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ABSTRACT
We present an information-theoretic approach inspired by distributional clustering to assess the structural heterogeneity of particulate sys-
tems. Our method identifies communities of particles that share a similar local structure by harvesting the information hidden in the spatial
variation of two- or three-body static correlations. This corresponds to an unsupervised machine learning approach that infers communities
solely from the particle positions and their species. We apply this method to three models of supercooled liquids and find that it detects subtle
forms of local order, as demonstrated by a comparison with the statistics of Voronoi cells. Finally, we analyze the time-dependent correlation
between structural communities and particle mobility and show that our method captures relevant information about glassy dynamics.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0004732., s

I. INTRODUCTION

The viscosity and structural relaxation times of supercooled liq-
uids increase by several orders of magnitude on approaching the
glass transition. Remarkably, such a drastic slowing down of the
dynamics occurs without a marked change of the local structure:
conventional correlation functions such as the static structure fac-
tor look qualitatively similar in the liquid and in the glass.1 One
possible explanation for this disconnect is that the structural fea-
tures relevant to the glassy slowdown are hard to detect in two-
body correlations. This is illustrated, for instance, by the appear-
ance of particle arrangements with icosahedral symmetry, whose
first evidence in simple glassy mixtures dates back to the pioneer-
ing numerical studies of Jónsson and Andersen.2 Later on, short
range icosahedral order was reported in metallic alloys3 and col-
loidal suspensions.4 Over the last years, computer simulations and
experiments revealed the presence of more general locally stable
motifs, known as “locally favored structures” (LFSs), which can
be detected using the Voronoi tessellation,5,6 topological cluster

classification,7–9 bond orientational order analysis,10,11 and alterna-
tive approaches.12,13 The emergence of well-defined locally favored
structures suggests a reduction in structural diversity compared to
the normal liquid14 and hints to enhanced spatial variations of the
preferred local order.15

To assess whether a given measure of the local order has a def-
inite link to the dynamics of the particles, Widmer-Cooper and co-
workers introduced the isoconfigurational ensemble,16 which pre-
scribes a statistical average over an ensemble of trajectories initi-
ating from the configuration of interest. This approach effectively
filters out dynamic fluctuations irreproducible from a given parti-
cle configuration. The correlation between the spatial fluctuations
of dynamics in the isoconfigurational ensemble and local structural
descriptors appears, however, system-dependent.17,18 Recent studies
have shown that order parameters quantifying local packing effi-
ciency19–21 are highly predictive of the dynamics in hard (or nearly
hard) spheres, but these results do not carry over universally to other
models. The spatial distribution of soft modes22,23 correlates well
with the local dynamics, at least on time scales shorter than the
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structural relaxation time, but normal modes obviously contain
richer information than the bare structure since they account for
local variations of the energy function. Machine learning techniques
have also been used to identify structural defects related to local-
ized excitations in supercooled liquids, as well as plastic events in
glasses.24–28 Although promising, these supervised approaches still
need input dynamic data to identify relevant structural features.

In this work, we describe a method for identifying local order,
based on statistical inference, without prior knowledge of domi-
nant packing motifs or LFSs. Instead of characterizing the order
with complex geometrical fingerprints, such as in cluster identifi-
cation or bond-order analysis, the method works with much sim-
pler quantities—interparticle distances and bond angles. The key
idea is that particles in locally ordered environments are char-
acterized by non-typical distributions of their neighbors. We use
this fact to group particles into structural communities sharing a
similar local structure, which in turn differs markedly from the
one of the other communities. In the context of machine learning
and statistical inference, this is an example of a clustering analysis
method.29

Our specific implementation builds on simple information-
theoretic concepts,30 which have recently found fruitful application
in studies of supercooled liquids,31–33 and on the spatial fluctua-
tions of two- and three-body static correlations. Clustering analysis
methods based on similar information-theoretic ideas have also been
applied in other contexts.34,35 Our approach differs from network-
theoretic community detection,36 which has been used to investigate
the structure of models of supercooled liquids37–40 and to determine
force networks in granular materials.41 In that context, network-
theoretic community detection identifies groups of particles (nodes)
that are tightly connected to one another, with couplings that weight
the proximity of particles using energy terms from the underlying
particle model or from the radial distribution function (RDF). By
contrast, the structural communities discussed here do not imply
a priori a notion of physical proximity in real space.42 We will
show that these communities still convey relevant information on
the spatial fluctuations of the dynamics, especially over length scales
of the order of the interparticle distance.

The paper is organized as follows: In Sec. II, we introduce the
basic theoretical concepts and methods to identify structural com-
munities using the mutual information (MI) between communities
and local structural descriptors. In Sec. III, we describe the mod-
els and the numerical implementation of the methods. Sec. IV A
identifies the main features of the structural communities. In
Sec. IV B, we assess the correlation between the dynamics in the
isoconfigurational ensemble and the spatial fluctuations of the com-
munities. In Sec. V, we provide an overall assessment of the method,
and we conclude in Sec. VI by suggesting possible extensions and
improvements.

II. INFORMATION-THEORETIC INFERENCE
OF COMMUNITIES
A. Overview and motivation

We present an algorithm that characterizes structural hetero-
geneity in a particulate system. We identify structural communi-
ties such that particles in the same community have a similar local

structure. For example, imagine a structurally heterogeneous liquid
in which some particles have highly ordered local environments,
while others are more disordered. These particles could be separated
into two communities, according to their local order. The aim of our
method is to identify such communities using statistical inference,
with minimal prior assumptions on the nature of the local order. Our
method is unsupervised and uses only structural information; this is
distinct from other inference or machine learning approaches that
learn about dynamically active regions or soft spots using training
datasets.24–28

The communities are labeled k (with 0 ≤ k ≤ K − 1), and s is a
property characterizing a particle and its neighborhood. For exam-
ple, s might be the interparticle distance, i.e., the distance between a
particle and one of its neighbors. We write the joint distribution of
k and s as p(k, s), and we note that p(k, s) = f kpk(s), where f k is the
fraction of particles in community k and pk(s) is the distribution of s
for particles in community k. In addition, let p(s) =∑k p(k, s) be the
marginal distribution of s. In the example where s is an interparticle
distance, pk(s) is the distribution of distances for community k and
p(s) is the full distribution of distances.

In order to have meaningful communities, the distributions
p0, p1, . . . , pK−1 should all differ significantly from each other. To
quantify this, we consider the mutual information (MI)30 between
k and s,

I(k; s) =
K−1

∑
k=0
∫ p(k, s) log(

p(k, s)
fkp(s)

)ds. (1)

This MI is the amount of information about a particle’s value of s
that is provided by a measurement of its community label k. The
choice of base for the logarithm fixes the units of MI. In numerical
work, we use logarithms in base 2 so that I is expressed in bits, but the
general theory is independent of this basis. The MI is symmetric, so it
is also equal to the amount of information about k that is provided by
a measurement of s. This MI is large if k and s are strongly correlated
with each other, in which case the communities differ significantly.
To make this apparent, we rewrite Eq. (1) as

I(k; s) =
K−1

∑
k=0
∫ fkpk(s) log(

pk(s)
p(s)

)ds. (2)

The essence of our community inference method is, thus, to
maximize the mutual information I(k; s), for a given structural mea-
sure s. By doing so, particles sharing a similar local structure will
tend to be clustered into the same community. As we will see in
Sec. II B, the method that we describe can infer communities from
different kinds of structural measures s, which makes it general and
versatile. We also describe an extension of the method that accounts
for the fluctuations of additional static fields, such as local density
and composition, between communities. Through this extension,
we shall make contact with related approaches based on spatially
resolved two-body entropy.11,43

B. Community inference method
In this section, we present the community inference method

in its simplest form. We start by considering a simple fluid where
all particles are treated as identical. The extension to the practi-
cally relevant case of multi-component mixtures is discussed in
Sec. II B 4.
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1. Inference based on interparticle distance
This section outlines the method by which communities are

identified using the distance r from the neighboring particles. For
each particle (say i), we identify all other neighboring particles
within a distance R. We compute the distances rij between particle
i and its neighbors j. Let ni(rm) be the number of neighbors j of par-
ticle i for which rij is between rm = mΔr and rm+1 = (m + 1)Δr. Here,
Δr has the interpretation of a bin width in a histogram. We then
define an empirical distribution for particle i as

p̃i(rm) =
ni(rm)
Ni

, (3)

where N i is the total number of neighbors for particle i. The nota-
tion with a tilde indicates that the distribution p̃i is empirical, in that
it is computed directly from data. This is in contrast to probability
density functions such as p(k, s) whose notation has no tilde; these
are not computed directly, but have to be inferred.

