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Abstract. An open problem in modern physics is why microscopic quantum objects can
be at two places at once (i.e. a superposed quantum state) while macroscpoic classical
object never show such a behaviour. Collapse models provides a quantitative answer for this
problem and explain how macroscopic classical world emerges out of microscopic quantum
world. A universal noise field is postulated in collapse models, inducing appropriate Brownian-
motion corrections to standard quantum dynamics. The strength of collapse-driven Brownian
fluctuations depend on: (i) the parameters characterizing the system (e.g., mass, size, density),
and (ii) two phenomenological parameters defining the statistical properties of the collapse
noise. The collapse-driven Brownian motion works such that microscopic systems behave
quantum mechanically, while macroscopic objects are classical. At the intermediate mesocopic
scale, collapse models predict deviations from standard quantum predictions. This issue has
been subject of experimental tests. All experiments to date have been at the scales where
collapse effects are negligible for all practical purposes. However, recent experimental progress
in revealing quantum features of larger objects, increases the hope for testing at unprecedented
scales where collapse models can be falsified. Current experiments are mainly focused on the
preparation of macroscopic systems in a spatial quantum superposition state. The collapse
effects would then manifest as loss of visibility in the observed inference pattern. However, one
needs a quantum interference with single particles of mass ∼ 1010amu for a decisive test of
collapse models. Creating such massive superpositions is quite challenging, and beyond currect
state-of-the-art. Quite recently, an alternative approach has been proposed where the collapse
manifests in the fluctuating properties of light interacting with the quantum system. The great
advantage of this new approach is that here there is no need for the preparation of a quantum
superposed state. It has been discussed that promising results can be revealed in the spectrum of
light interacting with a radiation pressure-driven mechanical oscillator in a cavity optomechanics
setting. Here, we review the theoretical modelling of the above optomechenical proposal. We
discuss how collapse-driven Brownian motion modifies the spectrum. We quantify the collapse
effect and explain how it depends on the parameters of the mechanical oscillator (e.g., mass,
density, geometry).

1. Introduction
Physics at the quantum-classical border is one of the crucial fields of today’s research, both
theoretical and experimental [1, 3, 2, 4, 5, 6, 7]. One of the challenging questions is to understand
if, and under which conditions, quantum linearity fails when the size and complexity of the
system increases. The exploration of this question has substantial consequences because if
the quantum superposition principle fails beyond a certain scale (e.g., a mass scale), then it
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necessitates the modification of quantum theory [8, 9]. This might result in a correct scenario
for unifying quantum theory with gravity [10].

Collapse models are one possible way to modify the standard quantum theory in a fully-
consistent way [8, 9, 11, 12, 13, 14, 15, 16]. Collapse model assumes a universal noise field
that, when acting on matter, introduces non-linear effects on the dynamics, which explain the
collapse of the wave function. In other words, one can derive the random localization of the
wave function at the end of a measurement, of course with the correct quantum probabilities.
The strength of the collapse process scales with the size of the system, thus the wave function of
microscopic systems can be superimposed, while macroscopic objects are always well-localized.
To summarize, the collapse noise breaks the validity of the quantum superposition principle
beyond a certain scale, and explains how the classical macroscopic world emerges from the
quantum microscopic one.

Recently, there has been rapid experimental progress in revealing quantum features such as
particle-wave duality for large objects with tiny de Broglie wavelength of only a few hundred
femtometer [17]. Such objects were successfully decoupled from environmental noises, thus
overcoming the technological limit and thereby extending the realm of quantum theory to new
regimes. This progress provides the possibility to search for test of collapse models, as well. In
this regard, quite a few new experimental schemes have been proposed [9]. All these proposals
are based on the natural idea of creating a macroscopic quantum superposition in space, in order
to test the superposition principle. Creating macroscopic superpositions is very difficult, source
of formidable technological challenges.

Quite recently, an alternative approach has been proposed, based on measuring light emitted
by radiative transitions of excited states of matter [18]. Here, the collapse manifests as an extra
broadening and shift in lineshapes of the spectral density. The most important advantage of
this new approach is that here there is no need for the preparation of a quantum superposed
state. Later, it was shown that more promising results can be revealed in the spectrum of light
interacting with a radiation pressure-driven mechanical oscillator in a cavity optomechanical
setting [19]. The collapse results in an increase of the intensity of the noise spectrum of the light
driving the mechanical oscillator. A Similar result has been obtained in [20].

