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Abstract: Landing safely is the key to successful exploration of the solar system; the mitigation of the
connected effects of collision in mechanical systems relies on the conversion of kinetic energy into
heat or potential energy. An effective landing-system design should minimize the acceleration acting
on the payload. In this paper, we focus on the application of a special class of nonlinear preloaded
mechanisms, which take advantage of a variable radius drum (VRD) to produce a constant reactive
force during deceleration. Static and dynamic models of the mechanism are presented. Numerical
results show that the system allows for very efficient kinetic energy accumulation during impact,
approaching the theoretical limit.

Keywords: space exploration; landing; variable radius drum; s-structure; dynamics; impact;
applied mechanics

1. Introduction

Since the dawn of space exploration, agencies have striven to develop systems to achieve
successful soft landings on other planets, moons, and asteroids. As such, many examples are
available [1,2]. In subsequent decades, landing has been an important field of study for automatic
robotized missions. Some remarkable examples are those of the Mars rovers, starting with Mars
Exploration Rover A (MER A) and B in 2004 and finally with Mars Science Laboratory (MSL) in 2012.
The MERs took advantage of a soft-landing mechanism based on the use of an array of large gas-filled
airbags [3,4]. On the other hand, NASA—in a rather brave move—elected to fit MSL with a sky
crane [5].

In 2004, the European Space Agency (ESA), under the flag of the Rosetta mission, sent a probe
in deep space towards comet 67P/Churyumov-Gerasimenko, which it reached in 2014 [6]. The plan
was to release Philae, a 21-kg small lander. This was intended to collide with the surface and then to
remain attached to it with the aid of a series of devices [7]. Unfortunately, despite the comparatively
low impact velocity of 1 m/s [8], all three systems failed and the lander bounced several times on the
surface, finally coming to a stop in the comet’s Ma’at region [9].

The reason the agencies went this far into the design and implementation of landing systems is due
to the fact that the operation of landing is arguably the single most critical phase of an entire planetary
mission. A distinction should be made based on the nature of the celestial body: in atmosphere-rich
planets such as Earth, Mars, or Venus, the landing procedure is often divided into three main parts:
(1) atmospheric entry, (2) descent to the surface, and (3) landing or—hopefully—soft landing [5].
In planets where the effect of atmosphere is negligible (e.g., the moon, Phobos, or a comet such as 67P),
the first two phases can be summed up into a powered deorbit manoeuvre and descent phase followed
by the landing itself [9]. In this work, we will focus on the last phase that which deals with what
happens immediately prior to and after touchdown.
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Two fields of study emerge which are of interest: that of the dynamics of landing and that of the
interaction with the soil during impact. Since the 1960s, multi-legged landing systems are considered
the state of the art [10] for low-velocity impact during powered descent, while ballistic landing systems
have been proposed as well [11]. The reliability of landing systems is critical to the success of the
mission [12], both structurally [13,14] as well as functionally [9]. Many effects can contribute to a
non-nominal landing procedure, such as a rougher-than-expected terrain [15] or steep slopes [16].
Finally, the effect of the soil itself is generally nontrivial to model [17–20]; it can be simulated using
numerical methods [17] or experimentally. The physics of impact and energy dissipation during
collisions and landing have been studied from a structural point of view [21–23], from a dynamics
perspective [1,2,10,16,23–25], and as a mission-planning problem [11,26].

Aside from the large missions from ESA, NASA, and other agencies, a great number of proposed
solutions for landing can be found in literature. For example, Yao et al. developed crushable
honeycomb structures to use as a passive deceleration device for landing [27]. The same concept is
used by Schroeder et al. [28,29]. In 2017, Hongyu proposed a study on the effects of rocket thrust on
the deceleration phase of a lander [30]. Hashimoto, in the same year, proposed a landing system for
cubesat-sized landers [31]. Even in 2016, Punzo et al. presented a lander mechanism geometry inspired
by the hind-legs of locusts [32].

Generally, landing systems for space probes are designed to be used only once [21–23,26];
an interesting example is that of Saeki, who proposed a landing gear based on a spring that, when
fully compressed, is released, thus dissipating the landing energy [33]. On the other hand, the need for
reusable landing systems can be found in some proposals, e.g., vertical take-off and landing systems
(VTOL) vehicles [34], suspension system for rovers [24], and several others [25,35]. Reusability is
especially important for the concept of hoppers [36–38], vehicles able to repeatedly land and takeoff
from the surface of a planet. This characteristic is specific to flying vehicles such as drones [14,39].

Our approach in achieving a soft landing exploits a mechanism called Variable Radius Drum
(VRD) modeled in 2016 by Seriani and Gallina [40] to perform the shaping of the elastic response of
a set of linear compression springs in order to provide a constant-force deceleration on the payload.
In particular, using the equations from [41], we synthesize a VRD-based mechanism to provide the
shaped force to an imaginary 0.9-kg payload within the lander itself in order to mitigate the possible
acceleration-induced damage during landing. In Table 1, an overview of the state of the art is illustrated,
showing the context in which our proposed solution lies. An illustration of the lander is visible in
Figure 1. The elective application is that of landers for space exploration and rovers [24]. The system
uses cables and pulleys to transfer the momentum energy to the springs [42,43]. The use of cables
can be beneficial to the exploration of space environments because of their lightness and intrinsic
modularity [44]. The concept of VRD has seen various applications in the industry for kinematics
shaping [41,45], energy efficient springs [43], weight compensation [46], actuation [47,48], and shock
absorption [42].

