requirement of any infinite horizon
optimal control problem) is the source of the problem. Indeed, a positive discount factor means that less and
less weight is attached to generations further away in the future, thus the notion of intertemporal equity is
automatically ruled out.
4 Strictly related to our approach, even if with different objectives and methodologies, see recently Colapinto
et al. (2015). They propose a multicriteria model in order to assess the implications of different degrees of
sustainability concern on the optimal dynamics of economic policy and natural resources.
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2 The Model

We consider a model of pollution control over a finite horizon in which the stock of pollution
is subject to random shocks. The economic framework is very simple: economic agents at
each instant of time consume completely their disposable income: ct = (1− τt )yt , where ct
denotes consumption, yt income and τt ∈ (0, 1) the tax rate. The unique final consumption
good, yt , is produced competitively by firms employing capital, kt , according to a linear
production function, yt = akt , where a > 0 is a scale parameter. For the sake of simplicity,
for the time being, we assume that capital grows exogenously5 at a constant rate (normalized
to unity without loss of generality); we will relax this assumption later on by considering a
time-varying capital growth function to take into account more specifically the implications
of a richer capital dynamics for our model. Since economic activity generates pollution as a
side product, the tax revenue is used to limit pollution accumulation. Thus, an increase in τ

reduces pollution but at the same time lowers current consumption possibilities, identifying
thus a clear (at least current) trade-off between economic and environmental performance.

The social planner wishes to minimize the social cost of pollution pt , by choosing the
optimal level of the policy instrument, τt . The social cost function, C, is the weighted sum
of two different terms: the expected discounted (ρ > 0 is the rate of time preference) sum
of instantaneous losses generated by economic activities, and the discounted environmental
damage associated with the remaining level of pollution at the end of the planning horizon,
T . The instantaneous loss function, c(pt , τt ), taking into account both environmental (pt )
and economic (τt ) costs, is assumed to be increasing and convex in both of its arguments,
penalizing deviations from the no-pollution scenario (i.e., pt = 0) and the strength of the
policy instrument; for analytical tractability, such a function is assumed to take the following

form: c(pt , τt ) = p2t (1+τt )
2

2 . The damage function, d(pT ), is assumed to be increasing and

convex as follows: d(pT ) = p2T
2 . Pollution is a stock variable which increases with flow emis-

sions generated by economic activity and decreases according to the rate of natural pollution
absorption; economic output generates emissions which increase the stock of pollution at a
rate η > 0, while the natural rate of pollution decay is denoted by δ > 0. The amount of
pollution associated with economic activity can be reduced by economic regulation, and one
unit of output invested in environmental preservation reduces one unit of pollution; it then
follows that the dynamics of pollution under economic regulation is given by the following
linear differential equation6: ṗt = [η(1 − τt ) − δ] pt . The policy instrument τt thus repre-
sents an environmental tax used to decrease the environmental inefficiencies of economic
activities (i.e., the human-induced growth rate of pollution η). The previous differential equa-
tion describes the evolution of pollution in absence of uncertainty (as traditionally assumed

5 Such an assumption that capital accumulation is completely exogenous is clearly a simplification of reality, 
but it is instrumental to the need of developing a tractable model. Allowing for a more sophisticated and 
endogenously determined capital accumulation as in van der Ploeg and Withagen (1991) will substantially 
complicate the analysis. Note that even in its current form the problem is all but trivial (see Proposition 1), thus 
extending the analysis to consider a richer dynamic evolution of capital will make the search for an explicit 
solution of the Hamilton–Jacobi–Bellman equation even harder. It seems convenient to start the analysis of 
uncertainty related issues in the simplest possible pollution control problem.
6 Note that our pollution specification suggests that the growth rate of pollution and the growth rate of output 
are related one-for-one by a factor η. This is in line with a common approach in literature where pollution is 
often assumed to be proportional to output or capital (see Dinda 2005; Economides and Philippopoulos 2008), 
meaning that the growth rate of pollution is proportional to the growth rate of output, which is equal to the 
growth rate of capital in our setup. This assumption implies that economic activities through the production 
process are the primary source of pollution.
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in the pollution control literature); however, we allow for pollution to be subject to random
shocks, assumed to be driven by a geometric Brownian motion.

The social planner needs to choose τt in order tominimize the expected social cost function,
given the evolution of pollution and its initial (deterministic) condition. The planner’s problem
can be summarized as follows:

min
τt

C = E

[
θ

∫ T

0

p2t (1 + τt )
2

2
e−ρt dt + (1 − θ)

p2T
2
e−ρT

]
(1)

s.t. dpt = [η(1 − τt ) − δ] ptdt + σ ptdWt (2)

p0 > 0 given, (3)

where σ ≥ 0 is the standard deviation of pollution and dWt the increment of a Wiener
process. The parameter θ ∈ [0, 1] in Eq. (1) measures the relative importance assigned by
the social planner to the sum of instantaneous losses rather than the final environmental
damage. Note that such a specification is consistent with the notion of sustainability, requir-
ing to ensure a certain degree of intergenerational equity. Specifically, Eq. (1) reflects the
so-called Chichilnisky’s criterion which proposes to consider a weighted average between
the discounted sum of instantaneous costs and the long run cost associated with pollution
(Chichilnisky 1997). For smaller values of θ , more emphasis is placed on future generations
thus the social planner is more inclined to reduce current pollution (at the expense of reduc-
tions in current consumption) in order to leave the posterity with a cleaner environment. Since
ct = (1 − τt )yt , any attempt to lower emissions in order to reduce the stock of pollution
(rising τt ) requires to sacrifice some consumption, clearly reflecting the (current) economic
and environmental trade-off associated with economic development.

