
Interactive Example-Based Finding of Text Items

Eric Medveta,∗, Alberto Bartolia, Andrea De Lorenzoa, Fabiano Tarlaoa

aDIA, University of Trieste, Italy

Abstract

We consider the problem of identifying within a given document all text items which follow a certain pattern to be
specified by a user. In particular, we focus on scenarios in which the task is to be completed very quickly and the
user is not able to specify the exact pattern of interest. The key use case corresponds to the interactive exploration
of documents in search of snippets that do not fit Boolean, word-based search expressions. We propose an interactive
framework in which the user provides examples of the items he is interested in, the system identifies items similar to
those provided by the user and progressively refines the similarity criterion by submitting selected queries to the user,
in an active learning fashion. The fact that the search is to be executed very quickly places severe requirements on the
algorithms that can be used by the system, both for identifying the items and for constructing the queries. We propose
and assess experimentally in detail a number of different design options for the components of the learning machinery.
The results demonstrate the ability of our approach to achieve effectiveness close to state-of-the-art approaches based
on regular expressions, while requiring an execution time which is orders of magnitude shorter.

Keywords: Active learning, Text processing, Pattern

1. Introduction

A common practical problem consists in the identifica-
tion within a given document of text items which follow
a certain pattern to be specified by a user. For example,
text editors, pdf viewers, web browsers and alike, usually
allow specifying word-based search expressions that may
include Boolean operators and a few operand modifiers
(e.g., case-insensitive, ignore certain special characters);
the user may then navigate in the document by jumping
between the items that match the search expression. The
search results may be also presented as a list of snippets
that are centered around each matching item and that
can all be analyzed at a glance, for easier exploration. Al-
though this framework is simple and effective, it is also
unable to accommodate several practical needs. It is often
the case that the user does not really know what the pat-
tern of interest is, as such a pattern could emerge only after
observing the results of several, successively refined can-
didate patterns. Furthermore, word-based Boolean search
expressions are not a good fit for several kinds of searches,
for example: names in unfamiliar languages or that admit
several spelling variants; model numbers of electronic de-
vices, which often contain optional or country-dependent
portions; items that may or may not be abbreviated; noisy
documents obtained through optical character recognition

∗Corresponding author
Email addresses: emedvet@units.it (Eric Medvet),

bartoli.alberto@units.it (Alberto Bartoli),
andrea.delorenzo@units.it (Andrea De Lorenzo),
fabiano.tarlao@phd.units.it (Fabiano Tarlao)

(OCR); items that could be broken by an end of line or
contain typing errors; items that share a common struc-
ture with varying portions. Some of these needs could be
addressed by specifying the desired pattern with a formal-
ism more powerful than word-based Boolean search expres-
sions, for example, many text editors (e.g., Google Docs)
allow searching for items matching a user-specified regu-
lar expression. On the other hand, this approach requires
specialized skills, is often difficult to apply in practice and
may be effective only for certain kinds of patterns.

In this work we propose an interactive framework for
finding text items in an unstructured document modeled
after the use cases outlined above, i.e., in which the user
is not able to specify the exact pattern of interest yet all
the relevant items are to be identified very quickly. In
our proposal the user provides only examples of the items
he is interested in; the system identifies items similar to
those provided by the user and progressively refines the
similarity criterion by submitting selected queries to the
user, in an active learning fashion. We focus on the un-
derlying algorithms required for supporting such a frame-
work without insisting on any specific embodiment—i.e.,
we do not pose any assumptions on whether the user will
use the identified items for easier document navigation,
for extracting a list of items or surrounding snippets, for
correcting mistakes, and alike.

We strive for interactive execution, thus the algorithms
for: (i) inferring a general pattern from the available exam-
ples; (ii) selecting from the input document the next query
to be submitted to the user; (iii) allowing the user to an-
swer the query; and, (iv) actually finding all occurrences

Preprint submitted to Expert Systems with Applications April 8, 2020

of the current pattern within the document, must all be
executed very quickly. We used one minute as time bud-
get for the entire execution, including the time taken by
the user to answer the query, which is clearly a very tight
requirement placing severe restrictions on the algorithms
that can be realistically used. We selected this time bud-
get arbitrarily, assuming that it is indeed representative
of the interactive and one-off use cases we are interested
in. We do not make any assumption on the nature of the
input data, in particular, we do not assume any segmenta-
tion in terms of words, lines, sentences or alike that may
be exploited by the system—i.e., the input data is merely
a flat text string in which items of interest may occur at
any point. While this choice widens the generality of our
approach, it also magnifies the difficulty of the problem as
the number of candidate text items to be analyzed by the
system grows quadratically with the length of the docu-
ment.