In Section 2, we give some mathematical context to the phenomenon of impact and the soft-landing
procedure. In Section 3, we describe the model, both for what concerns the synthesis of the VRD pulley
and for the dynamics model that we use to simulate the behaviour during a landing event; furthermore,
the model for the springs is illustrated, with emphasis on the VRD-based response; finally, a small
space is dedicated to the characterization of the model to be used in the comparison between different
landing systems. In Section 4, we present the setup that we use for the dynamic simulations, starting
with a VRD reference design obtained through the synthesis (Section 3.1) and loosely optimized;
we show how the other landing systems are made to fit the reference behavior in order to allow for
homogeneous comparison; finally, we show the numerical results of the simulations of the VRD with
focus on the comparative performance between the simulated systems. In Section 5, we discuss the
results and provide some insight on the drawbacks and benefits of the proposed technology. Finally, in
Section 6, we present our conclusion on the work and we give some foresight in the next steps in this
field of research.
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Table 1. Analysis of the state of the art.

Type References Touchdown Velocity Soft-Landing Method Reusability Pros Cons

Real missions

Rosetta [7–9] 1.01 m/s
Structural flexibility and

electromechanical damping Yes
Tuning of the damping

parameters possible
Not passive,

requires control system

MER A/B [3] 12 m/s Airbags No
Light, redundant, passive

(after deployment) Imprecise landing location

Phoenix lander [49] 2.5 m/s
Powered landing and
structural flexibility Yes

Precise landing location,
allows adjustments

Not passive, requires
control system, complex

system, dust contamination

MSL [5,50] 0.75 m/s
Sky crane and structural

flexibility of the rocker bogies No
Precise landing location,

allows adjustments,
limits dust interference

Not passive, requires control
system, extremely complex system,

high level of autonomy required

Programmed Omotenashi [31] 20–30 m/s Airbags No
Cheap, light, passive
(after deployment)

Very imprecise landing
location, high impact velocity

conditions payload

Hypothetical/
proposed

[30] 2–3.5 m/s Powered landing and
flexible landing legs Yes

Precise landing location,
allows adjustments

Not passive, requires
control system, complex

system, dust contamination

[34] -

[35] 4 m/s
Powered landing and
actuated landing legs Yes

[10] 0–3.7 m/s

Crushable structures
No

Cheap, light, reliable, passive,
limits dust interference Must be tuned adequately

[28] 3 m/s

[12] –

[33] 3.13 m/s
Linear spring with
release mechanism No

Our solution – 3.13 m/s VRD-based landing system Yes
Optimized energy absorption,

light, passive, limits
dust interference

Complexity of mechanism,
rebounds possible
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(a) side view (b) three-quarter view (c) bottom view

Figure 1. Schematic model of the lander with variable radius drum (VRD)-based deceleration
mechanism: The model is shown in a side view (a), in a three-quarter view (b), and from the bottom (c).
The lander payload is shown in cyan; the spring system and fixed radius pulley (FRP1) are in blue; the
legs, FRP2, and VRD system are shown in red; and the axles and pinions are shown in green.

2. The Mechanics of Impact and Landing

Landing can be defined as the phase of the mission where the vehicle impacts the ground; the
severity of the impact relates to the potential damage which could be caused to the structure and to
the payload.

Referring to Figure 2, we can determine the kinetic energy of the object as Ekin = mẏ2/2. If we
consider that the lander starts its fall at a height of y0 (thus, ẏ(y0) = 0) and ends its motion at a
standstill in yS, we can calculate the total theoretical kinetic energy as Ekin,th(yS) = mg(y0 − yS) from
the differential on gravitational potential energy. However, since the spring starts accumulating elastic
energy from the moment of impact yI , the kinetic energy Ekin at yS will be zero while the elastic
potential energy Eel = Ekin,th(yS).

Figure 2. Mechanics of landing: During the free-fall phase, the lander acquires kinetic energy from
the transformation of gravitational potential energy to motion; during the impact phase, energy is
transformed into elastic potential energy and is stored in the spring.
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It can be noted at this point that the interval between impact (yI) and standstill (yS), which we
call the deceleration phase, is where all kinetic and the remaining gravitational potential energy is
transformed into elastic energy in the spring. We can define the corresponding distance ∆yDP = yI − yS,
which allows us to determine that the elastic energy in a linear spring is as follows:

Eel,lin =
1
2

k∆y2
DP, (1)

where the constant k is the coefficient of elasticity.
During the deceleration phase, the body undergoes a negative acceleration which brings it from

velocity ẏ(yI) to ẏ(yS) = 0. From the force produced by the spring, we can determine the impact
deceleration ÿ which acts on the body itself by considering that F = mÿ. It is indeed clear at this point
that the deceleration phase is the most critical part of the collision. The impact deceleration ÿ acts
directly on the body and its contents, thus influencing the integrity of the payload. It stands to reason
that this should be kept as low as possible in order to protect the payload.

In case of simple springs, since the force is linear with relation to the deformation, the resulting
deceleration is not uniform.

In order to model nonlinear behaviors, we introduce a more general way to determine the elastic
energy stored in a spring. In Figure 3a, the behavior of a linear spring can be seen in terms of its
force-deformation plot. Following from the system illustrated in Figure 2, the produced force is linear
with respect to deformation. We can also determine a maximum force level Fmax (which, for linear
springs, coincides with the most compressed condition). We can define the elastic energy as follows:

Eel = −
∫ yS

yI

F(y)dy, (2)

which coincides to the area below the force–deformation line in the plot. This can be applied to
nonlinear springs as well due to the fact that F(y) is defined for each y in a continuum.

