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DOUBLING INEQUALITY AT THE BOUNDARY
FOR THE KIRCHHOFF-LOVE PLATE’S EQUATION

WITH DIRICHLET CONDITIONS

ANTONINO MORASSI - EDI ROSSET - SERGIO VESSELLA

The main result of this paper is a doubling inequality at the boundary
for solutions to the Kirchhoff-Love isotropic plate’s equation satisfying
homogeneous Dirichlet conditions. This result, like the three sphere in-
equality with optimal exponent at the boundary proved in Alessandrini,
Rosset, Vessella, Arch. Ration. Mech. Anal. (2019), implies the Strong
Unique Continuation Property at the Boundary (SUCPB). Our approach
is based on a suitable Carleman estimate, and involves an ad hoc reflection
of the solution. We also give a simple application of our main result, by
weakening the standard hypotheses ensuring uniqueness for the Cauchy
problem for the plate equation.
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1. Introduction

Let us consider the following Kirchhoff - Love plate’s equation in a bounded
domain Ω⊂ R2

L(v) := div
(
div
(
B(1−σ)∇2v+Bσ∆vI2

))
= 0, in Ω, (1.1)

where v represents the transversal displacement, B is the bending stiffness and
σ the Poisson’s coefficient (see (2.2)–(2.3) for precise definitions).

Assuming B,σ ∈C4(Ω) and given an open portion Γ of ∂Ω of C6,α class,
the following Strong Unique Continuation Property at the Boundary (SUCPB)
has been proved in [8]


Lv = 0, in Ω,

v = ∂v
∂n = 0, on Γ,∫

Ω∩Br(P) v2 =O(rk), as r→ 0,∀k ∈ N,
=⇒ v≡ 0 in Ω, (1.2)

where P is any point in Γ and n is the outer unit normal. The above result is
the first nontrivial SUCPB result for fourth-order elliptic equations. Until paper
[8] appeared, such SUCPB results were confined to second order elliptic partial
differential equations [2], [3], [7], [9], [12], [13], [27], [28], [35].

The SUCPB and the related quantitative estimates (in the form of three
spheres inequality and doubling inequality), turned out to be a crucial prop-
erty to prove optimal stability estimates for inverse problems with unknown
boundaries for second order elliptic equations [5]. The optimality of the loga-
rithmic character of the stability estimates in [5] has been proved in [17]. For
this reason, the investigation about the SUCPB has been successfully extended
to second order parabolic equations [14], [18], [21], [22], [38] and to wave equa-
tion with time independent coefficients [36], [39]. We refer to the Introduction
and the references in [8] for a more complete description of the unique contin-
uation principle in the interior for plate equation and for the SUCPB for elliptic
equations.

An application of the SUCPB proved in [8] to inverse problems has been
given in [34], where an optimal stability estimate for the identification of a rigid
inclusion in an isotropic Kirchhoff - Love plate was proved. A crucial tool used
in [34] is a three spheres inequality at the boundary with optimal exponent [8,
Theorem 5.1].

The main result of the present paper is the following doubling inequality at
the boundary (see Theorem 2.2 for precise statement)∫

B2r(P)∩Ω

|v|2 ≤ K
∫

Br(P)∩Ω

|v|2, (1.3)
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where K is constant depending by v, but independent of r. It is well known that
also a doubling inequality implies the SUCPB, [24], [23]. The interior version
of the doubling inequality for the plate equation was obtained in [29] and [19]
for anisotropic plates. It is worth noticing that the doubling inequality turns out
to be a more powerful tool than the three spheres inequality. In fact, the dou-
bling inequality in the interior has been employed to investigate the smallness
propagation from measurable sets (of positive measure) of a solution to second
order elliptic equation [30], and to prove size estimates for general inclusions
in electric conductors and in elastic bodies [6], [19], [20], [32]. In particular, in
Corollary 4.1 we give a first simple application of the doubling inequality at the
boundary (1.3), which allows to weaken the hypotheses ensuring uniqueness for
the Cauchy problem for Kirchhoff - Love isotropic plates.

The proof of inequality (1.3) is based on a strategy similar but sharper than
the one followed in [8]. Firstly, similarly to [8], we flatten the boundary Γ

by introducing a suitable conformal mapping (see Proposition 3.1). Then we
combine a reflection argument with the following Carleman estimate

τ
4r2
∫

ρ
−2−2τ |U |2dxdy+

3

∑
k=0

τ
6−2k

∫
ρ

2k+1−2τ |DkU |2dxdy≤ (1.4)

≤C
∫

ρ
8−2τ(∆2U)2dxdy,

for every τ ≥ τ , for every r ∈ (0,1) and for every U ∈ C∞
0 (B1 \ Br/4), where

ρ(x,y) ∼
√

x2 + y2 as (x,y)→ (0,0) (see Proposition 3.5 for a precise state-
ment). We emphasize that, with respect to the Carleman estimate employed in
[8], the presence of the first term in the left hand side of (1.4) is the key ingre-
dient in order to prove our doubling inequality at the boundary. At the best of
our knowledge, Bakri is the first author who derived a doubling inequality in the
interior starting from a Carleman estimate of the kind (1.4) [10], see also [11]
and [40].

The paper is organized as follows. In Section 2 we introduce some notation
and definitions, and state our main result, Theorem 2.2. In Section 3 we collect
some auxiliary propositions, precisely Proposition 3.1 introducing the confor-
mal map used to flatten the boundary, Propositions 3.2 and 3.3 concerning the
reflection with respect to flat boundaries and its properties, a Hardy’s inequal-
ity (Proposition 3.4), a Carleman estimate for bi-Laplace operator (Proposition
3.5), some interpolation estimates (Lemma 3.1) and a Caccioppoli-type inequal-
ity (Lemma 3.2). In Section 4 we establish the doubling inequality at the bound-
ary, and we state and prove Corollary 4.1. Finally, the Appendix contains the
proof of Proposition 3.5, in which we have presented the arguments in detailed
form for the reader’s convenience.
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2. Notation and main result

We shall generally denote points in R2 by x = (x1,x2) or y = (y1,y2), except for
Sections 3 and 4 where the coordinates in R2 are renamed x,y. In places we
will use equivalently the symbols D and ∇ to denote the gradient of a function.
Also we use the multi-index notation. We shall denote by Br(P) the disc in R2

of radius r and center P, by Br the disk of radius r and center O, by B+
r , B−r the

hemidiscs in R2 of radius r and center O contained in the halfplanes R2
+ = {x2 >

0}, R2
− = {x2 < 0} respectively, and by Ra,b the rectangle (−a,a)× (−b,b).

Given a matrix A = (ai j), we shall denote by |A| its Frobenius norm |A| =√
∑i, j a2

i j.
Along our proofs, we shall denote by C a constant which may change from

line to line.