3 The Optimal Policy

For the sake of analytical tractability, we consider an equivalent but slightly different formu-
lation of the above stochastic problem,7 namely:

min
τt

C = E

[∫ T

0

p2t (1 + τt )
2

2
e−ρt dt + (1 − θ)

θ

p2T
2
e−ρT

]
(4)

s.t. dpt = [η(1 − τt ) − δ] ptdt + σ ptdWt (5)

p0 > 0 given, (6)

Solving this stochastic problem requires to find an explicit expression for the value function
solving the Hamilton–Jacobi–Belllman (HJB) equation associated with the problem (4), (5)
and (6). After some algebra it is possible to claim the following.

Proposition 1 The value function associated with the problem (4), (5) and (6) is given by:

J (t, pt ) = 1

2
p2t Vt e

−ρt , (7)

7 Note that this new formulation precludes us to analyze the case in which θ = 0, which as we will discuss
more in depth later, represents a framework consistent with Chichilnisky et al.’s (1995) green golden rule.
However, from a calculus of variations exercise it is straightforward to show that in the θ = 0 case, the problem
(1), (2) and (3) admits the trivial solution τ∗

t = τ∗ = 1,∀t . Intuitively, if the long run cost of pollution is the
unique concern it is optimal to reduce pollution as much as possible; since the short term economic costs are
not considered, this can be done by relying on a maximal value of the policy instrument at any point in time.
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where Vt is the solution of the following differential equation:

V̇t = V 2
t η2 + Vt [ρ − 2(η − δ) − σ 2] − 1, (8)

with the boundary condition VT = 1−θ
θ

≥ 0. Assume that:

θ ∈ (θ; θ) (9)

where θ ≡ 2η2

2η2+2(η−δ)−ρ+σ 2+
√

[2(η−δ)+σ 2−ρ]2+4η2
, θ ≡ 2η2

2η2+2(η−δ)−ρ+σ 2−
√

[2(η−δ)+σ 2−ρ]2+4η2
;

then the optimal rule for the taxation rate, τ ∗
t and the optimal dynamic path of pollution are

respectively given by:

τ ∗
t = 1

2η

{
2(η − δ) − ρ + σ 2

+
√

[2(η − δ) + σ 2 − ρ]2 + 4η2 tanh

[√[2(η − δ) + σ 2 − ρ]2 + 4η2(T − t)

2

+ arctanh

(
2(1 − θ)η2 − 2(η − δ)θ + ρθ − σ 2θ

θ
√[2(η − δ) + σ 2 − ρ]2 + 4η2

)]}
(10)

p∗
t = p0 exp

{∫ t

0

[
η(1 − τ ∗

s ) − δ − 1

2
σ 2
]
ds + σWt

}
(11)

where tanh(z) = ez−e−z

ez+e−z and arctanh(z) = log(1+z)−log(1−z)
2 , with −1 < z < 1, are the

hyperbolic tangent function and its inverse, respectively.

Proof See “Appendix 1”. �	
Note that in order for the optimal level of taxation τ ∗

t to be well defined, the inverse
hyperbolic tangent function needs to bewell defined too, and this happenswhenever the value
of the parameter θ falls in the interval θ ∈ (θ; θ) as specified in Eq. (9). Such a condition is a
merely technical conditionwhich however does not affect in any substantial way our analysis,
since for a realisticmodel’s parametrization (see the calibration in the next section) it is always
automatically satisfied. From now onwards we proceed by assuming that such a condition
holds. Proposition 1 clearly shows that the optimal level of taxation is not constant, and as
a result the trend of the pollution stock (even in a purely deterministic framework) is time-
varying too. The same comment applies to the trend of pollution stock,which (even in absence
of shocks) tends to change as a result of the time evolution of the optimal taxation level. From
Eq. (10) we can note that the optimal policy, determining the amount of resources diverted
from economic to environmental activities, strictly depends upon the planner’s degree of
sustainability concern (i.e., 1− θ ). The degree of sustainability concerns indirectly (through
the optimal taxation channel) affects also the dynamics of pollution [see Eq. (11)], and thus
it is natural to wonder whether the increasing sustainability concern that we are currently
experiencing (at least within industrialized countries) is going to generate positive or negative
consequences on the amount of pollution our society will have to bear in the long run. Despite
the quite complex expression for τ ∗, it is possible to show that the following result holds.

