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Abstract—Off-line supervised learning from data of robustly-
stabilizing nonlinear explicit model predictive controllers
(EMPC) is dealt with in this letter. The learning procedure relies
on the construction of a suitably large set of specifically chosen
sampling points of the state space in which the values of the
optimal EMPC control function have to be computed. When
bounding the magnitude of approximation errors is important
for stability or performance specifications, regular gridding
techniques are not feasible due to the curse of dimensionality
arising from the structural exponential growth of the number
of points with the state dimension. In this note, we consider
non-regular sampling techniques – namely, i.i.d. sampling with
uniform distribution, low-discrepancy sequences and lattice point
sets – that offer a good covering of the state space without
suffering from an unfeasible growth of the number of points,
while preserving at the same time the method guarantees in
terms of robustness and stability. Some theoretical properties
of the proposed sampling schemes are briefly discussed, and
their successful application is showcased in a practically-relevant
optimal heating problem involving a 21-dimensional state space
that rules out the use of regular gridding techniques.

I. INTRODUCTION

The model predictive control (MPC) scheme is the most

successful multivariable control approach in industrial appli-

cations owing to its properties in terms of optimization of a

complex cost functional for nonlinear and possibly large-scale

systems, while simultaneously satisfying state and control

constraints. The reader is referred to the vast literature on the

subject (see, for instance the very recent book [1] and the

well-known papers [2], [3], [4] as well as the references cited

therein).

To cope with the high computational burden of an on-

line optimization to compute the MPC control action at each

time-stage, an approach known in the literature as explicit

MPC (EMPC) has been devised, which shifts most of the

required computation in a off-line phase (see, for instance the

survey paper [5] as well as the references cited therein). More

specifically, the basic idea of EMPC is the off-line construction

of an explicit function µ that generates in a fast way the

same control vector ut we would obtain applying the on-

line model predictive control (MPC) procedure, as a function
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of the current state xt, i.e., ut = µ(xt). Unfortunately, as

is well known, in the general nonlinear and/or constrained

case, it is impossible to determine an analytical form for such

MPC control function. Thus, the implementation of the EMPC

approach must rely on an approximation µ∗ of the true MPC

control function µ.

The procedure to obtain such approximate function can be

stated in a typical context of supervised learning from data.

According to this framework, we look for the approximate

function within a class of parameterized models. The best

element inside such class is chosen minimizing the difference

with respect to the true MPC control computed over a finite

set of elements of the state space (see the seminal paper [6]

and the very recent book [7]). However, unlike the classic

learning setting, in the EMPC framework considered here the

above elements of the state space (the “patterns”, in machine

learning parlance) are not given by an external source, but yet

they need to be carefully selected. Indeed, the cardinality of

the set of these specific elements of the state space is also a

key aspect for the EMPC procedure to be applicable in realistic

settings.

In [8] it was proved that the Input-to-State Stability (ISS)

of the controlled system can be guaranteed (under suitable

regularity conditions) when the sampling points correspond

to standard regular grids with even-spaced values for each

state component. Unfortunately, this kind of sampling of the

state space is affected by the curse of dimensionality, since

the number of grid points is structurally bound to grow

exponentially with the dimension of the state space. Hence, the

practical feasibility of approximate robustly-stabilizing EMPC

is limited to very low-dimension control scenarios.

In this note, we analyze the use of non-regular sam-

pling methodologies to learn approximate robustly-stabilizing

EMPC schemes in high-dimensional settings that are not

feasible for sampling algorithms based on regular gridding of

the state space. We deal with a slightly different framework

than the one presented in [9] where a specific kind of non-

regular sampling technique has been used in a disturbance-

free setting (see also [10] and the references therein for

other learning and optimal control scenarios using non-regular

sampling approaches).