Definition 2.1. (Ck,α regularity) Let Ω be a bounded domain in R2. Given k,α ,
with k ∈ N, 0 < α ≤ 1, we say that a portion S of ∂Ω is of class Ck,α with
constants r0, M0 > 0, if, for any P ∈ S, there exists a rigid transformation of
coordinates under which we have P = 0 and

Ω∩Rr0,2M0r0 = {x ∈ Rr0,2M0r0 | x2 > g(x1)},

where g is a Ck,α function on [−r0,r0] satisfying

g(0) = g′(0) = 0,

‖g‖Ck,α ([−r0,r0]) ≤M0r0,

where

‖g‖Ck,α ([−r0,r0]) =
k

∑
i=0

ri
0 sup
[−r0,r0]

|g(i)|+ rk+α

0 |g|k,α ,

|g|k,α = sup
t,s∈[−r0,r0]

t 6=s

{
|g(k)(t)−g(k)(s)|
|t− s|α

}
.

We shall consider an isotropic thin elastic plate Ω×
[
−h

2 ,
h
2

]
, having middle

plane Ω and thickness h. Within the Kirchhoff - Love theory, the transversal
displacement v satisfies the following fourth-order partial differential equation

L(v) := div
(
div
(
B(1−σ)∇2v+Bσ∆vI2

))
= 0, in Ω. (2.1)

Here the bending stiffness B is given by

B(x) =
h3

12

(
E(x)

1−σ2(x)

)
, (2.2)
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and the Young’s modulus E and the Poisson’s coefficient σ can be written in
terms of the Lamé moduli as follows

E(x) =
µ(x)(2µ(x)+3λ (x))

µ(x)+λ (x)
, σ(x) =

λ (x)
2(µ(x)+λ (x))

. (2.3)

On the Lamé moduli, we shall assume

i) Strong convexity:

µ(x)≥ α0 > 0, 2µ(x)+3λ (x)≥ γ0 > 0, in Ω, (2.4)

where α0, γ0 are positive constants;

ii) Regularity:

‖λ‖C4(Ωr0 )
,‖µ‖C4(Ωr0 )

≤ Λ0, (2.5)

with Λ0 a positive constant.
It is easy to see that equation (2.1) can be rewritten in the form

∆
2v = ã ·∇∆v+ q̃2(v) in Ω, (2.6)

with
ã =−2

∇B
B

, (2.7)

q̃2(v) =−
2

∑
i, j=1

1
B

∂
2
i j(B(1−σ)+σBδi j)∂

2
i jv. (2.8)

Let
Ωr0 = {x ∈ Rr0,2M0r0 | x2 > g(x1)} , (2.9)

Γr0 = {(x1,g(x1)) | x1 ∈ (−r0,r0)} , (2.10)

with
g(0) = g′(0) = 0,

‖g‖C6,α ([−r0,r0]) ≤M0r0, (2.11)

for some α ∈ (0,1]. Let v ∈ H2(Ωr0) satisfy

L(v) = 0, in Ωr0 , (2.12)

v =
∂v
∂n

= 0, on Γr0 , (2.13)
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where L is given by (2.1) and n denotes the outer unit normal.
The assumptions (2.4), (2.11) and (2.5) guarantee that v ∈ H6(Ωr), see for

instance [4].

Theorem 2.2 (Doubling inequality at the boundary). Under the above hy-
potheses, there exist k > 1 and C > 1 only depending on α0, γ0, Λ0, M0, α , such
that, for every r < r0

C we have∫
B2r∩Ωr0

|v|2 ≤CNk
∫

Br∩Ωr0

|v|2, (2.14)

where

N =

∫
Br0∩Ωr0

|v|2∫
B r0

C
∩Ωr0
|v|2

. (2.15)

3. Preliminary results

In the following Proposition, proved in [8], we introduce a conformal map which
flattens the boundary Γr0 and preserves the structure of equation (2.6).

Proposition 3.1 (Reduction to a flat boundary). Under the hypotheses of The-
orem 2.2, there exists an injective sense preserving differentiable map

Φ = (ϕ,ψ) : [−1,1]× [0,1]→Ωr0

which is conformal and satisfies

Φ((−1,1)× (0,1))⊃ B r0
K
(0)∩Ωr0 , (3.1)

Φ(([−1,1]×{0}) = {(x1,g(x1)) | x1 ∈ [−r1,r1]} , (3.2)

Φ(0,0) = (0,0), (3.3)

c0r0

2C0
≤ |DΦ(y)| ≤ r0

2
, ∀y ∈ [−1,1]× [0,1], (3.4)

4
r0
≤ |DΦ

−1(x)| ≤ 4C0

c0r0
, ∀x ∈Φ([−1,1]× [0,1]), (3.5)

r0

K
|y| ≤ |Φ(y)| ≤ r0

2
|y|, ∀y ∈ [−1,1]× [0,1], (3.6)

with K > 8, 0 < c0 <C0 being constants only depending on M0 and α .
Letting

u(y) = v(Φ(y)), y ∈ [−1,1]× [0,1], (3.7)
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then u ∈ H6((−1,1)× (0,1)) and satisfies

∆
2u = a ·∇∆u+q2(u), in (−1,1)× (0,1), (3.8)

u(y1,0) = uy2(y1,0) = 0, ∀y1 ∈ (−1,1), (3.9)

where
a(y) = |∇ϕ(y)|2

(
[DΦ(y)]−1ã(Φ(y))−2∇(|∇ϕ(y)|−2)

)
,

a∈C3([−1,1]× [0,1],R2), q2 =∑|α|≤2 cαDα is a second order elliptic operator
with coefficients cα ∈C2([−1,1]× [0,1]), satisfying

‖a‖C3([−1,1]×[0,1],R2) ≤M1, ‖cα‖C2([−1,1]×[0,1]) ≤M1, (3.10)

with M1 > 0 only depending on α0,γ0,Λ0,M0,α .

In order to simplify the notation, in the sequel of this section we rename x,y
the coordinates in R2.

Let u ∈ H6(B+
1 ) be a solution to

∆
2u = a ·∇∆u+q2(u), in B+

1 , (3.11)

u(x,0) = uy(x,0) = 0, ∀x ∈ (−1,1), (3.12)

with q2 = ∑|α|≤2 cαDα ,

‖a‖C3(B+
1 ,R2)

≤M1, ‖cα‖C2(B+
1 )
≤M1, (3.13)

for some positive constant M1.
Let us define the following extension of u to B1 (see [26])

u(x,y) =
{

u(x,y), in B+
1 ,

w(x,y), in B−1 ,
(3.14)

where
w(x,y) =−[u(x,−y)+2yuy(x,−y)+ y2

∆u(x,−y)]. (3.15)

We refer to [8] for a proof of Propositions 3.2 and 3.3 below.

Proposition 3.2. Let
F := a ·∇∆u+q2(u). (3.16)

Then F ∈ H2(B+
1 ), u ∈ H4(B1),

∆
2u = F , in B1, (3.17)

where

F(x,y) =
{

F(x,y), in B+
1 ,

F1(x,y), in B−1 ,
(3.18)

and
F1(x,y) =−[5F(x,−y)−6yFy(x,−y)+ y2

∆F(x,−y)]. (3.19)
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In the following proposition, we shall denote by Pk, for k = 2,3, any differ-
ential operator of the form ∑|α|≤k cα(·)Dα , with ‖cα‖L∞ ≤ cM1, where c is an
absolute constant.