Proposition 2 Provided that θ ∈ (θ; θ) holds, the optimal taxation level (i.e., τ ∗
t ) increases

with the degree of sustainability concern (i.e., 1 − θ ).

Proof See “Appendix 2”. �	
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Proposition 2 shows the existence of a positive relationship between the optimal level of
(environmental) policy intervention and the degree of sustainability concern. Intuitively, this
result suggests that the more the planner cares for sustainability issues, the more convenient
it will be to actively intervene in order to limit the amount of pollution the society will
have to bear in the long run. As a result, the level of taxation will be larger dampening
economic activities and simultaneously reducing the stock of pollution. This suggests that
the current trend of a growing environmental and sustainability concern might be effective
in achieving a more sustainable development path in the long run, but such an increased
sustainability will occur at the cost of reductions in consumption opportunities. However,
promoting further increases in the degree of sustainability concern, through environmental
education, sensibilization and green campaigns, might be a valuable tool for supporting a
greener and more sustainable future.

The above results are all related to the relationship between the degree of sustainability
concern and economic policy, and we have not analyzed what role uncertainty plays in this
context. However, because of the complex expression for τ ∗

t , it is possible to derive only
a sufficient condition ensuring that τ ∗

t is monotonically related to σ 2, and specifically it
monotonically increases with σ 2. This allows us to state the following result.

Proposition 3 Provided that θ ∈ (θ; θ) holds, the optimal taxation level (i.e., τ ∗
t ) increases

with the degree of uncertainty (i.e., σ 2) whenever σ 2 ≤ ρ − 2(η − δ) − 2θ
1−θ

.

Proof See “Appendix 3”. �	
Proposition 3 shows that ∂τ∗

t
∂σ 2 turns out to be undoubtedly positive if a certain condition

holds, while nothing can be explicitly said whenever such a condition is not met. Note that
for θ ∈ [0, 1] the condition above can hold only for very small values of θ . In fact, whenever
θ → 0, the condition reads as σ 2 ≤ ρ − 2(η − δ), which (provided that ρ is sufficiently
large) identifies a threshold value for the uncertainty parameter below which increases in
uncertainty undoubtedly lead to increases in the optimal level of taxation. The case θ = 0
is a very extreme case representing a situation in which the degree of sustainability concern
is maximal and thus social costs are defined according to the green golden rule criterion
(Chichilnisky et al. 1995). In our setup such a criterion states that only the long run costs
should be considered in order to determine the level of policy intervention. Intuitively, in
such a framework higher levels of pollution stock are definitely undesirable and since the
economic costs associated with pollution reduction are not considered (see how the social
cost function (1) would readwhenever θ → 0), with rising uncertainty it is clearly convenient
to firmly intervene in order to limit as much as possible the pollution stock.8 However, apart
from this very special limiting case, the condition in Proposition 3 cannot be realistically met
thus nothing can be said from an analytical point of view on the role of uncertainty in our
general setting.

4 A Calibration Based on Global CO2 Data

In order to shed some more light on this relationship between uncertainty and policy inter-
vention and to illustrate the implications of different degrees of sustainability concern on

8 Note that, because of what intuitively just discussed and what mentioned earlier, the θ = 0 case represents
a degenerate case giving rise to a trivial solution in which the optimal level of policy intervention is always
maximal, that is τ∗ = 1, ∀t , even in absence of shocks.
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Fig. 1 Evolution of CO2 concentrations from the industrial revolution [sources: Etheridge et al. (1998) and  
Dlugokencky and Tans (2015)]

environmental policy, we rely on a calibration based on global CO2 data. In order to obtain 
an estimate of our parameter values, we need first of all to consider that the dynamic sto-
chastic equation describing the evolution of pollution over time, namely Eq. (2), suggests 
an exponential growth for pollution. In order to quantify pollution variations we focus on 
atmospheric CO2 concentrations, expressed in parts per million (ppm). We rely on two sets 
of data about CO2 levels: the long (2000-year) record from the Law Dome ice core in Antarc-
tica, provided by the Carbon Dioxide Information Analysis Center of the U.S. Department of 
Energy (Etheridge et al. 1998), and the more recent years time series made available by the 
Earth System Research Laboratory of the National Oceanographic and Atmospheric Admin-
istration (Dlugokencky and Tans 2015). We rely on the former to obtain concentrations data 
from the 1750 to 1979, and on the latter for data from 1980 to 2015. By joining these two 
data sets, we can see that nowadays the global level of CO2 is about 400 ppm, and the CO2 
concentration at world level has followed an exponential growth pattern since the industrial 
revolution (see Fig. 1). This provides some clear support for our formulation of pollution 
dynamics, as expressed in Eq. (2).

