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1Fakultät für Physik, Universitäts–Sternwarte München, Ludwig–Maximilians–Universität München, Scheinerstrasse 1, D-81679 München, Germany
2Excellence Cluster Universe, Boltzmannstr. 2, D-85748 Garching, Germany
3Max Planck Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85748 Garching, Germany
4Kavli Institute for Cosmology Cambridge, Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, United Kingdom
5Centre for Theoretical Cosmology, DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom

Accepted 2017 May 29. Received 2017 May 29; in original form 2016 December 15

ABSTRACT
We present measurements of angular cross power spectra between galaxies and optically-
selected galaxy clusters in the final photometric sample of the Sloan Digital Sky Survey
(SDSS). We measure the autocorrelations and cross correlations between galaxy and cluster
samples, from which we extract the effective biases and study the shot noise properties. We
model the non-Poissonian shot noise by introducing an effective number density of tracers
and fit for this quantity. We find that we can only describe the cross-correlation of galaxies
and galaxy clusters, as well as the autocorrelation of galaxy clusters, on the relevant scales
using a non-Poissonian shot noise contribution. The values of effective bias we finally mea-
sure for a volume-limited sample are bcc = 4.09 ± 0.47 for the cluster autocorrelation and
bgc = 2.15 ± 0.09 for the galaxy-cluster cross-correlation. We find that these results are con-
sistent with expectations from the autocorrelations of galaxies and clusters and are in good
agreement with previous studies. The main result is two-fold: first we provide a measurement
of the cross-correlation of galaxies and clusters, which can be used for further cosmological
analysis; and secondly we describe an effective treatment of the shot noise.

Key words: galaxies: clusters: general – large-scale structure of Universe – cosmology:
observations.

1 IN T RO D U C T I O N

The cosmological distributions of density and temperature pertur-
bations are well approximated over sufficiently large scales by
Gaussian random fields, completely described by their two-point
statistics. One of the most powerful tools of modern cosmology
is therefore the analysis of two-point correlation functions, which
can be measured as autocorrelations on one data set or as cross-
correlations between two data sets. The strongest current constraints
on the cosmological model are indeed derived from the measure-
ment of the autocorrelation of the temperature anisotropy of the
cosmic microwave background. Correlations can also be measured
from the distribution of tracers of the matter in the Universe: in
the last decades multiple surveys have produced large galaxy cata-
logues, which allowed high-precision measurements of the galaxy
autocorrelation, such as the two degree field (2dF) Galaxy
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Redshift Survey (Percival et al. 2001; Cole et al. 2005) and the
Sloan Digital Sky Survey (SDSS, York et al. 2000; Tegmark et al.
2004; Hayes, Brunner & Ross 2012; Ho et al. 2012; Beutler et al.
2014; Grieb et al. 2017). Likewise, the availability of large optically-
selected galaxy cluster catalogues has led to the measurement of
the autocorrelation of galaxy clusters, e.g. from the SDSS cata-
logue (Estrada, Sefusatti & Frieman 2009; Hütsi 2010; Baxter et al.
2016; Miyatake et al. 2016; Veropalumbo et al. 2016), and from the
REFLEX X-ray survey (Collins et al. 2000; Balaguera-Antolı́nez
et al. 2011). These measurements have also been used to obtain cos-
mological constraints, for both the REFLEX catalogue (Schuecker
et al. 2003) and several cluster samples from the SDSS, such as
maxBCG (Mana et al. 2013).

Given the success of autocorrelation measurements and the abun-
dance of different cosmological probes of the density field, it is
increasingly interesting to combine probes via cross-correlations.
Cross-correlations, such as for example between galaxy surveys
and the cosmic microwave background (CMB) temperature and
lensing (Giannantonio & Percival 2014; Giannantonio et al. 2016),
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or between galaxies and cosmic voids (Hamaus et al. 2014, 2016),
provide new information without requiring new observations, and
can thus lead to improved and complementary cosmological con-
straints.

Some measurements of cross-correlation between galaxy clus-
ters and galaxies were attempted in the 1970s and 1980s (Peebles
1974; Seldner & Peebles 1977a,b; Lilje & Efstathiou 1988). These
studies were performed on relatively small and non-independent
catalogues: the cluster catalogues used by all groups were drawn
from Abell (1958) and the galaxy catalogues were either the galaxy
counts by Shane & Wirtanen (1967) or by Seldner et al. (1977).
The better of these two galaxy catalogues had a resolution of
10 × 10 arcmin on about 19 deg2. These early cross-correlation
analyses were therefore limited in their possible applications. Some
more recent works measuring galaxy and galaxy-cluster cross-
correlations are Croft, Dalton & Efstathiou (1999); Sánchez et al.
(2005); Zu & Weinberg (2013).

Hütsi & Lahav (2008) proposed the measurement of the correla-
tion between galaxy clusters and galaxies as an additional cosmo-
logical probe, which was later extended by Fedeli et al. (2011). They
showed that the cross-correlation of clusters and galaxies could lead
to better constraints on cosmological parameters, as well as a bet-
ter determination of the halo model parameters (Cooray & Sheth
2002).

In this paper, we measure the cross-correlation between galax-
ies and clusters derived from the final photometric data release of
SDSS (Data Release 8, DR8; Aihara et al. 2011). When using linear
theory and cluster bias, as well as Poissonian shot noise, we find a
discrepancy between the theoretical expectations and the measured
angular power spectra. We show that this tension can be resolved
by adopting a modified treatment of the shot noise.

The outline of this paper is as follows: we describe, in Section 2,
the theoretical modelling of the angular power spectra, the shot
noise and the cluster bias. In Section 3, we introduce the catalogues
and mask used in the analysis; and in Section 4 we present the details
of the angular power spectra Cl estimation. Section 5 presents the
results for the autocorrelations and cross correlations of galaxies
and galaxy clusters. Finally, our summary and outlook are given in
Section 6.

2 TH E O R E T I C A L M O D E L L I N G O F T H E
A N G U L A R P OW E R SP E C T R A

In order to extract cosmological parameters from the measured
galaxy and cluster angular power spectra Cdata

l , we need theoretical
model predictions Cmodel

l that account for systematics and measure-
ment effects affecting the observed correlation functions.

2.1 Angular power spectra of biased tracers

We define the density field of the mass density fluctuations at co-
moving coordinate r and at any redshift z as

δm(r) = ρm(r)

ρ̄m

− 1, (1)

where ρm(r) is the spatially varying matter density in the Universe
with a mean of ρ̄m. The matter overdensity δm can be related to
the galaxy (or cluster) overdensity δa (where a denotes a galaxy or
cluster sample) via the local bias model (Fry & Gaztanaga 1993),

δa(r) � b1,aδm(r) + b2,a

2
δ2
m(r) + O(δ3

m) + εa, (2)

with linear and non-linear bias parameters b1,a, b2,a and a shot noise
term εa.