We approached the problem as a binary classification
problem over substrings (tokens) that we obtain by seg-
menting the document with a tokenization heuristics. The
heuristics splits the document in tokens based on the char-
acters delimiting each example, hence the segmentation is
refined as more and more examples become available. We
explored a number of design variants, both alone and in
combination, regarding nature of classifier, tokenization
heuristics and construction of queries (i.e., active learning
scheme). We considered classifiers based on such general
techniques as, e.g., Random Forests and Artificial Neu-
ral Networks, applied on varying sets of features extracted
from each token to be classified; and, classifiers more tai-
lored to the specific application domain based on several
string similarity indexes. We considered several variants
of the tokenization heuristics for taking into account the
surrounding context in which an item of interest is and,
concerning the construction of queries, we tailored sev-
eral active learning schemes to our specific problem, e.g.,
uncertainty-based, query-by-committee.

We assessed the numerous variants by means of an
extensive experimental evaluation on 10 real world text
search tasks which have already been used in previous
works. In order to make the assessment more relevant
for our intended use case, we involved several human sub-
jects and measured the time required for actually answer-
ing queries. These data enabled us to fit the number of
examples that may be elicited as a function of the time
budget available. The results demonstrate the ability of
several design variants for finding text items with effec-
tiveness close to state-of-the-art approaches based on reg-
ular expressions, while requiring an overall time which is
orders of magnitude shorter.

2. Related work

In this section we place our proposal in perspective
with existing literature.

A very powerful and widespread tool for formalizing
text patterns is regular expressions: a regular expression
describes the pattern of interest in a compact form and a
specialized engine extracts from an input string only the
substrings that adhere to the specified pattern. The au-
thoring of a regular expression specifying exactly the pat-
tern of interest is not an easy task, however. It is not sur-
prising, thus, that practitioners and researchers devoted
significant efforts in developing methods and systems able
to automatically construct a regular expression starting
solely from examples of the desired extraction behavior.
Li et al. (2008) were among the first to show a tech-
nique able to cope with data of practical interest (such
as URLs and phone numbers): the proposed technique al-
lowed to improve an existing, user-provided regular expres-
sion, based on thousands of examples. Later, a team from
SAP AG removed the necessity of providing an initial reg-
ular expression (Brauer et al., 2011). A different approach
for constructing regular expressions has been proposed by
Cochran et al. (2015), where a way of exploiting the collab-
oration of skilled and unskilled users (by means of crowd-
sourcing) is described in order to obtain both more use-
ful annotated data and better regular expressions. More
recently, Bartoli et al. made significant advancements in
this area, by increasing the extraction effectiveness and
decreasing the amount of examples needed by the system
(Bartoli et al., 2014a, 2016e). Indeed, the system devel-
oped in these works turned out to be competitive even with
skilled human operators (Bartoli et al., 2016b). The same
group explored the usage of active learning techniques in
order to decrease the amount of effort required by the user
for providing examples of the desired extraction behavior
(Bartoli et al., 2016a, 2017).

As in all the cited works, we focus on the identification
of text items that adhere to a general pattern within an
unstructured stream, extraction being just one of the the
simplest processing steps that may follow the identifica-
tion of the item. However, we strive for a radically dif-
ferent trade-off between user effort and extraction quality:
unlike all those works, we address the region of the design
space where user effort and system execution time are so
small to enable interactive, real-time extraction while, at
the same time, ensuring good extraction quality. Indeed,
our proposal compares favorably to earlier approaches in
this respect (we use the same data as in (Bartoli et al.,
2016a, 2017)) and none of those approaches is amenable
to interactive execution: either the user has to provide
all the examples and then wait for several minutes before
obtaining the corresponding regular expression (Li et al.,
2008; Brauer et al., 2011; Bartoli et al., 2014a, 2016e,b), or
the user has to engage an interaction in which the system
asks for feedback at intervals that last in the order of the
tens of minutes or even more (Cochran et al., 2015; Bartoli
et al., 2016a, 2017).

Interesting proposals for automating specific text pro-
cessing tasks which typically occur in an one-off fashion
(Gualtieri, 2011; Bartoli et al., 2015b) include, e.g., search-

2

and-replace (De Lorenzo et al., 2013), editing (Yessenov
et al., 2013), and tabular data extraction (Le & Gulwani,
2014). The latter two tasks have been approached with a
programming-by-examples (PBE) methodology, where the
input is an incomplete specification of the desired behavior
in the form of user-provided examples while the output is
a program in some domain-specific language (DSL) (Gul-
wani, 2016).

We emphasize that our proposal does not include any
form of semantic or natural language processing, thus it
does not fit application domains where such capabilities
are essential. Examples of such domains include extraction
from unstructured text of, e.g., named entities (McCallum
& Li, 2003; Pennacchiotti & Pantel, 2009; Finkel et al.,
2005), facts (Etzioni et al., 2004), relations (Angeli et al.,
2014), structured knowledge base (Carlson et al., 2010).