The communities are defined such that particles in the same
community have similar empirical distributions. To this end, sup-
pose that we have N particles in total and that particle i is a member
of community ki. Then, the empirical distribution for community k
is obtained by averaging over the particles in that community,

p̃k(rm) =
1
fkN

N

∑
i=1

p̃i(rm)δk,ki , (4)

where the Kronecker δ restricts the sum to particles i in commu-
nity k and f k is the fraction of the particles in that community. To
avoid ambiguity in notation arising from Eq. (4), we consistently use
k to indicate a community and ij to indicate particles. If N is suf-
ficiently large and bin size Δr is small, then p̃k(rm)/Δr ≈ pk(rm) is
a good approximation to the community probability density func-
tion pk(r) for the distance r from a particle in community k to one of
its neighbors (chosen at random). Using this distribution in Eq. (2)
with s = r gives the MI between distances and communities, which
is a first example of what we refer to as community information
(CI). It depends on which particles are assigned to which commu-
nity through the ki parameters, and it depends on the data for the
various interparticle distances. To infer the communities, the CI
is maximized over the ki; see Sec. III. A schematic description of
this inference procedure is depicted in Fig. 1. Note that, in practice,

it may be necessary to repeat the procedure several times, or to
use some annealing strategy, to determine the global maximum of
the CI.

Finally, we emphasize that we are assigning particles to com-
munities and that each particle has many interparticle distances
associated with it, which are accounted for via the empirical distri-
bution p̃i. In the context of statistical inference, assigning particles
to communities in this way corresponds to a distributional clustering
problem,34,35 which is not equivalent to clustering the individual val-
ues of the interparticle distances. As noted above, this section serves
to illustrate the method. In practice, our inference of communities
from interparticle distances uses a slightly different CI derived from
radial distribution functions; see Sec. II C 1 below.

2. Inference based on bond angles
As previously mentioned, this methodology is easily general-

ized for other kinds of structural data. In particular, we use it to
infer communities using data for particles’ bond angles, as we now
explain.

For each particle i, we identify as before a set of neighbors,
which in this case should be in the first coordination shell. For every
pair of neighbors j, j′, we identify the bond angle as the angle θ
between the two vectors rj − ri and rj′ − ri. We define

Θ = −cos θ (5)

so that the probability density of Θ is flat when the neighboring par-
ticles are distributed uniformly on a sphere. Note that this choice is
specific to three-dimensional systems. From the set of bond angles,
we construct a normalized empirical distribution for particle i,

q̃i(Θm) =
ni(Θm)

Ni
, (6)

where N i is the total number of bond angles that were computed
for particle i and ni(Θm) is the number of these bond angles whose
cosine is between Θm and Θm + ΔΘm. We have allowed here for
an empirical histogram with bins of variable widths; the normaliza-
tion is Ni = ∑

M
m=1 ni(Θm), where M is the number of bins in the

histogram. The empirical distribution for community k is

q̃k(Θm) =
∑i ni(Θm)δk,ki

∑iNiδk,ki
. (7)

FIG. 1. Schematic description of the community inference algorithm with K = 2 communities. (1) Labels k are randomly assigned to each particle in the system. As a
consequence, k and s are uncorrelated and the associated community information (CI) is close to zero, i.e., I(k; s) ≈ 0. (2) Labels k are stochastically reassigned following
an acceptance–rejection rule that maximizes the community information. The final configuration gives the structural communities. In this sketch, the ordered community
(k = 1, red particles) corresponds to locally hexagonal packing.
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As before, if N is sufficiently large and bin size ΔΘm is small, then
q̃k(Θm)/ΔΘm ≈ qk(Θm) is a good approximation to the community
probability density function qk(Θ) for the cosine of the bond angle θ
between a particle in community k and two of its neighbors, chosen
at random. The relevant CI is then the mutual information between
k and Θ, which is

I(k;Θ) =
K−1

∑
k=0
∫

1

−1
fkqk(Θ) log(

qk(Θ)
q(Θ)

)dΘ, (8)

where qk(Θ) is the bond angle distribution for community k and
q(Θ) =∑k f kqk(Θ). The empirical MI obtained from numerical data
is maximized over the community assignments to infer communi-
ties based on bond angles (or “angular communities”). Note that,
thanks to the reparametrization invariance of the MI,30 it is imma-
terial whether Eq. (8) is evaluated from the distribution of Θ or of
the bond angle θ itself. In practice, we binned the bond angles to
compute the MI and explicitly checked that the reparametrization
invariance holds in selected cases.

3. Bayesian interpretation
As an additional motivation for this inference method, we note

that the CIs we consider can be interpreted as log-likelihoods for a
Bayesian inference problem. Hence, performing inference by max-
imizing the CI is equivalent to maximizing the log-likelihood. We
illustrate this by the example of bond angle distributions. As a sta-
tistical model, we suppose that K communities exist and that each
particle is identified by a community index ki. For particles in com-
munity k, the bond angles are assumed to be independently and
identically distributed with distribution qk. This is a coarse approxi-
mation because the bond angles are correlated in practice, but it is a
useful model for this illustration. We are provided with data for the
empirical bond angle distributions of each particle, but the commu-
nity distributions qk are unknown, as are the community labels ki. In
Appendix A, we explain that choosing the ki to maximize I(k; Θ) can
be an interpreted as choosing the most likely statistical model, given
the data.

4. Generalization to liquid mixtures
As noted above, the practical models of interest in this arti-

cle are supercooled liquids that are mixtures of particles of different
types, which are labeled α = A, B, . . .. We expect that particles of dif-
ferent types will have different local environments. In fact, a simple
exercise is to apply our inference method to the full set of particles
and to identify communities that correspond to the two different
types. Here, we are concerned with non-trivial communities, which
means that we apply our algorithm separately to the particles of each
type.

As a simple generalization of the algorithm to mixtures, we
split type α particles into two communities, and we ignore particle
types when computing the empirical distribution functions. Taking
the example of bond angle distributions, the sum over i in Eq. (6)
is restricted to particles of type α, but neighboring particles of all
types are included when computing the bond angles of particle i.
The resulting community bond angle distributions are denoted by
qαk(Θ), and we define the CI for particles of type α as

Iα(k;Θ) =
K−1

∑
k=0
∫

1

−1
f αk q

α
k(Θ) log(

qαk(Θ)
qα(Θ)

)dΘ. (9)

The result of these computations is that only particles of type α
are assigned to communities. Identifying communities for the other
particle types is a completely separate calculation: communities for
types A, B, . . . are computed independently.

C. Extended community inference
In Sec. II B 1, we defined CI based on interparticle distances. In

liquid state theory, the distribution of interparticle distances is typ-
ically studied via the liquid radial distribution function g(r). Here,
we extend our community inference scheme to work with com-
munity RDFs gk(r) in place of distributions pk(r). This has several
advantages. In particular, the resulting CI is sensitive to the aver-
age number of neighbors of particles in each community, as well as
their distribution of distances. It also allows a connection between
the CI and the two-body excess entropy,44 and to composition
fluctuations.

1. Density fluctuations
The RDF of community k is gk(r), i.e., given a particle in com-

munity k, the function gk(r) is defined as the probability to find
another particle (of either community) at a distance r, relative to the
ideal gas case. If there are K = 2 communities corresponding to dis-
tinct local structures, then we expect a significant difference between
g0(r) and g1(r). To quantify this difference, we define

ΔS2 =
K−1

∑
k=0
∫

R

0
4πr2ρfkgk(r) log(

gk(r)
g(r)

)dr, (10)

where ρ is the total number density and g(r) = ∑k f kgk(r) is the
total radial distribution function (independent of communities).
The upper cutoff R indicates the range over which the local structure
is to be analyzed. We note that the quantity ΔS2 has a similar form to
that of Eq. (2); while pk(s) and p(s) are normalized probability densi-
ties, gk(r) and g(r) are not. Thus, ΔS2 is different in essence from
the MI and accounts for additional information in the structural
communities.