We extrapolate the exponential growth rate from the 1750–2015 time series, obtaining a 
net (of natural absorption) rate of pollution growth, η−δ equal to 0.001. By following Saltari 
and Travaglini (2016), we set the natural pollution decay rate, δ, equal to 0.05, implying that 
the rate pollution growth, η. is equal to 0.051. The value of the standard deviation, σ , has  
been calculated simply averaging the annual level of standard deviations of the recent data 
from Dlugokencky and Tans (2015), obtaining 0.164. As traditionally assumed in literature 
we set the rate of time preference, ρ, equal to 0.04 (Saltari and Travaglini 2016). The time 
horizon has been arbitrarily set at 30 years, but it is possible to show that even extending the 
time frame does not qualitatively modify our results. The initial value of the pollution stock, 
p0, is set equal to the current (2015) level of CO2 concentration, that is 400.23 ppm. We 
thus consider the following parameter values: η = 0.051, δ = 0.05, σ = 0.164, ρ = 0.04, 
p0 = 400.23 and T = 30. We allow for different values of θ in order to show how economic 
policy and pollution stock vary with different degrees of sustainability concern (represented

8



0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
τ(t), σ=0

Time t

θ = 0.1
θ = 0.5
θ = 0.9

0 5 10 15 20 25 30
395

396

397

398

399

400

401
p(t), σ=0

Time t

θ = 0.1
θ = 0.5
θ = 0.9

Fig. 2 Deterministic case: dynamic evolution of the optimal level of taxation τ∗
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Fig. 3 Optimal level of taxation τ∗ (left) and consequent level of pollution p∗ (right) as functions of the
degree of sustainability concern θ , at a given point in time (specifically, t = 15)

by 1− θ ). Specifically, we consider three different values of θ , representing a low (θ = 0.9),
medium (θ = 0.5) and high (θ = 0.1) degree of sustainability concern.

The outcome of our calibration is illustrated in Fig. 2, in which we first consider a purely
deterministic framework (i.e., σ = 0) and we represent the dynamic evolution of the optimal
taxation rate (on the left panel) and the pollution stock (on the right panel). It is clear that τ ∗
monotonically falls with θ while p∗ monotonically rises with θ (these monotonicity results
are robust even considering a wider range for θ ). These diametrically different effects of
the degree of sustainability concern on the taxation rate and pollution stock are due to the
negative relationship between p∗ and τ ∗ [see Eq. (11)] . What these results show is that the
larger the weight attached to the long run level of pollution (the lower θ ), the stricter the
optimal environmental policy (the higher τ ∗

t ) and thus the healthier the environment (the
smaller p∗

t ).
In order to better understand the impact of different degrees of sustainability concern on

economic policy and environmental outcomes, it might be convenient to fix one point in time,
t = t̃ (e.g., t̃ = T

2 ) for a while. This allows us to assess to what extent in a purely static
framework a different θ is going to affect the taxation and pollution levels. As clearly shown
by Fig. 3, the optimal level of taxation decreases at its fastest pace with low values of θ ,
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Fig. 4 Comparison between the deterministic (left, σ = 0) and the stochastic (right, σ = 0.164) scenarios

while the change in τ is barely evident for larger values. This suggests that increases in the 
degree of sustainability concern (decreases in θ ) may have relevant effects only whenever 
the society (i.e., the social planner) does not care enough about sustainable outcomes, since 
whenever the care for the long run outcome is already high further decreases in θ may 
have only negligible effects. This suggest the existence of a threshold value determining the 
effectiveness of policies aiming to eventually promote increases in the degree of sustainability 
concern. Indeed, the degree of sustainability concern has to be above a certain threshold to 
actually translate into a leap of policy intervention. Accordingly, by looking at the right panel 
of Fig. 3, we can see that the pollution stock decreases substantially only when the degree of 
sustainability concern is above a certain threshold (that is θ is substantially small), boosting 
policy intervention and consequently curbing the accumulation of pollution.

The conclusions that we have discussed thus far are all derived from a deterministic frame-
work, thus we might be wondering whether such results still hold also when uncertainty is 
taken into account. In Fig. 4 we compare the evolution of the taxation rate in a stochastic 
(left panel) and deterministic (right panel) contexts. Despite the fact that for all the θ values 
considered the sufficient condition in Proposition 3 does not hold, the optimal taxation in the 
stochastic case is always greater than the deterministic one, consistently with a precautionary 
motive (Athanassoglou and Xepapadeas 2012). This states that under a realistic model’s para-
metrization, environmental costs outweigh economic costs such that with a higher uncertainty 
in pollution dynamics it is convenient to adopt stricter policy measures in order to minimize 
the social costs.

Even if it is true that τ in the stochastic case is always greater than the deterministic one, 
by considering the same level of θ , it is also possible to note that the difference in the optimal 
taxation between the two scenarios decreases as time goes by, meaning that the effect of 
uncertainty on the optimal policy path decreases over time. This can be explained by the 
fact that an optimal policy intervention reduces the impacts of uncertainty on the pollution 
stock, such that in the very long run its level is determined for the largest extent by the 
degree of sustainability concern. This can be seen in the left panel of Fig. 5 which shows 
the time evolution of the difference in the optimal taxation between the stochastic and the 
deterministic case for a certain value of the degree of sustainability concern, that is θ = 0.5. 
Moreover, as it is possible to note from the right panel of Fig. 5, which focuses on the same 
difference at t = 0, at the beginning of the time interval the difference in taxation between
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Fig. 5 Time evolution (left) and initial period (right) differences in the optimal taxation levels between the
stochastic and deterministic scenarios

the stochastic and deterministic case are larger the smaller the value of θ , implying that the
uncertainty induced (economic) cost associated to the optimal policy is higher the smaller θ ,
that is the higher the degree of sustainability concern.