More specifically, we investigate three different sampling

algorithms, namely the classic independent and identically

distributed (i.i.d.) random sampling with uniform distribution,

low-discrepancy sequences and the method of good lattice

points [11], [12]. A key common feature of these non-

regular sampling schemes is that they all guarantee that the

stability properties of the approximate EMPC controller are

preserved, while not being subject to the structural curse of

dimensionality of regular grids. In particular, we show the con-



vergence guarantees taking advantage of quantities typical of

number-theoretic methods and numerical integration, namely,

the dispersion and the discrepancy.

In order to show the effectiveness in practice of the pro-

posed non-regular sampling learning procedure, all the three

proposed sequences are implemented for the design of an

EMPC law to impose a desired temperature profile to a copper

plate. The spatial discretization of partial-differential equations

describing the heat transfer model leads to a 21-dimensional

state space that rules out the use of regular gridding techniques.

Our numerical results show that all the proposed non-regular

grids yield EMPC controllers (with neural networks as learn-

ing models) able to approximate well the MPC solution, while

the classic regular grid performs very poorly and cannot be

improved by a more accurate sampling due to the exponential

growth in the computational complexity.

II. FORMULATION OF THE LEARNING PROBLEM FOR

EXPLICIT MODEL PREDICTIVE CONTROL

Consider the discrete-time nonlinear dynamical system

xt+1 = f(xt, ut, ϑt), t = 0, 1, . . .

where xt ∈ X ⊂ R
n is the state vector, ut ∈ U ⊂ R

m is the

control vector and ϑt ∈ Θ ⊂ R
r is an exogenous disturbance

input. We assume that the sets X and U are compact Euclidean

subsets of R
n and R

m, respectively, containing the origin as

an interior point.

The stabilizing control design is based on the nominal model

xt+1 = f̂(xt, ut) + dt, t = 0, 1, . . .

where dt = f(xt, ut, ϑt)− f̂(xt, ut) denotes the discrete-time

state transition uncertainty, where we assume that f̂(0, 0) = 0.

Definition 1: Consider a positive integer N , a given ini-

tial state x0 and a generic sequence of control vectors

{u0, . . . , uN−1}. The N -stage cost is defined as

JFH(x0, u0, . . . , uN−1) =

N−1
∑

k=0

h(xk, uk) + hN (xN ), (1)

where h, hN are the stage and final stage costs, respectively,

and, for every k = 0, . . . , N − 1, xk+1 = f̂(xk, uk). �

In the usual MPC framework [1], the control action at time

stage t when the system is in the generic state xt is obtained

by minimizing JFH with x0 = xt. Then, only the first optimal

control vector u∗
t is actually applied to drive the system to the

next state xt+1. The EMPC problem consists in constructing

the control function given in the following definition.

Definition 2: For every xt ∈ X , consider the sequence

u◦
t , . . . , u

◦
t+N−1 that minimizes the cost (1). Then, the EMPC

function µ◦ is defined as µ◦(xt) = u◦
t for all xt ∈ X . �

In this note, we address the off-line construction of an

empirical approximation µ∗ ∈ Γ of the EMPC function given

in Definition 2 by a learning from data approach, where

Γ is a suitably “rich” class of parametrized approximating

models (for instance, feedforward neural networks, kernel-

based approximating models, deep neural structures, etc.). The

availability of the EMPC function µ∗ allows to obtain online

the approximate control action u∗
t = µ∗(xt) for any observed

state xt, without the need to perform at each time instant the

minimization of JFH [6], [7].

To this end, the first step is to construct a suitable data set

XL = { x(1), . . . , x(L) } , x(l) ∈ X, l = 1, . . . , L ,

and the corresponding set of MPC control actions

UL = { u(1), . . . , u(L) } ,

where u(l) = µ◦(x(l)), x(l) ∈ XL, l = 1, . . . , L. Next,

the appropriate parametric complexity p of the functions

µ∗(x,w) ∈ Γ is selected1, where w ∈ Λ ⊂ R
p denotes the

parameter vector of the parametrized function µ∗(x,w).
Considering a loss function ℓ as introduced in [7], the

following supervised learning from data problem is stated.