In Fourier space, we can define the matter, galaxy or cluster power
spectra between any pair of samples (a, b) as

(2π)3δD(k − k′)Pab(k) ≡ 〈δa(k) δ�
b(k′)〉, (3)

where k denotes a wave vector of amplitude k and angled brackets
indicate an average over all Fourier modes within a given spher-
ical shell and δD is the Dirac delta function. Up to linear order
and assuming Poissonian shot noise, the galaxy (or cluster) power
spectrum can be directly related to the matter power spectrum P(k),

Pab(k) � b1,ab1,b P (k) + δab
K V /Na, (4)

where δK is the Kronecker delta, and the shot noise contribution is
given by the inverse number density of galaxies (or clusters), V/Na.

In this analysis we consider the angular power spectrum Cab
l , a

projection of Pab(k) on the sky. We use the publicly available code
CLASS1 (Blas, Lesgourgues & Tram 2011) to generate theoretical
predictions for the angular cluster power spectrum. CLASS is a dif-
ferential equation solver for the hierarchy of Boltzmann equations
governing the perturbations in the density of dark matter, baryons,
photons and any other relevant particle species. The CLASSgal ex-
tension (Di Dio et al. 2013) calculates the angular power spectrum,
Cab

l , for any matter tracer as

Cab
l = 4π

∫
dk

k
Pini(k)�a

l (k)�b
l (k), (5)

where Pini denotes the (dimensionless) primordial power spectrum
and the transfer function for the matter component �a

l (k) is given
by

�a
l (k) =

∫
dz b1,a

dNa

dz
jl(kr(z))D(k, z). (6)

Here r(z) is the comoving distance, D(k, z) the total comoving
density fluctuation2 and we use the galaxy and cluster redshift dis-
tributions dN/dz for the observed sample, which are shown in Fig. 2
and introduced in Section 3.

The main goal of this analysis is to measure the autocor-
relations and cross correlation of galaxies and clusters, and to
determine the effective bias of these tracers. Therefore we fix
the cosmological parameters to their best-fitting values as ob-
tained by the Planck collaboration (Planck Collaboration XVI
2014) (Planck2013+WP+highL+BAO), derived by combining their
own CMB data with the Wilkinson Microwave Anisotropy Probe
(WMAP) polarization data (Bennett et al. 2013), the small-scale
CMB measurements from the Atacama Cosmology Telescope
(ACT, Das et al. 2014) and the South Pole Telescope (SPT,
Reichardt et al. 2012), as well as baryonic acoustic oscillations
(BAO) data from SDSS (Percival et al. 2010; Beutler et al. 2011;
Blake et al. 2011; Anderson et al. 2012; Padmanabhan et al. 2012).
The cosmological parameters we use are: h = 0.678; �b = 0.048;
�c = 0.258; σ 8 = 0.826; zre = 11.3 and ns = 0.96 (we checked
that assuming a Planck 2015 cosmology has no significant impact
on the results in our analysis).

For the analysis presented in this paper, we adopt a constant bias
model, i.e. we define an effective bias beff, such that we can assume
for each sample b1,a(z) = beff,a. The full redshift evolution of the

1 http://class-code.net/
2 D(k, z) ≈ D+(z)T (k) for cold dark matter universes, where D+(z) is the
density growth function and T(k) is the matter transfer function.
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galaxy and cluster bias could in principle be obtained by subdividing
our samples in multiple redshift bins, but this is beyond the scope
of the present analysis and the data available.

Note that the CLASS Cab
l do not contain a shot noise contribution.

As we demonstrate below, the theoretical power spectra Cab
l defined

by Equation (5) need a more advanced modelling of the shot noise
contribution, which we present in the next Section.

2.2 Accounting for shot noise

Estimating the underlying, continuous dark matter density field via
the discrete number density of observed galaxies and clusters, intro-
duces a shot noise contribution which will leave a systematic imprint
on the measured angular power spectrum Cdata

l . In real space, the
Poisson sampling from the true underlying density distribution in-
troduces a contribution to the autocorrelation at zero separation,
which translates into the constant contribution in harmonic space
shown in Equation (4). Due to the large number of galaxies ob-
served in the SDSS DR8, this contribution to the measured Cdata

l

is negligible on the relevant scales for galaxies, but is the leading
contribution for the cluster autocorrelation function.

The situation is more complicated for the galaxy-cluster cross-
correlation. Galaxies that are part of a cluster contribute to the shot
noise, while those that are not part of a cluster do not. Since the
majority of the galaxies in our sample are not part of a galaxy
cluster, we set the shot noise contribution for the galaxy-cluster
cross-correlation to zero for now, but we will revisit this issue in
Section 5.2.

Additionally, we have to consider a similar, although smaller,
effect for the cross-correlation of clusters in different richness bins.
Assuming these clusters occupy haloes of different mass, self-pairs
are not taken into account in their cross-correlation, resulting in a
vanishing Poisson shot noise contribution. We will come back to
this issue in Section 5.2 as well.

The Poisson noise contribution to the model power spectra
Cab,model

l can be approximated by

Nab
l = δab

K fsky
4π

Na

, (7)

where fsky is the fraction of the sky covered and Na is the number of
objects observed.

While Equation (7) holds for regular masks, in the case of ir-
regular masks (as the one used in this analysis) a more accurate
estimation of the shot noise component is required. In this case, in
all generality the shot noise contribution Ñl can be determined by
Poisson sampling different random realisations of a sky map with a
constant matter density.

Each random realization i has a power spectrum Crand,i
l , from

which an estimate of the shot noise contribution can be obtained by
averaging:

Ñl = 〈Crand,i
l 〉, (8)

where the angular bracket 〈 · 〉 denotes the average over all random
maps i. The covariance between different angular wave numbers l
and m is given by

Cov[Crand
l , Crand

m ] = Ns

Ns − 1
〈(Crand,i

l − Ñl)(C
rand,i
m − Ñm)〉 (9)

where Ns = 100 is the number of samples used. From this we can
determine the covariance of the shot noise, Ñ , as

Cov[Ñl, Ñm] = N−1/2
s Cov[Crand,i

l , Crand,i
m ]. (10)

We discuss how Cov[Ñl, Ñm] enters the analysis in Section 5.1.
For full sky coverage, we recover the shot noise contribution as

given by Equation (7), which remains a good approximation as long
as the shape of the mask is regular enough; we expect however to
observe significant deviations for increasingly irregular masks.

The amplitude of the shot noise contribution Ñl depends on the
number of objects Na distributed over the area of the mask. However,
the shape of Ñl for different l is independent of Na, i.e. for a given
mask and pixel size, we can determine the shot noise contribution
just once then rescale the result according to the actual number of
objects observed.