It is useful to define an index ηE to quantify the efficiency of the spring in absorbing energy
while remaining below a set Fmax to protect the payload. In order determine ηE, we need to first
determine the theoretical maximum energy which can be absorbed into an ideal spring. By referring to
Equation (2), we can see this happens when F(y) = cost = Fmax. Thus,

Eel,thmax = Fmax(yI − yS). (3)

We can now define the energy storing efficiency as follows:

ηE =
Eel

Eel,thmax

. (4)

We can see from Figure 3a that, for a linear spring, ηE = 0.5. However, there are other types
of springs and spring systems that can be implemented to perform impact energy absorption.
One is that of preloaded springs, which is reported in Figure 3b, where ηE varies between
0.5 and 1, and is ultimately dependent on the value of the preload FP following the relation
ηE = (1/2)(Fmax + FI)(yS − yI), where FI = FP. It is important to say, however, that, in order for
ηE to approach 1, the preload FP would have to be very close to Fmax, leading to bulky and heavy
springs. Indeed, an ideal constant-force spring (such as a preloaded spring with FP ≈ Fmax and null
stiffness) would produce the behavior shown in Figure 3c.
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Figure 3. How energy is stored in springs: comparison between (a) simple, (b) preloaded, and (c) ideal
constant-force springs.

3. Model

In order to allow a quantitative approach for the analysis of the landing system, we propose a
synthesis methodology for the mechanism itself and a dynamical model to evaluate the behaviour in
the relevant use-cases, i.e., landing and impact mitigation.

Referring to the illustration in Figure 1, and to the diagrams in Figure 4, the mechanical model for
the lander is shown along with the main angles and other geometrical entities. The contact force is
referred to as Fc and is applied to the “foot” of the leg, located at point T. In particular, the mechanism
consists in the following key elements:

• a leg, used to translate the impact motion into rotational motion around point P;
• a Fixed Radius Pulley (FRP2), attached to the leg, around which a cable (red) is wound;
• a Variable Radius Pulley (VRD), around which the same cable (red) is wound;
• another Fixed Radius Pulley (FRP1), integral to the VRD and around which a second cable is

wound;
• a spring, which connects the frame to the second cable (blue).

In Figure 5 the main phases are shown for the mechanism during its operation on the lander.
Specifically, Figure 5a shows the initial position, with the preloaded spring at its rest position and
the red cable wound on the VRD; the leg is fully closed. This corresponds to the free-flight phase.
The deceleration phase is illustrated in Figure 5b, where the VRD cable (red) is being unwound
from the leg pulley (FRP2) and wound around the VRD. At the same time, the spring cable (blue)
is being wound on the spring pulley (FRP2). Finally, in Figure 5c, the angle β reaches ∆β and the
travel of the leg is complete, with the VRD completely unwound, both FRPs wound, and the spring
completely stressed.
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Figure 4. Model of the lander: (a) The main architecture with the lander frame, the leg attachment point,
and the leg itself is shown. The ground and gravity vector are shown for reference. (b) The VRD-based
constant-force mechanism is shown. (c) Only the VRD is shown to highlight the synthesis nomenclature.

The span of the leg motion during the deceleration phase, i.e., between the initial and final
configurations, is described by ∆β; this can be written as follows,

∆β = u + φ + arcsin sin(−φ− u) +
yDP

‖T− P‖) (5)

where zDP = yI − yS is the deceleration distance.
The following four distinct shapes of elastic responses will be modeled:

(A) linear spring,
(B) preloaded spring (nonzero stiffness) ,
(C) preloaded spring (zero stiffness) ,
(D) VRD-based spring system.

These describe the vast majority of landing mechanisms in the current state of the art.

3.1. Synthesis of the Variable Radius Drum

The aim of the VRD is to deliver a constant force Fc during impact. Refer to Figure 4a; during the
deceleration phase, the leg rotates by the angle β, driven by the decelerating downward motion of the
lander. Thus, the synthesis condition is as follows:

Fc(β) = const (6)

We define the angle ∆β as the angle β when the leg is at maximum deflection.
The requirement for the synthesis of the VRD is to model the relation between the motion of the

cable g and the angle α of the pulley on which the VRD will be integral. See Figure 4b.
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Figure 5. Main phases of the mechanism operation: (a) The initial configuration, (b) the in-operation
configuration, and (c) the end-stop configuration.

The starting point is to find the relation between the angles α and β. The principle of virtual
works is used to link the work performed by the leg and that performed by the spring pulley (FRP1),
as follows:

r1F1δα = ‖(T− P)× Fc‖δβ (7)

where r1 is the radius of the spring pulley (FRP1), F1 is the force acting on the spring cable (blue),
and (T − P) represents the lever arm to which force Fc is applied. It should be noted that the force F1

produced by the spring can be written as follows,

F1 = Fmax − kr1α (8)

where k is the stiffness coefficient of the spring and Fmax is the force exerted at the spring deformation
limit. It follows easily that the preload F1,p can be written in the following form:

F1,p = Fmax − kr1∆α (9)

From Equation (5), the moment contained in the right-most part of Equation (7) can be rewritten
as follows:

‖(T− P)× Fc‖ = Fc‖T− P‖ cos(u + φ− ∆β + β) (10)

At this point, Equation (7) can be rearranged, yielding,

dβ

dα
=

F1r1

Fc‖T− P‖ cos(u + φ− ∆β + β)
(11)

which is a nonlinear differential equation, in light of the transcendent terms containing β. Once the
relation between the angles α and β is understood, it is possible to evaluate g(α), as follows:

g(α) = rβ (12)

taking care to note that g(0) = 0 and g(∆α) = r∆β. With Equation (11) as a nonlinear differential
equation, a closed form solution of type β = f (δ) is not possible. Therefore, numerical methods will
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be used. In our case, the angle ∆β is to be determined based on the admissible span of the leg motion
during the deceleration phase, as seen in Equation (5).