Problem 1: Find

w∗ = argmin
w∈Λ

1

L

L
∑

l=1

ℓ[u(l), µ∗(x(l), w)] .
�

On the Construction of XL

The off-line construction of the set UL involves a significant

computational load since it requires the solution of an opti-

mization problem for every state sample x(l) ∈ XL. Indeed,

the choice of the cardinality L of XL and the selection of the

specific values taken on by x(l) is crucial in order to ensure

that the mismatch between the EMPC function µ◦ and its

learned approximation µ∗ is not too large in order to provide

the required robust stability properties (see Section III). In

this respect, when the dimension n of the state space takes

on large values, the construction of the set XL through a

uniform gridding procedure may turn out to be unfeasible

due to the well-know curse of dimensionality. In fact, the

number of points of a regular grid with b discretization levels

for each component of the state is equal to bn, which yields

an unfeasible number L of samples when n is large, even

for small values of b. This motivates the use of non-regular

sampling approaches to construct XL (see Section IV).

III. THE SET XL AND ROBUST STABILITY PROPERTIES

As mentioned at the end of Section II, the construction

of the sample set XL is key not only from a computational

complexity perspective, but also to ensure that the learned

EMPC control policy is equipped with suitable robust stability

properties.

The following general result on the ISS robust stability

properties of the closed-loop control system driven by the

approximate EMPC control law µ∗(x(l), w) can be easily

obtained from the specific results given in [7], [8] for a set

XL constructed by a regular gridding procedure.

Proposition 1: Assume that the following conditions are

satisfied.

1The approximation properties of the function space Γ in terms of the
dimension n of the state space, the complexity p of the approximating models
and the smoothness characteristics of the target function µ

◦ is a crucial issue
that is out of the scope of this letter. The reader is referred to [7] for an
up-to-date comprehensive treatment of this topic.



1) The nominal function f̂(x, u) is Lipschitz continuous

with respect to x, with Lipschitz constant denoted as Lx,

and is uniformly continuous in u.

2) The exogenous disturbance ϑt is bounded, and the uncer-

tainty dt is such that |dt| 6 g(|ϑt|) for all t, where g is a

continuous, strictly increasing function zero-valued in 0.

3) The approximate MPC control µ∗(x,w) is locally Lip-

schitz continuous with respect to x for any w, with

Lipschitz constant denoted as Lµ(x,w).

Then, a sufficient condition for system f̂ driven by µ∗ to

be ISS on X is:

Lµ(x,w)q̄ + |µ∗(x,w) − µ◦(x)| 6 ε∗(x), x ∈ XL , (2)

where q̄ is such that for any y ∈ X there exists x ∈ XL such

that |y − x| < q̄, and ε∗(x) is a suitable constant depending

on Lx and the bound on dt. �

The first term in the left hand-side of (2) is where the

choice of the discretization set XL affects the stability. In

particular, the parameter q̄ represents the maximum distance

that is allowed between any point in X and its closest point

in the set XL, meaning that smaller values of q̄ correspond to

higher denseness of the sampling grid.

The condition on having a small q̄ can be expressed in terms

of the dispersion of the set of points XL, a quantity commonly

employed in number-theoretic and numerical integration meth-

ods, defined (see [11]) as

δ∗(XL) = sup
x∈X

min
16l6L

‖x− x(l)‖ . (3)

In fact, for any value q̄ that is suitable to satisfy (2), it is

sufficient for the set XL to have δ∗(XL) 6 q̄. As a straightfor-

ward consequence, the ISS stability of the system is guaranteed

if we generate XL through an algorithm that ensures the

convergence to 0 of the dispersion as L grows. From now on,

assume, without loss of generality, that X = [0, 1]n, i.e., the

closed unitary n-dimensional cube (the generic hyperrectangle

X can be obtained from [0, 1]n by simple scaling).