In these contexts there have been many proposals aimed
at minimizing the user effort needed to identify and anno-
tate informative examples, e.g., Zhang (2008); Dalvi et al.
(2016); Budlong et al. (2013); Bajaj et al. (2015). Some
proposals advocated the execution of an initial, fully un-
supervised analysis of the data corpus followed by some
explicit instructions from the user on how to proceed with
the processing of, e.g., logs (Fisher et al., 2008), collections
of facts (Etzioni et al., 2005), or relations (Yates et al.,
2007).

Our proposal is based on a form of active learning, i.e.,
the system progressively refines a learned model based on
the answer provided by the user to queries selected by
the system itself. We compare different active learning
schemes and assess them not only on how they affect the
extraction effectiveness, but also on their impact on user
annotation effort. User effort is usually assessed by assum-
ing that all queries require the same answering effort, but
it has been shown that such an assumption may frequently
lead to misleading conclusions (Settles et al., 2008). For
this reason, we take into account the precise amount of
time the user takes to annotate the text by responding to
system queries, rather than simply counting the number
of queries. From a general point of view, there have been
other works concerning active learning in which the anno-
tation (or labeling) costs are not equal among queries: an
experimental study involving 4 practical cases (including
one related to information extraction) can be find in (Set-
tles et al., 2008), whereas a broader discussion has been
done by Settles (2009). In some cases, approaches have
been proposed for trying to predict the benefit of a user
answer on the learning and relate it to the (possibly esti-
mated) cost of that answer (Donmez & Carbonell, 2008;
Haertel et al., 2008; Settles et al., 2008). However, Haertel
et al. (2015) and Settles & Craven (2008) conclude that
there is no significant improvement when the answer cost
is taken into account while constructing the query: Haer-
tel et al. (2015) motivate the finding both theoretically
and experimentally and concerns a Return-on-Investment
Active Learning (ROI AL) framework, whereas Settles &
Craven (2008) support it by experiments on using the ra-

tio between informativeness and cost to drive the choice
of the query.

In our proposal the system interactively learns a model
for describing strings that are structurally similar to the
examples provided by the user. Some of the design vari-
ants that we explored are based on quantitative indexes of
string similarity proposed earlier in the literature (Cheatham
& Hitzler, 2013a; Cohen et al., 2003; Bilenko et al., 2003;
Bartoli et al., 2016c). Notions of this kind have been ap-
plied in several application domains (Hu et al., 2015; Yu
et al., 2016), in particular, they have proven to be a pow-
erful tool for operations of data integration and cleansing
(Jiang et al., 2014), ontology alignment (Cheatham & Hit-
zler, 2013b). Such problems consist, essentially, in finding
similar string pairs within given collections of strings. The
key difference with our problem is that we strive for inter-
active execution, which places severe limits on the algo-
rithms that can be used, and that our search is asymmetric
in the sense that we need to identify a set of strings within
a text sequence (input document) that is potentially large.
Furthermore, we dot not assume any structure in the input
document hence we cannot exploit any informative signal
related to either the content of specific document fields (as
in applications of record deduplication (Jin et al., 2003;
Culotta & McCallum, 2005; Chandrasekar et al., 2013)
and author disambiguation (Chin et al., 2014)) or to the
geometric layout of the rendered document (Bartoli et al.,
2014b).

3. Problem statement and system architecture

We are concerned with the interactive finding of text
items that are similar to those provided by the user. For
ease of presentation, we shall refer to the extraction of text
items from an input document. We remark, though, that
we do not assume any specific embodiment of our frame-
work and do not make any assumption on the processing
steps that might possibly involve the items found.

A problem instance is defined by a string s, a set X?

of substrings of s, a substring xm0 ∈ X?, and a substring
xu0 6∈ X?—a substring is specified by its content and its
position in s. Set X? represents the ideal set of extrac-
tions which the user expects to obtain from s. Substring
xm0 represents a desired extraction while substring xu0 rep-
resents an undesired extraction. The input of the problem
instance consists of (s, xm0 , x

u
0) while the expected output

is X?: in an actual use case, X? is initially unknown to
both the user and the system.

We propose a system in which a problem instance is
processed according to the following iterative procedure
(Figure 1). Let Xm and Xu be respectively the sets of
labeled desired and undesired extractions provided by the
user up to a given iteration. At the beginning, Xm = {xm0 }
and Xu = {xu0}, then:

1. An extractor E is learned on (s,Xm, Xu) and ap-
plied to s. (Extraction)

3

Query
answering

Query
selection

Extraction

(Xm
q , X

u
q)

xq

{(x, c)}

(s,Xm, Xu)

Figure 1: Overview of an iteration cycle of our proposed system, as
described in the text. The step of the box with gray background
is performed by the user whereas the others are performed by the
system.