Proposition 3.3. For every (x,y) ∈ B−1 , we have

F1(x,y) = H(x,y)+(P2(w))(x,y)+(P3(u))(x,−y), (3.20)

where

H(x,y) = 6
a1

y
(wyx(x,y)+uyx(x,−y))+

+6
a2

y
(−wyy(x,y)+uyy(x,−y))− 12a2

y
uxx(x,−y), (3.21)

where a1,a2 are the components of the vector a. Moreover, for every x∈ (−1,1),

wyx(x,0)+uyx(x,0) = 0, (3.22)

−wyy(x,0)+uyy(x,0) = 0, (3.23)

uxx(x,0) = 0. (3.24)

We shall also use the following Hardy’s inequality ([25, §7.3, p. 175]), for
a proof see also [37].

Proposition 3.4 (Hardy’s inequality). Let f be an absolutely continuous func-
tion defined in [0,+∞), such that f (0) = 0. Then∫ +∞

0

f 2(s)
s2 ds≤ 4

∫ +∞

0
( f ′(s))2ds. (3.25)

Another basic ingredient for our proof of the doubling inequality at the
boundary is the following Carleman estimate, whose proof is postponed in the
Appendix.

Proposition 3.5 (Carleman estimate). Let us define

ρ(x,y) = φ

(√
x2 + y2

)
, (3.26)

where
φ(s) =

s

(1+
√

s)2 . (3.27)

Then there exist absolute constants τ > 1, C > 1 such that

τ
4r2
∫

ρ
−2−2τ |U |2dxdy+

3

∑
k=0

τ
6−2k

∫
ρ

2k+1−2τ |DkU |2dxdy (3.28)

≤C
∫

ρ
8−2τ(∆2U)2dxdy,

for every τ ≥ τ , for every r ∈ (0,1) and for every U ∈C∞
0 (B1 \ Br/4).
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Remark 3.6. Let us notice that

s
4
≤ ϕ(s)≤ s, ∀s≤ 1,√

x2 + y2

4
≤ ρ(x,y)≤

√
x2 + y2, ∀(x,y) ∈ B1. (3.29)

We shall need also the following results.

Lemma 3.1 (Interpolation estimates). Let 0 < ε ≤ 1 and m ∈ N, m ≥ 2. For
any j = 1, · · · ,m− 1 there exists an absolute constant Cm, j such that for every
v ∈ Hm(B+

r ),

r j‖D jv‖L2(B+
r )
≤Cm, j

(
εrm‖Dmv‖L2(B+

r )
+ ε
− j

m− j ‖v‖L2(B+
r )

)
. (3.30)

See [4, Theorem 3.3].

Lemma 3.2 (Caccioppoli-type inequality). Let u ∈ H6(B+
1 ) be a solution to

(3.11)–(3.12), with a and q2 satisfying (3.13). For every r, 0 < r < 1, we have

‖Dhu‖L2(B+
r
2
) ≤

C
rh ‖u‖L2(B+

r )
, ∀h = 1, ...,6, (3.31)

where C is a constant only depending on α0, γ0 and Λ0.

See [8, Lemma 4.7].

4. Proof of the main theorem

Lemma 4.1. Let u ∈ H6(B+
1 ) be a solution to (3.11)–(3.12). There exists a

positive number R0 ∈ (0,1), depending on M1 only, such that, for every R and
for every r such that 0 < 2r < R < R0

2 , we have

R(2r)−2τ

∫
B+

2r

|u|2 +R1−2τ

∫
B+

R

|u|2 ≤ (4.1)

≤C(M2
1 +1)

[( r
4

)−2τ
∫

B+
r

|u|2 +
(

R0

2

)−2τ ∫
B+

R0

|u|2
]
,

for every τ ≥ τ̃ , with τ̃,C positive absolute constants.

Proof. Let R0 ∈ (0,1) to be chosen later and let

0 < r < R <
R0

2
. (4.2)
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Let η ∈C∞
0 ((0,1)) such that

0≤ η ≤ 1 (4.3)

η = 0, in
(

0,
r
4

)
∪
(

2
3

R0,1
)
, η = 1, in

[
r
2
,
R0

2

]
, (4.4)

∣∣∣∣dkη

dtk (t)
∣∣∣∣≤Cr−k, in

( r
4
,

r
2

)
, for 0≤ k ≤ 4, (4.5)

∣∣∣∣dkη

dtk (t)
∣∣∣∣≤CR−k

0 , in
(

R0

2
,
2
3

R0

)
, for 0≤ k ≤ 4. (4.6)

Let us define

ξ (x,y) = η(
√

x2 + y2). (4.7)

By a density argument, we may apply the Carleman estimate (3.28) to U = ξ u,
where u has been defined in (3.14), obtaining

τ
4r2
∫

BR0

ρ
−2−2τ |ξ u|2+ (4.8)

+
3

∑
k=0

τ
6−2k

∫
B+

R0

ρ
2k+1−2τ |Dk(ξ u)|2 +

3

∑
k=0

τ
6−2k

∫
B−R0

ρ
2k+1−2τ |Dk(ξ w)|2 ≤

≤C
∫

B+
R0

ρ
8−2τ |∆2(ξ u)|2 +C

∫
B−R0

ρ
8−2τ |∆2(ξ w)|2,

for τ ≥ τ and C an absolute constant.
Let us set

J0 =
∫

B+
r/2\B

+
r/4

ρ
8−2τ

3

∑
k=0

(rk−4|Dku|)2+

+
∫

B−r/2\B
−
r/4

ρ
8−2τ

3

∑
k=0

(rk−4|Dkw|)2, (4.9)

J1 =
∫

B+
2R0/3\B

+
R0/2

ρ
8−2τ

3

∑
k=0

(Rk−4
0 |Dku|)2+

+
∫

B−2R0/3\B
−
R0/2

ρ
8−2τ

3

∑
k=0

(Rk−4
0 |Dkw|)2. (4.10)
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By (4.3)–(4.10) we have

τ
4r2
∫

BR0

ρ
−2−2τ |ξ u|2+ (4.11)

3

∑
k=0

τ
6−2k

∫
B+

R0

ρ
2k+1−2τ |Dk(ξ u)|2 +

3

∑
k=0

τ
6−2k

∫
B−R0

ρ
2k+1−2τ |Dk(ξ w)|2 ≤

≤C
∫

B+
R0

ρ
8−2τ

ξ
2|∆2u|2 +C

∫
B−R0

ρ
8−2τ

ξ
2|∆2w|2 +CJ0 +CJ1,

for τ ≥ τ , with C an absolute constant.
By (3.11) and (3.13) we have

∫
B+

R0

ρ
8−2τ

ξ
2|∆2u|2 ≤CM2

1

∫
B+

R0

ρ
8−2τ

ξ
2

3

∑
k=0
|Dku|2. (4.12)