5 An Extension: Time-Varying Capital Accumulation

The model that we have discussed thus far describes how pollution evolves because of pro-
ductive activities, in a situation in which capital grows at an exogenously given constant
rate. Such an assumption as traditionally discussed in the growth literature can mainly be
interpreted as a description of the long run macroeconomic behavior only. Thus, whenever
we adopt a shorter time horizon perspective as we are doing in our model’s setup, and this
might be needed in order to account for the different time scale between economic and envi-
ronmental processes (Xepapadeas 2010), such an assumption may be very restrictive and
thus a more sensible approach would rather be considering a time-varying capital growth.

This is exactly what we do in this section where we relax our baseline assumption that
capital growth is constant and by considering a time-varying capital growth we more real-
istically take into account capital dynamics. We do not restrict the law of motion of capital
to take any specific functional form, but we simply assume that the growth rate of capital is
time-varying. Specifically, we keep assuming that output linearly depends on capital as fol-
lows yt = akt , but now we assume that capital evolves according to the following dynamics:
dkt = (1+γt )ktdt , where γt is a general time-varying function measuring the excess of cap-
ital growth from its long run trend rate.9 Thus, our extended optimization problem consists
of minimizing the social costs of pollution by taking into account the dynamic evolution of
pollution and capital as follows:

9 The standard benchmark for thinking about what the excess of capital growth function might look like is
to imagine γt to be decreasing over time. This is due to the fact that in a typical macroeconomic setup the
evolution of capital may be described by a Bernoulli differential equation. This is clearly what we may expect
in a Solow-type (1956) framework in which capital dynamics is driven by the economy’s saving behavior, but
also in a Ramsey-type (1928) setting in which consumption is endogenously determined the (optimal) capital
dynamics would be very similar. In our model, we cannot formally take into account either saving or other
determinants of capital accumulation, thus we simply focus on a time-varying capital dynamics to summarize
the implications of the relevant macroeconomic factors.
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min
τt

C = E

[
θ

∫ T

0

p2t (1 + τt )
2

2
e−ρt dt + (1 − θ)

p2T
2
e−ρT

]
(12)

s.t. dpt = [
η(1 + γt )(1 − τt ) − δp

]
ptdt + σ ptdWt (13)

dkt = (1 + γt )ktdt (14)

p0 > 0, k0 > 0 given (15)

Note that the specification above suggests that the trend growth of pollution is time-varying
even in absence of environmental policy and uncertainty. This is due to the role played by
the capital excess rate of growth in the short run which, by being the source of economic
activities and thus pollution, tends to accelerate pollution accumulation. This effect tends to
fade away in the long run, when capital grows at its trend rate (which remember we have
normalized to unity); in such a framework the capital excess rate of growth is null (that is
γt = 0) and the model turns out to be equivalent to what discussed earlier.

It is possible to prove that, provided that the excess of capital growth is bounded from
both above and below, then also the dynamics of the optimal policy is bounded, and in
particular τ ∗

t will lie within a specific range [τ t , τ t ], whose size depends upon the model’s
parameters. This clearly implies that something very similar holds true also for what concerns
the dynamics of pollution, and specifically p∗

t will lie between an upper and lower bound,
p
t
and pt , respectively. The results are summarized in the next proposition.

Proposition 4 Suppose that 1+ γt ∈ [γ , γ ]; then the optimal rule for the taxation rate falls
in the following range, τ ∗

t ∈ [τ t , τ t ], where:

τ t = 1

2ηγ

⎧⎨
⎩2(ηγ − δ) − ρ + σ 2

+
√

[2(ηγ − δ) + σ 2 − ρ]2 + 4(ηγ )2 tanh

⎡
⎣
√

[2(ηγ − δ) + σ 2 − ρ]2 + 4(ηγ )2(T − t)

2

+ arctanh

⎛
⎝ 2(1 − θ)(ηγ )2 − 2(ηγ − δ)θ + ρθ − σ 2θ

θ
√

[2(ηγ − δ) + σ 2 − ρ]2 + 4(ηγ )2

⎞
⎠
⎤
⎦
⎫⎬
⎭ (16)

τ t = 1

2ηγ

⎧⎨
⎩2(ηγ − δ) − ρ + σ 2

+
√

[2(ηγ − δ) + σ 2 − ρ]2 + 4(ηγ )2 tanh

⎡
⎣
√

[2(ηγ − δ) + σ 2 − ρ]2 + 4(ηγ )2(T − t)