2. The outcome of the application of E on s is taken
as input by a pool-based active learning algorithm
which selects a single substring xq to be submitted
to the user. (Query selection)

3. The user inspects the extraction query xq and replies
to the system, which updates Xm and Xu accord-
ingly. (Query answering)

The three steps are repeated until the user is satisfied by
the current extractions or his time budget has been con-
sumed. All the executions of the three steps above concur
in consuming the user time budget.

The extraction step and query selection step are de-
scribed, respectively, in Section 4 and in Section 5. Con-
cerning the query answering step, we assume that each an-
swer belongs to one of these categories: (a) the query xq
exactly corresponds to a desired extraction (i.e., xq ∈ X?);
(b) xq is not a desired extraction and does not overlap any
desired extraction; (c) xq overlaps one or more desired
extractions. We call binary answers the answers corre-
sponding to cases a and b, whereas we call edit answers
those of case c. For binary answers, the user may provide
the answer by means of a single action (e.g., a click on an
“Extract” button or on a “Do not extract” button). For
edit answers, more complex user actions are involved since
the boundaries of the overlapping desired extractions have
to be marked. These behaviors may be embedded in a
graphical interface easily.

The answer of the user to an extraction query xq, thus,
consists of a pair (Xm

q , X
u
q) where Xm

q is the (possibly
empty) set of all substrings in X? which overlaps xq and
Xu

q is the (possibly empty) set of maximal substrings of xq
which do not belong to X?. Note that for binary answers
|Xm

q | + |Xu
q | = 1: i.e., exactly one between Xm

q and Xu
q

Classifier
application

Classifier
learning

Tokenization

{(x, c)}

C

(P,N)

{x}

(s,Xm, Xu)

Figure 2: Overview of the extraction step.

contains xq while the other is empty. The system consumes
the answer by inserting substrings of Xm

q into Xm and
substrings of Xu

q into Xu.

4. Extraction

4.1. Extractor architecture

The extraction step of the previous Section consists of
three phases (Figure 2):

1. A tokenization phase which subdivides s in substrings,
i.e., tokens; given a problem instance (s,Xm, Xu),
this procedure constructs a tuple (P,N), where P is
the multiset composed of the tokens in Xm and N
is the multiset composed of the tokens in Xu.

2. A classifier learning phase in which a binary string
classifier C is constructed by using (P,N) as learning
data.

3. A classifier application phase in which the classifier
C constructed at the previous step is applied to the
tokens in s; C outputs a numeric score c for each
input token x: c < 0 indicates that x should not be
extracted, c > 0 indicates that x should be extracted,
and c = 0 indicates uncertainty about whether to
extract x. The larger the absolute value of c, the
stronger the confidence in the extraction indication.

The tokenization procedure is necessary because we do
not assume any segmentation of the input string s in terms
of words, lines, sentences, or alike. In order to be effective
in practice, the procedure must be tailored to the specific
problem instance. In details, we proceed as follows.

We construct a problem instance-specific set S of char-
acters acting as token separators. First, we construct the
set of characters S0 including each character immediately
preceding or immediately following each substring in Xm.

4

s =

The file creation date is 7.2.2011,

and it has been edited 33 times

since 11-10-2013. The last 2 read

dates are 24/1/2016 and 2/3/2016.

Xm = {7.2.2011, 11-10-2013, 24/1/2016}
Xu = {last 2, 33}

(a) Problem instance (s,Xm, Xu).

S0 = { , ,, .}
S1 = { } ⇒ |T1 ∩Xm| = 1

S = S2 = { , ,} ⇒ |T2 ∩Xm| = 2

S3 = { , ,, .} ⇒ |T3 ∩Xm| = 2

(b) Choice of the separators set S.

P = {7.2.2011, 11-10-2013, 24/1/2016}
N = {last, 2, 33}
(c) Corresponding classification problem (P,N).

Figure 3: Example of the execution of the tokenization procedure.

Second, we sort S0 in descending order according to the
number of occurrences of each character. Third, we iterate
the following steps starting from i = 1: (i) we construct
the set Si of the first i characters of S0, and (ii) we build
the set Ti of tokens obtained by splitting s with the separa-
tors in Si. Finally, we assign S to the set Si for which the
number of tokens which are substrings to be extracted is
the largest, i.e., S := Si∗ , with i∗ = arg maxi |Ti∩Xm|—in
case of tie, we select the lowest i.

Figure 3 shows an example of the tokenization proce-
dure on a problem instance concerning the extraction of
dates: it can be seen that S is assigned to S2 = { , ,} and
hence the dot character is not considered as as a separator
because, otherwise, the substring 7.2.2011 of Xm would
be split.

4.1.1. Improved tokenization

The procedure described above introduces two practi-
cally relevant limitations on the extraction.