Using the Dormand-Prince explicit Runge–Kutta ODE single-step solver, which is implemented
in MATLAB, a solution to the II order differential equation (Equation (11)) can be found starting
from angle β0 = 0 and α0 = 0 as initial conditions. This yields a discrete sequence of n angles β j,
corresponding to a sequence of angles αj defined as follows:

αj = α0 + jδα (13)

where δα = 6.28E− 4 is the discretization step. Note that it is necessary to determine the angle ∆α

corresponding to ∆β. This can be done via linear interpolation, based on the discrete sequence of
angles [αj, β j], as follows:

∆α = αλ + (∆β− βλ)
(αλ+1 − αλ)

(βλ+1 − βλ)
(14)

where λ is the index of the last value of ∆β for which βλ ≤ ∆β. It follows logically that βλ+1 > ∆β.
The framework developed by Seriani et al. [42] can be used to determine the geometry of the VRD

pulley. In fact, referring to Figure 4c, the VRD can be described as a continuously differentiable curve
defined by points pt in the reference frame 〈ξ1, ζ1〉, as follows:

pt = T(α)

{
Cd
0

}
+ T (α)T (−γ)T

(
−π

2

){lt
0

}
(15)

where

γ = arccos
(

1
Cd

dg
dα

)
lt =

Cd sin γ

1 +
d2g
dα2√

C2
d−
(

dg
dα

)2

T(α) =

[
cos α − sin α

sin α cos α

]
(16)

Furthermore, from Equation (12), following differentiation with respect to angle α, the following
is true,

dg
dα

= r
dβ

dα
,

d2g
dα2 = r

d2β

dα2 (17)

which can be approximated using a finite differences method.
In Figure 6, the result of the synthesis of a VRD is shown in both the start (α = ∆α) and end

positions (α = 0), i.e., closed (β = ∆β) and open leg configuration (β = 0), respectively.

3.2. Dynamical Model

The lander can be modeled as a rigid body system composed of 2 basic elements: the chassis
and the legs. Since there is a three-fold radial symmetry with respect to a vertical axis aligned with
the center of mass of the lander (see Figure 1), a one-third model can be used for each leg. For the
description of the variables used in the following model, refer to Figure 7.

If we consider the chassis of mass m of the lander, the equilibrium of forces and moments yield
Fcst,x − Rx = 0

mg−mÿG − Ry = 0
‖Mk‖+ ‖Mc‖+ ‖Mcst‖ = 0

(18)

where Fcst,x is the x-component of the constraint force acting on the virtual vertical slide, Mcst is the
moment acting on the same object, and Mc = −cα̇.
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Figure 6. Example of VRD synthesis: The profile of the VRD pulley is shown for the closed leg
configuration (in blue) and for the open leg configuration (in red); the (FRP1) is shown in black, as a
small circle. The cables are shown as dashed lines and converge on the idler pulley. The leg hinge P is
shown as a black asterisk.

Regarding the leg, the equilibrium can be written as follows:

Rx −ml ẍQ + Fx = 0
Ry −ml ÿQ + ml g + Fy = 0

λGQ×xml ẍQ+

λGQ×yml ÿQ+

λGQ×xml g+
‖Mk‖+ ‖(P−G)× F‖ = 0

(19)

where the letter λ denotes the following terms:
λGQ×x = (Q−G)× x̂
λGQ×y = (Q−G)× ŷ
λPQ×x = (Q− P)× x̂
λPQ×y = (Q− P)× ŷ

(20)

In order to write the system described in Equation (19) in terms of ẍG and ÿG, coherently with
Equation (18), we can write {

xQ = xG + ‖Q−G‖ cos ϕ + φ

yQ = yG + ‖Q−G‖ sin ϕ + φ
(21)

The double differentiation of Equation (21) yields the following:{
ẍQ = ẍG − ‖Q−G‖ cos (ϕ + φ)φ̇2 − ‖Q−G‖ sin (ϕ + φ)φ̈

ÿQ = ÿG − ‖Q−G‖ sin (ϕ + φ)φ̇2 + ‖Q−G‖ cos (ϕ + φ)φ̈
(22)

The force F represents the interaction between the ground and the skid, located at point P. In this
setting, a spring-damper system was chosen as the model for the soil, assuming dynamic Coulomb
friction at all times [24].

F =

[
Fgd,µ

Fgd,k + Fgd,c

]
, (23)



Robotics 2019, 8, 103 11 of 22

where the terms Fgd,µ, Fgd,k, and Fgd,c have the following behaviour,

Fgd,µ =

{
−ẋPµgd if ‖ẋP‖ > vµ,tol
0 if ‖ẋP‖ ≤ vµ,tol

, Fgd,k =

{
−yPkgd if yP < 0
0 if yP ≥ 0

, Fgd,c = −ẏPcgd (24)

The equations described in Equation (18) and Equation (19) can be time-integrated using a direct
approach. Care must be taken in the choice of a sufficiently small timestep dt due to the high-frequency
components of the vibration given by the high ground rigidity. Typically, the components pertaining
to the mechanism and the lander itself have very low natural frequencies [24,42] and are thus well
modeled even with a large dt.

Figure 7. Dynamics model of the lander: (a) The chassis is shown with the forces applied in the x
and y direction; the moments Mk and Mcst are not shown to avoid clutter. (b) The model of the leg is
illustrated, showing the applied forces and moments. The leg is attached through a hinge located in G.
(c) a yielded leg is shown to highlight the angle φ; the leg at rest is shown as a thick dashed line.