To obtain a numerical estimate of ΔS2, we use the same nota-
tion as Sec. II B 1 and define an empirical RDF for particle i
as

g̃i(rm) =
ni(rm)
w(m)

, (11)

where the normalization factor

w(m) =
4πρΔr3

3
[(m + 1)3

−m3
] (12)

is the average value of ni(rm) for an ideal gas at density ρ. This is the
standard normalization when deriving an RDF from the density–
density correlation function. The empirical RDF for community k is
obtained by averaging over the particles in that community,

g̃k(rm) =
1
fkN
∑
i
g̃i(rm)δk,ki . (13)

Here, again, if N is sufficiently large and bin size Δr is small, then
g̃k(rm) ≈ gk(mΔr) is a good approximation to the community
RDF appearing in Eq. (10). The quantity ΔS2 is maximized over
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community assignments, as described in Sec. III, to obtain extended
structural communities based on distances, or “radial communities.”

We now give an information-theoretic interpretation of ΔS2.
We identify

nk = ∫
R

0
4πr2ρgk(r)dr (14)

as the average number of neighbors, within the cutoff R, of a particle
in community k. We will see that one contribution to ΔS2 comes
from the fact that different communities may have different values
of nk. By definition, the community radial distribution function gk(r)
is related to the probability density pk(r) for the interparticle distance
r as

pk(r) =
4πr2ρgk(r)

nk
. (15)

The quantities defined in Eqs. (14) and (15) have analogs for
the whole system (independent of community); they are the aver-
age number of neighbors of a particle n = ∑k fknk; in addition,
the normalized probability density for the distance to a neighbor
P(r) = 4πr2ρg(r)/n. Note that

P(r) =
K−1

∑
k=0

fknk
n

pk(r). (16)

Then, from Eq. (10), we have

ΔS2 = n[
K−1

∑
k=0
∫

R

0

fknk
n

pk(r) log(
pk(r)
P(r)

)dr +
K−1

∑
k=0

fknk
n

log(
nk
n
)].

(17)

The quantity within square brackets is a sum of two positive quanti-
ties. We explain in Appendix B that the first term is the MI between
the community k and the interparticle distance, which we denote by
I2(k; r); see Eq. (B3). We further explain in that section that I2 is the
MI constructed from the joint distribution P(k, r) = fknkpk(r)/n,
which corresponds physically to picking a pair of neighboring par-
ticles at random; this is similar to the MI in Eq. (1) but not exactly
equivalent because Eq. (1) assumes that particles (instead of pairs)
are picked at random. The second term in Eq. (17) is a relative
entropy, or a Kullback–Leibler (KL) divergence, that is large if the
communities have different numbers of neighbors on average. In
summary, Eq. (B2) shows that the community informationΔS2 is the
sum of I2(k; r), which is an MI between communities and interparti-
cle distances, and an explicit contribution from density fluctuations.
By contrast, the approach of Sec. II B 1 is not sensitive to differences
in density between communities.

To apply this method to multi-component mixtures, we pro-
ceed as in Sec. II B 4 and split type α particles into communi-
ties, ignoring particle types when computing the empirical RDFs.
When considering communities for particles of type α, we, therefore,
generalize Eq. (10) as

ΔSα2 =
K−1

∑
k=0
∫

R

0
4πr2ρf αk g

α
k (r) log(

gαk (r)
gα(r)

)dr, (18)

where gα is an RDF that is centered on particles of type α but includes
neighbors of either type, gαk is the analogous quantity but with central
particles restricted to community k, and f αk is the fraction of type α
particles in community k. Then, gα(r) = ∑k fkg

α
k (r), just as in the

single-species case.

2. Connection between ΔS2 and two-body entropy
The extended community inference presented above maxi-

mizes ΔS2 to determine communities that are as distinct as possible.
Methods that optimize other quantities might also achieve a similar
result. As a motivation for this specific choice, we connect it to the
two-body excess entropy defined in liquid state theory.44

From Eq. (17), we see that ΔS2 is large in situations where spec-
ifying the community of a particle provides information about the
number of its neighbors and their distances. It is useful to recall that
the two-body excess entropy is a negative number whose magnitude
is44

∣S2∣ =
1
2 ∫

∞

0
4πr2ρ[g(r) log g(r) − g(r) + 1]dr. (19)

This quantity measures the extent to which g(r) differs from that of
an ideal gas and quantifies the strength of two-body correlations in
the fluid. Stronger correlations correspond to lower entropy. Since
S2 is negative in general, a larger absolute value of S2 corresponds to
a more ordered system. Then,

ΔS2

2
+ ∣S2∣ ≈

K−1

∑
k=0

fk
2 ∫

R

0
4πr2ρ[gk(r) log gk(r) − gk(r) + 1]dr, (20)

where the equality is now approximate because we have replaced the
upper limit in Eq. (19) by R. The right-hand side of Eq. (20) is the
weighted sum of the absolute values of the two-body excess entropies
of the communities. It is larger than |S2| because separating the
particles into communities reveals additional (many-body) correla-
tions in the system, i.e., the system is more ordered than one would
infer from the averaged RDF g(r). This order, which is revealed by
separating the system into communities, is quantified by ΔS2.

3. Composition fluctuations
We can further extend the community inference method to

account for the distribution of types among neighbors of particles
in community k. We do this by considering an alternative CI,

ΔSα2p =
K−1

∑
k=0
∫

R

0
4πr2
∑
β
ρβ f

α
k g

αβ
k (r) log

⎛

⎝

gαβk (r)
gαβ(r)

⎞

⎠
dr, (21)

where gαβ is an RDF centered on particles of type α, computed by
considering neighbors of type β, and ρβ is the number density for
particles of type β. Compared to Eq. (18), the community informa-
tion ΔSα2p now also explicitly accounts for the types of the neighbor-
ing particles. In Eq. (B11) of Appendix B, we show that ΔSα2p can be
split into three pieces, analogous to the decomposition in Eq. (17) for
the single-species case. These are: (i) a weighted sum of conditional
MIs Iαβ(k; r) that generalize I2(k; r) through a restriction to neighbors
of type β, (ii) a term Iα2 (k;β) that captures the fact that different com-
munities may have a preference for neighbors of different types, and
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FIG. 2. Overview of some bench cases. (a) A perfect cubic crystal and a liquid separated by an interface (top panel). Community inference with K = 2 and K = 3 gives the
communities shown in the bottom left and bottom right, respectively. For K = 2, one community is identified as the crystal and the other one as the liquid. For K = 3, the
additional community is identified as the interface between the two phases. (b) A perfect cubic crystal with 5% of dislocation defects (top panel). Community inference with
K = 2 (left bottom panel) identifies one community as the perfect crystal and the other one as the dislocation defects. When requesting K = 3 communities (right bottom
panel), two of them are the same as the left panel and the additional one surrounds the vacancies. (c) A perfect cubic crystal of α and β particles forming chemically correlated
domains (top panel). The results of extended community inference using ΔSα

2p, restricted to α particles and with K = 2, are shown in the bottom panel. One community is
identified as the bulk of α particles and the other one as the interface between α and β particles.

(iii) a KL divergence analogous to the second line of Eq. (17), which
accounts for the fact that different communities may be associated
with different numbers of neighbors. Compared with Eq. (18), the
CI in Eq. (21) differs through its sensitivity to the numbers of neigh-
bors of each type [through Iα2 (k;β)], and to the joint distribution of
interparticle distances and types [through the Iαβ(k; r)].

D. Bench cases
Before applying the method to the complex case of supercooled

liquids, we conducted several tests on simpler bench cases, some of
which are presented here. When a quantitative assessment of the
success of a test was not entirely straightforward, we opted for a qual-
itative interpretation based on visual inspection of the communities’
spatial distribution.

In Fig. 2(a), we show the simple case of an interface separating a
perfect cubic crystal and a dense liquid. Using Eq. (10) as CI, we dis-
tinguish two separate tests: (i) for K = 2, we expect two communities
coinciding with the crystal and the liquid phase, respectively; (ii) for
K = 3, we expect two communities similar to (i) plus an additional
community corresponding to the interface. Test (i) is passed with
a high accuracy [97% accuracy for the specific system in Fig. 2(a)].
The discrepancies are obviously due to particles at the interface,
where the distinction between the crystal and the liquid is not as well
defined as for the bulk. Concerning test (ii), simple visual inspection
shows that the method successfully identifies the interface. We note
that the vast majority of the particles in the interface community
belong to the crystal phase.

In Fig. 2(b), we consider the case of dislocation defects, or
“Frenkel defects,” in a perfect cubic crystal in which 5% of the par-
ticles were randomly moved off their respective lattice sites. Equa-
tion (10) was used as CI to infer the communities. For K = 2, one of
the communities is composed uniquely of defects, i.e., they are iden-
tified with 100% accuracy, without false positives. When we require

K = 3, the method produces an additional community of particles
surrounding the vacancies.