First, if the token separators cause the desired extrac-
tions (i.e., substrings in X?) to be tokenized, those sub-
strings cannot be extracted regardless of the effectiveness
of the string classifier. For example, consider a problem
instance in which the user is interested in extracting se-
quences of capitalized words: s = Andrew met his friend

Alice Young, who everybody knew as Alice the kid

and X? = {Andrew, Alice Young, Alice}. In this case,
the set S of separators might include (depending on the
substrings in Xm and Xu) and ,. The substring Alice

Young would not be extracted because it is not even consid-
ered by a string classifier, being split in Alice and Young:
note, however, substrings Alice and Young could be ex-
tracted separately.

Second, since tokens are analyzed by the string classi-
fier in isolation, the context in which they appear cannot be
taken into account: hence, the discriminative power of the
string classifier may be severely hampered. For example,
consider a problem instance in which the user is interested
in extracting Twitter user names from tweets, i.e., men-
tions without the leading @: s = Nice research paper

from @johnreds on wild #birds detection and clas

sification. @units with the setX? = {johnreds, units}.
The string classifier would be learned on strings multisets
P = {johnreds, units} and U = {Nice, research, paper,
from, . . . }: it would hardly be able to build an appropriate
and discriminative model of strings in the two multisets,
since what actually matters, from the point of view of the
syntax, stays around those strings.

In order to overcome these limitations, we experimented
with two tokenization variants that we describe below (the
extraction step resulting from these variants does not fit
the graphical overview in Figure 2; we do not provide ad-
ditional overviews for the sake of brevity).

Multitoken. The first variant deals with the first limita-
tion. In this variant, right after the building of the sep-
arators set S, a numeric value ntokens is determined as
follows: first, each substring xi in Xm is tokenized using
the separators in S and the resulting number ni of tokens
is saved; then, ntokens is set to the largest ni. The building
of P and N is not affected. During the extraction phase,
instead of applying the string classifier only to each token
of s, it is applied also to sequences of up to ntokens con-
secutive tokens. For example, considering the problem in-
stance concerning the capitalized words presented before,
the string classifier would be applied to strings Andrew,
met, his, . . . , but also to strings Andrew met, met his,
. . . , Alice Young, . . . , because, in this case, ntokens would
have been set to 2.

Note that for problem instances where desired extrac-
tions are not tokenized, this variant does not engage (since
ntokens = 1) and hence neither effectiveness nor time effi-
ciency are affected.

Context-aware. The second variant deals with the context-
related limitation. The key idea for this variant is to build
three string classifiers, one which operates on the string
under analysis, one on a short preceding string, and one
on a short succeeding string.

In details, we proceed as follows. In the learning phase,
right after building the multisets P and N as described
before, we also build the multisets P before, P after, Nbefore,
and Nafter. For each string x in P , we insert in P before

the string composed of the ncontext = 5 characters pre-
ceding x in s and we insert in P after the string composed
of the ncontext characters succeeding x in s; the same for
N , Nbefore, and Nafter. Then, three string classifiers are
learned, one on P , N , one on P before, Nbefore, and one on
P after, Nafter. Since we assume that it is not known, a
priori, if in the problem instance the context does matter,

5

we designed this variant to perform a validation proce-
dure during the learning phase: the procedure is aimed
at figuring out to which degree the three string classi-
fiers concur in discriminating substrings that are to be
extracted from substrings that are not to be extracted.
The procedure is performed as follows (we consider the
case of P,N , the same applies to the other two cases):
(i) a number nv = 3 of pairs P1, N1, . . . , Pnv

, Nnv
is built

from P,N by discarding each time two different strings
xp,i ∈ P and xn,i ∈ N ; (ii) for each pair, a string classi-
fier is learned on the pair Pi, Ni and then applied to the
discarded strings xp,i, xn,i; (iii) the accuracy of classifica-
tion a is computed as the number of correct classifications
divided by 2nv. The procedure results in three accura-
cies, a, abefore, and aafter, which capture to which degree
the strings in the corresponding multisets are “separable”.
If |P | ≤ nv or |N | ≤ nv, we skip the validation proce-
dure and set a = abefore = aafter = 1. In all cases, the
three classifiers for the multisets P,N , P before, Nbefore, and
P after, Nafter are eventually learned on the whole multisets.

In the classification phase, the score assigned to an in-
put string x is computed as weighted average of the scores
obtained from the three classifiers applied to x, the string
xbefore of ncontext characters preceding x in s, and the
string xafter of ncontext characters succeeding x in s, with
the weights corresponding to the accuracies a, abefore, and
aafter. As an optimization, if any accuracy is lower than
0.5, we do not apply the corresponding classifier.