Since we are working with pixellated maps as described in
Section 3.2 we will be using the average object per pixel den-
sity n̄ when determining the shot noise contribution. The shot noise
contribution then is determined as

Ñl(n̄) = Ñl(1)/n̄. (11)

This means that, for a given mask and pixel size, the shot noise
contribution can be determined once for a fixed object per pixel
density n̄ = 1 and then rescale the result according to the actual
object per pixel density of our sample n̄. We discuss the actual
shot noise contribution for the sky mask used in this analysis in
Section 3.2.

2.3 Sub- and super-Poissonian shot noise

We expect deviations from a purely Poissonian shot noise contribu-
tion for the power spectra when measured on the galaxy cluster data.
N-body simulations have provided significant evidence for such de-
viations in the clustering statistics of dark matter haloes (Hamaus
et al. 2010). These deviations mimic a positive or negative shot noise
contribution on the scales important to the analysis in this paper.
In particular, these deviations have been shown to depend on halo
mass: on large scales the shot noise contribution to the power spec-
trum of low-mass haloes exceeds the fiducial value of V/Na, while
it is suppressed compared to that value at high masses. These effects
are commonly referred to as sub- and super-Poissonian shot noise,
respectively. In addition, the Poisson expectation is not only found
to be violated in autocorrelations of a single tracer, but also in cross-
correlations amongst different tracers. While Poissonian shot noise
only affects the autocorrelation of self-pairs, simulations have re-
vealed non-vanishing shot noise contributions in cross-correlations
between haloes of different mass (Hamaus et al. 2010). These can
be either positive or negative, depending on the considered mass
ranges. Negative shot noise can occur in cross-correlations and is
caused by exclusion effects between low and high mass haloes.

This phenomenology can be explained with two competing ef-
fects: exclusion and non-linear clustering (Baldauf et al. 2013). The
former simply specifies the fact that any two tracers, be it haloes or
galaxies, can never be closer to one another than the sum of their
own extents. This violates the Poisson assumption, which states
that tracers are randomly sampled at any given point within some
volume. Each tracer contributes an exclusion region that effectively
diminishes the available sampling volume and therefore the shot
noise contribution. As the exclusion region of haloes increases with
their mass, high-mass haloes are most affected by this. Moreover,
the exclusion mechanism also applies for haloes of different mass,
i.e. it influences cross-correlations of tracers as well.

The first-order contribution from non-linear clustering of haloes
beyond linear theory is described by the second-order bias parameter
b2. Besides modifying the scale-dependent linear clustering power
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spectrum of haloes on small scales, it also contributes a scale-
independent term that cannot be distinguished from Poisson shot
noise (McDonald 2006). Hence, non-linear clustering effectively
increases the Poisson shot noise, and this effect is most important
for low-mass haloes, where the value of b2 is non-zero and exclusion
effects are small.

While the above effects mainly apply to dark matter haloes, they
can be translated to galaxies and clusters by means of the halo
model (Seljak 2000; Smith et al. 2003). Given a halo occupation
distribution (HOD), one can assign central and satellite galaxies
to each halo of a given mass. While centrals and cluster centres
closely obey the effects outlined above, satellites add more com-
plexity as they do not obey halo exclusion. In this case the satellite
fraction determines the shot noise as well: a low value (∼5 per cent)
results in sub-Poissonian, and a high value (∼8.5 per cent) in super-
Poissonian shot noise (Baldauf et al. 2013).

2.4 Accounting for sub- and super-Poissonian shot noise

We should therefore expect deviations from the Poisson shot noise
predictions on all scales, and we expect this correction to be
most important for the cluster autogalaxy and cluster-galaxy cross-
correlations.

As we have discussed in the previous section, on large scales we
expect the shot noise correction to be independent of l; we can then
model this by introducing an inverse effective (average) number
density n̄−1

eff free parameter, which we will fit from the data. In this
case, we replace n̄ in Equation (11) with n̄eff and use the following
relation for the effective shot noise:

Ñ eff
l (n̄eff ) = Ñl(1)n̄−1

eff . (12)

In the case of Poissonian shot noise we should recover n̄eff � n̄. We
determine neff for each of the auto correlations and cross correla-
tions and marginalise over it to determine the effective bias of each
sample.

2.5 Theory predictions for effective bias

We compare the effective bias we extract from the data to theo-
retical expectations for a volume-limited sample, whose details are
described below in Section 5.3. We assume here the halo mass
function n(M, z) and halo bias b(M, z) to be given by the fits to
N-body simulations by Tinker et al. (2008, 2010). In order to calcu-
late the expected effective bias of a volume-limited cluster sample,
we average over the redshift range considered

beff =
[∫

�z

dz
dV

dzd�

∫
dMn(M, z)b(M, z)

∫
λmin

dλP (λ|M, z)

] /
[∫

�z

dz
dV

dzd�

∫
dMn(M, z)

∫
λmin

dλP (λ|M, z)

]
, (13)

where dV/(dzd�) is the comoving volume element per unit redshift
and solid angle, and P(λ|M, z) is the probability that a halo of
mass M at redshift z is observed with a richness λ. We model this
probability with a log-normal distribution:

P (λ|M, z) = 1

λ
√

2πσ 2
ln λ

exp

[
− ln λ − 〈ln λ(M, z)〉

2σ 2
ln λ

]
, (14)

where we use the parametrization and parameter values of the scal-
ing relation between mass and richness 〈ln λ(M, z)〉 as determined
by Farahi et al. (2016). The scatter σ ln λ is defined as

σ 2
ln λ = exp [〈ln λ(M, z)〉] − 1

(exp [〈ln λ(M, z)〉])2 + σ 2
ln λ|M, (15)

where the first term accounts for the richness-dependent Poisson
noise and σ ln λ|M is the intrinsic scatter in the richness-mass relation.
As Farahi et al. (2016) do not specify the value for σ ln λ|M or σ ln M|λ,
we determine σ ln λ|M using the value for σ ln M|λ = 0.25 from Simet
et al. (2017). Using Equations (13) to (15) from Simet et al. (2017),
we determine σ ln λ|M via the following relation

σln λ|M = σln M|λ
α

, (16)

where α = 1.326 denotes the power-law slope of mass given the
richness, as defined by Simet et al. (2017).

3 DATA

3.1 Galaxy and cluster catalogues

We use galaxy and galaxy cluster data drawn from the SDSS (York
et al. 2000). The SDSS is conducted with a dedicated 2.5m tele-
scope at the Apache Point Observatory in Southern New Mexico in
the United States. This telescope has a wide field of view of 7 deg2,
a large mosaic CCD camera and a pair of double spectrographs
(Aihara et al. 2011; Eisenstein et al. 2011). We use the final photo-
metric SDSS data from the eighth data release (DR8) that combines
data from the two project phases SDSS-I and SDSS-II.