In this paper, we will review the theoretical modelling of the above optomechenical proposal.
The structure of this paper is as follows. We first derive the collapse dynamical equation for
the center-of-mass of a complex system. We use the mass-proportional Continuous Spontaneous
Localization (CSL) model [15], which is the most-studied collapse model in the literature. Then
in the narrow wave function limit, we discuss how statistical effects of the CSL collapse noise can
be reproduced by adding a linear random potential into the Schrödinger equation. We discuss
how this random potential modifies the dynamic of an optomechanical oscillator. In our setting,
the oscillator is the moving mirror of a Fabry-Perot cavity, that couples to an external laser field
and is immersed in a finite-temperature bath. Therefore, the noise sources are: the thermal-
driven Brownian motion of the oscillator interacting with the bath, the input laser noise and the
CSL collapse noise. We use the Langevin formalism to account for the dynamics of the oscillator,
where the above noises are introduced by using suitable noise operators. Any observable quantity
is obtained after averaging over the noises. We deduce the thermal-driven Brownian noise- and
the input laser noise-operators by using standard techniques of open quantum systems theory. In
this way we derive an expression for the spectrum of the output light, which shows modifications
due to all noises, in particular from the CSL collapse noise. We finally discuss how the collapse
frequency scales with the size and the shape of the mechanical oscillator.

2. The collapse effect on the center-of-mass motion
In this section, we show how the motion of center-of-mass is modified due to the collapse noise
that interacts with a many-body system, as prescribed in collapse models. We shall focus on
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the mass proportional Continuous Spontaneous Localization (CSL) collapse model, which is the
most studied collapse model in the literature. The CSL evolution of the wave function reads [15]:

d|Ψt〉 =

[
− i
~
Ĥ0 dt+

√
γ

∫
d3x

(
L̂(x)− 〈L̂(x)〉

)
dW (t,x)

− γ

2

∫
d3x

(
L̂(x)− 〈L̂(x)〉

)2
dt

]
|Ψt〉,

(1)

which is a non-linear stochastic differential equation in Itō form. Here γ ' 10−28 m3 · s−1 is the
localization parameter which is a new phenomenological parameter of collapse models, W (t,x) is
standard Wiener process giving a noise ξ(t,x) = dW (t,x)/dt, which is white both in space and
time (i.e. E(ξ(t,x)) = 0 and E(ξ(t1,x)ξ(t2,y)) = δ(t1 − t2) δ(x− y), with E(· · · ) the stochastic

average), 〈L̂(x)〉 = 〈Ψt|L̂(x)|Ψt〉 which induces the nonlinearity in the dynamics, and L̂(x) is
the coarse-grained mass density operator:

L̂(x) =

∫
d3y g(x− y)

∑
j

mj

m0

∑
s

â†j (s,y)âj (s,y) , (2)

where m0 = 1 amu, âj (s,y) is the annihilation operator of particle of type-j with mass mj and
the spin s at position y; and

g(r) = exp(−r2/2r2
C)/(
√

2πrC)3, (3)

with rC ' 10−7 m the correlation length, which is the second phenomenological parameter of
collapse models. In the CSL model a system is well-localized when its position spread is smaller
than rC .

Taking the system as a rigid body and averaging over the relative coordinates, we can derive
the CSL motion for the center-of-mass, where the spread of center-of-mass’s position is smaller
than the CSL correlation length rC = 10−7 m. Since we work in the non-relativistic regime,
in Eq. (2) the index j runs over electrons and nucleons where the number of particles is also a
constant of motion. Since masses are divided by the mass of a nucleon m0 (see Eq.(2)), we can
also neglect electrons. Accordingly, in the subspace with a fixed number of particles, we can
write: L̂(x) ≈

∑N
k=1 Ak g(x − x̂k), where N is the number of atomic nuclei, Ak is the atomic

mass number, and xk is the nuclear position. We assume that the system is a rigid body where
nuclei have a fixed relative distance from the center-of-mass. We also assume that the spatial
fluctuating around the equilibrium relative coordinates are much smaller than rC , implying
that relative coordinates are classical variables with their equilibrium values. Accordingly, the
Lindblad operator reads as:

L̂(x) ≈ L̂com(x) =

N∑
k=1

Ak g(x− rk − q̂) =

∫
d3r %(r) g(x− r− q̂), (4)

with q̂ the center-of-mass position operator, rk the equilibrium position of k-th nucleus,
and %(r) the number density of the system where the origin is the center-of-mass: %(r) =∑N

k=1 (mk/m0) δ(r− rk). If we assume that the system is in a separable state |Ψ〉 = |ψ〉 ⊗ |φrel〉
with |ψ〉 the center-of-mass state and |φrel〉 the relative coordinates state, then the CSL dynamics
for the center-of-mass reads as:

d|ψt〉 =

[
− i
~
Ĥcom dt+

√
γ

∫
d3x

(
L̂com(x)− 〈L̂com(x)〉

)
dW (t,x)

− γ

2

∫
d3x

(
L̂com(x)− 〈L̂com(x)〉

)2
dt

]
|ψt〉,

(5)
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where Ĥcom contain only the center-of-mass degrees of freedom. In fact, we have: Ĥ = Ĥcom+Ĥrel

where Ĥrel is the Hamiltonian of relative coordinates and [Ĥcom, Ĥrel] = 0. In other words, the
CSL collapse field only acts on the center-of-mass and the relative coordinates follow standard
quantum dynamics determined by the Hamiltonian Ĥrel. For cases where the center-of-mass
is distributed around a time-dependent mean value 〈q̂〉 = 〈ψ(t)|q̂|ψ(t)〉 with the spread much
smaller than rC , one can Taylor-expand g(x− r− q̂) to the first order around 〈q̂〉. Accordingly,

L̂com(x) can be approximated as follows:

L̂com(x) ≈
∫

d3r %(r) g(x− r− 〈q̂〉)
(

1 +
1

r2
C

(x− r− 〈q̂〉) · (q̂− 〈q̂〉)
)
. (6)

Putting above equation into Eq.(5) and doing some lengthy calculations, one eventually obtain:

d

dt
|ψt〉=

− i
~
Ĥcom +

√
γ

3∑
k=1

(q̂k − 〈q̂k〉) dWk(t)−
γ

2

3∑
k,l=1

ηk,l (q̂k − 〈q̂k〉) (q̂l − 〈q̂l〉)

 |ψt〉 (7)

where Ĥq is the standard quantum Hamiltonian of the center-of-mass,

ηk,l =

∫∫
d3r d3r′

exp
(
− |r−r

′|2
4r2C

)
(2
√
π rC)3

∂%(r)

∂rk

∂%(r′)

∂r′l
, (8)

and wk(t) = dWk(t)/dt are white noises:

wk(t) =

∫
d3x ξ(t,x)

∫
d3r g(x− r− 〈q̂〉Ψt)

∂%(r)

∂rk
, (9)

with a zero mean (i.e. E(wk(t)) = 0) and correlation: E(wk(t)wl(s)) = δ(t − s) ηk,l. For an
object with cuboid, or disc, or spherical geometry, one finds ηk,l = δkl ηk,k which implies that
white noises wk(t) are also independent. Henceforth, we will consider objects which are cuboid,
or disc, or spherical.

Instead of working with the stochastic nonlinear dynamics given in Eq.(7), we work with the
Schrödinger equation with a stochastic potential as follows:

i~
d

dt
|ψ(t)〉 = (Ĥcom + V̂ (t))|ψ(t)〉, V̂ (t) = −~√γ

∑
k=1

q̂k wk(t), (10)

which is a linear stochastic differential equation in Stratonovich form. As discussed several times
in the literature [22, 23, 24, 25, 26], the effects of nonlinear terms in Eq.(7), at the statistical
level, can be mimicked also by linear random potentials. For individual realizations of the noise,
the effects are very different (those of a linear dynamics vs. those of a nonlinear one), while at
the statistical level they coincide, if the potential is suitably chosen.