Finally, we designed a simple test for the extended community
inference introduced in Sec. II C 3, which captures composition fluc-
tuations between communities. To this end, we set up a perfect cubic
crystal occupied by two types of particles (α and β) forming chem-
ically correlated spatial domains; see Fig. 2(c). When restricting the
optimization to one particle type, say α, we expect one community to
be identified with the bulk of the α-domains and the other one with
the interface between α- and β-domains. In Fig. 2(c), we show that
the communities obtained by optimizing ΔSα2p are able to detect the
interface. By contrast, due to the lack of geometrical heterogeneity,
methods that do not account for partial correlations (such as max-
imization of ΔSα2) do not identify relevant communities. This test
shows that an extended community inference using partial corre-
lations can, indeed, prove useful in systems where the composition
effects are dominant.

III. MODELS AND NUMERICAL METHODS
We present numerical results for three binary glass-forming

liquids: the Wahnström LJ mixture (Wahn),45 the Kob–Andersen
(KA) LJ mixture,46 and a mixture of harmonic spheres (Harm).47

These models display different kinds of locally favored structures
and a varying degree of correlation between local order and dynam-
ics,17 and are, therefore, well suited for our community inference
method. We also performed several tests on simpler bench cases,
some of which are discussed in Sec. II D.

The models we study consist of two species of particles, A and
B, which differ in their size and their interaction parameters. The
B particles are smaller in the Wahn and KA mixtures, whereas A
particles are smaller in the Harm mixture. The interaction param-
eters of the models and their corresponding densities are given in
the original papers.45–47 We have identified structural communities
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with K = 2 in samples composed of N = 20 000 particles. For each
temperature, we have simultaneously optimized several independent
configurations, as described below.

In binary mixtures, a trivial solution of the structural com-
munity inference for K = 2 corresponds to grouping the particles
according to their type, e.g., k = 0 for type-A particles and k = 1
for type-B particles. To achieve a meaningful binary partitioning
into communities associated with locally ordered and disordered
regions, we proceed as described in Secs. II B 4 and II C 3 and carry
out optimizations separately for the two species. Another approach,
which we have only partly explored in the present work, would be to
request a larger number of communities (K ≥ 3) to get past the triv-
ial partitioning by types into two separate communities. We leave a
more systematic analysis of this issue to future work.

Depending on the context, the communities are inferred by
maximizing one of the information-theoretic quantities discussed in
Sec. II. Namely, we will consider the following two cases:

1. when inferring communities based on interparticle distances
(“radial communities”), we use ΔSα2 from Eq. (18) as CI;

2. for communities based on bond angles (“angular communi-
ties”), we use Iα(k; Θ) from Eq. (9) as CI.
To identify communities, we proceed as follows: Each particle

is initially assigned a random label k ∈ {0, 1}. To maximize the CI,
we change the label k of a randomly picked particle and recompute
the CI. This new assignment is accepted if it increases the CI; other-
wise, it is rejected and the particle is reassigned its old label k. This
stochastic procedure is repeated until the system reaches a (local)
maximum of the CI (see Fig. 1). This gives two communities, each
having its own distribution functions, i.e., qαk(θ) or gαk (r). The dif-
ference between the distribution functions quantifies the extent of
structural heterogeneity in the system. Note that q is the probabil-
ity density for Θ, normalized as ∫1−1 q(Θ)dΘ = 1; when displaying
these functions, we plot q as a function of θ = arccos(−Θ) to facilitate
identification of the preferred bond angles.

The integration cutoff R in Eq. (18) defines the length scale
up to which we retain community information on the interparticle
distances. Restricting the integration to the first or the second coor-
dination shell of gα(r) sometimes leads to artifacts in gαk (r), such as
small discontinuities due to more limited statistics. For this reason,
we decided to use a larger cutoff, up to the third coordination shell,
thus, including some information about the medium range order in
the resulting radial distribution functions.

For the calculation of bond angles, nearest neighbors were iden-
tified using a fixed distance cutoff Rαβ defined as the position of the
first minimum of the relevant partial RDF gαβ(r). These cutoffs are
RAA = 1.425, RAB = 1.375, and RBB = 1.275 for the Wahn mixture;
RAA = 1.425, RAB = 1.625, and RBB = 1.825 for the Harm mixture;
and RAA = 1.425, RAB = 1.275, and RBB = 1.075 for the KA mixture.

Communities are labeled at the end of the optimization accord-
ing to their respective Shannon (differential) entropy,

hk[s] = −∫ pk(s) log pk(s)ds. (22)

Labels are assigned using the following convention: the community
with the lowest entropy is labeled k = 1 (more ordered) and the other
one k = 0 (less ordered) so that h1[s] < h0[s]. For radial communities,
we use Eq. (22) with pk(s) replaced by gk(r). The RDF is not a nor-
malized probability density function, so hk is not a Shannon entropy

in that case. Nevertheless, it is a robust measure of structural order,
related to the two-body entropy. We found this criterion to be fairly
robust in most situations. In some cases, the Shannon entropies of
the structural communities have very similar values. In such cases,
the distinction between “locally ordered” and “locally disordered”
communities should be taken with a grain of salt.

We perform between 50 and 100 independent optimizations
(depending on temperature) for each combination of particle type
(A or B) and structural measure (interparticle distances or bond
angles), using different random starting labels. The optimization
with the highest CI is then kept. In practice, most of the times,
our optimizations find the exact same maximum, or maxima whose
values are extremely close, suggesting that the CI is a reasonably
smooth function of the ki. To quantify the similarity between two
optimizations On and Om, we define the overlap

Q = 2
Nα

Nα

∑
i=1

δkni ,kmi − 1 , (23)

where Nα is the number of type α particles in the sample, kni is the
community label of particle i in optimization On, and δ is the Kro-
necker delta. Q = 1 corresponds to a perfect similarity between
the samples (i.e., identical community assignments), Q = −1 a per-
fect dissimilarity (i.e., swapped communities’ labels between the two
samples), and Q = 0 to community assignments that are uncorre-
lated between the samples. At the lowest temperatures, the average
overlap between the optimization with the highest CI and its 99
counterparts ranges from 0.93 to 1 depending on the model and the
structural measure, in agreement with the idea of an overall convex
CI landscape.

IV. RESULTS
A. Geometry and composition of structural
communities

We start by presenting the main features of the structural com-
munities identified by the inference algorithms detailed above. In the
following, we will consider liquids equilibrated close to the respec-
tive mode-coupling crossover temperatures,17 at which the dynam-
ics has already slowed down by 3–4 orders of magnitude compared
to the onset of slow dynamics. Namely, the respective temperatures
are T = 0.58, T = 0.45, and T = 5.5 × 10−4 for the Wahnström,
Kob-Andersen, and harmonic spheres mixtures. The temperature
dependence of the community inference will be briefly discussed in
Sec. V.

Figures 3–5 provide an overview of the structural features of the
communities for each given model. In each figure, we present sep-
arately the distribution functions of the angular and radial commu-
nities, which are obtained by maximizing Iα and ΔSα2 , respectively.
Note that only communities formed by small particles will be con-
sidered in this section, since the preferred local order in binary alloys
typically develops around the smaller, usually solute, component. An
analysis of the communities formed by the big particles can be found
in Appendix C.