The full area of SDSS DR8 is 14 555 deg2 and includes photo-
metric measurements of 208 478 448 galaxies. For the analysis in
this paper we use the same galaxy catalogue and selection criteria as
in Giannantonio et al. (2012). The catalogue only contains objects
with redshift between 0.1 and 0.9 that have a photo z uncertainty of
σ z(z) < 0.5 z. A completeness cut is applied by only using objects
with extinction-corrected r-band magnitudes between 18 and 21.
After these cuts, the catalogue contains 41 853 880 galaxies.

We use the cluster catalogue constructed from SDSS DR8
with the red-sequence Matched-filter Probabilistic Percolation
(redMaPPer) cluster finding algorithm version 5.103 (Rykoff et al.
2014). It contains ∼26 350 galaxy clusters covering a redshift range
between 0.1 and 0.6 and contains only clusters with richness λ >

20. Note that we use the richness as defined by redMaPPer through-
out this paper. As the richness λ is a measure of the number of
galaxies within the cluster, this means smaller clusters, which are
more strongly affected by systematic errors, are excluded from the
analysis.

3.2 Pixellated maps and survey mask

We create pixelized maps for the galaxy and the galaxy cluster
catalogues using the pixelization scheme HEALPIX4 (Gorski et al.
2005), in which the resolution is expressed by the parameter Nside.
The pixellation effectively smoothes information on scales smaller
than the pixel size, and it can be described by a multiplicative
window function wl given by the pixel window function provided
by HEALPIX.

3 http://risa.stanford.edu/redmapper/
4 http://healpix.jpl.nasa.gov/
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Figure 1. Shot noise predictions for an approximate analytic shot noise
estimate Nl (Equation 7) and the Poisson sampled shot noise (mocks) Ñl

(Equation 8) for an average number of objects per pixel density n̄ = 1.

We choose the HEALPIX resolution Nside = 512, corresponding to
a pixel side of 7 arcmin, as this produces an average number of
galaxies per pixel of n̄ � 30 for the SDSS galaxy catalogue, and
it also allows access to the scales of interest in this analysis. All
catalogues we use here are pixelated at this resolution. We have
tested that our results do not depend on the pixel size, by repeating
the analyses in this paper with the resolution Nside = 256, which
corresponds to a four times larger pixel size than used throughout
the analysis presented in the paper, finding fully consistent results.

To construct the (binary) survey mask for galaxies we follow the
method by Giannantonio et al. (2006) to estimate the coverage of
pixels that straddle the survey boundaries. If we have a distribution
P(n) of the number of galaxies per pixel, this effect causes a devia-
tion from a Poisson distribution PPoiss(n) for low n, i.e. we will find
an excess of pixels with a small n compared to PPoiss(n). In practice,
we create the mask by discarding pixels where P (n) 
≈ P Poiss(n),
i.e. pixels with n < nmin where nmin is a cut-off threshold we choose.

The pixel size we choose is constrained by two factors. On the
one hand pixels should be large enough to ensure that the mean of
the distribution P(n) is far from zero, i.e. there is only a very small
and negligible number of pixels with a small number of galaxies.
On the other hand pixels should be small enough so that we can
measure the angular power spectra at the scales of interest.

Therefore, to create the mask we first determine the number
of galaxies ni in each of the pixels i and discard pixels with zero
galaxies, which can be done as at this resolution the number of pixels
that are empty due to statistical fluctuations is negligible. Then we
determine the mean and variance of the Poisson distribution by
calculating the average number of galaxies per pixel n̄ and identify
the value of n below which we observe a deviation from the Poisson
distribution. We find that nmin = n̄ − 2

√
n̄ (i.e. the equivalent of

two standard deviations below the mean number of pixels) is a good
value for the cut-off and we mask all pixels where ni < nmin. To make
sure this choice of a 2σ cut does not have a significant influence
on the results of this analysis, we have repeated the analysis using
rather alternative cuts of 1 and 4σ . Although the mask for the 1σ

cut is about 20 per cent smaller than for the 4σ cut, we still find
results that are consistent with the chosen 2σ cut.

We generate the cluster mask by repeating the above process using
the available random redMaPPer cluster catalogues. We choose to
only work with the intersection of the galaxy and galaxy cluster

Table 1. Summary of all samples used in this analysis. N is the total number
of objects left after masking and cuts, n̄ is the average number of objects
per pixel (Nside = 512), zmedian is the median redshift of the sample and the
selection column indicates the additional cuts done beyond masking.

Sample N Object type zmedian n̄ Selection

g 25 959 346 galaxies 0.31 39 see text
call 21 962 clusters 0.37 0.033 none
cvlim 9294 clusters 0.27 0.014 z < 0.35
cλlow 10 981 clusters 0.34 0.016 λ < 33.7
cλhigh 10 981 clusters 0.42 0.016 λ > 33.7

masks. We further combine this mask with the dust extinction maps
by Schlegel, Finkbeiner & Davis (1998), retaining only pixels with
reddening values E(B − V) < 0.2, and with the SDSS seeing masks
by Ross et al. (2011), retaining pixels with seeing values below
1.4 arcsec. The final mask footprint covers 6983 deg2. After the
application of the complete mask, the data covers a fraction of sky
fsky = 0.21 and contains 671 533 unmasked pixels.

In Section 2.2 we described how we determine the shot noise
contribution for a given mask. Fig. 1 shows both the analytic shot
noise approximation Nl from Equation (7) and the shot noise Ñl

from Poisson sampling for n̄ = 1 from Equation (8) for the mask
used in our analysis. We see that taking into account the effect
of the mask increases the shot noise by approximately 5 per cent.
Also, there is a mild l dependence of the shot noise for the Poisson
sampled shot noise compared to the analytic approximate shot noise
caused by the shape of the mask.

3.3 Subsets of data used

In addition to the full sample described in Section 3.1 above, for
our analysis we use different subsets of the cluster catalogue. In the
following, we will consider:

(i) call: the full cluster sample, which is richness-selected and
thus not volume-limited;

(ii) cvlim: a volume-limited sample that is constructed by using
only clusters with z < 0.35;

(iii) cλlow and cλhigh : a low and high richness sample, constructed
from the full cluster sample (all redshifts) that is split at the median
richness of λmed = 33.7.

The different samples are summarized in Table 1. The sample call

containing all the clusters of the redMaPPer catalogue is the starting
point of our analysis as it makes use of all the objects available and
allows us to investigate the shot noise properties of our measure-
ments, especially for the galaxy and galaxy cluster cross-correlation
(Sections 5.1 and 5.2). In the second step we use the cvlim sample
in order to be able to compare our best-fitting results to the theo-
retical expectation for the value of the effective bias (Section 5.3).
Finally, we use the samples split into two richness bins cλlow and
cλhigh to investigate the shot noise properties of cluster clustering
(Section 5.4).