By (3.17), (3.19) and by making the change of variables (x,y)→ (x,−y) in
the integrals involving the function u(x,−y), we can estimate the second term
in the right hand side of (4.11) as follows∫

B−R0

ρ
8−2τ

ξ
2|∆2w|2 ≤C

∫
B−R0

ρ
8−2τ

ξ
2|H(x,y)|2+

+CM2
1

∫
B−R0

ρ
8−2τ

ξ
2

2

∑
k=0
|Dkw|2 +CM2

1

∫
B+

R0

ρ
8−2τ

ξ
2

3

∑
k=0
|Dku|2. (4.13)

Now, let us split the integral in the right hand side of (4.12) and the second and
third integrals in the right hand side of (4.13) over the domains of integration
B±r/2\B±r/4, B±R0/2\B±r/2, B±2R0/3\B±R0/2. Then, let us insert (4.12)–(4.13) in (4.11),
obtaining

τ
4r2
∫

BR0

ρ
−2−2τ |ξ u|2+ (4.14)

+
3

∑
k=0

τ
6−2k

∫
B+

R0

ρ
2k+1−2τ |Dk(ξ u)|2 +

3

∑
k=0

τ
6−2k

∫
B−R0

ρ
2k+1−2τ |Dk(ξ w)|2 ≤

≤C
∫

B−R0

ρ
8−2τ

ξ
2|H(x,y)|2 +CM2

1

∫
B−R0/2\B

−
r/2

ρ
8−2τ

2

∑
k=0
|Dkw|2+

+CM2
1

∫
B+

R0/2\B
+
r/2

ρ
8−2τ

3

∑
k=0
|Dku|2 +CM2

1(J0 + J1),

for τ ≥ τ , with C an absolute constant, where M1 =
√

M2
1 +1.
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The second and third integral on the right hand side of (4.14) can be ab-
sorbed by the left hand side so that, by easy calculation, by (3.29) and for
R0 ≤ R1 := min{1,2(2CM2

1)
−1}, we have

τ
4r2
∫

BR0

ρ
−2−2τ |ξ u|2 +

3

∑
k=0

τ
6−2k

∫
B+

R0/2\B
+
r/2

ρ
2k+1−2τ |Dku|2+ (4.15)

+
3

∑
k=0

τ
6−2k

∫
B−R0/2\B

−
r/2

ρ
2k+1−2τ |Dkw|2 ≤

≤C
∫

B−R0

ρ
8−2τ

ξ
2|H(x,y)|2 +CM2

1(J0 + J1),

for τ ≥ τ , with C an absolute constant. The first integral on the right hand side
can be estimated by proceeding as in [8, Theorem 5.1]. For completeness we
summarize such an estimate.

By (3.21) and (3.13), we have that∫
B−R0

ρ
8−2τ

ξ
2|H(x,y)|2 ≤CM2

1(I1 + I2 + I3), (4.16)

with

I1 =
∫ R0

−R0

(∫ 0

−∞

∣∣y−1uxx(x,−y)ρ4−τ
ξ
∣∣2 dy

)
dx, (4.17)

I2 =
∫ R0

−R0

(∫ 0

−∞

∣∣y−1(wyy(x,y)− (uyy(x,−y))ρ4−τ
ξ
∣∣2 dy

)
dx, (4.18)

I3 =
∫ R0

−R0

(∫ 0

−∞

∣∣y−1(wyx(x,y)+(uyx(x,−y))ρ4−τ
ξ
∣∣2 dy

)
dx. (4.19)

Now, let us see that, for j = 1,2,3,

I j ≤C
∫

B−R0

ρ
8−2τ

ξ
2|D3w|2 +Cτ

2
∫

B−R0

ρ
6−2τ

ξ
2|D2w|2+

+C
∫

B+
R0

ρ
8−2τ

ξ
2|D3u|2 +Cτ

2
∫

B+
R0

ρ
6−2τ

ξ
2|D2u|2 +C(J0 + J1), (4.20)

for τ ≥ τ , with C an absolute constant.
Let us verify (4.20) for j = 1.
By (3.24) and Hardy’s inequality (3.25) we get∫ 0

−∞

∣∣y−1uxx(x,−y)ρ4−τ
ξ
∣∣2 dy≤ 4

∫ 0

−∞

∣∣∂y
[
uxx(x,−y)ρ4−τ

ξ
]∣∣2 dy≤ (4.21)

≤ 16
∫ 0

−∞

|uxxy(x,−y)|2ρ
8−2τ

ξ
2dy+16

∫ 0

−∞

|uxx(x,−y)|2
∣∣∂y
(
ρ

4−τ
ξ
)∣∣2 dy.
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Noticing that |ρy| ≤ 1, we obtain∣∣∂y
(
ρ

4−τ
ξ
)∣∣2 ≤ 2ξ

2
y ρ

8−2τ +2τ
2
ρ

6−2τ
ξ

2, (4.22)

for τ ≥ τ̃ := max{τ,3}.
By integrating over (−R0,R0) and by introducing the change of variables

(x,y)→ (x,−y), the use of (4.22) in (4.21) gives

I1 ≤C
∫

B+
R0

ξ
2
ρ

8−2τ |uxxy|2 +C
∫

B+
R0

ξ
2
y ρ

8−2τ |uxx|2 +Cτ
2
∫

B+
R0

ξ
2
ρ

6−2τ |uxx|2.

(4.23)

Recalling (4.3)–(4.7), we find (4.20) for j = 1, the other cases following by
using similar arguments.

Next, by (4.15), (4.16) and (4.20), we have

τ
4r2
∫

BR0

ρ
−2−2τ |ξ u|2 +

3

∑
k=0

τ
6−2k

∫
B+

R0/2\B
+
r/2

ρ
2k+1−2τ |Dku|2+ (4.24)

+
3

∑
k=0

τ
6−2k

∫
B−R0/2\B

−
r/2

ρ
2k+1−2τ |Dkw|2 ≤

≤CM2
1

∫
B+

R0

ρ
8−2τ

ξ
2|D3u|2 +CM2

1

∫
B−R0

ρ
8−2τ

ξ
2|D3w|2+

+CM2
1 τ

2
∫

B+
R0

ρ
6−2τ

ξ
2|D2u|2 +CM2

1 τ
2
∫

B−R0

ρ
6−2τ

ξ
2|D2w|2 +CM1

2
(J0 + J1),

for τ ≥ τ̃ , with C an absolute constant.
As before, we split the first four integrals in the right hand side of (4.24)

over the domains of integration B±r/2 \B±r/4, B±2R0/3 \B±R0/2 and B±R0/2 \B±r/2, and
we observe that the integrals over B±R0/2 \B±r/2 can be absorbed by the left hand
side. Recalling (3.29), for R0 ≤ R2 = min{R1,2(2CM2