To provide further insight into the geometrical features of
the communities, we analyze the statistics of Voronoi cells in the
ordered and disordered communities. We perform a Voronoi tes-
sellation using the Voro++ software49 and classify the local particle
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FIG. 3. Features of the structural communities of type-B particles in the Wahn mixture. (a) and (b) Radial and angular distributions, i.e., gB
k (r) and qB

k (θ), of the angular
communities obtained from Eq. (9). The corresponding distributions restricted to particles at the center of an LFS are shown with dashed lines. (c) Fractions of the 10 most
frequent VSs for each angular community, by descending relative difference. The associated diversities are DB

0 = 65.7 and DB
1 = 4.5. The most common VS in the k = 1

community (marked with a red asterisk) coincides with the LFS, (0, 0, 12); see the inset. (d) and (e) Radial and angular distributions of the radial communities obtained from
Eq. (18). (f) Same as (c) but for the radial community. The associated diversities are DB

0 = 67.6 and DB
1 = 13.9. (g) Spatial distribution of the LFS in a representative sample

and (h) spatial distribution of the angular k = 1 community. All 3D visualizations were rendered in OVITO.48

arrangements using the Voronoi signature (VS) of the polyhedron
surrounding a given particle. The VS of a polyhedron is defined50

as the sequence (n3, n4, . . .), where ni is the number of faces with
i vertices. To analyze the VS composition of the communities, we
compare the fractions of the 10 most common Voronoi signatures
in each community and include the results in panels (c) and (f)
of each figure. We also investigate the relationship with the locally
favored structures, which were identified in previous work from the
statistics of the VS.51 In particular, the Wahn and KA mixtures are
known for having preferred arrangements in the form of icosahedra
and bicapped square antiprism, respectively. The Harm mixture is
characterized by distorted icosahedral structures. The correspond-
ing VS of these structures are (0, 0, 12) for the B particles of the
Wahn mixture, both (0, 2, 8) and (1, 2, 5, 3) for the B particles of the
KA mixture, and (0, 2, 8, 2) for the A particles of the Harm mixture.
They represent, respectively, 22.9%, 19.7%, and 9.7% of the total
number of small particles. Finally, we also report a measure of the
structural diversity Dα

k of the communities as expressed by the Shan-
non entropy of the distributions of the VS.14 Namely, the diversity is
defined as

Dα
k = exp[−∑

S
p(S) ln p(S)], (24)

where p(S) is the probability of observing a Voronoi cell with the
VS equal to S. Communities k = 1 always have a lower diversity than
k = 0, suggesting that they are, indeed, more (locally) ordered. This
is especially striking in the Wahn mixture, where the diversity asso-
ciated with angular community k = 1 is less than 10, close to values
found in crystalline structures.14

We now briefly describe the communities in the three model
systems considered. We provide some global remarks on the nature
of the structural communities in the studied models at the end of
this section.

1. Wahn model
In the Wahn model, see Figs. 3(a) and 3(b), the ordered com-

munity inferred from bond angles has very similar properties to
particles that form LFSs. In particular, one observes a peak in q(θ)
for the ordered community at θ = 180○. Such a peak is a natural
consequence of the inversion symmetry of the LFS. The commu-
nities inferred from RDFs are similar, see Figs. 3(d) and 3(e): the
bond angle distribution of particles in the ordered community dif-
fers somewhat from that of the LFS, but there is still a substantial
overlap. The structural communities of the Wahn mixture are obvi-
ously connected to the pronounced icosahedral local order observed
around small particles.6 The snapshots in Figs. 3(g) and 3(h) illus-
trate qualitatively the striking correspondence between the ordered
angular community, k = 1, and the particles forming icosahedral
structures, i.e., at the center of (0, 0, 12) Voronoi cells. More quanti-
tatively, the angular community k = 1 includes more than 90% of the
(0, 0, 12) signatures. Although angular correlations are more sensi-
tive than radial ones in identifying local motifs, the fraction of (0, 0,
12) remains significant even in the radial community k = 1 (83%).
The ordered angular and radial communities also tolerate slight dis-
tortions of the preferred local order, as is clear from the presence of
(0, 2, 8, 2) signatures. Structural communities, thus, appear robust
with respect to thermal fluctuations, which can instead affect the
Voronoi tessellation considerably.
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FIG. 4. Features of the structural communities of type-B particles in the KA mixture. Panels (a)–(f) show the same quantities as in Fig. 3. Note that in this case, the most
common VS in the k = 1 community, (0, 3, 6) (marked with a red asterisk), differs from the commonly identified LFS, (0, 2, 8). The (0, 3, 6) signature is associated with
capped trigonal prismatic structures; see the inset. The associated diversities are DB

0 = 61.8 and DB
1 = 26.9 for angular communities, and DB

0 = 52.9 and DB
1 = 38.7 for radial

communities.

2. KA model
In the KA model, see Figs. 4(a) and 4(b), the ordered commu-

nity inferred from bond angle distributions also shares some features
with the LFS, although it lacks the peak at θ = 180○. This difference
may also be due to the fact that nearest neighbors identified using
the fixed distance cutoff defined in Sec. III differ slightly from those
determined by the Voronoi tessellation. It is notable that the RDFs
for these communities are very similar; see Figs. 4(a), Figs. 4(d) and
4(e). On the other hand, when the distances are used to infer com-
munities, the resulting community RDFs differ in the second peak,
while the community bond angle distributions are similar. In fact,
the communities inferred by the two methods are quite different
in this model: measuring the similarity between angular and radial
communities using Eq. (23) gives Q = −0.03 (negligible correlation),
in contrast to Q = 0.41 for the Wahn model. The geometrical motifs
of the angular communities of the KA mixture are somewhat dif-
ferent than expected. We find that the ordered radial community is
composed mostly by the (0, 2, 8) signatures, which is the bona fide
LFS of the model. However, the ordered angular community displays
different geometric features and turns out to be rich in (0, 3, 6) sig-
natures, associated with capped trigonal prismatic structures. These
structures do not present linear arrangements of triplets of parti-
cles, to which optimizations based on bond angles are sensitive. Our
analysis suggests that the main “geometric” source of structural het-
erogeneity in the KA mixture comes from a different kind of motif
than the bona fide LFS.

3. Harm model
In the Harm model, one finds (perhaps surprisingly) that the

disordered community (k = 0) inferred from bond angles corre-
sponds most closely to the LFS and exhibits a peak at θ = 180○, as

shown in Figs. 5(a) and 5(b). The local geometries of the two angu-
lar communities differ markedly from one another; see Fig. 5(c). The
angular community k = 0 contains the vast majority of the icosahe-
dral population (more than 90%) and related distortions. The icosa-
hedral symmetry of this community is confirmed by the presence of
preferred angles corresponding to typical icosahedral arrangements;
see Fig. 5(b). By contrast, the angular community k = 1 contains
almost the full set of (0, 2, 8) signatures, which we have identified
again as twisted square prisms. On average, these local structures
comprise three particles of type-A and seven particles of type-B,
which slightly differs from the average coordination which is four
for type-A and seven for type-B.

It is also notable that the community RDFs for this system (cen-
tered on A particles) feature a splitting of the first peak, because the
neighbors of the central particle may be of either type; see Figs. 5(d)
and 5(e). We find that the types of particles in the first shell dif-
fer between the communities in all cases. For communities based
on bond angles, the average numbers of neighbors of each type are
nA1 = 3.9 and nB1 = 7.3 for the ordered community, and nA0 = 5.6
and nB0 = 6.8 for the disordered one. That is, A particles in the
ordered community are preferentially surrounded by B particles. For
communities based on RDFs, we find a similar effect: nAk = 4.4 and
nBk = 7.6 for the ordered community, and nAk = 5.7 and nBk = 6.3 for
the disordered one. As in the KA model, the communities inferred
by the two methods are very weakly correlated, and their overlap is
Q = 0.07.

4. Overview and discussion
Some general observations about this analysis are in order.

First, the presence (or absence) of a peak at θ = 180○ in the bond
angle distribution leads to a natural separation into communities.
In the models considered here, the LFSs are also associated with
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FIG. 5. Features of the structural communities of type-A particles in the Harm mixture. Panels (a)–(f) show the same quantities as in Fig. 3. Note that in this case, the most
common VS in the k = 1 community, (0, 2, 8, 1), differs from the commonly identified LFS, (0, 2, 8, 2). However, the largest difference in fractions between both communities
is found for the (0, 2, 8) signature (marked with a red asterisk), which is associated with twisted square prisms; see the inset. The associated diversities are DA

0 = 46.8 and
DA

1 = 33.6 for angular communities, and DA
0 = 55.3 and DA

1 = 52.6 for radial communities.

such a peak. These observations suggest that the number of linearly
arranged triplets in a given local structure may be a simple geometric
feature (along with others19,20) associated with local stability. Sec-
ond, the community distribution functions differ markedly in all
models, but even more so in the Wahn mixture, for which struc-
tural heterogeneity is most pronounced. As we shall see in Sec. V,
this is also reflected in the absolute values of the corresponding CI.
Finally, although the RDF of a supercooled liquid depends weakly on
temperature, we find that fluctuations of the empirical RDF are sig-
nificant and can be used to identify locally ordered and disordered
communities of particles. This effect is particularly pronounced in
the Wahn mixture. In the Harm and KA models, the radial com-
munities tend to convey less geometrical information, since both
the angular distribution and the distribution of the VS are almost
identical in the k = 0 and k = 1 communities. In these two mod-
els, the difference between the communities suggests the presence of
different sources of structural fluctuations, due to either density or
chemical composition.