3. Quantum Langevin equations for an optomechanical oscillator
We now discuss how the collapse mechanism modifies the dynamical equation for an
optomechanical system. The approximations we used in this section are all standard
approximations in optomechanics (e.g., see Ref. [27]). In fact, the final quantum Langevin
equations are the standard ones in optomechanics and are only modified by a noise term induced
by the collapse noise. As discussed before, to the extent that one is only concerned with the
statistical observable effects, the collapse can be included as a random linear potential V (t)
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as given in Eq.(10). We shall denote the position operator along the cavity axis by q̂, and its
conjugate momentum by p̂. We will consider the cavity axis along the x-axis. We shall denote
the components of the Hamiltonian and of the noise term along the cavity axis by the subscript
q (see Eqs.(11,12). We also assume that the Hamiltonian of the optomechanical system, in the
rotating frame of the laser frequency, is given by [27]:

Ĥq = ~(ωc − ωl)â†â− ~χ â†â q̂ +
1

2
mω2

m q̂
2 +

1

2m
p̂2 + i~ε(â† − â), (11)

where m is the effective mass of the moving mirror (i.e., the mass of the mechanical oscillator), ωl
is the frequency of the external laser, ωc is the frequency of the cavity mode driven by the laser,
ωm is the harmonic frequency of the mechanical oscillator, χ = ωc/L is the optomechanical
coupling constant between the cavity and the mechanical oscillator with L the length of the
cavity, and ε =

√
2κP/~ωl with P the laser power and κ the cavity photon decay rate. Along

the cavity axis, the random potential is given by:

Vq(t) = −~√η w(t) q̂, (12)

where η = γη1,1 and w(t) is a white noise with zero mean (i.e. E(w(t)) = 0) and correlation
E(w(t)w(s)) = δ(t − s). Notice that one can separate the motion along different axes, only for
the case where white noises in Eq.(9) are independent (e.g, for a cuboid object).

For convenience, we will use the dimensionless operators Q̂ = q̂
√
mωm/~ and P̂ = p̂/

√
m~ωm.

Accordingly, the Heisenberg equations of the motion are:

d

dt
Q̂ = ωm P̂ (13)

d

dt
P̂ = ωmχ̄ â

†â− ωmQ̂+
√
λw(t) (14)

d

dt
â = −i(ωc − ωl − ωmχ̄ Q̂)â− κ â+ ε, (15)

where:

χ̄ =
χ

ωm

√
~

mωm
; λ =

~ η
mωm

=
~

mωm
γ

∫∫
d3r d3r′

exp
[
− |r−r

′|2
4r2C

]
(2
√
π rC)3

∂%(r)

∂r1

∂%(r′)

∂r′1
. (16)

One should remember that above stochastic differential equations should be understood in the
Stratonovich sense. Using standard procedures [28], one can obtain the corresponding Itō form,
which coincides with the Stratonovich form in this special case. Now we can add noise terms:
the thermal Brownian motion induced by a bath, and the input noise of the laser field. Therefore
the quantum Langevin equations are:

d

dt
Q̂ = ωm P̂ (17)

d

dt
P̂ = ωmχ̄ â

†â− ωmQ̂+
√
λw(t)− γm P̂ + Ŵ (t) (18)

d

dt
â = −i(ωc − ωl − ωmχ̄ Q̂)â− κ â+ ε+ âin

√
2κ (19)

d

dt
â† = i(ωc − ωl − ωmχ̄ Q̂)â† − κ â† + ε+ â†in

√
2κ (20)
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where âin(t) is the input noise with zero mean the correlation function1

〈 δâin(t) δâ†in(s)〉 = δ(t− s), (21)

and Ŵ (t) is the quantum thermal Brownian motion operator with zero mean the correlation
function:

〈 Ŵ (t) Ŵ (s)〉 =
γm

2πωm

∫ +∞

−∞
dω ω e−iω(t−s)

[
1 + coth

(
~ω

2kBT

)]
(22)

Since here the noise operators Ŵ and âin are of quantum origin, we represent their stochastic
average by 〈· · · 〉, meaning the trace over the corresponding quantum mechanical degrees of the
freedom.

We now linearise the first term on the right-side of Eqs.(19,20). We write each operator as

follows: Â = As+ δÂ, where As is the classical steady-state value of the operator Â, and δÂ is a
small quantum fluctuation around this steady-state value. Doing so, and also assuming as � 1,
the linearised quantum Langevin equations take the following form:

d

dt
δQ̂ = ωm δP̂ (23)

d

dt
δP̂ = ωmχ̄ (as δâ

† + a∗s δâ)− ωm δQ̂+
√
λw(t)− γm δP̂ + Ŵ (t) (24)

d

dt
δâ = −i(ωc − ωl − ωmχ̄ Qs)δâ+ iωmχ̄ as δQ̂− κ δâ+ δâin

√
2κ (25)

d

dt
δâ† = i(ωc − ωl − ωmχ̄ Qs)δâ† − iωmχ̄ a∗s δQ̂− κ δâ† + δâ†in

√
2κ. (26)