It is easy to see that the regular uniform grid satisfies the

convergence property. In fact, if we consider a discretization

of each state component by b values, the dispersion is equal

to half the diagonal of the elementary cube forming the grid,

i.e., δ∗(XL) =
√
n
2 L−1/n. Yet, as said, the number of points

of such a regular grid is bound to be equal to bn, which makes

it unfeasible when the state dimension n is large.

IV. NON-REGULAR SAMPLING GRIDS

We recall the definition of discrepancy, a quantity that is

closely related to the dispersion. The discrepancy of a set XL

in X is defined [11] as:

D(XL) = sup
J∈J

∣

∣

∣

∣

A(XL, J)

L
− λ(J)

∣

∣

∣

∣

(4)

where J is a family of Lebesgue-measurable subsets of X ,

λ denotes the Lebsesgue measure and A(XL, J) denotes the

number of points of XL contained in J . Here in particular

we consider the case in which the family J is the set of all

the subintervals J ∈ X having form
∏n

i=1[ai, bi] ⊂ R
n, where

ai 6 bi. Dispersion and discrepancy are closely related. In fact,

it can be easily proved [11] that δ∗(XL) 6 D(XL)
1/n, which

implies that a generating algorithm ensuring convergence of

the discrepancy also ensures also the convergence of the

dispersion (notice that the converse is not true).

Remark 1: It is worth noting that, while there are several

methods in the literature explicitly designed to provide sample

sets characterized by favourable discrepancy rates, there are

no principled solutions available for the dispersion. This is

the main reason why we consider the former quantity for the

rest of the analysis.

In the following, three different examples of uniform space-

covering sequences are given that can be used as feasible

alternatives to the regular uniform grid.

A. Uniform Random i.i.d. Sequences

The simplest solution to generate uniform points in the

n-dimensional unit hypercube is a sequence of L points

drawn randomly with uniform distribution. From the point

of view of the discrepancy, it can be shown [13] that an

i.i.d. sequence of L points drawn with uniform distribution

is characterized by a convergence rate for the discrepancy of

order O((log logL)1/2/
√
n) almost surely. Thus, a random

i.i.d. uniform sequence satisfies the condition of δ∗(XL) → 0
concerning the convergence of the dispersion, with probability

one. However this convergence guarantee is only probabilistic,

which can be regarded as a drawback in our context of robust

EMPC.

Another drawback is that the resulting sampling is often

not well uniformly scattered in the state space, leading to the

formation of clusters of points that may leave other zones of

the state space undersampled. This means that the learning

model has no information regarding the true EMPC function

in those regions, and the resulting approximate control coming

from the learning procedure becomes less accurate when

the state visits those portions of the input space. Figure 1a

illustrates an example of sampling of the 2-dimensional unit

hypercube with L = 500 i.i.d. points, in which the clustering

effect, together with the related undersampling of portions of

the input space, is well noticeable.

B. Low-Discrepancy Sequences

The so-called “low-discrepancy sequences” are a family

of algorithms for the generation of points born in the field

of quasi-random numerical integration. Examples of such

sequences are the Sobol’, the Faure, the Niederreiter and the

Halton sequence [11], [14]. The aim of these algorithms is

to provide point sets that cover the unit hypercube uniformly,

in the sense that any subset contains a share of points that is

proportional to its volume (following the definition of discrep-

ancy), in a deterministic way. Figure 1b illustrates an example,

namely 500 points from the 2-dimensional Sobol’ sequence.

The construction of LDSs can be generalized through the

concept of “digital (T, n)-sequences” (see, e.g., [14] for a

comprehensive introduction and treatment).

More in detail, the construction of a (T, n)-sequence in

base b, for b prime, is based on a set of n (N × N) matrices
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Fig. 1: Sampling of the 2-D unit cube with L = 500 points from the uniform distribution (a), the Sobol’ sequence (b) and the

R1LPS lattice with z = [1, 131] (c).