1)
−1} we obtain

τ
4r2
∫

BR0

ρ
−2−2τ |ξ u|2 +

3

∑
k=0

τ
6−2k

∫
B+

R0/2\B
+
r/2

ρ
2k+1−2τ |Dku|2+ (4.25)

+
3

∑
k=0

τ
6−2k

∫
B−R0/2\B

−
r/2

ρ
2k+1−2τ |Dkw|2 ≤Cτ

2M2
1(J0 + J1),

for τ ≥ τ̃ , with C an absolute constant.
Let us estimate J0 and J1. From (4.9) and recalling (3.29), we have

J0 ≤
( r

4

)8−2τ

{∫
B+

r/2

3

∑
k=0

(rk−4|Dku|)2 +
∫

B−r/2

3

∑
k=0

(rk−4|Dkw|)2

}
. (4.26)
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By (3.15), we have that, for (x,y) ∈ B−r/2 and k = 0,1,2,3,

|Dkw| ≤C
2+k

∑
h=k

rh−k|(Dhu)(x,−y)|. (4.27)

By (4.26)–(4.27), by making the change of variables (x,y) → (x,−y) in the
integrals involving the function u(x,−y) and by using Lemma 3.2, we get

J0 ≤C
( r

4

)8−2τ 5

∑
k=0

r2k−8
∫

B+
r/2

|Dku|2 ≤C
( r

4

)−2τ
∫

B+
r

|u|2, (4.28)

where C is an absolute constant. Analogously, we obtain

J1 ≤C
(

R0

2

)−2τ ∫
B+

R0

|u|2. (4.29)

Recalling that r < R < R0
2 , by (4.25), (4.28) and (4.29), it follows that

2−2
τ

4(2r)−2τ

∫
B+

2r\B
+
r/2

|u|2 + τ
6R1−2τ

∫
B+

R \B
+
r/2

|u|2 ≤

≤ τ
4r2
∫

BR0

ρ
−2−2τ |ξ u|2 +

3

∑
k=0

τ
6−2k

∫
B+

R0/2\B
+
r/2

ρ
2k+1−2τ |Dku|2 ≤

≤Cτ
2M2

1

[( r
4

)−2τ
∫

B+
r

|u|2 +
(

R0

2

)−2τ ∫
B+

R0

|u|2
]
,

for τ ≥ τ̃ , with C an absolute constant. Hence, we have

(2r)−2τ

∫
B+

2r\B
+
r/2

|u|2 +R1−2τ

∫
B+

R \B
+
r/2

|u|2 ≤ (4.30)

≤CM2
1

[( r
4

)−2τ
∫

B+
r

|u|2 +
(

R0

2

)−2τ ∫
B+

R0

|u|2
]
,

Now, adding R(2r)−2τ
∫

B+
r/2
|u|2 to both sides of (4.30) we get the wished esti-

mate (4.1) for r < R/2 and R < R0, with R0 = R2.

Proof of Theorem 2.2. Let us fix R = R0
4 in (4.1) obtaining

R0

4
(2r)−2τ

∫
B+

2r

|u|2 +
(

R0

4

)1−2τ ∫
B+

R0/4

|u|2 ≤ (4.31)

≤CM2
1

[( r
4

)−2τ
∫

B+
r

|u|2 +
(

R0

2

)−2τ ∫
B+

R0

|u|2
]
,
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for every τ ≥ τ , with τ,C absolute constants.
Now, choosing τ = τ0, where

τ0 = τ + log4
4CM2

1N
R0

(4.32)

and

N =

∫
B+

R0
|u|2∫

B+
R0/4
|u|2

(4.33)

we have (
R0

4

)1−2τ ∫
B+

R

|u|2 ≥CM2
1

(
R0

2

)−2τ ∫
B+

R0

|u|2.

Hence, by (4.31), we obtain

R0

4
(2r)−2τ0

∫
B+

2r

|u|2 ≤CM2
1

( r
4

)−2τ0
∫

B+
r

|u|2, (4.34)

where C is an absolute constant. Using(4.33) and (4.34), we have∫
B+

2r

|u|2 ≤CN3
∫

B+
r

|u|2, (4.35)

where C depends on M1 only.
Now, let r < s < R0

16 and let j =
[
log2

(
sr−1

)]
(for a ∈ R+, [a] denotes the

integer part of a). We have

2 jr ≤ s < 2 j+1r

and applying iteratively (4.35) we obtain

∫
B+

s

|u|2 ≤
∫

B+

2 j+1r

|u|2 ≤
(

CN3
) j+1 ∫

B+
r

|u|2 ≤CN3
( s

r

)log2(CN3
)
∫

B+
r

|u|2.

Finally, coming back to the original coordinates and using Proposition 3.1, we
can choose s = 2Kr

r0
(< R0

16 ) in the above inequality and derive (2.14)–(2.15), with
C = 32K

R0
.
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Corollary 4.1. Assume the same hypotheses of Theorem 2.2 and let E be a
measurable subset of Γr0 with positive one-dimensional measure. We have that
if 

Lv = 0, in Ωr0 ,

v = ∂v
∂n = |D2v|= 0, on Γr0 ,

D3v = 0, on E,

(4.36)

then
v≡ 0, in Ωr0 .

Proof. We only sketch the proof and, without loss of generality, let us assume
that Γr0 is the interval Ir0 = (−r0,r0) in the x-axis. Also, for any point P∈ Ir0 =
(−r0,r0) we denote by Ir(P) the interval (P− r,P+ r), by Ir = Ir(0).

It is enough to prove that |D3v|2|Ir0
is an Ap weight. In fact, by this property

we have that |D3v| = 0 on Γr0 (see [23]) and, by the uniqueness for Cauchy
problem (see [33, Section 3]), it follows that v = 0 in Ωr0 . In order to prove that
|D3v|2|Ir0

is an Ap weight, in view of the results in [15], it is sufficient to prove
that it satisfies a reverse Hölder inequality.

We can rewrite the doubling inequality (2.14) as follows∫
B+

2r(P)
|v|2 ≤C0

∫
B+

r (P)
|v|2, for every P ∈ Ir0/2, and r ≤ r0/C, (4.37)

where C > 2 only depends on α0, γ0, Λ0, M0, α and C0 only depends on α0, γ0,
Λ0, M0, α and v, but is independent of r and P (the latter can be achieved by
standard argument, see for instance [19, Proposition 2.1]).