In Fig. 2 we show the redshift distribution dN/dz of galaxies and
galaxy clusters, after masking has been applied, for the different
samples described above. In order to account for the uncertainties
in cluster redshifts when performing the theoretical predictions in
Sections 2.1, we randomly sample from the redshift errors for the
respective object type. For galaxies we assume an overall 5 per cent
photometric redshift error as the individual redshift errors in the
catalogues underestimate the true redshift error. In the case of the
galaxy clusters we re-sample the provided redshift according to

MNRAS 470, 2566–2577 (2017)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/470/3/2566/3861107 by U
niversita degli Studi di Trieste user on 21 Septem

ber 2020



SDSS galaxies and clusters cross-correlation 2571

Figure 2. Normalized redshift distributions dN/dz of galaxies and galaxy
cluster samples as discussed in Section 3.3.

the error provided by redMaPPer. Therefore the redshift distribution
of galaxies does not have a sharp boundary at low redshifts and the
distribution of clusters for the cvlim sample does not have a sharp
boundary at z = 0.35.

We have also considered splitting up the galaxy and cluster sam-
ples into a low and high redshift bin in order to detect a potential
redshift evolution of the bias. Unfortunately, the redshift range cov-
ered by the data is too small to detect a significant increase of the
bias. A much larger redshift range would be required as results by
Marinoni et al. (2005) and Clerkin et al. (2015) illustrate.

Using the approach described in Section 2.5 we have also deter-
mined the expected bias evolution for a low and high redshift cluster
sample constructed by splitting up the volume-limited sample at a
median redshift of 0.27. We find that the expected values of the
bias differ by less than 10 per cent, which is much smaller than
the accuracy of our cluster bias measurements. Even though we do
not expect significantly different bias values for the low and high
redshift samples, we have rerun our analysis for those two samples
and find the bias values are consistent with each other and the full
volume-limited sample.

4 A N G U L A R P OW E R SP E C T RU M
ESTIMATO RS

We measure the angular power spectrum Cl for all the data products
described in Section 3 using the Spatially Inhomogeneous
Correlation Estimator for Temperature and Polarization (POLSPICE)5

(Szapudi et al. 2001; Chon et al. 2004; Challinor & Chon 2005).
The advantage of using POLSPICE is that the algorithm corrects for
distortions of the measured power spectrum caused by masking and
the pixel window function wl. The partial sky coverage has more
complex effects (see e.g. Efstathiou 2004), which we assume here
to be corrected by POLSPICE.

POLSPICE is used to estimate the Cdata
l from pixellated density

contrast maps δi derived from both the galaxy and galaxy cluster
density per pixel ni

δi = ni

n̄
− 1, (17)

where n̄ denotes the average over all pixels i.

5 http://www2.iap.fr/users/hivon/software/PolSpice/

For our analysis we consider multipoles l in the range 20 < l <

500. The minimum multipole is limited by the size of the mask and
we choose a cautious estimate following La Porta et al. (2008). For
the maximum multipole we choose an equally conservative limit
by using l < Nside instead of l < 2Nside as reasoned by Gorski et al.
(2005).

Following the argument by Pillepich, Porciani & Reiprich (2012,
and references therein and their fig. 7) we expect the onset of the bias
non-linearity at k > 0.2 h Mpc−1, which corresponds to a multipole
l ≈ 200 at a mean redshift similar to the mean redshift of the
cluster samples described in Section 3.3. However, while limiting
our analysis to l < 200 does not change the results significantly, the
statistical power of our results is reduced noticeably. Therefore we
will use l < Nside throughout this paper and perform the cross-check
described in Section 5.1 to ensure that the non-linearities do not
have a notable effect on our results.

To some extent the non-linearities can be absorbed by the way we
treat the shot noise, however this cannot account for the entire mass,
scale and redshift dependence of the non-linear bias. Nevertheless,
the cross-check discussed in Section 5.1 gives us confidence that
any residual non-linearities are sub-dominant, because the scale-
dependent bias of tracers with different host halo mass cannot be
accounted for in our model and would lead to tensions in the cross-
check.

We estimate the covariance of the Cdata
l by using a jackknife

sampling of the maps, which is performed by dividing the map
area into Njk regions of equal size. For each sampling i one of the
regions is left out and the measurement of the Ci

l is done on the
area constituted by the remaining Njk − 1 regions. The covariance
matrix using jackknife sampling is then given by

Covdata[Cl, Cm] = Njk − 1

Njk

∑
j

(Ci
l − 〈Cl〉)(Ci

m − 〈Cm〉). (18)

The number of jackknife samples Njk needs to be large enough
to determine the covariance matrix with sufficient accuracy for a
given number of data bins Nbin in l space. Following the reasoning
by Taylor, Joachimi & Kitching (2013), we choose Nbin = 20 and
Njk = 100 to determine the covariance matrices of the Cl measure-
ments. This yields an uncertainty in the error bars of the extracted
parameters of 16 per cent.

Note that when calculating the inverse covariance, we need to
multiply it by the de-biasing factor introduced by Hartlap, Simon &
Schneider (2007) and Taylor et al. (2013):

fcorr = Njk − 1

Njk − Nbin − 2
, (19)

where Nbin is the size of the data vector, i.e. the number of Cl bins
Nbin. In the following section we will present the results of our
analysis.

5 R ESULTS

In the upper panel of Fig. 3, we present the measured angular power
spectra for the galaxy (gg), cluster (callcall) and galaxy-cluster (gcall)
cases using the full cluster sample call and the analysis method de-
scribed in Section 4. The best-fitting models to these measurements
are described in Sections 5.1 and 5.2 below and are shown as lines in
Fig. 3. The lower panel of Fig. 3 contains the same data and models
as the upper panel, but shows the relative differences between data
and model in order to highlight the quality of the fits.

In order to determine the effective bias for the different tracers,
we use two different models to account for the shot noise. We
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Figure 3. Top panel: galaxy (gg – red lines and symbols), cluster (callcall

– green lines and symbols) and galaxy-cluster (gcall – orange lines and
symbols) angular power spectra for the data described in Section 3. Lines
indicate the best-fitting models described in Sections 5.1 and 5.2: dashed
lines show the best-fitting model specified in Equation (20) using Poissonian
shot noise; while solid lines use the best-fitting model specified in Equation
(23) where n̄eff is added as a fit parameter to adjust the shot noise contribu-
tion. Lower panel: same data and models as upper panel, but showing relative
differences of the data compared to the models. Open symbols/dashed lines
show the relative differences for the best-fitting model specified in Equation
(20) using Poissonian shot noise, while solid symbols/solid lines show the
best-fitting model specified in Equation (23), where n̄eff is added as a fit
parameter to adjust the shot noise contribution.

first analyse the data using Poissonian shot noise as described in
Section 2.2 and discuss the results of those fits. In a second step we
account for non-Poissonian shot noise as discussed in 2.4.