To further investigate the role of density and composition
fluctuations between communities, we analyzed the communities
obtained by the extended method described in Sec. II C 3. We found
that maximization of ΔSα2p produces structural communities very
similar to the radial communities discussed above, obtained from
Eq. (18). In particular, the distribution functions of the two sets of
communities were practically indistinguishable in the Wahn mix-
ture, while some minor differences appeared in the Harm and KA
models. The overlap Q between the optimized communities was also
fairly large, ranging from 0.5 to 0.7 depending on the model. Thus,
including explicit information on the particles’ types via Eq. (18)
does not change the nature of the communities qualitatively.

However, this extended method can be exploited to dis-
entangle more clearly the effects of composition and density.

To this end, we considered the three terms entering Eq. (B11)
and performed separate “restricted” optimizations by removing
these terms from ΔSα2p one at a time. That is, instead of max-
imizing ΔSα2p, we maximize other variants of the CI, such as
ΔSα2p − DKL(Pα

(k)∥f αk ) and ΔSα2p − Iα(k;β). We then calculated
the overlaps Q between the optimized communities, according to
which variant of the CI was used. From this analysis, which we do
not detail here, we concluded that composition fluctuations pro-
vide a larger contribution to the community information than the
bare density fluctuations, because subtracting the composition term
Iα(k; β) typically had a bigger effect than subtracting the density term
DKL(Pα

(k)∥f αk ). However, the nature of the communities is simi-
lar between the different variants of CI, and overlaps between them
remain substantial, with Q ranging from 0.5 to 0.8 depending on the
model.

This analysis suggests that density and composition fluctua-
tions are strongly coupled to the local structure and that the bulk of
the community information is already embedded in the MI between
k and r. For this reason, in the following, we shall not consider the
extended method based on partial correlations. However, compar-
ing these variants of the CI may still prove useful in systems where
composition fluctuations are less coupled to the local structure, e.g.,
in systems with an order/disorder transition. A simple but explicit
example is given in Sec. II D.

B. Correlation between the structure and dynamics
In Sec. IV A, we found that community inference provides

insight into the heterogeneity of the local structure, capturing fluc-
tuations of geometric motifs and of composition. Do the structural
communities also correlate with the heterogeneity of the dynamics?
How predictive are they compared to other structural descriptors17?
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FIG. 6. Time-dependent correlation between the isoconfigurational mobility μ(t) and coarse-grained communities (k), coarse-grained local density (ρ), and coarse-grained
number of the LFS (nLFS). Columns (a), (b), and (c) show results for the small particles of the Wahn, KA, and Harm models, respectively. The top panels show the relative
fluctuations σ{μ}/⟨μ⟩ of the isoconfigurational mobility as a function of t/τ. The vertical dotted lines indicate the maximum of σ{μ}/⟨μ⟩. In the three central rows, the Spearman
correlation coefficient |K(L)| is shown as a function of t/τ. K(L) is calculated using quantities coarse-grained over the indicated length L. The bottom row shows the mutual
information I(k; μ) between communities and the isoconfigurational mobility as a function of t/τ. In this figure, angular and radial communities are indicated by k̄θ and k̄r ,
respectively. Colored areas surrounding the curves correspond to the standard deviation on the distribution of the values.

To address these questions, we analyze time-dependent correlations
with the isoconfigurational mobility of the particles,16 which filters
out dynamical fluctuations unrelated to the structure. For a given
configuration, we perform 100 independent molecular dynamics
simulations in the microcanonical ensemble using LAMMPS,52

each one starting with different velocities randomly drawn from a
Maxwell–Boltzmann distribution. The isoconfigurational mobility
of particle i at time t is then defined by μi(t) = ⟨

√
(r⃗i(t) − r⃗i(0))2⟩IC,

where ⟨⋅⟩IC denotes the isoconfigurational average. For each stud-
ied model, the isoconfigurational mobility was computed for 10
independent configurations.

In addition to the structural communities, we also analyze the
spatial variation of the local density ρ and of the number of LFSs
nLFS around a central particle.17 Since some of these variables are
continuous and some are discrete, they will all be spatially coarse-
grained over a length scale L. For a given particle i, we define the
coarse-grained local density as

ρi(L) = (1/L
3
)

N

∑
j=1

w(rij;L),

wherew(r; L) is a weighting function. Similarly, for a given structural
descriptor si, which can be either the number of neighboring LFSs
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nLFSi or the community label ki = 0, 1, we define

si(L) =
∑

N
j=1 sj ⋅w(rij;L)

∑
N
j=1 w(rij;L)

.

For si(L) ≡ nLFSi (L), we set sj = 1 if j is an LFS and sj = 0 otherwise.
We follow Ref. 19 and coarse-grain all structural descriptors using
an exponential function w(r; L) = e−r /L. In the rest of this section,
our analysis will be restricted to correlations with the isoconfigura-
tional mobility of the small particles, but both species are considered
when coarse-graining the structural communities. Qualitatively sim-
ilar trends to the ones discussed below are observed when restricting
the analysis to the big particles (not shown).

Different measures of correlation between the isoconfigura-
tional mobility and structural descriptors were used in previous
studies. To establish a direct link with Refs. 17 and 19, we com-
pute Spearman’s rank correlation coefficient K, which amounts to
compute the Pearson correlation between the ranks of the sorted
variables. Following Ref. 32, we also quantify correlations using the
mutual information (in bits),

I(k;μ) =
K−1

∑
k=0
∫ dμ p(k,μ) log2(

p(k,μ)
p(k)p(μ)

). (25)

Jack and co-workers32 suggested that in binary mixtures, a strong
coupling between a structural descriptor and dynamics corresponds
to mutual information of the order of 0.1 bit or more.

The time-dependent Spearman correlation coefficient between
μi(t) and the structural descriptors defined above is shown in Fig. 6
for different values of the coarse-graining length L. To get a feel-
ing of how strong is the heterogeneity of the mobility field over the
investigated time range, we include in the top panels the correspond-
ing relative standard deviation of the isoconfigurational mobility,
σ{μ}/⟨μ⟩ (restricted to small particles here). The “contrast” in the
mobility field is strongest at the time t∗ at which σ{μ}/⟨μ⟩ is the
maximum. For the Wahn mixture, t∗ is close to the total structural
relaxation time τ, as obtained from the decay to 1/e of the total self-
intermediate scattering function. For the KA and Harm mixtures,
t∗ ≈ 0.2 × τ.

In the Wahn mixture, we find that the correlation grows in
a similar way for structural communities and the LFS and reaches
large absolute values around t∗. This is expected since the angu-
lar community k = 1 and the LFS are strongly overlapping. Similar
trends are observed for the radial community k = 1. Overall, the cor-
relation between μi(t) and the structural communities of KA and
Harm mixtures is weaker than that in the Wahn mixture. However,
on times longer than the structural relaxation time and by increasing
L, the correlation becomes fairly strong for both the radial commu-
nities and the local density. In the Harm mixture, the coupling is
visible even for small coarse-graining lengths L for both the radial
communities and the local density, but not for the angular com-
munities. This is consistent with the lack of locally stable geometric
motifs in this model,17 at least in the accessible temperature range.

In all models, the correlations with the communities and with
the local density grow with increasing length scale. This trend sug-
gests that the dynamic fluctuations captured by the spatially coarse-
grained communities are due to a coupling with the local density.
We note that this is not a trivial result: the null hypothesis, i.e.,

coarse-graining a binary random field with the same properties of
the communities, leads, indeed, to zero correlations. Finally, in the
lower panel of Fig. 6, we show the mutual information between the
isoconfigurational mobility and the structural communities. For the
B particles of the KA mixture, we find that the correlation is weak,
which is consistent with Ref. 32. The Wahn mixture shows a good
correlation with an information of 0.2 bit near t = τ. The Harm mix-
ture is in between the two other models, with an information close
to 0.1 bit at t = τ, suggesting that some relevant information about
dynamics is, indeed, captured by the structural communities.

V. DISCUSSION
What can be learned from the application of community infer-

ence to supercooled liquids? Perhaps, the key point is that in all stud-
ied models, structural communities reveal a significant heterogene-
ity of the local structure, hidden in the fluctuations of few-body dis-
tribution functions. We found that a strong icosahedral local order
is clearly reflected in the communities of the Wahn LJ mixture. In
the other two models, structural inference provides complementary
information to conventional geometrical methods, like the Voronoi
tessellation. In particular, it makes it possible to identify heterogene-
ity due to fluctuations in local density and composition, independent
of the local structure. Explicit formulation of the inference prob-
lem in terms of partial correlations, see Eq. (21), provides a method
to quantify the respective contribution of geometry, local density,
and composition to the structure. The overlap between communi-
ties inferred from Eqs. (18) and (21) is substantial and indicates that
in these models, the fluctuations of geometric motifs, density, and
composition are, indeed, strongly coupled.