2

+ arctanh

⎛
⎝ 2(1 − θ)(ηγ )2 − 2(ηγ − δ)θ + ρθ − σ 2θ

θ
√

[2(ηγ − δ) + σ 2 − ρ]2 + 4(ηγ )2

⎞
⎠
⎤
⎦
⎫⎬
⎭ , (17)

while the optimal dynamic path of pollution falls in the range, p∗
t ∈ [p

t
, pt ], where:

p
t
= p0 exp

{∫ t

0

[
ηγ (1 − τ t ) − δ − 1

2
σ 2
]
ds + σWt

}
(18)

pt = p0 exp

{∫ t

0

[
ηγ (1 − τ t ) − δ − 1

2
σ 2
]
ds + σWt

}
(19)
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Fig. 6 Dynamic evolution of the optimal level of taxation τ∗
t in a framework with a time-varying capital

growth in the σ = 0 (left panel) and σ > 0 (right panel) cases

Proof See “Appendix 4”. �	
Differently from what discussed in Sect. 3 where we could obtain an explicit expression

for the HJB, the optimal tax rate and the optimal pollution dynamics, the results are now
clearly more complicated and less neat in order to account for a time-varying capital growth.
Indeed, a closed form solution for the HJB equation in this case cannot be found, thus also
an explicit expression for the optimal control and state variables cannot be derived; however,
Proposition 4 shows that even in absence of analytical solutions we can identify some lower
and upper bounds for both the policy instrument and the optimal pollution path, and these
bounds are strictly dependent upon the model’s parameters, and in particular upon the degree
of sustainability concern and the degree of uncertainty. In order to understand to what extent
the results that we discussed in the previous sections hold true also in our extended framework
in which the growth rate of capital is not constant, we need to rely on numerical methods
to derive the optimal tax rate. The results are shown in the figure below, which is based on
the same parameter values employed in the previous section and a decreasing capital growth
rate function (which for a matter of graphical clarity is assumed to be γt = (γ − γ )t + γ ,
with γ = −0.1 and γ = 0.1).

Figure 6 shows the optimal tax rate for different values of the degree of sustainability
concern, both in the σ = 0 and σ > 0 cases, and the lower and upper bounds (18) and (19).10

As Proposition 4 suggests the optimal tax rate also lies between the two bounds, both in the
deterministic and stochastic case. We can also see that the behavior of the optimal tax rate
is consistent with what discussed in the previous sections, that is it increases with both the
degree of sustainability concern (i.e, 1 − θ ) and the degree of uncertainty (i.e., σ 2). These
results show thus that the conclusions that we derived in our baseline model are robust, since
holding true even in a more complicated framework with time-varying capital dynamics.
Thus, even in a more realistic framework in which the capital growth rate is not always
constant we can conclude the following: the current trend of a growing environmental and
sustainability concern might be effective in achieving a more sustainable development path
in the long run, and the optimal taxation in the stochastic case is always greater than in the
deterministic one consistently with a precautionary motive.

10 Note that the bounds are dependent upon θ , thus in order to plot in the same figure the optimal tax rate
associated with different values of the degree of sustainability concern, we show only the minimum and the
maximum of the lower and upper bounds, respectively.
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6 Conclusions

The rising interest that we are witnessing among policymakers and academics towards sus-
tainable development and the high uncertainty associatedwith future environmental outcomes
naturally raise the question about how environmental policy should be determined in order
to take into account such factors. In order to give a preliminary answer to this question we
analyze a finite horizon problem of pollution control under uncertainty in which the planner
is (partially) moved by sustainability concern. Despite the model’s simplicity, the problem
turns out to be all but trivial. We show that the optimal level of environmental policy is non-
constant and it is clearly affected by both the degree of uncertainty and sustainability concern.
Specifically and intuitively, both larger degrees of sustainability concern and larger degrees
of uncertainty lead to a stricter environmental policy, reducing thus the environmental burden
imposed on the society both in the short and long run. Clearly the degree of sustainability
concern may be effectively affected through specific (education or advertising) policies, thus
it represents an important tool to achieve a more sustainable and greener future. However,
the reduction in the environmental burden associated with pollution control comes at the cost
of a reduction in consumption possibilities, thus assessing the net impact on social costs of
further increases in the suststainability concern is not straightforward. These results hold true
both in our baseline model in which capital and output grow at a constant rate and in our
extended framework in which their growth rate is time-varying; the only noticeable differ-
ence between these two frameworks is that in the baseline model we can explicitly derive the
optimal dynamics of the policy instrument, while in the extended model only some upper
and lower bounds for the optimal policy can be explicitly obtained (however, the behavior
of the numerically-derived policy instrument is qualitatively identical to what derived in the
baseline setup).