By the stability estimate for Cauchy problem for equation Lv = 0 ([33, Sec-
tion 3]) we have that, for any P ∈ Ir0/2 and any r ≤ r0/4C,

∫
B+

r (P)
|v|2 ≤C1

(
r7
∫
I2r(P)

|D3v|2
)δ (∫

B+
4r(P)
|v|2
)1−δ

. (4.38)

where δ ∈ (0,1) and C1 depend on α0, γ0, Λ0, M0, α . By (4.37) and (4.38) we
have ∫

B+
4r(P)
|v|2 ≤C2

0

∫
B+

r (P)
|v|2 ≤ (4.39)

≤C2
0C1

(
r7
∫
I2r(P)

|D3v|2
)δ (∫

B+
4r(P)
|v|2
)1−δ

,

hence ∫
B+

4r(P)
|v|2 ≤ (C2

0C1)
1/δ r7

∫
I2r(P)

|D3v|2. (4.40)
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Since v ∈ H4(B+
r0
), we have that |D3v||I4r(P) ∈ H1/2(I4r(P)), and by the

imbedding theorem we have |D3v| ∈ Lq(I4r(P)) for every q ∈ (0,+∞), see for
instance [1]. Let us fix q > 2. By imbedding estimates, standard trace inequali-
ties, (4.37), (4.40) and by Lemma 3.2 we have

r3
(
−
∫
I2r(P)

|D3v|q
) 1

q

≤C
(

r8−
∫

B+
3r(P)
|D4v|2 + r6−

∫
B+

3r(P)
|D3v|2

) 1
2

≤

≤C
(
−
∫

B+
4r(P)
|v|2
) 1

2

≤C(C2
0C1)

1
2δ r3

(
−
∫
I2r(P)

|D3v|2
) 1

2

,

hence we have proved the following reverse Hölder inequality(
−
∫
I2r(P)

|D3v|q
) 1

q

≤C(C2
0C1)

1
2δ

(
−
∫
I2r(P)

|D3v|2
) 1

q

, (4.41)

which completes the proof.

5. Appendix

In this Appendix we prove Carleman estimate (3.28). We proceed, similarly to
[16], [31], [40], in a standard way by iterating a suitable Carleman estimate for
the Laplace operator.

In the present section we denote by x1,x2 the cartesian coordinate of a point
x ∈ R2.

Proposition 5.1 (Carleman estimate for ∆). Let r ∈ [0,1) and let ε ∈ (0,1).
Let us define

ρ(x) = φε (|x|) , for x ∈ B1 \{0}, (5.1)

where
φε(s) =

s

(1+ sε)1/ε
. (5.2)

Then there exist τ0 > 1, C > 1, only depending on ε , such that

τ
2r
∫

ρ
−1−2τu2dx+

1

∑
k=0

τ
3−2k

∫
ρ

2k+ε−2τ |Dku|2dx≤ (5.3)

≤C
∫

ρ
4−2τ |∆u|2dx,

for every τ ≥ τ0 and for every u ∈C∞
0 (B1 \Br/4).
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Proof. Let u be an arbitrary function in C∞
0
(
B1 \Br/4

)
and let us express the

two dimensional Laplacian in polar coordinates (ρ,ϑ), that is (here and in the
sequel S1 = ∂B1)

∆u = uρρ +
1
ρ

uρ +
1

ρ2 uϑϑ , for ρ > 0,ϑ ∈ S1. (5.4)

By the change of variable ρ = et , ũ(t,ϑ) = u(et ,ϑ), (t,ϑ) ∈ (−∞,0)×S1 we
have

e2t(∆u)(et ,ϑ) = Lũ := (ũtt + ũϑϑ )(t,ϑ), for (t,ϑ) ∈ (−∞,0)×S1. (5.5)

For sake of brevity, for any smooth function h, we shall write h′, h′′, ... instead
of ht , htt , ... By (5.1) we have (here and in the sequel we omit the subscript ε)

ϕ(t) := log(φ(et)) = t− ε
−1 log

(
1+ eεt) , for t ∈ (−∞,0). (5.6)

We have

ϕ
′(t) =

1
1+ eεt , ϕ

′′(t) =− εeεt

(1+ eεt)2 , for t ∈ (−∞,0). (5.7)

Let

f (t,ϑ) = e−τϕ ũ(t,ϑ), for (t,ϑ) ∈ (−∞,0)×S1.

We have

Lτ f := e−τϕL(eτϕ f ) = τϕ
′′ f +2τϕ

′ f ′︸ ︷︷ ︸
Aτ f

+ τ
2
ϕ
′2 f + f ′′+ fϑϑ︸ ︷︷ ︸

Sτ f

. (5.8)

Denote by
∫
(·) the integral

∫ 0
−∞

∫
S1(·)dϑdt and let

γ :=
1
ϕ ′

= 1+ eεt . (5.9)

We have

∫
γ |Lτ f |2 ≥

∫
γ |Aτ f |2 +2

∫
γAτ fSτ f , (5.10)
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2
∫

γAτ fSτ f = 2
∫

γ
(
τϕ
′′ f +2τϕ

′ f ′
)

fϑϑ+ (5.11)

+2
∫

γ
(
τϕ
′′ f +2τϕ

′ f ′
)(

τ
2
ϕ
′2 f + f ′′

)
:= I1 + I2.

Let us examine I1.
By integration by parts and taking into account (5.9), we have

I1 = 2
∫ (

τγϕ
′′ f fϑϑ +2τγϕ

′ f ′ fϑϑ

)
=

= 2
∫ (
−τγϕ

′′ f 2
ϑ −2τγϕ

′ f ′ϑ fϑ

)
= 2

∫ (
−τγϕ

′′ f 2
ϑ − τγϕ

′ ( f 2
ϑ

)′)
=

= 2τ

∫
γ
′
ϕ
′ f 2

ϑ = 2ετ

∫ eεt

1+ eεt f 2
ϑ .

Hence, we have

I1 = 2ετ

∫ eεt

1+ eεt f 2
ϑ . (5.12)

Now, let us consider I2.
By integration by parts, we have

I2 = 2
∫

γ
(
τ

3
ϕ
′′
ϕ
′2 f 2 +2τ

3
ϕ
′3 f f ′+ τϕ

′′ f f ′′+2τϕ
′ f ′ f ′′

)
= (5.13)

= 2
∫

τ
3
γϕ
′′
ϕ
′2 f 2 + τ

3 (
γϕ
′3)( f 2)′− τ

(
γϕ
′′ f
)′ f ′+ τγϕ

′ ( f ′2
)′
.

Since γϕ ′ = 1, we have ∫
γϕ
′ ( f ′2

)′
=
∫ (

f ′2
)′
= 0, (5.14)

and the last term in the last integral of (5.13) vanishes. By considering the first
and second term in the last integral of (5.13), we have

2
∫

τ
3
γϕ
′′
ϕ
′2 f 2 + τ

3 (
γϕ
′3)( f 2)′ =
= 2

∫
τ

3
ϕ
′′
ϕ
′ f 2− τ

3 (
ϕ
′2)′ f 2 =−2τ

3
∫

ϕ
′′
ϕ
′ f 2.