5.1 Fitting the angular power spectra with a fixed shot noise
contribution

We first fit to the Cdata
l the model given by

Cmodel
l (b) = C th

l (b) + Ñl(n̄), (20)

where C th
l is the theoretical angular power spectrum as given in

Equation (5) for a given value of the effective bias b and Ñl(n̄) is
the Poisson noise term given in Equation (7).

For the covariance, there are two contributions: the covariance
from the power spectrum measurement given in Equation (18), as
well as the covariance from the Poisson noise contribution Ñl given

in Equation (10). The covariance of the shot noise contribution arises
from the fact that we determine the shot noise from the POLSPICE

measurements of random maps as discussed in Section 2.2.
However, Cov[Crand,i

l , Crand,i
m ] is about one order of magnitude

smaller than Covdata[Cl, Cm] and N−1/2
s = 10, and therefore the co-

variance originating from the Poisson noise correction Cov[Ñl, Ñm]
is about two orders of magnitude smaller than the covariance con-
tribution from the data Covdata[Cl, Cm]. Hence we neglect the co-
variance contribution of the shot noise error and use

Covfit[Cl, Cm] = Covdata[Cl, Cm] (21)

as the covariance in the Gaussian likelihood L of the effective bias
parameters b.

We then use this covariance to calculate the Gaussian likelihoods
of the effective bias parameters from all spectra we consider, i.e.
from galaxy and cluster autospectra and from the cross-spectrum;
we label these likelihoods Lg , Lgcall , and Lcall , respectively.

Additionally, we can estimate the effective bias likelihood from
the cross-correlation given the results from the two corresponding
autocorrelations. For example, from the likelihoods of the galaxy
and cluster autocorrelations Lg and Lc, we can construct the fol-
lowing likelihood

L√
bgbc

(b) =
“

db̃gdb̃c δD

(
b −

√
b̃g b̃c

)
Lg(b̃g)Lc(b̃c). (22)

This likelihood serves as a cross-check for the biases obtained by
our analysis and is equivalent to drawing values for bg and bc from
the respective autocorrelation distributions and determining a new
distribution from the corresponding

√
bgbc. We determine these

cross-check likelihoods and bias values for all the cross-correlations
we determine in our analysis.

We start by analysing the autocorrelations and cross correlations
for the largest samples available, i.e. the galaxy sample g and the
full cluster sample call, as we expect to obtain the most accurate
measurements from these samples. The best-fitting models as de-
fined in Equation (20) are shown as dashed lines in Fig. 3 (and open
symbols for the relative residuals in the lower panel). While the
galaxy autocorrelation (gg) is accurately described by the model,
the galaxy-cluster cross-correlation (gcall) as well as the cluster
autocorrelation (ccall) are poorly described by the fit. Best-fitting
parameters, as well as χ2, are listed in rows 1–3 of Table 2. Note
that the χ2 values are too large for the gcall and callcall correlations,
indicating that the model is not a good description of the measure-
ments. The likelihoods for the fits and cross-check are shown in
Fig. 4 and indicate that also L√

bgbc
does not agree well with the

results for Lg and Lc, i.e. the results of the autocorrelations and
cross correlations are inconsistent with each other.

Concentrating on the mismatch between the data and the model
for the galaxy-cluster (gcall) and cluster (callcall) correlation, we
remove the shot noise contribution, which is dominant for the callcall

correlation, from both the data and the model. In addition, we bring
the Cl to the same scale by renormalizing them by the best-fitting
bias; the resulting Cl are shown in Fig. 5.

For the galaxy-cluster cross-correlation, the model (orange sym-
bols and line) clearly overestimates the Cl for low l and underesti-
mates them for high l. This is not surprising because neglecting the
shot noise contribution for the galaxies that are part of clusters (as
discussed in Section 2.2) is expected to be a poor approximation.

In the case of the cluster autocorrelation, we can now see the
mismatch between the data and the model more clearly because the
extracted signal is dominated by the shot noise. Also in this case,
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Table 2. Results for the different parameter fits from the angular power spectra we use. Column two indicates the correlator used,
column three indicates the maximum likelihood value for bias b and the statistical error for the fit, column four the χ2 and number
of degrees of freedom. If the effective noise contribution is also determined in the fit, the inverse of the maximum likelihood effective
pixel density n̄eff,ML is listed in column five, while column six lists the actual inverse pixel density of objects n̄−1 (only available for
autocorrelations). In case the cross-check can be performed, the corresponding value for bias bcross-check (including error) is listed in
column seven.

Row Correlator b ± σ stat χ2/dof 1/n̄eff ± σstat 1/n̄ bcross−check

1 gg 1.07 ± 0.02 24.1/19 – 0.026 –
2 gcall 2.60 ± 0.05 216/19 – – 2.19 ± 0.10
3 callcall 4.50 ± 0.42 48.9/19 – 30.3 –

4 gg 1.10 ± 0.03 11.8/18 0.013 ± 0.011 0.026 –
5 gcall 2.29 ± 0.09 18.3/18 0.405 ± 0.086 – 2.30 ± 0.10
6 callcall 4.82 ± 0.41 14.0/18 27.0 ± 1.90 30.3 –

7 gcvlim 2.15 ± 0.09 22.0/18 0.610 ± 0.111 – 2.12 ± 0.13
8 cvlimcvlim 4.09 ± 0.47 8.0/18 66.3 ± 0.067 71.4 –

9 gcλlow 2.11 ± 0.10 17.8/18 0.314 ± 0.107 – 2.09 ± 0.13
10 gcλhigh 2.53 ± 0.13 9.43/18 0.516 ± 0.119 – 2.50 ± 0.15
11 cλlow cλlow 3.99 ± 0.48 13.3/18 57.0 ± 3.64 62.5 –
12 cλhigh cλhigh 5.72 ± 0.65 9.48/18 57.6 ± 4.14 62.5 –
13 cλlow cλhigh 4.98 ± 0.57 11.0/18 − 3.69 ± 1.60 – 4.71 ± 0.41

Figure 4. Likelihood functions for the effective bias of the samples we
consider, obtained using a fixed shot noise contribution, for galaxies (gg –
red lines), clusters (callcall – green lines) and galaxy-clusters (gcall – brown
lines), as well as for the cross-check case L√

bgbc
(
√

bgbc – dashed grey

line) described in Section 5.1.

the figure shows a severe mismatch, as the model overestimates
the Cl on all scales. Above l ≈ 400 the noise-corrected Cl even
turn negative, indicating the shot noise is overcorrected using the
average object per pixel density n̄ for clusters.