Our analysis has focused on temperatures close to the mode-
coupling crossover temperature. To provide some insight into how
structural communities change with temperature, we analyze the
variation of two simple global metrics that quantify the degree
of structural heterogeneity of a liquid. Namely, we compute the
average community information, i.e., IAB = xAIA + xBIB and ΔSAB2
= xAΔSA2 + xBΔSB2 , where xA and xB are the chemical concentrations
of the two species.53 The temperature dependence of IAB and ΔSAB2 is
shown in Fig. 7. The community information increases rapidly in the

FIG. 7. Temperature dependence of the ensemble average of the weighted CI for
(a) angular communities and (b) radial communities. Error bars are smaller than
the markers.
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Wahn mixture when the temperature drops below the onset of slow
dynamics, as an expected consequence of the growth of the icosahe-
dral order.51 In the other two studied models, instead, the growth
is mild, both for angular and radial communities.54 In the Harm
mixture, ΔSAB2 even stagnates close to the mode-coupling crossover
temperature, which is reminiscent of the behavior of dynamic corre-
lation lengths in this model.55 It is interesting to relate these results
to the notion of fragility, as first envisaged by Angell.56 Indeed, the
classification of liquids into strong and fragile originally reflected
“the sensitivity of the liquids’ structure to temperature changes”57—
the coupling between the structure and dynamics being assumed
implicitly. We suggest that the temperature dependence of the aver-
age community information provides a simple proxy to the con-
cept of “structural fragility.” The results in Fig. 7 are qualitatively
consistent with the trends in terms of kinetic fragility; see, e.g.,
Refs. 6 and 58.

Our results also provide some insight into the long-standing
problem of relating the local structure to dynamic heterogeneities.
Structural communities inferred from distances and bond angles,
when coarse-grained over one or two interparticle distances, are all
highly predictive of dynamic fluctuations at long times, t > τ. This is
particularly true for communities based on distances, which probe
the structure over an intermediate range. Similar high correlations
at long times were observed by Tong and Tanaka using a different
structural order parameter.19 These observations, along with those
of Ref. 32, indicate that it might be possible to achieve a predic-
tive description of long-time isoconfigurational dynamics in terms
of coarse-grained structural fields. At times comparable to the struc-
tural relaxation time, instead, the correlations between communities
and dynamics are system-dependent, in agreement with Ref. 17.

Community inference provides a framework to account for cor-
relations with local density and composition fluctuations, which are
sizable in the Harm mixture and which are not captured by the
Voronoi tessellation. By contrast, the KA mixture shows barely any
correlation between structural communities and dynamic fluctua-
tions on the structural relaxation time scale. In this model, the con-
nection between the structure and dynamics is probably encoded in
the energy function and eschews (at least so far) a simple geometrical
interpretation. However, it can be revealed by more complex static
order parameters.18

Finally, polydisperse particles characterized by a continuous
distribution of sizes constitute another class of systems where com-
position fluctuations are of particular interest.59 The phase behavior
of hard polydisperse particles reveals a variety of complex crys-
talline structures, which can often be mapped to those of an effective
multi-component system.60,61 It may, thus, be possible to describe
the structural features of these systems using community inference
by increasing the number of structural communities. Preliminary
results indicate that community inference with K = 4 successfully
captures partial crystallization in dense, highly polydisperse hard
spheres.59 It would be interesting to extend this analysis to other
partially ordered systems as well as to polycrystalline materials.

VI. CONCLUSIONS
Community inference appears as a simple and versatile tool to

assess the structural heterogeneity of a physical system. In a nutshell,
the method infers K communities associated with a given structural

property s by maximizing either the mutual information I(k; s) or
some other measure of community information like Eqs. (18) and
(21). As in a previous work on network-theoretic community detec-
tion,37 we have used a simple local optimization algorithm to find
the maxima of I(k; s). It would be interesting to explore more sys-
tematically the features of the community information landscapes
and the statistics of their maxima. This may be achieved by introduc-
ing a field coupled to the community information and by exploring
the community landscape through a fictitious Monte Carlo dynam-
ics using a simulated annealing approach. Furthermore, it would
be desirable to combine different structural data, e.g., information
on both distances and angles, and to generalize the method to a
variable number of communities, which would have to be deter-
mined self-consistently as a result of the optimization. In the phys-
ical context, future work should, thus, focus on these extensions as
well as on the exploration of a broader set of systems. To further
develop the method, it will also be valuable to explore in more detail
the relationship with existing approaches in machine learning34,35

and their potential application to the structural analysis of physical
systems.62–65
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APPENDIX A: BAYESIAN INTERPRETATION OF ΔS2

We consider the statistical model for bond angles (or other
structural data) described in Sec. II B 3. We perform inference on
data that are provided as a set of empirical distributions q̃i(m) for
i = 1, 2, . . ., N and m = 1, 2, . . ., M. These are defined as in Eq. (11),
based on the integer variables ni(Θm). Within the statistical model,
each ni(Θm) is an independent Poisson-distributed variable with a
mean that depends on the community ki of particle i and on m. The
corresponding mean value for q̃i(Θm) is

qki(Θm) = ∫

(m+1)ℓ

mℓ
qki(Θ)dΘ. (A1)

Then, the log-probability of the data (the full set of empirical
distributions) given the statistical model can be approximated as

logP(q̃∣model) = ∑
i
∑
m
[q̃i(Θm) log(

qki(Θm)

q̃i(Θm)
)

− qki(Θm) + q̃i(Θm)]. (A2)

(We used Stirling’s formula to arrive at this simplified formula for
the log-likelihood of these independent Poisson variables.)

The parameters of the statistical model are the distributions pk,
the numbers of neighbors nk, and the community labels ki. How-
ever, pk and nk enter only through the parameters qk(Θm). The next
step is to find the most likely values of these parameters, given the
data. This requires that we maximize P(model∣q̃) using Bayes’ for-
mula. We take uniform priors for the community labels ki and for
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the parameters qk(Θm), so P(model∣q̃) ∝ P(q̃∣model), and it is
sufficient to maximize Eq. (A2) over the ki and the q.

Extremizing first over the qk with fixed community labels ki, we
find

qk(Θm) = q̃k(Θm), (A3)

with q̃k(Θm) defined as in Eq. (4). Physically, this means that if the
community labels ki are already known, then we obtain the RDF for
community k by averaging the empirical RDFs over the particles in
that community. This is the expected result and justifies the uniform
prior used for q. Hence (dropping an irrelevant additive constant
that comes from normalization), we have

logP(model∣q̃) = ∑
i
∑
m
[q̃i(Θm) log q̃ki(Θm)

− q̃i(Θm) log q̃i(Θm) − q̃ki(Θm) + q̃i(Θm)],
(A4)

which is to be maximized over the ki. (Recall from Eq. (4) that q̃ki
and q̃i are different physical quantities, because the subscript ki is a
community index but i is a particle index.)

When maximizing over the ki, the term proportional to
q̃i(Θm) log q̃i(Θm) in Eq. (A4) is irrelevant because it does not
depend on ki. In the other terms, the sums over particle indices i
can be simplified by partitioning particles according to their com-
munities: one has ∑i q̃ki(m) = N∑k fkq̃k(Θm) = Nq̃(Θm) and
∑i q̃i(Θm) log q̃ki(Θm) = N∑k fkq̃k(Θm) log q̃k(Θm). One arrives at

1
N

logP(model∣q̃) = ∑
k
∑
m
fkq̃k(Θm) log q̃k(Θm) + C, (A5)

where C is a constant that does not depend on the community labels.
Finally, note that ∑k fkq̃k(Θm) log q̃(Θm) is also independent of the
labels because∑k fkq̃k(Θm) = q̃(Θm). Hence,

1
N

logP(model∣q̃) = Ĩ(k; θ) + C′, (A6)

where

Ĩ(k; θ) = ∑
k
∑
m
fkq̃k(Θm) log(

q̃k(Θm)

q̃(Θm)
) (A7)

and C′ is a new constant, independent of the ki.
The quantity Ĩ(k; θ) is a numerical estimate of the MI I(k; Θ)

defined in Eq. (8). In fact, our numerical scheme for maximizing
I(k; Θ) proceeds by maximizing Ĩ(k; θ). Hence, we observe that
assigning community labels to maximize our numerical estimate of
I(k;Θ) is equivalent to maximizing logP(model∣g̃). That is, the com-
munity inference method finds the most likely statistical model for
the data, within the framework described in this section.