By (5.7), we have
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ϕ
′′
ϕ
′ =− εeεt

(1+ eεt)3 ,

and, therefore,

2
∫

τ
3
γϕ
′′
ϕ
′2 f 2 + τ

3 (
γϕ
′3)( f 2)′ = 2τ

3
∫

εeεt

(1+ eεt)3 f 2. (5.15)

Concerning the third term in the last integral of (5.13), we have

2
∫
−τ
(
γϕ
′′ f
)′ f ′ = 2τ

∫
−γϕ

′′ f ′2−
(
γϕ
′′)′ f f ′ =

= 2τ

∫
−γϕ

′′ f ′2− 1
2
(
γϕ
′′)′′ f 2,

and, by (5.9), (5.7), we have

−γϕ
′′ =

εeεt

1+ eεt .

In addition, it is easy to check that∣∣∣(γϕ
′′)′′∣∣∣≤ ε3eεt

(1+ eεt)3 , for every t ∈ (−∞,0),

hence

2
∫
−τ
(
γϕ
′′ f
)′ f ′ ≥ 2τ

∫
εeεt

1+ eεt f ′2− τ

∫
ε3eεt

(1+ eεt)3 f 2. (5.16)

By using inequalities (5.13)-(5.16), we have

I2 ≥ 2τ
3
∫

εeεt

(1+ eεt)3

(
1− ε

2
τ
−2) f 2 +2τ

∫
εeεt

1+ eεt f ′2 ≥ (5.17)

≥ τ
3
∫

εeεt

(1+ eεt)3 f 2 +2τ

∫
εeεt

1+ eεt f ′2,

for every τ ≥ ε/
√

2.
By (5.11)–(5.17) we have
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∫
γ |Lτ f |2 ≥

∫
γ |Aτ f |2+ (5.18)

+2ετ

∫ eεt

1+ eεt

(
f ′2 + f 2

ϑ

)
+ τ

3
ε

∫ eεt

(1+ eεt)3 f 2

for every τ ≥ ε/
√

2 and for every f ∈C∞
0 ((−∞,0)×S1).

In order to obtain the first term on the left hand side of (5.3), inspired by
[10, Theorem 2.1], we use the first term on the right hand side of (5.18).

Observe that by the trivial inequality (a+b)2 ≥ 1
2 a2−b2 and by (5.7), (5.9),

we get

∫
γ |Aτ f |2 ≥ 1

2

∫
γ
(
2τϕ

′ f ′
)2−

∫
γ
(
τϕ
′′ f
)2

= (5.19)

= 2τ
2
∫ 1

1+ eεt f ′2− ε
2
τ

2
∫ e2εt

(1+ eεt)3 f 2, for every τ ≥ ε√
2
.

By inserting the inequality (5.19) in (5.18) we have

∫
γ |Lτ f |2 ≥ 2τ

2
∫ 1

1+ eεt f ′2 + ετ
3
∫ eεt

(
1− ετ−1eεt

)
(1+ eεt)3 f 2+ (5.20)

+2ετ

∫ eεt

1+ eεt

(
f ′2 + f 2

ϑ

)
, for every τ ≥ ε√

2
.

Now, noticing that
(
1− ετ−1eεt

)
≥ 1/2 for every τ ≥ ε/2 and by using the

trivial estimate 1
1+eεt ≥ 1/2 for t ∈ (−∞,0), (5.20) gives

∫
γ |Lτ f |2 ≥ τ

2
∫

f ′2 +
ετ3

8

∫
eεt f 2 + ετ

∫
eεt ( f ′2 + f 2

ϑ

)
, (5.21)

for every τ ≥ ε√
2
.

Now, by Proposition 3.4 we have∫ 0

−∞

f 2(t,ϑ)e−tdt =
∫ 1

0
s−2 f 2(logs,ϑ)ds≤ (5.22)

≤ 4
∫ 1

0

∣∣∣∣ ∂

∂ s
f (logs,ϑ)

∣∣∣∣2 ds = 4
∫ 0

−∞

f ′2(t,ϑ)e−tdt, for every ϑ ∈ S1.

On the other side, since f (t,ϑ) = 0 for every t ≤ log(r/4), by (5.22) we
have
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∫ 0

−∞

f 2(t,ϑ)e−tdt ≤ 4
∫ log r

4

−∞

f ′2(t,ϑ)e−tdt ≤ 16
r

∫ 0

−∞

f ′2(t,ϑ),

for every ϑ ∈ S1.

By integrating over S1 the above inequality and by using (5.21), we have

∫
f 2e−t ≤ 16

r

∫
f ′2 ≤ 16

τ2r

∫
γ |Lτ f |2 , for every τ ≥ ε√

2
. (5.23)

By (5.23) and (5.21) we have

C
∫
|Lτ f |2 ≥ ετ

3
∫

eεt f 2+ (5.24)

+ετ

∫
eεt ( f ′2 + f 2

ϑ

)
+ τ

2r
∫

f 2e−t , for every τ ≥ ε√
2
,

where C is an absolute constant.
Now we come back to the original coordinates. Recalling that f (t,ϑ) =

e−τϕu(et ,ϑ), and by using (5.1), (5.5) and (5.8), we have

∫ 0

−∞

∫
S1
|Lτ f |2 dϑdt =

∫ 0

−∞

∫
S1

e−2τϕ(t)e4t |(∆u)(et ,ϑ)|2dϑdt = (5.25)

=
∫ 1

0

∫
S1

e−2τϕ(logρ)
ρ

3|(∆u)(et ,ϑ)|2dϑdρ =
∫

B1

ρ
−2τ |x|2|∆u|2dx.

Similarly, we have ∫ 0

−∞

∫
S1

f 2e−tdϑdt =
∫

B1

ρ
−2τ |x|−3u2dx (5.26)

and ∫ 0

−∞

∫
S1

f 2eεtdϑdt =
∫

B1

ρ
−2τ |x|ε−2u2dx. (5.27)

Concerning the second integral on the right hand side of (5.21), let δ ∈ (0,1) to
be choosen later, we have

∫ 0

−∞

∫
S1

eεt ( f ′2 + f 2
ϑ

)
dϑdt ≥ δ

∫ 0

−∞

∫
S1

eεt ( f ′2 + f 2
ϑ

)
dϑdt ≥ (5.28)

≥ δ

2

∫ 0

−∞

∫
S1

eεte−2τϕ(t) (|uρ(et ,ϑ)|2e2t + |uϑ (et ,ϑ)|2−2τ
2|u(et ,ϑ)|2

)
dϑdt =

=
δ

2

∫
B1

ρ
−2τ |x|ε−2 (|x|2|∇u|2−2τ

2|u|2
)

dx.
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Choosing δ = 1
2 , and by (5.24) and (5.25)–(5.28), we have

C
∫

B1

ρ
−2τ |x|2|∆u|2dx≥ ετ

4

∫
B1

ρ
−2τ |x|ε |∇u|2dx+ (5.29)

+
ετ3

2

∫
B1

ρ
−2τ |x|ε−2u2dx+ τ

∫
B1

ρ
−2τ |x|−3u2dx,

for every τ ≥ ε√
2

and for every u ∈ C∞
0 (B1 \Br/4). Finally, since by (5.1) we

have
2−

1
ε |x| ≤ ρ(x)≤ |x|,

we can replace τ in (5.29) by (τ−1) and we obtain the desired inequality (5.3).