4.2. Classifiers

We designed and evaluated a number of classifiers to be
used in the extraction step (Section 4.1), which we describe
in the following subsections. We performed some prelim-
inary experimentation on classifiers based on Conditional
Random Fields (CRF), but we found this method not ade-
quate to our use case due to its long learning time. Indeed,
other previous works also concluded that CRF take long
learning times (Li et al., 2008; Bartoli et al., 2016e).

4.2.1. Markov chain classifier

The key idea for this string classifier is to fit two Markov
chain models on the strings in P and N and then classify
an input string by comparing its consistency with the two
models. Indeed, Markov chains have already been used
for classification of strings, such as, e.g., by Medvet et al.
(2011); Bartoli et al. (2014b) for the classification of text
blocks to be extracted from digitally acquired printed doc-
uments. In details, we proceed as follows.

We denote by n the order of the Markov chain model—
n being a parameter of this string classification method.
In the learning phase, two transition matrices MP ,MN ∈
[0, 1]|A|

n×|A| are built on P,N respectively—A being the
set of characters appearing in P ∪N plus the character .,
whose role is clarified below. Each row of the transition
matrix corresponds to one string of n characters and each
column corresponds to a single character.

We describe the procedure for building MP , the same
apply to MN . First, we set each element of MP to 0.
Second, for each string x ∈ P , we (i) left pad x with n− 1
occurrences of the character B and then (ii) we slide a win-
dow of n characters on x and increment the elements of
MP accordingly: for each window x[i,i+n[of x characters
from ith (included) to (i+ n)th (excluded), we increment
the element Mx[i,i+n[,x[i+n]

P of MP corresponding to row
x[i,i+n[and to column x[i+n]. E.g., for x = banana and

n = 2, the elements M.b,a
P , Mba,n

P , and Mna,n
P are incre-

mented by 1 whereas the elementMan,a
P is incremented by

2. Third, each row of the matrix is normalized such that
(i) the sum of the elements whose values were equal to zero
is equal to ε and (ii) the sum of all row elements is equal to
1. After the learning, each element of the transition matrix
represents the state-transition probability observed on P ,
i.e., the probability that a given character follows a given
string of n characters. The rationale for setting non zero
values (by means of ε) for transitions which were not ob-
served on P is to smooth the fitted model in order to avoid
assigning zero probability to unseen strings. In all our ex-
perimentation, we set ε = 0.05 and n = 5 after exploratory
experimentation.

In the classification phase, the score assigned to an
input string x is given by c = Pr(x;MP) − Pr(x;MN),
where Pr(x;M) is the probability that x is generated by
a Markov chain defined by the transition matrixM—e.g.,
Pr(bag;MP) =M..b,a

P M.ba,g
P .

We also considered a variant of this method in which,
before the actual learning and classification procedures,
each string is preprocessed as follows: each lowercase let-
ter is replaced by a, each uppercase letter is replaced by
A, each digit is replaced by 0, each spacing character is re-
placed by , and each other character is replaced by .. For
example, the 07-Feb-2011 becomes 00.Aaa.0000. The
rationale for this transformation is an attempt to capture
the underlying structure of the strings, rather than their
specific content.

4.2.2. Feature-based classifier

The key idea for this string classifier is to transform
an input string in a vector of numeric features and then
to process this vector using well-established classification
algorithms. We considered two possible variants for ob-
taining a numeric vector ~f from a string x, one based on
n-grams and one based on building blocks.

In the n-grams variant, strings are first preprocessed
according to the procedure described at the end of the pre-

vious section. Then, ~f is defined in [0, 1]
∑n

k=1 5k—because
the different characters after the preprocessing are 5—and
each element of ~f is the ratio between the number of oc-
currences in x of a substring up to n characters and the
length of x. For example, the only non zero elements for
x = 00.aaa.0000 (after preprocessing) with n = 2 are
f0 = 6

11 , fa = 3
11 , f. = 2

11 , f00 = 4
11 , faa = 2

11 , and
f0. = f.a = fa. = f.0 = 1

11 . In all our experimentation,

6

we set n = 3, hence ~f ∈ [0, 1]155.

In the building blocks variant, ~f is defined in N120 and
each element of ~f is the number of matches of a given reg-
ular expression of a set R within the string x. The set
R of regular expressions is built by combining a seed set
R0 of the following 10 regular expressions: [A-Z], [a-z],
[0-9], \w, [^\w], \s, [^\w\s], [-@&#:;], [\[\]()], and
[*+-/\\]. For each regular expression r ∈ R0, three reg-
ular expressions r++, ^r, and r$ are present1 in R; more-
over, for each pair r1, r2 ∈ R0 × R0 such that r1 6= r2,
the regular expression r1r2 is present in R. It follows that
|R| = 3 · 10 + 102 − 10 = 120.