The analysis of this section may be straightforwardly general-
ized to other structural measures including those based on interpar-
ticle distances (as in Secs. II B 1 and II C 1) and to liquid mixtures
(as in Sec. II B 4).

APPENDIX B: INFORMATION-THEORETIC
ANALYSIS OF ΔS 2

We discuss the information-theoretic content of ΔS2 and the
analogous quantity ΔSα2p that takes account of partial RDFs.

1. Single species
Based on Eqs. (14) and (15), we define a joint probability

distribution for (r, k) as in the main text,

P(k, r) =
fknk
n

pk(r). (B1)

Its marginal distributions are P(k) = ∫R0 P(k, r)dr = fknk/n and
P(r) =∑kP(k, r), which coincide with Eq. (16). Hence, Eq. (17) is

ΔS2

n
= I2(k; r) + DKL(P(k)∥fk), (B2)

where

I2(k; r) = ∑
k
∫ P(k, r) log(

P(k, r)
P(k)P(r)

)dr (B3)

is the MI associated with P and

DKL(P(k)∥fk) = ∑
k
P(k) log(

P(k)
fk
) (B4)

is a KL divergence that measures how far is the distribution P(k)
from its statistical null f k. This P(k) is the probability that one mem-
ber of a randomly chosen pair of neighbors is in community k. It is
larger than f k if particles in community k have more neighbors, on
average. The difference between P(k) and f k also explains why the
MI in Eq. (B3) does not match the form of Eq. (1)—the distribution
p(k, s) in that definition is assumed to correspond to picking particles
at random, so its marginal p(k) coincides with f k.

A direct generalization of the argument of this section yields
a similar decomposition of Eq. (18) in which the distribution P is
restricted to central particles of type α (and similarly f k).

2. Multiple species with partial RDFs
We decompose ΔSα2p, similar to Eq. (B2). We work by analogy

with the single-species case. Let

pαβk (r) =
4πr2ρβgαβk (r)

nαβk
, (B5)

with nαβk = ∫
R
0 4πr2ρβgαβk (r)dr, which is the average number of type-β

neighbors of a type α particle in community k. Analogous quanti-
ties pαβ(r) and nαβ (without the community index) are defined by
replacing gαβk → gαβ in these definitions. Then, Eq. (21) becomes

ΔSα2p = ∑
k,β
∫

R

0
nαβk f αk p

αβ
k (r) log

⎛

⎝

pαβk (r)n
αβ
k

pαβ(r)nαβ
⎞

⎠
dr. (B6)
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We now generalize the distribution P from the single-species
case: fix the type α of the central particle and define a joint distribu-
tion for (k, r) and the type β of the neighboring particle,

Pα
(k, r,β) =

f αk n
αβ
k

nα
pαβk (r), (B7)

with nα = ∑β n
αβ. We recognize pαβk (r) = P

α
(r∣k,β) as the distribu-

tion for r, given the community k of the central particle and the type
β of its neighbor.

As in the single-species case, the marginal for k is Pα
(k) =

f αk n
α
k/n

α, and it is useful to separate in ΔS2p the KL divergence that
accounts for differences between communities of the number of
neighbors,

ΔSα2p

nα
= ∑

k,β
∫

R

0
Pα
(k, r,β) log

⎛

⎝

pαβk (r)n
αβ
k nα

pαβ(r)nαβnαk

⎞

⎠
dr

+DKL(Pα
(k)∥f αk ), (B8)

where DKL is defined as in Eq. (B4). It can be shown that the integral
in the first line of Eq. (B8) is the MI between (β, r) and k, but we
instead choose to decompose this term into two positive quantities
(this amounts to the chain rule for MI). We sketch the calculation.
We write

ΔSα2p

nα
= ∑

k,β
∫

R

0
Pα
(k, r,β) log

⎛

⎝

pαβk (r)
pαβ(r)

⎞

⎠
dr

+ Iα2 (k;β) + DKL(Pα
(k)∥f αk ), (B9)

where we used that Pα
(k,β) = fkn

αβ
k /n

α as well as Pα
(β) = nαβ/nα,

and we identify

Iα2 (k;β) = ∑
k,β

Pα
(k,β) log(

Pα
(k,β)

Pα(k)Pα(β)
) (B10)

as the MI between the community of the central particle and the type
of the neighbor. Finally, we write

ΔSα2p

nα
= ∑

β

nαβ

nα
Iαβ(k; r) + Iα2 (k;β) + DKL(Pα

(k)∥f αk ), (B11)

where

Iαβ(k; r) = ∑
k
∫ Pα

(k, r∣β) log(
Pα
(k, r∣β)

Pα(k∣β)Pα(r∣β)
)dr

= ∑
k
∫ Pα

(k, r∣β) log
⎛

⎝

pαβk (r)
pαβ(r)

⎞

⎠
dr (B12)

is the conditionalMI between the community and the distance, given
that the neighbor has type β. To get from the first to the second line
of (B12), it is useful to note that Pα(r|β) = pαβ(r). [To recover the
single-species result Eq. (B2) from Eq. (B11), note that Iα2 (k;β) = 0
in that case, and Iαβ coincides with I2 in Eq. (B3).] The phys-
ical interpretation of the three pieces in Eq. (B11) is discussed
in Sec. II C 3.

APPENDIX C: COMMUNITY INFERENCE
FOR THE LARGER PARTICLES

The analysis presented in the main text focused on the com-
munities formed by the small particles of each model. In Figs. 8–10,
we present the structural features of the communities inferred for

FIG. 8. Features of the structural communities of type-A particles in the Wahn mixture. (a) and (b) Radial and angular distributions, i.e., gB
k (r) and qB

k (θ), of the angular
communities obtained from Eq. (9). (c) Fractions of the 10 most common VSs for each angular community, by descending relative difference. Associated diversities are
DA

0 = 83.4 and DA
1 = 66.7. (d) and (e) Radial and angular distributions of the radial communities obtained from Eq. (18). (f) Fractions of the 10 most common VSs of each

radial community. Associated diversities are DA
0 = 74.5 and DA

1 = 94.5.
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FIG. 9. Features of the structural communities of type-A particles in the KA mixture. (a) and (b) Radial and angular distributions of the angular communities obtained from
Eq. (9). (c) Fractions of the 10 most common VSs for each angular community, by descending relative difference. Associated diversities are DA

0 = 66.6 and DB
1 = 95.7. (d)

and (e) Radial and angular distributions of the radial communities obtained from Eq. (18). (f) Fractions of the 10 most common VSs for each radial community. Associated
diversities are DA

0 = 85.3 and DA
1 = 105.2.

the big particles, namely, type-A particles for the Wahn and KA
mixtures and type-B for the Harm mixture.

As already observed for the small particles, inference of angular
communities is sensitive to the presence of linear triplets of parti-
cles. Indeed, every system shows a splitting near θ = 180○ between
the communities’ bond angle distributions qαk(θ) [panel (b) of all
three figures]. Such a marked difference is not observed in the cor-
responding communities’ RDFs gαk (r) [panel (a)], which are fairly

close to one another. In addition, angular communities tend to dif-
fer significantly in terms of their local geometry, as shown by the VS
composition in panel (f). Radial communities are characterized by
similar local geometries, as it is clear from the similarity of the VS
distributions of the two communities.

The observations above are broadly consistent with the ones
we made for communities restricted to small particles. However, we
also found that communities restricted to big particles tend to have

FIG. 10. Features of the structural communities of type-B particles in the Harm mixture. (a) and (b) Radial and angular distributions of the angular communities obtained from
Eq. (9). (c) Fractions of the 10 most common VSs for each angular community, by descending relative difference. Associated diversities are DB

0 = 93.6 and DA
1 = 91.9. (d)

and (e) Radial and angular distributions of the radial communities obtained from Eq. (18). (f) Fractions of the 10 most common VSs for each radial community. Associated
diversities are DB

0 = 112.3 and DB
1 = 111.4.
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lower absolute values of the CI (not shown) and larger values of
the diversities Dk. Thus, the local structure appears somewhat less
heterogeneous and more disordered around the big particles than
around the small ones.
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