In order to prove Proposition 3.5, we need the following

Lemma 5.1. Given ζ ∈C2(B1 \{0}) and u ∈C∞
0 (B1 \{0}), the following iden-

tities hold true: ∫
ζ u∆u =−

∫
(ζ |∇u|2 +(∇u ·∇ζ )u), (5.30a)

∫
ζ

2

∑
j,k=1
|∂ jku|2 =

∫
(−D2

ζ ∇u ·∇u+∆ζ |∇u|2 +ζ (∆u)2), (5.30b)

∫
ζ

2

∑
i, j,k=1

|∂i jku|2 =−
∫

ζ ∆u∆
2u+ (5.30c)

∫
(−tr(D2uD2

ζ D2u)+∆ζ |D2u|2 + 1
2

∆ζ (∆u)2).

Proof. Concerning (5.30a) it is enough to note that∫
ζ u∆u =−

∫
∇u ·∇(ζ u) =−

∫
(ζ |∇u|2 +(∇u ·∇ζ )u). (5.31)

In order to prove (5.30b), let us compute∫
ζ (∆u)2 =

∫ 2

∑
j,k=1

ζ ∂ j ju∂kku =

−
∫ 2

∑
j,k=1

(∂kζ ∂ j ju∂ku+ζ ∂ j jku∂ku) =
∫ 2

∑
j,k=1

∂ j(∂kζ ∂ku)∂ ju+∂ j(ζ ∂ku)∂ jku =

=
∫

D2
ζ ∇u ·∇u+ζ

2

∑
j,k=1
|∂ jku|2 +2

2

∑
j,k=1

∂kζ ∂ jku∂ ju.
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Noticing that ∂ jku∂ ju = 1
2 ∂k(∂ ju)2 and integrating by parts the last term on the

right hand side of the above identity, we obtain (5.30b).
In order to derive (5.30c), let us apply (5.30a) to ∆u, obtaining∫

ζ ∆u∆
2u =−

∫
(ζ |∇∆u|2 +(∇∆u ·∇ζ )∆u). (5.32)

From (5.30b), we have

−
∫

ζ |∇∆u|2 =−
∫

tr(D2uD2
ζ D2u)−∆ζ |D2u|2 +ζ

2

∑
i, j,k=1

|∂i jku|2, (5.33)

and, in addition,

−
∫
(∇∆u ·∇ζ )∆u =−1

2

∫ 2

∑
j=1

∂ jζ ∂ j(∆u)2 =
1
2

∫
∆ζ (∆u)2. (5.34)

From (5.32)–(5.34), identity (5.30c) follows.

Proof of Proposition 3.5. Let r ∈ (0,1). For the sake of brevity, given two quan-
tities X ,Y in which the parameter τ in involved, we will write X . Y to mean
that there exist constants C,C′ independent on τ and r such that X ≤ CY for
every τ ≥C′.

Let U be an arbitrary function of C∞
0 (B1\Br/4). By applying (5.3) to u=∆U

we have

∫
ρ

8−2τ |∆2U |2 =
∫

ρ
4−2(τ−2)|∆(∆U)|2 & (5.35)

& τ
2r
∫

ρ
−1−2(τ−2)|∆U |2 = τ

2r
∫

ρ
4−2(τ+ 1

2 )|∆U |2 &

& τ
4r2
∫

ρ
−2−2τ |U |2, for every U ∈C∞

0 (B1 \Br/4).

Similarly we have

∫
ρ

8−2τ |∆2U |2 & τ
3
∫

ρ
ε−2(τ−2)|∆U |2 = (5.36)

= τ
3
∫

ρ
4−2(τ− ε

2 )|∆U |2 &

& τ
6
∫

ρ
2ε−2τ |U |2 + τ

4
∫

ρ
2+2ε−2τ |∇U |2,

hence, by (5.35) and (5.36), we have
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τ
4r2
∫

ρ
−2−2τ |U |2 + τ

6
∫

ρ
2ε−2τ |U |2+ (5.37)

+τ
4
∫

ρ
2+2ε−2τ |∇U |2 .

∫
ρ

8−2τ |∆2U |2.

Now we estimate from above the terms with second derivatives of U .
Let us apply Lemma 5.1 with ζ = ζ1 := ρ4+2ε−2τ . Since

|∇ζ1|. τρ
3+2ε−2τ , and |D2

ζ1|. τ
2
ρ

2+2ε−2τ , (5.38)

by (5.30b) and (5.38) we get

∫
ρ

4+2ε−2τ |D2U |2 .
∫

ρ
4+2ε−2τ |∆U |2 + τ

2
∫

ρ
2+2ε−2τ |∇U |2. (5.39)

By (5.3) we have∫
ρ

4+2ε−2τ |∆U |2 =
∫

ρ
ε−2(τ−2− ε

2 )|∆U |2 . (5.40)

. τ
−3
∫

ρ
8+ε−2τ |∆2U |2 ≤ τ

−3
∫

ρ
8−2τ |∆2U |2.

Now, we can use (5.37) to estimate the second integral on the right hand side of
(5.39), obtaining

τ
2
∫

ρ
2+2ε−2τ |∇U |2 . τ

−2
∫

ρ
8−2τ |∆2U |2. (5.41)

By (5.39), (5.40) and (5.41) we have

τ
2
∫

ρ
4+2ε−2τ |D2U |2 .

∫
ρ

8−2τ |∆2U |2. (5.42)

Let us estimate from above the terms with third derivatives of U . To this
aim, we apply Lemma 5.1 with ζ = ζ2 := ρ6+2ε−2τ , and likewise to (5.38) we
have

|∇ζ2|. τρ
5+2ε−2τ , and |D2

ζ2|. τ
2
ρ

4+2ε−2τ . (5.43)

By (5.30c) and (5.43) we have

∫
ρ

6+2ε−2τ |D3U |2 .
∫

ρ
6+2ε−2τ |∆U ||∆2U |+ τ

2
∫

ρ
4+2ε−2τ |D2U |2. (5.44)
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As next step, we estimate from above the first term on the right hand side of
(5.44) as follows∫

ρ
6+2ε−2τ |∆U ||∆2U | ≤ 1

2

∫
ρ

4+2ε−2τ |∆U |2 + 1
2

∫
ρ

8+2ε−2τ |∆2U |2.

The above inequality, (5.42) and (5.44) give

∫
ρ

6+2ε−2τ |D3U |2 .
∫

ρ
8−2τ |∆2U |2. (5.45)

Summing up, (5.37), (5.42) and (5.45) we have

τ
4r2
∫

ρ
−2−2τ |U |2 +

3

∑
k=0

τ
6−2k

∫
ρ

2k+2ε−2τ |DkU |2 .
∫

ρ
8−2τ(∆2U)2. (5.46)

Finally, choosing ε = 1
2 in (5.46) we obtain the wished estimate (3.28).
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