This work represents a first attempt to analyze the impact of uncertainty and sustainability
issues in a pollution control model, thus the analysis cannot be considered exhaustive. Indeed,
for the sake of simplicity we have to introduce some simplifying assumptions which might
have limited our model’s ability to describe in full the nature of the problem. In particular,
since we have assumed capital growth to be exogenously given (constant first and time-
varying in the extended model) we cannot comment on the endogenous effects of uncertainty
and the degree of sustainability concern on both economic performance and pollution in
growing economies. Moreover, the model’s setup does not allow to distinguish between the
notion of uncertainty and that of risk, thus it is not possible to disentangle their relationships
with the degree of sustainability concern. Extending the analysis to allow for endogenous
economic growth (as in van der Ploeg and Withagen 1991) and for a Knightian concept of
uncertainty (as in Athanassoglou and Xepapadeas 2012) is left for future research.

Appendix 1: Optimal Solution and Sufficiency

By denoting with J (t, pt ) the value function associated to our stochastic problem (4),
(5) and (6) and by omitting the time subscript for sake of clarity, the HJB equation
reads as:

− ∂J
∂t

= min
τ

{
1

2
p2(1 + τ 2)e−ρt + [(1 − τ)α − δ]p ∂J

∂p
+ 1

2
σ 2 p2

∂2J
∂p2

}
(20)
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while the corresponding terminal condition as:

J (T, pT ) =
(
1 − θ

θ

)
1

2
p2T e

−ρT (21)

The first order necessary (and sufficient; see below) condition for τ yields:

τ = ηe−ρt

p

∂J
∂p

(22)

We proceed by guessing the form of the value function and verifying that our guess is
correct. Our sophisticated guess is:

J (t, p) = 1

2
p2Ve−ρt (23)

where V is a variable to be determined. By computing its derivatives:

∂J
∂t

= 1

2
p2
[

∂V

∂t
− ρV

]
e−ρt , (24)

∂J
∂p

= pV e−ρt (25)

∂2J
∂p2

= Ve−ρt , (26)

and substituting (25) into (22), we obtain:

τ = ηV (27)

By plugging (24), (25) and (26) into (20) and simplifying the expression, we obtain the
following ordinary differential equation in V :

∂V

∂t
= V 2η2 + V [ρ − 2(η − δ) − σ 2] − 1, (28)

with the boundary condition VT = 1−θ
θ

≥ 0, from evaluating (21) and (23) at T . The solution
of the above differential equation can be used to derive the path of the optimal tax rate [from
(27)] and finally the expected path of pollution [from (5)]. Indeed, by solving (28) along with
its boundary condition for Vt and substituting into (27) we get the optimal dynamics of the
tax rate:

τ ∗ = 1

2η

{
2(η − δ) − ρ + σ 2 + tanh

[√
M(T − t)

2

+ arctanh

(
2(1 − θ)η2 − 2(η − δ)θ + ρθ − σ 2θ

θ
√
M

)]√
M

}
, (29)

where M = [2(η − δ) + σ 2 − ρ]2 + 4η2, tanh(z) = (ez − e−z)/(ez + e−z) is the hyperbolic
tangent function and arctanh(z) = 1

2 [log(1+ z)− log(1− z)], with −1 < z < 1, its inverse.
By plugging the above expression in (5), which describes a geometric Brownian motion with
time-dependent coefficients, it is possible to determine the time evolution of pollution, whose
closed form expression is given in Eq. (11).

In order to verify the correctness of our guess, we use the stochastic maximum principle
proposed by Framstad et al. (2004) to show that the policy rule identified in (29) is optimal.
By defining mt ≡ ∂J /∂p and nt ≡ ∂2J /∂p2, it is possible to rewrite (20) as:
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−∂J
∂t

= min
τ

{
1

2
p2(1 + τ 2)e−ρt + [(1 − τ)η − δ]pm + 1

2
σ 2 p2n

}
= min

τ
H,

where:

H = 1

2
p2(1 + τ 2)e−ρt + [(1 − τ)η − δ]pm + 1

2
σ 2 p2n (30)

where denotes the the stochastic Hamiltonian. Theorem 2.1 of Framstad et al. (2004) states
that, for an admissible set of state and controls, if the minimized Hamiltonian Ĥ (that is the
Hamiltonian H evaluated at the value of the optimal control τ ∗) is convex in p for all t in
[0, t], then the pair (τ∗, p) represents an optimal pair for the problem. Note thatH is strictly
convex in τ since ∂2H/∂τ 2 = p2e−ρt > 0. The control which minimizes H is given by
Eq. (22) and so the minimized Hamiltonian is:

Ĥ = 1

2
p2
(
1 + m2η2

p2(e−ρt )2

)
e−ρt + pm

[(
1 − mη

pe−ρt

)
η − δ

]
+ 1

2
σ 2 p2n

which is strictly convex in p, since ∂2Ĥ/∂p2 = e−ρt + nσ 2 > 0.

Appendix 2: Proof of Proposition 2

The derivative of the optimal policy τ ∗ with respect to θ reads as:

∂τ ∗
t

∂θ
=

√
M

2

{
1 − tanh

[√
M

2
(T − t)

+ arctanh

(
B√
M

)]2}{(−2η2 − σ 2 + 2δ − 2η + ρ

θ
√
M

− B

θ2
√
M

)

×
[(

1 − B

θ2(
√
M)2

)
η

]−1
}

(31)

where M = [2(η − δ) + σ 2 − ρ]2 + 4η2 and B = 2(1 − θ)η2 − 2(η − δ)θ + ρθ − σ 2θ .