3.3. Stiffness Model

The behavior of each of the spring systems described in Section 3 can be described effectively by
the term ‖Mk‖. This term is then plugged in the dynamics simulator presented in Section 3.2.

In particular, for the linear non-preloaded spring (case (A), as seen in Section 3),

‖Mk‖ = klinφ (25)

where klin is the linear stiffness coefficient of the spring. For the preloaded spring (items (B) and (C)) a
more complex formulation is necessary to capture the bi-elastic behavior [42]:

‖Mk‖ =
2
π

M0 arctan( f φ) + kφ (26)

where f characterizes the sharpness of the curve and M0 is the preload. Finally, the VRD response
(item (D)) can be described using the geometrical considerations expressed in Section 3.1, as follows:

‖Mk‖ =
{

kφ if φ < 0
2
π M0 arctan( f φ) + kφ if φ ≥ 0

(27)

In Figure 8a the reader can see the force-angle plots for the springs presented above, taking care
of considering that β′ ≡ φ. Note that the system based on the preloaded spring and the VRD system
are very similar. However, the latter provides a compensation mechanism for the rotation of the leg of
the lander. This effect can be seen in the upward curvature of the red dot-dashed line in the plots.
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(a) (b)

Figure 8. Force-angle plots for the suspension system used in the numerical simulations and
comparison. In (a) the moments ‖Mk‖ in the four use-cases: the solid black line represents the
linear spring, the blue dashed line indicates the preloaded linear spring, while the red dot-dashed line
represents the response of the VRD suspension system. In (b) A comparison of the moment ‖Mk‖ in
the synthesized VRD system and its approximation (Equation 27) in the dynamics simulator, both for
the damped and non-damped configurations.

3.4. Characterization of the Model

The model described in Section 3 is rather complex, and its interpretation and the evaluation of its
performance require some additional formal aspects; these will be dealt with in this section. We start
by defining the deceleration energy Ed, as follows:

Ed =
∫ yS

y0

FydyG = Eel (28)

which follows from Equation (2). Then, we define the maximum body deflection ∆max for the lander,
as follows:

∆max = max
t≤tS

(
s sin

(
β′(t)

))
(29)

The quantity D = yS − y0 or “effective drop" is the distance it takes for the lander barycenter G to
reach a velocity ẏG = 0 and takes into account both the height above the floor H = yI − y0 and the
yield of the soil (modeled here as a spring-damper system).

The second point we make is that of the deceleration space Yd = yS − yI , referring to Figure 2.
This is the span of travel along the y-direction where the system converts part of its kinetic energy into
elastic potential energy in the spring; the remaining energy dissipates as heat in the dampers or due
to friction. This energy transfer is the leading factor in the behavior of the deceleration of the lander
during the collision, which is described by ÿG.

4. Numerical Simulations

In order to show the behavior of the VRD landing system and to give some context to the numbers,
a comparison between the spring configurations (A)–(D) (see Section 3) is shown in the following. For
each, two sub-configurations are shown, with and without damping.

One additional situation is defined here: the theoretical best configuration. This is characterized
by a perfectly constant deceleration; referring to the quantities described in Section 3.4, one can write
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the lowest possible value of deceleration that satisfies the constraints on the deceleration space and
kinetic energy to dissipate:

ÿG,th = Ed/Yd (30)

4.1. VRD Reference Design

The first step for our comparison is the determination of a design for the VRD suspension system.
In this context, we will not delve deep into finding the best possible solution for the mechanism but
rather will settle for a “good enough” iteration. This will constitute the reference design to which we
will compare configurations (A)–(D).

From the model, described in Section 3, it is apparent that the VRD system has many degrees of
freedom for what concerns the design. Among the many possible combinations of parameters, we
chose to define our parameterization for the design of the mechanism Ξ, as follows:

Ξ = f (r, r1, m, w, s, Yd) (31)

The means with which we find this configuration of the parameters described in Equation (31) is
that of using an optimization technique (more specifically a single-objective genetic algorithm) which
responds to the following statement:

Ξopt = min
r,r1,m,w,s,Yd

(
1

ηE

)
(32)

where
r ∈ [r, r], r1 ∈ [r1, r1], m ∈ [m, m], w ∈ [w, w], s ∈ [s, s], Yd ∈ [Yd, Yd] (33)

where the terms ∗ and ∗ indicate respectively the lower and upper bounds of the domain of existence
of the related parameter ∗.

The results of the optimization stated in Equation (32) are shown in Table 2.

Table 2. VRD reference design: design parameters values and characteristics.

Parameter Value Parameter Value Characteristics Value
(Fixed) (Optimized)

Fmax 220 N r 0.0500 m Ed 1.4715 J
k 14,700 N/m r1 0.0032 m M0 2.3022 Nm
ϕ −20◦ m 0.9000 kg Fy 11.317 N
g 9.81 m/s2 w 0.0200 m ηE 44.692%
H 0.500 m s 0.2527 m ηE,e f f 99.992%
c 0.010 Ns/m Yd 0.1300 m D 0.5744m

cgd 0.400 Nms ÿG,max 34.1288 m/s2

kgd 4000 N/m
µgd 0.0

In the following, this configuration will be used as the baseline for comparison. It will provide
the deceleration energy Ed, the effective drop D, as well as the other characteristics.