5.2 Accounting for the effective noise contribution

Following the reasoning of Section 2.4, we can effectively account
for a modification of the shot noise contribution if we limit ourselves
to a regime where the correction is (to a good approximation) in-
dependent of l. We can then introduce an effective number density
of objects per pixel n̄eff as a nuisance parameter. This allows us to
account for any sub- and super-Poissonian shot noise contributions
where the shape of the shot noise correction is unaffected and only
the magnitude of Ñl is adjusted, i.e.

Cmodel
l (b, n̄eff ) = C th

l (b) + Ñl(n̄
eff ). (23)

Figure 5. Cluster (callcall) and galaxy-cluster (gcall) power spectra with
Poissonian shot noise Ñl removed according to Equation (11) and rescaled
by the best-fitting bias b. Dashed lines show the best-fitting model specified
in Equation (20).

To account for measuring systematics affecting the power spectra,
a similar treatment was used by Ho et al. (2012); Zhao et al. (2013);
Beutler et al. (2014); Johnson et al. (2016); Grieb et al. (2017) in
their analyses.

The results for the fits including the effective shot noise contri-
bution as a free parameter are shown as the solid lines in Fig. 3
(and solid symbols for the relative residuals in the lower panel).
The Cmodel

l (b, n̄eff ) for the fit describe the data much more accu-
rately. The corresponding constant likelihood contours are shown in
Fig. 6 where the dashed lines indicate the actual 1/n̄ for the Poisso-
nian shot noise contribution (not applicable to the cross-correlation
gcall). Both the galaxy and cluster autocorrelations slightly favour
sub-Poissonian noise contributions, though the deviation from the
Poissonian noise case is below 1σ for galaxies and about 1.5σ

for the clusters. As expected, the noise contribution for the galaxy
autocorrelation is small. However, the shot noise for the cluster auto-
correlation is a dominant contribution, and therefore we see a much
better description of the data compared to the previous fit where
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Figure 6. The 2d-likelihoods for the fits described in Section 5.2 for the
parameters bias b and effective number of objects per pixel n̄eff . Solid
lines indicate the 68 per cent, 95 per cent and 99 per cent confidence regions,
respectively. For the autocorrelation cases the dotted lines indicate the actual
inverse number of objects per pixel n̄−1.

we only fitted for the bias. The same holds for the galaxy-cluster
cross-correlation for which the data clearly favours a non-zero shot
noise contribution.

We show in Fig. 7 the marginalised likelihoods for the bias pa-
rameters; we can see that in this case the cross-check likelihood

Figure 7. Likelihoods of the effective bias, marginalised over the ampli-
tude of the shot noise contribution as described in Section 5.2, for the
different correlators we consider: galaxies auto cross-correlation (gg – red
lines), clusters auto cross-correlation (callcall – green lines) and galaxy-
cluster cross-correlation (gcall – brown lines) as well as the consistency
check bias (

√
bgbc – dashed grey line) as described in Section 5.1.

L√
bgbc

agrees well with the result obtained from the galaxy-cluster

cross-correlation gcall. This means that the measurements of auto
correlations and cross correlation are now in good agreement with
each other when introducing neff as an additional model parameter.

The results of these fits, including maximum likelihood values
for L√

bgbc
, are summarized in rows 4–6 of Table 2. Note that the

χ2 have improved significantly compared to the bias-only fits.
The fact that we obtain a sub-Poissonian shot noise from the au-

tocorrelation of galaxies argues for a relatively low satellite fraction
in the sample, as discussed in Section 2.3. The sub-Poissonian shot
noise obtained from the cluster autocorrelation is expected because
clusters obey halo exclusion.

5.3 Effective bias for volume-limited cluster sample

The measurement of the cluster autocorrelation for the full sample
call yields a bias value of bc = 4.82 ± 0.41. However, the call sample
is not volume-limited and we should therefore use the volume-
limited sample cvlim when comparing the effective bias to theoretical
expectations.

We perform the same analysis of Section 5.2 on the volume-
limited sample cvlim as discussed in Section 3 and summarized in
Table 1. The fits for the volume-limited cluster sample are quali-
tatively similar to the call samples and we therefore do not show
plots of the power spectra and best fits. Results for the autocorre-
lation cvlimcvlim as well as the cross-correlation gcvlim are listed in
rows seven and eight of Table 2. The bias from the cross-check and
the bias for the cross-correlation are again in agreement. From the
cluster autocorrelation we find bcvlim = 4.09 ± 0.47.

From the theoretical modelling of the effective bias in Section 2.5
we expect b ≈ 2.8 for the volume-limited cluster sample, which is
in tension with the value extracted from the data at the 2–3σ level.

5.3.1 Systematics affecting the bias measurement

We explored – and ruled out – the following systematic effects
which might explain this discrepancy. The redshift and richness dis-
tributions of clusters we expect from the predictions in Section 2.5
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are in good agreement with those measured for the volume-limited
sample as shown in Fig. 2 and cannot be used to explain this dis-
crepancy. Neither are there extremely high mass/bias objects that
could explain the difference. We have checked if statistical and sys-
tematic uncertainty of the mass-richness relation for galaxy clusters
could account for the tension. Shifting the mass-richness relation
by 30 per cent in mass yields an increase of less than 10 per cent in
bias. In order to account for the discrepancy from the mass-richness
relation alone, we would have to shift it by more than 300 per cent.
Systematic uncertainties in the richness measurement (from projec-
tion effects and miscentering) are not captured in the mass-richness
relation parameters and can affect the bias measurement, but they
alone are unlikely to explain the tension. The effect of the mea-
surement uncertainties of the mass-richness relation parameters is
negligible.

The measurement error on σ 8 from the Planck2013+WP+
highL+BAO measurement also cannot account for the discrepancy,
i.e. shifting the value of σ 8 by 1σ does only have a very small effect
on our measurement of the effective bias.

In this work we have not explored the effect of assembly bias
(Sheth & Tormen 2004; Gao, Springel & White 2005; Gao & White
2007; Wechsler et al. 2006; More et al. 2016), i.e. the dependence
of halo clustering on assembly history. However, our effective bias
measurement is consistent with the results examining this effect
as reported in Miyatake et al. (2016) and Baxter et al. (2016) and
references therein. Miyatake et al. (2016) split the clusters into two
subsamples based on the average member galaxy separation from
the cluster centre and find significantly different values for the bias
for those subsamples: b = 2.17 ± 0.31 for clusters with a low av-
erage member galaxy separation and b = 3.67 ± 0.40 for large
average separation. Baxter et al. (2016) measures the angular cor-
relation function w(θ ) for clusters in different richness and redshift
bins and find high (compared to the prediction using the Tinker
mass function) bias values between 3 and 5 for the λ > 20 richness
bins.