The sign of the above derivative is determined by the product of three terms,
√
M
2

and the two terms in the curly brackets. Provided that the hyperbolic tangent func-

tion is well defined, as per condition (9), the first term,
√
M
2 , is clearly non-negative.

The second term, namely

{
1 − tanh

[√
M
2 (T − t) + arctanh

(
B√
M

)]2}
, is non-negative too

since the hyperbolic tangent takes values in [−1, 1]. After some algebra, the third term,{(−2η2−σ 2+2δ−2η+ρ

θ
√
M

− B
θ2

√
M

) [
(1 − B

θ2(
√
M)2

)η
]−1

}
, can be rearranged to obtain:

−
√

σ 4 − 4δσ 2 + 4ησ 2 − 2ρσ 2 + 4δ2 − 8δη + 4δρ + 8η2 − 4ηρ + ρ2

2[ηθ2(−η2 − σ 2 + 2δ − 2η + ρ + 1) + ηθ(2η2 + σ 2 − 2δ + 2η − ρ) − η3] (32)

Since the numerator in (32) is clearly non-negative, the sign of its denominator determines 
the sign of (31): if this is positive then the whole derivative will be negative, while it will be 
positive otherwise. It turns out that the conditions for the hyperbolic tangent function to be 
well defined, as in Eq. (9), ensure that the denominator of the above expression is positive, 
such that the sign of (31) is overall negative.
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Appendix 3: Proof of Proposition 3

From Eq. (10) it is clear that what complicates the determination of the sign of ∂τ∗
∂σ 2 is the

argument of the inverse hyperbolic tangent. Indeed, apart from this termwhose derivative has
an uncertain sign, all other terms suggest the existence of amonotonically increasing relation-
ship between the optimal taxation and the degree of uncertainty. Thus, we can undoubtedly
assess the sign of ∂τ∗

∂σ 2 only whenever also the argument of the inverse hyperbolic tangent

rises with σ 2. In the following we denote the argument of the inverse hyperbolic tangent with
�, which from Eq. (10) reads as:

� = 2(1 − θ)η2 − 2(η − δ)θ + ρθ − σ 2θ

θ
√[2(η − δ) + σ 2 − ρ]2 + 4η2

After some algebra the derivative of the above term with respect to σ 2 yields:

∂�

∂σ 2 = −2η2
(
2δθ − 2ηθ + ρθ − θσ 2 − 2δ + 2η − ρ + 2θ + σ 2

)
θ
(
4δ2 − 8δη + 4δρ − 4δσ 2 + 8η2 − 4ηρ + 4ησ 2 + ρ2 − 2ρσ 2 + σ 2

) 3
2

Since the denominator in above expression is clearly non-negative, the sign of its numerator
determines the sign of ∂�

∂σ 2 :whenever this is negative then thewhole derivativewill be positive.

This happens whenever the condition stated in Proposition 3, σ 2 ≤ ρ − 2(η − δ) − 2θ
1−θ

,
holds.

Appendix 4: Proof of Proposition 4

Let us first notice that the following equation:

Ȧt = A2
t η

2γ 2
1 + At [2(ηγ2 − δ) + σ 2 − ρ] − 1 (33)

admits a closed-form solution given by:

At = 1

2(ηγ1)2

{
2(ηγ2 − δ) − ρ + σ 2

+
√

[2(ηγ2 − δ) + σ 2 − ρ]2 + 4(ηγ1)2 tanh

[√[2(ηγ2 − δ) + σ 2 − ρ]2 + 4(ηγ1)2(T − t)

2

+ arctanh

(
2(1 − θ)(ηγ1)

2 − 2(ηγ2 − δ)θ + ρθ − σ 2θ

θ
√[2(ηγ2 − δ) + σ 2 − ρ]2 + 4(ηγ1)2

)]}

By repeating the same calculations as in Sect. 3, one can reduce the problem of solving
the HJB equation to the following ordinary differential equation:

V̇t = V 2
t (1 + γt )

2η2 + Vt [ρ − 2(η(1 + γt ) − δ) − σ 2] − 1,

where γt measures the excess of capital growth. Some algebra yields to the following inequal-
ities:

V̇t = V 2
t (1 + γt )

2η2 + Vt [ρ − 2(η(1 + γt ) − δ) − σ 2] − 1

≤ V 2
t γ 2η2 + Vt [ρ − 2(ηγ − δ) − σ 2] − 1
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and, in an analogous way:

V̇t ≥ V 2
t γ 2η2 + Vt [ρ − 2(ηγ − δ) − σ 2] − 1

By using the above Eq. (33) and the classical comparison theorem for differential equations,
we obtain the lower and upper bounds as in (18) and (19).
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