In order to perform a coherent comparison, the quantities ε ÿG,max and εη,E,e f f will be used as the
main performance indicators of the different configurations, as follows:

ε ÿG,max =
|yG,max−yG,max,re f |

yG,max,re f

εηE,e f f ,max =
|ηE,e f f ,max−ηE,e f f ,re f |

ηE,e f f ,re f

(34)
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4.2. Setup

The different spring systems vary widely in terms of their dynamic response. In order for the
comparison to be effective, referring to Section 3.4, a few points should be defined. The aim is to
determine the correct parameters for configurations (A)–(C) to be energetically equivalent to the VRD
reference design ((D)). The main parameters related to the spring system are the spring stiffness k, the
effective drop D, and the preload torque M0.

Since D is very influential to the kinetic energy at impact, its relation to the terrain yield mechanics
make it difficult to interpret and define. For this reason, the parameter we chose for the characterization
of the drop phase is the dissipation energy defined in Equation (28). From the definition of this value,
the drop D can be computed. It follows logically that, in order to have an homogeneous (iso-energetic)
comparison of the impact mechanics, the dissipation energies Ed should be the same for all springs.

Note also that the quantity Yd is specific of the lander design and should be considered a fixed
design parameter; for these reasons, in order to allow for homogeneous comparison conditions, we
consider this value constant through all configurations.

To summarize, we elect to fix the dissipation energy Ed and the deceleration space Yd for
all configurations. This will provide energetically equivalent models that satisfy the geometrical
constraints of the lander.

In order to find viable solutions for all configurations, we use an optimization technique; this
is necessary due to the nonexistence of closed-form solutions. The method minimizes the following
objective function in terms of two parameters λ1 and λ2, which are different depending on the adopted
type of spring system:

min
λ1,λ2∈R

(max (εY(λ1, λ2), εE(λ1, λ2))) (35)

where εY(λ1, λ2) and εE(λ1, λ2) are defined as follows in terms of the nominal quantities Y∗d and E∗d ,
which are defined by the VRD design: εY =

∣∣∣Y∗d−Yd(λ1,λ2))
Y∗d

∣∣∣
εE =

∣∣∣ E∗d−Ed(λ1,λ2))
E∗d

∣∣∣ (36)

Regarding the λ-parameters, Table 3 summarizes which of the design parameters are attached in
the specific configurations. More specifically, each needs to be fitted to the VRD reference design main
performance parameters, namely E∗d and Y∗d . As discussed in the previous paragraphs, these quantities
define precisely the energy and dynamics of the system.

Table 3. Numerical simulation: λ-parameters.

Spring Design λ1 λ2 Other

Linear non-preloaded kp D M0 = 0
Linear preloaded (zero stiffness) M0 D kp = 0
Linear preloaded kp D M0 = 1

4.3. Results

In this section, the results for the synthesis of the VRD-based mechanism are shown as well as
that of the dynamics behaviour in all cases defined at the beginning of Section 4.

As stated in the previous sections, a series of configurations are considered to demonstrate the
variability of the dynamical performance of the suspension system. In Table 4, the results are shown
in aggregate form for all 8 configurations, along with the deviation from the reference design (in this
case the VRD, both in the case of a damped and non-damped system). In addition, three additional
configurations are shown relative to the variation of the mass of the leg ml . Note that each configuration
is obtained following the methodology described in Section 4.2, reaching a fit of approximately 10−8
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for Equation (36): incidentally, these values are reported in the same table (see λ-parameters). As such,
the parameters Ed and Yd are equivalent within the set of considered configurations. This allows a
comparison between homogeneous systems.

Table 4. Numerical simulation results: The percentage values in parentheses for ε ÿG,max and εηE,e f f ,max

are relative to the theoretical best deceleration profile ÿG,th; those not in parentheses are relative to the
VRD reference design.

Spring Design Damping
λ-Parameters Max. Deceleration Energy Storage Efficiency

λ1 λ2 ÿG,max εÿG,max ηE,e f f εηE,e f f ,max

[m] [ms−2] [-] [-] [-]

Linear no-preload Yes kp = 6.59 D = 0.4801 59.80 +58.63 % 55.88 % −20.54 %
Linear prel. (kp = 0) Yes M0 = 2.27 D = 0.4827 50.27 +33.35 % 46.76 % −33.51 %

Linear preloaded Yes kp = 3.64 D = 0.4803 44.59 +18.28 % 64.73 % −7.92 %

VRD system (ref.) Yes M0 = 2.47 D = 0.4808 37.70 (+28.80 %) 70.33 % (−29.67 %)

Linear no-preload No kp = 6.59 D = 0.4801 130.07 +142.77 % 29.32 % −52.52 %
Linear prel. (kp = 0) No M0 = 2.27 D = 0.4827 67.28 +25.56 % 44.27 % −28.32 %

Linear preloaded No kp = 3.64 D = 0.4803 100.40 +87.39 % 36.53 % −40.85 %

VRD system (ref.) No kp = 2.47 D = 0.4808 53.58 (+83.05 %) 61.76 % (−38.24 %)

VRD (ml = 0.5 ml,re f ) Yes M0 = 2.50 D = 0.4739 31.09 (+7.29 %) 89.73 % (−11.44 %)
VRD (ml = 0.2 ml,re f ) Yes M0 = 2.53 D = 0.4859 29.67 (+2.45 %) 95.05 % (−5.21 %)
VRD (ml = 0.1 ml,re f ) Yes M0 = 2.53 D = 0.4895 29.31 (+1.45 %) 96.65 % (−3.46 %)

Theoretical best No — — 29.27 — 100.0 % —

The values for maximum deceleration ÿG,max and for energy storage efficiency ηE,e f f show that,
depending on the configuration, wide differences can occur within the dynamic behavior. In particular,
the maximum deceleration varies as much as by 60% in the case of damped systems. For non-damped
systems, it reaches values in excess of 130% compared to the reference design (the VRD system, (D)).