C1, . . . , Cn having elements in Zb = {0, . . . , b − 1}. Then,

to generate the j-th point xj of the sequence, we write j in

its b-adic expansion, i.e., j =
∑∞

i=0 vib
i with digits vi ∈ Zb,

and consider the infinite vector v = (v0, v1, v2, . . . )
T. The

p-th component of xj is obtained first by multiplying the p-

th matrix Cp by v, yielding the vector (yj,p,1, yj,p,2, . . . )
T =

Cp · v where each element is again in Zb, and finally taking

xj,p = yj,p,1b
−1+yj,p,2b

−2+ · · · . Notice that, in practice, the

infinite vector v can be truncated after a few elements.

The above-described procedure is not computationally in-

tensive, and many of the aforementioned special instances,

like the Sobol’ sequence, can be found already implemented

for the most common numerical software environments.

For the purpose of the EMPC method considered in this

paper, the most noteworthy property of (T, n)-sequences is

that they guarantee the convergence of the discrepancy to

zero as L grows [11], with a rate of order O(L−1(logL)n).
Furthermore, since the construction procedure is fixed, this

convergence rate is deterministic. This eventually means that

LDS sequences satisfy the condition stated in (2), thus ensur-

ing that the robustness of the procedure.

C. Rank-1 Lattice Sample Sets

This kind of sequence can be generically ascribed to the

family of digital sequences seen in the previous section, even

if they were proposed independently for numerical integra-

tion [12]. Geometrically, a lattice consists of the infinite repe-

tition of elementary unit cells, defined by a linear combination

of n n-dimensional vectors. Within the unitary hypercube (or

a closed hypercube in general) the points of the lattice can

be expressed conveniently based on a single n-dimensional

integer vector. More specifically, consider an integer vector

z ∈ Z
n having no factor in common with L. Then, a lattice

point set XL of L points can be obtained as

ΣL
t (z) =

{〈

j

L
z

〉

for j = 0, . . . , L− 1

}

, (5)

where 〈·〉 denotes the component-wise fractional part.

Such a formulation usually takes the name of Rank-1 Lattice

Point Set (R1LPS) [12]. A standard choice for z, following Ko-

robov’s rule [15], is to take z = [1, w, w2 mod L, . . . , wn−1

mod L] for an integer w 6 ⌊L/2⌋.

In Figure 1c a R1LPS lattice is shown, with z = [1, 131].
Although their construction is very easy and straightforward

to implement in any numerical software environment, the

variability due to the choice of z implies that not all R1LPs

necessarily offer an efficient covering of the state space.

However, “good” lattice points satisfy the condition in (2). In

fact, it can be proved [11] that the average rate of convergence

of the discrepancy over z of a R1LPS is O(L−1(logL)n), and

that there exists at least a z∗ that yields this rate exactly.

To help in the choice of good vectors, various quantities

have been devised in the literature to evaluate a priori the

uniformity of a lattice depending on z. For instance, the

Pα index (see, e.g., [11]) is related to the discrepancy in

such a way that sets with low values of Pα are expected to

be good also from the discrepancy (and, as a consequence,

dispersion) point of view. Furthermore, such index can be

explicitly computed (see, e.g., [12] Chapter 10.5), thus it can

be used for a search over z to isolate “good” generating vectors

for the R1LPS in the dimension n.

Remark 2: In general, some hints can be obtained on

the most convenient non-regular scheme to be applied for

the problem at hand, borrowing from the theoretical results

available for the use of such methods in numerical integration.

In particular, LDS points are expected to perform particularly

well when the MPC function belongs to a weighted Sobolev

space [14] (roughly speaking, when the involved functions

depend strongly only on just on a few of the n components),

while the LPS sets are particularly effective when the involved

function exhibits strong spatial regularity (in the extreme case,

when it is periodic in space) [12].