In the classification phase, the score assigned to an
input string x is given by the difference of the posteriori
probabilities assigned by the classifier to the feature vector
~f obtained from x for the two classes, i.e., c = Pr(~f ;P)−
Pr(~f ;N) = 2Pr(~f ;P)− 1.

We experimented with four classifications algorithms:
Random Forest (Breiman, 2001), Naive Bayes (McCallum
et al., 1998), AdaBoost (Freund & Schapire, 1995), and
Artificial Neural Network—we used only Random Forest
with n-grams and all the 4 algorithms with building blocks.
We chose these algorithms after preliminary experimenta-
tion, which also allowed us to set the values of the most
significant parameters for each algorithm. For Random
Forest and AdaBoost, we set the number of trees to 100.
For Naive Bayes, we used the multinomial model, which we
found to be more effective, despite the findings of McCal-
lum et al. (1998). For Artificial Neural Networks, we used
a network with 1 intermediate layer of 20 nodes trained
using the cross entropy error function.

4.2.3. Similarity-based classifier

The key idea for this string classifier is to classify an
input string based on its average similarity to strings in
P and N . We considered several variants for the actual
string similarity index m being used: based on exploratory
experimentation and previous studies (Cheatham & Hit-
zler, 2013a; Cohen et al., 2003; Bilenko et al., 2003; Bar-
toli et al., 2016c), we actually implemented three extrac-
tors using Jaccard, Jaro-Winkler, and Needleman-Wunsch
similarity indexes. In particular, we chose these metrics
because they represent, as shown by Bartoli et al. (2016c),
an interesting trade-off between computational effort and
effectiveness in evaluating as (dis)similar pairs of string
which have the same (or different) extraction outcome.

The Jaccard similarity index between two strings is
computed by considering each string as a set of charac-
ters or bigrams (as in our case) and is the ratio between
the sizes of the intersection and the union of the two sets.
The Jaro-Winkler index is a modified Jaro index in which
similarity grows for strings that share a common prefix;
in turn, Jaro similarity index takes into account matching

1The regular expressions ^r and r$ match a substring at the be-
ginning or end, respectively, of the string which itself matches r.

characters, i.e., characters appearing in both strings at an
offset smaller than a certain quantity, and transpositions,
i.e., number of matching characters appearing in a different
order in the two strings. Finally, the Needleman-Wunsch
(Needleman & Wunsch, 1970) is a form of edit distance
which assigns different costs to edit operations: we ad-
justed the output in order to use it as a similarity index
rather than a distance, i.e., lower values mean dissimilar
strings.

In the learning phase, we determine a threshold τ as
follows. We denote with m(x1, x2) the similarity among
strings x1 and x2: we assume that m(x1, x2) = 1 if x1 = x2
and the closer m(x1, x2) to zero, the less similar the two
strings. First, for each string x in P ∪ N , we compute a
value ∆m(x) defined as the difference between the average
similarity of x to strings in P and to strings in N , i.e.,
∆m(x) = 1

|P |
∑

x′∈P m(x, x′)− 1
|N |
∑

x′∈N m(x, x′). Then,

we choose the value for τ which maximizes the sum of
the number of strings in P for which ∆m(x) > τ and the
number of strings in N for which ∆m(x) < τ . Note that,
in an ideal case, ∆m(x) is close to 1 for strings in P , ∆m(x)
is close to −1 for strings in N , and τ is close to 0.

In the classification phase, the score assigned to an
input string x is given by c = ∆m(x)− τ . Note that, dif-
ferently from Markov chain and feature-based string clas-
sifier, the computational effort in the classification phase
depends on the size of the multisets P and N .

5. Active learning schemes

Several schemes for pool-based active learning have
been proposed (Settles, 2009). All such schemes try to
capture the concept of informativeness of a candidate in-
stance with respect to the learning process: they differ in
how the informativeness is computed and in how tightly
they are coupled with the underlying learning algorithm.

The most common active learning schemes are: un-
certainty sampling, query-by-committee, expected model
change, variance reduction, estimated error reduction. For
many of them, variants based on density weighting have
been proposed as well: e.g, query-by-committee with den-
sity estimation (McCallum & Nigam, 1998), uncertainty
sampling with pre-computed density on text classification
segmentation (Settles & Craven, 2008). Among all these
schemes, based on previous studies and on the nature of
our problem in terms of data and goals, we decided to con-
sider only the first two (uncertainty sampling and query-
by-committee), together with two other custom schemes
which we designed for our case. We think that the others
do not fit our scenario, mainly because they are computa-
tionally expensive.

In particular, variance reduction is intrinsically com-
putationally expensive and, most importantly, needs to be
tailored to the specific underlying classifier (the extrac-
tor, in our case)—e.g., it has been adapted to Conditional
Random Fields by Settles & Craven (2008).