For the sake of completeness, the results for the VRD reference design are compared to the
theoretical best deceleration profile, as well (see Equation (30)). This yields rather unsatisfactory
results: approximately 30% in the best case (damped (D) system) and 83% in the other (non-damped).
However, in the case of a VRD where the mass of the leg ml is smaller, this result in the damped case
decreases to a value of 1.45%.

The plots in Figures 9 and 10 show the behavior of the system in the time-domain.
More specifically, in Figure 9, the deceleration profile ÿG is shown for each damped configuration
with regards to the coordinate Gy of the barycentre G. The red line shows the moment in time when
the deceleration is complete. It can be seen from the bottom plots that the deceleration shows large
oscillations between roughly 30 and 50% of the peak value. Non-damped configurations are not shown.

In Figure 10, a comparison is shown between the behavior of the 4 damped configurations and
that of the theoretical best deceleration profile ÿG,th; furthermore, the evolution of the deceleration
energy Ed is plotted against that of the theoretical one.

Finally, in Figure 10, the evolution of the oscillations is shown to change with respect to the mass ml
of the leg of the lander, reflecting the results shown in Table 4. Note that, for each of these simulations,
the total mass of the lander, i.e. m + ml is constant and equal to that of the VRD reference design.
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(a) (b) (c) (d)
Figure 9. Results of the dynamics simulation, with emphasis on the deceleration profile: Response of
the damped sub-configuration of each of the four suspension systems. In the top plots, the evolution of
the y coordinate of the barycentre G can be seen against time. The red lines represent in both rows of
plots the moment of maximum yield of the suspension system, i.e., the inversion point. In (a) VRD
mechanism, (b) Linear non-preloaded, (c) Linear preloaded (kp = 0), (d) Linear preloaded (kp > 0).

(a) (b) (c) (d)
Figure 10. Results of the dynamics simulation, with emphasis on energy: In the top plots, a comparison
of the deceleration profile ÿG (in blue) with the theoretical best deceleration profile ÿG,th (in red) is
shown. In the bottom row of plots, the deceleration energy Ed is shown against the theoretical best Ed,th
(in red). The dash-dotted line represents the moment of maximum yield of the suspension system, i.e.,
the inversion point. In (a) VRD mechanism, (b) Linear non-preloaded, (c) Linear preloaded (kp = 0),
(d) Linear preloaded (kp > 0).

4.4. Parameter Characterization

The behavior of the system is dependent on a multitude of parameters: environmental, structural,
and dynamical. In this section, the influence of mass, gravity, and the stiffness and friction coefficients
of the ground will be investigated. The selection of these parameters was due to the large implications
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that these have in the dynamics of the landing system during impact. In Figure 11, the results
are reported in graphical form with the discretization and domain described in Table 5. The other
parameters are those of the reference design, reported in Table 2.

Table 5. Parameters characterization: domain and discretization.

Parameter Min Max Increment

m (kg) 0.47 1.88 0.0047
g (ms−2) 0.98 11.77 0.1090
kgd (N/m) 2000.00 8000.00 60.6061
µgd (-) 0.00 0.60 0.0061

(a) (b)
Figure 11. Map of the maximum deceleration ÿG,max for (a) different values of the gravity acceleration
g and the mass of the lander m and (b) different values of the environmental conditions: ground
coefficient of friction µgd and ground stiffness kgd. The plot is set to zero (non-feasibility) where
compenetration with the ground occurs in the simulation.

5. Discussion

From the extensive analysis presented in the previous sections and specifically considering the
results illustrated in Section 4.3, a complete analysis and critical review will be presented on the
dynamic response of a landing system based on a VRD mechanism. In this section, the focus will be
mainly on the damped configurations, leaving the non-damped ones as a secondary reference.

Let us consider the results in Table 4. In particular, we can see that the value of the deceleration
ÿG for the VRD system reaches a maximum value of 37.70 ms−2. This value is rather large compared
to the theoretical optimum (28.27 ms−2 but is still the smallest compared to the other solutions. This
can be appreciated graphically from Figure 9a, compared to the second best solution (Figure 9d).

An important feature to discuss is that of the rapid oscillations, which are visible throughout the
deceleration of the payload, as visible in Figure 12. The first aspect which is important to cover is that
of the reduction in time of said oscillation; this is a direct consequence of the damping present in both
the model of the ground or soil and that of the joint itself. The second aspect is related to the origin of
these oscillations: in fact, the figure shows that the high-frequency vibration of the leg is consistent
with this effect and tends to disappear when the parameter ml (the mass of the leg) is reduced, as
visible in the figures Figure 12a–d. The associated values of the deceleration ÿG indeed decrease by a
large margin, reaching 29.31 ms−2 for the case of ml = 0.1 ml,re f , which has a deviation of 1.45 % with
respect to the theoretical best value.

In this work, the vibration of the leg is not analyzed in depth. While the effects of damping and of
the mass of the leg have a degree of impact in the magnitude of the peaks of deceleration, the effect on
the dissipated energy is very low; this statement can be supported by looking at the bottom row of the
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plots in Figure 10d, where the peaks of the dissipation energy Ed are not significantly lower than those
of the theoretical curves Ed,th. In other words, the very small difference between the peak of the two
curves is the portion of energy lost as heat due to the damping effect introduced in the hinge and in
the ground.