V. SIMULATION RESULTS

In this section, we present an application of the proposed

sampling schemes to a 21-dimensional case study, involving a

rectangular plate made of some thermally conductive material

(e.g., copper) and subject to 4 heat sources that we control

in order to impose a desired temperature profile. This kind of

system is very common in industry (inductive heating on steel

plants) and in the oil/gas sector.

Specifically, the purpose of the control is to raise or lower

the temperature of the plate initially assumed to be equal to the



ambient temperature, using heat sources located on each side

of the rectangle. Here we assume that each pair of opposite

sides of the plate is controlled by the same source, eventually

yielding two freely assignable control values. Let ϕ(t, x, y) be

the temperature of the plate at time t > 0 and point (x, y),
with 0 6 x 6 Lx and 0 6 y 6 Ly. The classic heat equation

governing the system is given by a partial differential equation

of the form ∂tϕ = α(∂xxϕ+∂yyϕ). In order to apply the MPC

scheme, we need to discretize the heat equation with respect

to both time and space: we employ a forward time centered

space approach, with a sample time ∆t = 0.05 s and spatial

stepsizes equal to ∆x = ∆y = 0.1m. Therefore, the heat

equation can be written in the form

ϕ(t+ 1, i, j) = ϕ(t, i, j)

+
α∆t

∆x2

(

ϕ(t, i − 1, j)− 2ϕ(t, i, j) + ϕ(t, i + 1, j)
)

(6)

+
α∆t

∆y2
(

ϕ(t, i, j − 1)− 2ϕ(t, i, j) + ϕ(t, i, j + 1)
)

,

where ϕ(t, i, j) = ϕ(t ·∆t, i ·∆x, j ·∆y), α = 1.11 ·10−4 m2/s

(the conductivity of copper), i = 1, . . . , n and j = 1, . . . ,m.

In the simulations, we consider n = 8 and m = 5 whereby

Lx = 0.7m and Ly = 0.4m.

Boundary conditions must be added to make equation (6)

defined for every temporal stage. More specifically, we assume

ϕ(t + 1, 3, 1) = ϕ(t + 1, 3, 5) = u1(t) and ϕ(t + 1, 1, 3) =
ϕ(t + 1, 8, 3) = u2(t), while all the other entries in the

boundaries are kept fixed at the ambient temperature. The

controls u1 and u2 are, therefore, able to set the temper-

ature on two discretization points and they are constrained

to assume values in the range |u1(t) − ϕ(t, 3, 1)| 6 0.1 ◦C

and |u2(t)− ϕ(t, 1, 3)| 6 0.05 ◦C. This constraint reflects the

requirement of not changing the plate temperature too abruptly.

Furthermore, we want to limit the magnitude of the controls.

The aim of the control is to bring the temperature of the

plate from an initial ambient temperature as close as possible

to a target temperature using the four heat sources. Without

loss of generality, we can always assume that the target

temperature is zero, since the dynamics described by the heat

equation are defined up to an additive constant. Therefore, we

adopt the following functional cost over 5 temporal stages:

J
(

ϕ(0), u(0), . . . , u(4)
)

=

4
∑

k=0

‖ϕ̃(k + 1)‖2

+10−3(|u1(k)|2 + |u2(k)|2)

such that

|u1(k)− ϕ(k, 3, 1)| 6 0.1, k = 0, . . . 4,

|u2(k)− ϕ(k, 1, 3)| 6 0.05, k = 0, . . . 4,

where ϕ̃(t) = ϕ(t, i, j) for i = 2, . . . , n−1 and j = 2 . . . ,m−
1.

It is worth noting that the dimension of the state vector is

21: we have ϕ(t, i, j) for i = 2, . . . , n−1 and j = 2, . . . ,m−1
corresponding to the 18 variables ruled by equation (6); on the

boundary, we have that ϕ(t+1, 3, 1) = ϕ(t+1, 3, 5) and ϕ(t+
1, 1, 3) = ϕ(t + 1, 8, 3), which amounts to other 2 variables,

LDS LPS IID REG

0.028 0.033 0.025 (0.007) 2.53

TABLE I: Comparison of mean absolute errors between the

MPC control obtained minimizing J and the output of the

learned neural networks.

while all the other states on the boundary collapse into the

ambient temperature (represented by the last state variable).