For the dimensionless position operator δQ̂, the solution of the Fourier transform of above
equations is given by:

δQ̂(ω) = − ωm
d(ω)

[(
Ŵ (ω) +

√
λw(ω)

) (
∆2 + (κ+ iω)2

)
(27)

−iωm
√

2κ χ̄
(
a∗s(κ+ i(ω −∆)) δâin(ω) + as(κ+ i(ω + ∆)) δâ†in(−ω)

)]
,

where d(ω) = (∆2 + (κ + iω)2)(ω(ω − iγm) − ω2
m) + 2|as|2χ̄2ω3

m∆, and ∆ = ωc − ωl − ωmχ̄Qs.
Taking the Fourier transforms, the CSL noise and also the thermal Brownian noise operator
yield:

E(w∗(ω)w(ω′)) =
1

2π
δ(ω − ω′); 〈 δâin(ω) δâ†in(ω′)〉 =

1

2π
δ(ω − ω′) (28)

〈Ŵ †(ω)Ŵ (ω′)〉 =
γm ω

2πωm

[
1 + coth

(
~ω

2kBT

)]
δ(ω − ω′) (29)

From the Wiener-Khinchin theorem [29], we also have:

E(〈δQ̂†(ω)δQ̂(ω′)〉) = S(ω) δ(ω − ω′), (30)

where S(ω) is the corresponding spectral density of the dimensionless position operator δQ̂.
Thus, one finds:

S(ω) =
1

2

∫ +∞

−∞
dω′

(
E(〈δQ̂†(ω)δQ̂(ω′)〉) + E(〈δQ̂†(ω′)δQ̂(ω)〉)

)
. (31)

1 See the following paragraphs for the precise definition of δâin(t).
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Introducing Eq.(27) into Eq.(30) yields:

E(〈δQ̂†(ω)δQ̂(ω′)〉) = δ(ω − ω′) ω2
m

2π|d(ω)|2
× (32){

4κχ̄2|as|2ω2
m(κ2 + ω2 + ∆2) +

(
(∆2 + κ2 − ω2)2 + 4κ2ω2

)(γm ω
ωm

[
1 + coth

(
~ω

2kBT

)]
+ λ

)}
Accordingly, for the spectral density, we find:

S(ω) = =
ω2
m

{
2κχ̄2|as|2ω2

m(κ2 + ω2 + ∆2) +
[
(∆2 + κ2 − ω2)2 + 4κ2ω2

] (γm ω coth(~βω)
ωm

+ λ
)}

π|d(ω)|2
(33)

with β = 1/2kBT . Here the term 1/|d(ω)|2 determines the shape of the spectrum, while
other terms in the nominator contribute to the intensity of the spectrum. Notice that the
spectral density of the intracavity field Scav(ω) is related to S(ω) via the simple relation:
Scav(ω) = |f(∆)|2 Scav(ω)+additional terms where f(∆) = 2χ̄as

κ−iω
∆2+(κ−iω)2

(see Eq.(15) in [30]).

So the following arguments for S(ω) can be directly also applied for Scav(ω). The contribution of
the CSL noise is shown in Fig.1, which manifests in the intensity of the spectrum by increasing the
area under S(ω). The relative increase of the area under the spectral density can be considered
as a measure for the CSL effect on the spectrum [19]:

A =

∫ +∞
−∞ dω S(ω)− limλ→0

∫ +∞
−∞ dω S(ω)

limλ→0

∫ +∞
−∞ dω S(ω)

. (34)

Here A gives us a quantitative estimate of the relative increase of the area under the spectral
density when the CSL effects are included. As one can see in Fig.1, the spectrum is well-
localized around ω ∼ ωm. Accordingly, with a very good approximation the spectral density
can be written as follows:

S(ω) ≈
ω2
m

{
2κχ̄2|as|2ω2

m(κ2 + ω2
m + ∆2) +

[
(∆2 + κ2 − ω2

m)2 + 4κ2ω2
m

]
(γm coth(~βωm) + λ)

}
π|d(ω)|2

.