(a) (b) (c) (d)

Figure 12. Results of the dynamics simulation, with emphasis on the oscillations of the barycentre
due to the leg mass: The value ml,re f = 0.02 kg is that of the VRD reference design. The red line
shows the the theoretical best deceleration profile ÿG,th. The dash-dotted line represents the moment of
maximum yield of the suspension system, i.e., the inversion point. In (a) ml = ml,re f , (b) ml = 0.5ml,re f ,
(c) ml = 0.2ml,re f , (d) ml = 0.1ml,re f .

The last general aspect that may be discussed is that of the direct comparison between the
deceleration of the payload ÿG and the theoretical best deceleration ÿG,th. Taking as reference the plots
in the top row of Figure 10, it is rather clear that the response of the VRD mechanism follows closely
the shape of the theoretical curve. Graphically, this proves that the shaping of the dynamic response of
the suspension system with the methodology presented in this paper is effective. The hard numbers
from the simulations support this thesis, as already seen from Table 4. Indeed, the energy storing
efficiency parameter ηE,e f f of the VRD configuration is the best amongst those tested by a large margin,
approximately 8 %.

It is interesting to note one aspect that may be considered to some extent fortuitous; even though
the storing efficiency parameter ηE,e f f for the linear preloaded (kp = 0) configuration (Figure 10c)
is the closest to the one of the VRD, if the peak deceleration ÿG,max is considered, configuration d,
i.e., configuration linear preloaded (kp > 0), is the closest to the VRD. This remarkable result can be
explained by carefully analyzing and comparing Figure 10d,c. The large oscillations due to the leg
vibrations tend to be low energy and thus are easily dissipated by the dampers in the ground and in
the leg hinge; the effect of this is that the magnitude decreases rapidly while approaching the deflection
limit (shown by the dash-dotted line), which offsets the first part of the deceleration curve, while
having a small effect on the last part, which is higher by itself. On the other hand, in the case of the
zero-stiffness case (Figure 10c), the first part of the curve is supposed to be higher and the oscillations
tend to worsen the situation.

From the plots presented in Figures 9 and 10, it is apparent that, once the inversion point is reached,
the acceleration keeps going and the simulated lander tends to bounce upwards. In a real scenario,
this would be undesirable in most situations; however, the scope of this paper is to demonstrate the
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effects of using a VRD in the first phase of impact with the ground, when the deceleration happens.
However, several solutions are possible in order to limit the rebound: for example, the springs could
be let loose after the deceleration phase [33]; a possible solution might rely on one-way mechanisms
like ratchets to keep the VRD from rotating back into the initial position; finally, the implementation of
damping devices either viscous- or friction-based could be considered.

The variation of the parameters related to the dynamics of the system, namely m and g, produce
a large variation in behaviour during impact; in particular, as Figure 11a shows, the mass of the
lander is inversely proportional to the maximum deceleration ÿG,max. This is to be expected since,
if the elastic behavior of the VRD remains the same, the energy associated to a less massive lander
is lower. Thus, due to the constant force produced by the VRD, the deceleration is expected to be
higher. Quantitatively, a variation of the mass from 0.48 kg to 1.90 kg produces a reduction on ÿG,max
of approximately 80%.

Conversely, the main effect of the variation of the acceleration of gravity g is that of limiting
the feasible solutions, as the same figure shows; no significant change is expected in the maximum
deceleration. Indeed, the variation in ÿG,max between the extremes is approximately 9%.

The system is strongly influenced by environmental factors pertaining to the ground. The response
surface in Figure 11b shows the influence of the ground stiffness kgd and of the soil friction µgd. We can
see that the ground friction is directly proportional to the maximum deceleration ÿG,max. This is
expected, since friction acts against the motion of the foot of the lander during the rotation of the leg
(see Figure 4a), which increases the deceleration force on the lander. Going from a value of µgd = 0 to
0.6 produces a variation of approximately 54% in ÿG,max.

On the other hand, the variation of the ground stiffness produces very minor effects on the
dynamics of the system. Indeed, a variation of 400% causes a small 20% increase of ÿG,max.

6. Conclusions

In this work, a cable-based preloaded nonlinear elastic landing system was presented. The device
is based on a preloaded Variable Radius Drum (VRD) mechanism which is able to deliver a very precise
torque on the landing legs of the lander. Through mathematical modeling, the VRD geometry was
synthesized specifically for this task; the result allowed to perform the shaping of the elastic response
of the landing system. This allows to maximize the efficiency in converting the kinetic energy of the
fall to potential elastic energy in a spring. The dynamics of the lander equipped with the VRD landing
system was modeled, and a simulation engine was implemented. Several other configurations were
modeled and simulated in order to offer a comparison for the proposed technology. The results show
that the VRD landing system approaches the theoretical limits with a deviation of less than 30%, while
the other systems underperform the VRD solution by between 18% and almost 60%. Furthermore,
the relation between the oscillation of the leg of the lander is shown with regards to the mass of the
leg itself, indicating that the 30% mismatch decreases to close to a value of approximately 1.45%.
Finally, a comprehensive analysis on the most influential parameters on the dynamics was illustrated
quantitatively; this showed some limitations of the reference VRD design with regards to the gravity
value, mass of the lander, and the ground stiffness and friction parameters.

In the future, steps should be taken in the validation of the methodology herein described,
especially for what concerns the mechanism elastic response and the dynamics of the lander itself.
This validation should take place both numerically with a state-of-the-art dynamic solver and a full
3 d.o.f. model of the lander and, experimentally, taking care to characterize the soil upon impact.

The technology, however, promises to allow reusable landing systems that minimize accelerations
to the payload and are at the same time cheap, light, and robust assets that could be important in the
design of small U-class cubesat-sized landers.
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