As the baseline reference for the training set XL we have

considered a regular grid of samples in the 21-dimensional

hypercube with lower bounds −10 and upper bounds 10.

Specifically, we have considered the regular grid consisting

of two discretization levels (-3.5 and 3.5) for each dimension.

Since we have 21 dimensions, the total number of points L
of this grid is 221 = 2097152. Notice that this is the only

regular grid we can employ here in practice, since using three

discretization levels would already yield more than 10 billion

points. To test the non-regular discretization schemes proposed

in Section IV, we have considered sets having the same

number L = 221 points as the regular grid. In particular, in the

case of LDS sampling the Sobol’ sequence was employed [16].

For the LPS case we have followed Korobov’s rule to obtain

the generator vector z, choosing as w the value that minimized

the index Pα (for α = 2) mentioned in Section IV over 100

trial values. In case of i.i.d. uniform random sequences, due to

their intrinsically probabilistic nature, 10 different sequences

were generated.

In order to implement the EMPC procedure described in

Section II, the class of two-hidden layers sigmoidal neural

networks with 10 hidden units in every layer has been chosen

to learn the MPC control. For the implementation, we used

the Python scikit-learn package. The employed performance

criterion for the optimization of the model parameters is the

mean squared error with L2 regularization of the weights, in

order to keep the Lipschitz constant of the network bounded.

To quantify the performance of the networks we evaluate

the generalization ability of the prediction model to correctly

approximate the true MPC control law in the points of a test

set, defined as a collection of samples not belonging to the

training set. To this purpose, a test set made of 10000 points

randomly generated in the range [−10, 10] has been employed.

The mean absolute error (MAE) between the MPC control

obtained minimizing J and the output of the various neural

networks is displayed in Table I. Notice that in the case of

the IID sequences the MAE reported is the average over the

10 realizations of the points of the various grids, while the

standard deviation is reported in the parentheses.

Figure 2 compare: i) an example of the temporal evolution

of the temperature over the plate (starting from the ambient

temperature equal to −5◦C) obtained with the true MPC

control, (ii) the approximation obtained with a non-regular

sampling (specifically, the LDS one) and (iii) the approxima-

tion using the regular uniform grid.
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(a) Optimal trajectory.
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(b) Trajectory obtained by the model trained with the LDS.

t = 0 s t = 50 s t = 250 s

− 4

− 2

0

(c) Trajectory obtained by the model trained with the regular grid.

Fig. 2: Temporal evolution of the temperature profile of the plate, obtained with (a) the true MPC control (b) the approximate

controls generated using a LDS non-regular scheme and (c) the approximate controls generated using the regular grid.

VI. COMMENTS AND CONCLUDING REMARKS

The results from Table I and Figure 2 show how the

approximation of the MPC control is very good with the three

different non-regular sampling schemes, while the uniform

regular grid is not able to provide a successful approximation.

In fact, Table I shows how, despite the same number L
of points, the error from the regular grid turns out to be

2 orders of magnitude larger than the error from the non-

regular ones. Accordingly, the temporal evolution in Figure

2 is almost identical in case of the true MPC control and

the LDS approximation, reaching the best possible achievable

temperature profile, while the approximation from the uniform

grid never converges to a satisfactory profile. Overall, the

simulation results prove how an alternative to the regular grid,

by means of an algorithm able to spread the points well over

the input space, is mandatory in high-dimensional contexts.

Among the non-regular schemes, Table I shows how the

i.i.d. sampling performs slightly better than the rest in average,

but the reported standard deviation shows that some of the i.i.d.

grids in the tests perform worse than those from the other two

sampling schemes. Overall, all the proposed sampling schemes

yield actually very close results in Table I, showing that they

all are viable options.
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