It will be interesting to study assembly bias, as well as bias mod-
elling in general, in more detail using angular power spectra in
harmonic space. In the analysis presented in this paper we focus
on the measurement and proper shot noise treatment of autocor-
relations and cross correlations. We intend to study the effect of
bias modelling in a future paper and plan to use additional data to
improve the significance of the measurements.

5.4 Results for low and high richness cluster samples

Next, we investigate the shot noise properties in the cross-
correlations of clusters in different richness bins and hence different
halo mass. Therefore, we divide the call sample into two halves, split-
ting it at the median richness λmedian = 33.7 with λlow < λmedian and
λlow > λmedian with median redshifts 0.315 and 0.42. The redshift
distributions for these two subsamples are shown in Fig. 2.

The autocorrelations of the richness-split cluster samples and
their relative best-fitting bias values are qualitatively similar to the
call sample. We therefore do not show the results for the autocorrela-
tions and will only discuss and show the cross-correlation measure-
ments below. The fit results are summarized in rows 9–13 of Table 2.
As expected, for the autocorrelation of the low-richness sample cλlow

we observe a smaller bias than for the call sample, while for the high-
richness sample cλhigh the bias is shifted to even higher values (rows
11 and 12). The effective shot noise contribution is larger for these
samples as reflected by the smaller values of n̄eff , because there are
half as many objects in the subsamples. A similar systematic bias

Figure 8. Cross-correlation between the low- and high-richness samples
described in Section 3. Lines indicate the best-fitting models described in
Sections 5.1 and 5.2: dashed line shows the best-fitting model specified
in Equation (20), using a vanishing shot-noise contribution (as there is no
overlap between the two samples), solid line represents the best-fitting model
specified in Equation (23), where n̄eff is added as a fit parameter to adjust
the shot-noise contribution. The best-fitting n̄eff is negative in this case.

shift can be seen for the galaxy-cluster cross-correlation, which is
shown in rows 7–8, while the shot-noise contribution is smaller for
the gcλlow and higher for gcλhigh cross-correlation.

From the cross-correlation between the low- and high-richness
samples, we expect a small or vanishing value of the effective ob-
jects per pixel density if we assume the classical Poissonian shot
noise: using this reasoning there is no overlap of objects between
the two samples (except for systematic effects from cluster find-
ing/identification and line-of-sight effects). However, as we have
described in Section 2.3, in a more complete picture accounting
for effects like halo exclusion we expect either positive or negative
non-vanishing shot noise contributions (depending on the chosen
mass ranges) for the cross-correlation between clusters that occupy
haloes of different mass.

Our measurements yield a value of the effective pixel density that
is negative at the 2σ level. This result remains even when repeating
the analysis using only half the number of bins or quadrupling the
pixel size (i.e. half the Nside). Again, this argues for strong exclusion
effects between clusters of different richness (and thus halo mass),
as observed in N-body simulations (Hamaus et al. 2010; Baldauf
et al. 2013).

Fig. 8 shows the measured angular power spectrum as well as
the best-fitting models using a vanishing shot-noise contribution
(dashed line) and fitting for the shot-noise contribution (solid line).
The measured Cl show an unusual behaviour as the correlation
increases up to l ≈ 200 and then decreases again. This cannot
be described by a model with a vanishing (shown by the dashed
line) shot-noise contribution, as a positive shot-noise contribution
would worsen this mismatch. However, if allowing for negative non-
Poissonian shot noise, the model yields a good description of the
data. It will be interesting to see whether this measurement persists
for larger sample sizes and other data sets.

We have summarized the bias fit results for the different cata-
logue samples in Fig. 9, which includes 1σ and 2σ error bars for
all measurements. This figure illustrates that the cross-check val-
ues (black symbols) and errors for bias from Equation (22) of the
measurements of autocorrelations and cross correlations are
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Figure 9. The maximum likelihood galaxy and dark matter halo bias after
marginalizing over n̄eff , as well as the expectations denoted by

√
babb from

the cross-check described in Section 5.2. We also show 68 per cent (solid
lines) and 95 per cent (faint solid lines) error bars.

consistent with each other for all measurements, including the
volume-limited sample cvlim as well as for the two richness bin
samples cλlow and cλhigh .

6 SU M M A RY A N D O U T L O O K

We have presented a first measurement of the cross-correlation
angular power spectrum of galaxies and galaxy clusters using the
SDSS DR8 galaxy and galaxy cluster sample. Further, we measured
the autocorrelations and crosscorrelations of different subsamples
of the full cluster catalogue: a volume-limited sample as well as two
samples of low and high richness.

We argued that in order to get a good theoretical description
for the cross-correlation measurements we need to add an effective
shot noise contribution as an additional component to our model.
Because there is some overlap of galaxies and galaxy clusters, we
expect a non-vanishing shot noise contribution. We find the mea-
surements are much better described by a model containing sub-
Poissonian shot noise and that using a regular Poisson shot noise

correction results in an overcorrection. Since we also expect a de-
viation from Poissonian shot noise for cluster autocorrelations due
to halo exclusion and non-linear clustering (Baldauf et al. 2013),
we investigated if the cluster autocorrelation shows deviation from
Poissonian shot noise as expected from simulations (Hamaus et al.
2010).

We extracted the effective bias for our measurements and used
the results for the effective bias from autocorrelation measurements
to perform a cross-check on the effective bias from the cross-
correlation measurements. These cross-checks were in very good
agreement after we allowed for non-Poissonian shot noise con-
tribution. We performed the same cross-checks for measurements
involving the subsamples of the cluster data and we find all mea-
surements of effective bias to be consistent.

To compare our measurement of effective bias to theoretical ex-
pectations, we constructed a volume-limited cluster sample and
found a relatively high value of 4.09 ± 0.47 compared to our expec-
tation of b = 2.8. However, this value is consistent with previous
measurements and supports the case for a fuller exploration of ad-
ditional systematic effects, like halo assembly bias.

Finally, we constructed a low and high richness sample from
the full cluster sample and measured the autocorrelations and cross
correlation as well. Again, the values for the effective bias are
consistent with each other and are all relatively large for the cluster
samples.

Most notably, we found a negative shot noise contribution for
the cross-correlation at the 2σ level. This argues for strong exclu-
sion effects between clusters of different richness (and thus halo
mass), in agreement with N-body simulations. As larger and better
data sets will become available, it will be interesting to see if this
measurement of negative shot noise persists.

An appropriate treatment of shot noise is important for many other
autocorrelation and cross correlation large scale structure analyses,
i.e. different galaxy types and multitracer surveys. In the future,
it will be essential to account for these effects to derive unbiased
cosmology constraints from correlation functions and power spectra
analyses.
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