(35)

Introducing Eq.(35) into Eq.(34), one finds:

A ≈ λ (∆2 + κ2 − ω2
m)2 + 4κ2ω2

m

2κχ̄2|as|2ω2
m(κ2 + ω2

m + ∆2) + [(∆2 + κ2 − ω2
m)2 + 4κ2ω2

m] (γm coth(~βωm))
(36)

As one can see, A scales linearly with the collapse frequency λ. Accordingly, the larger λ, the
stronger the CSL effects and thus the better for experimental searches. For example, considering
the numerical values introduced in the caption of Fig.1, one finds: A ≈ 10−10(λ/1Hz). A very
important question is that how the collapse frequency λ depends on parameters characterizing
the mechanical oscillator (e.g., mass, size, density and etc.). As given in Eq.(16), the collapse
frequency is λ = η x2

0. It is similar to the famous Joos/Zeh decoherence rate (see Eq.(3.59)

in [31]), however here x0 =
√
~/mωm and depends on the mass. The term η is usually called as

the localization strength (or the localization rate), and it depends on the mass and the geometry
of the oscillator (see Eq.(8)). Accordingly, λ depends on the interplay between x0 and η; for
example the delocalization distance x0 decreases by increasing the mass while the localization
strength η increases by increasing the mass. The detailed behaviour of λ with the mass and
geometry of the mechanical oscillator is the topic of our future research.
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Figure 1. The spectral density
as given in Eq.(33). For the blue
line, we set λ = 0 (no CSL effect)
and for the red line, we set: λ =
1010 Hz (with CSL effect), which
is a quite unrealistic value that
we consider only for the sake of
illustration. The parameters are set
as follows: m = 150 ng, ωm/2π =
2.75 × 105 Hz, γm/2π = 10−5ωm,
∆ = 4κ, P = 4 mW, κ = 5×107 Hz,
T = 1 mK, ωl/2π = 2.78× 1015 Hz,
L = 25 mm.

4. Concluding remarks
Collapse models provide a quantitative explanation on how macroscopic classical world emerges
from the microscopic quantum world. They assume a universal noise field inducing appropriate
Brownian motion corrections to standard Schrödinger dynamics. Accordingly, one derives the
random localization of the wave function at the end of a measurement, of course with the correct
probabilities given by the Born rule. The strength of the collapse process grows with the size of
the system. Therefore, microscopic systems behave quantum mechanically, while macroscopic
objects are classical. At the intermediate mesocopic scale, collapse models predict deviations
from standard quantum predictions. These deviations depend on the statistical properties of
the collapse noise and also on parameters characterizing the system (e.g., mass, size, density
and etc.). In the CSL model, statistical properties of the collapse noise (i.e., its mean value and
its autocorrelation) are fixed by two phenomenological parameters.

All experiments to date have been at scales where the collapse effects are negligible for all
practical purposes. However, recent experimental progress in revealing quantum features of
larger objects, opens new path to search for testing at unprecedented scales where collapse
models can be falsified. The most serious challenge in this regard is creating macroscopic
superpositions, because all experimental schemes proposed so far are based on the natural idea
of creating a macroscopic quantum superposition in space.

Quite recently, an alternative approach has been proposed, based on measuring the fluctuating
properties of light (e.g., the spectral density) which interacts with a quantum system. The
collapse manifests as a change (e.g., an extra broadening) in lineshapes of the light spectrum.
The great advantageous of this new approach is that here there is no need for the preparation
of a quantum superposed state. It has been discussed that promising results can be revealed
in the spectrum of light interacting with a radiation pressure-driven mechanical oscillator in a
cavity optomechanics setting. Proper measures have been introduced to quantify the collapse
effect on the spectrum. These measures depend on the collapse frequency. Therefore, it is very
important to quantify the collapse frequency, e.g., to explain how it depends on the parameters
of the mechanical oscillator (e.g., it size, mass, density and ect.). Here, the collapse frequency
depends linearly on the localization strength η and quadratically on the delocalization distance
x0 (i.e. λ = η x2

0). The localization strength increases with the mass, as expected; while
the delocalization distance decreases with the mass. This is the very particular thing that
distinguishes our example from other cases studied so far in the literature. In previous cases,
only the behaviour of the localization strength with the mass has been investigated, because
the delocalization distance was independent from the mass; while in our case it depends also on
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the mass, and thus one needs to carefully study the interplay of the mass on the localization
strength and on the delocalization distance. Accordingly, the precise behaviour of the collapse
frequency depends on this dual role of the mass, and for different geometries it may produce
different behaviours.
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