7

Estimated error reduction requires the re-training of
the underlying classifier for each possible answer to each
candidate query and irrespective of the actual answer that
will be given by the user, which is clearly expensive. Con-
cerning expected model change, it is not straightforward
to be generalized with respect to the underlying classifier:
however, we were inspired by this scheme while designing
one of the two active learning approaches which we pro-
pose.

In the next sections, we describe how we adapted un-
certainty sampling and query-by-committee to our case
and we present the two schemes we designed ad hoc. Fi-
nally, we discuss about the density weighting variant and
how we applied it.

5.1. Uncertainty sampling

The key idea for this active learning scheme is to select,
among the pool of available instances, the one for which
the current model is most uncertain.

This scheme application to our case is straightforward,
since the score c assigned by the extractor E to a substring
x can be used to estimate the extractor uncertainty: the
closer c to 0, the larger the uncertainty. Hence, in this
scheme, the selected query xq is the one for which abs (c)
has the lowest value. If that substring overlaps a substring
in Xm ∪Xu, i.e., it is already (partially) annotated, then
the second most uncertain substring is selected, and so on.

5.2. Balancer

This active learning scheme bases on the assumption
that a balanced learning set may result in a more effective
classification: such assumption has been confirmed also for
classification scenarios similar to the one here considered
(Bartoli et al., 2014a). Hence, the queried substring is the
one which, most likely, will make the current learning set
more balanced: i.e., if |Xm| > |Xu|, the query is the one
for which the system has largest confidence on the fact that
it should not be extracted; otherwise, if |Xm| < |Xu|, the
query is the one for which the system has largest confidence
on the fact that it should be extracted.

In details, we proceed as follows. When a substring has
to be selected from the pool, the sizes of the current learn-
ing sets |Xm| and |Xu| are considered. If |Xm| > |Xu|,
the substring with the largest negative score c is selected as
xq—we recall that a large negative score means that the
extractor is strongly confident that the substring should
not be extracted: hence, it is the one which most likely
will be marked by the user as not to be extracted. Simi-
larly, if |Xm| < |Xu|, the substring with the largest pos-
itive score is selected. Otherwise, if the learning set is
already balanced, i.e., if |Xm| = |Xu|, then the most un-
certain substring is selected as query xq, as for uncertainty
sampling. In all cases, if the selected substring overlaps a
substring in Xm ∪ Xu, then the next most appropriate
substring in the pool is selected according to the specific
criterion.

5.3. Least similar instance

The key idea for this active learning scheme is to select
a substring which is strongly different from the ones al-
ready available, i.e., those in Xm ∪Xu. The rationale for
this choice is to provide the extractor with largely differ-
ent examples and hence avoid “overfitting” the extraction
behaviour on a specific subset of desired extractions. As
an aside, choosing the most different substrings may stim-
ulate large changes in the extractor model—in this sense,
this method resembles the expected model change general
active learning scheme.

In details, we proceed as follows. Let m be the string
similarity metric being used. For each substring x in the
pool, we compute its average similarity m(x):

m(x) =
1

|X|
∑
x′∈X

m(x, x′) (1)

where X is the set Xm or Xu depending on whether the
score c assigned to x is ≥ 0 or < 0, respectively. Then,
we select as the query xq the substring x with the lowest
average similarity m(x). In other words, if the substring
appears to be a desired extraction, we aim at minimizing
its similarity with labeled desired extractions; otherwise,
we aim at minimizing its similarity with labeled undesired
extractions. As for the other schemes, if the selected sub-
string overlaps a substring in Xm∪Xu, then the next most
appropriate substring in the pool is selected.

We considered the same string similarity metrics we
used to build the extractor described in Section 4.2.3, for
the same motivation. However, since we experimentally
found that Jaccard outperformed the other two, we used
only the former for the remaining evaluations.

5.4. Density weighting variant

The key idea for this variant is that the more repre-
sentative a candidate query, the better. The representa-
tiveness of an instance may be measured as the average
similarity with other instances in the pool, as suggested
by Settles & Craven (2008) who calls it information den-
sity: if an instance lies in a dense region of the instance
space, it is deemed representative. The degree of represen-
tativeness of a candidate query should then be combined
with its informativeness.

In details, we proceed as follows. Let m be the string
similarity metric being used. For each substring x in the
pool, we compute its informativeness i(x) according to one
of the previous active learning schemes (e.g., − abs (c) for
the uncertainty sampling). Then we compute its average
similarity m(x) with the other substrings in the pool (see
Section 5.3). In order to reduce the computational bur-
den, we actually consider only the most informative 25
substrings in the pool (i.e., those with the greatest i(x)),
which leads to 1

2252 similarity computations. Finally, we
compute a score for the substring as i(x)m(x) and select
as query xq the substring in the (reduced) pool with the
largest score. If the selected substring overlaps a substring

8

in Xm ∪Xu, then the next substring in the reduced pool
is selected.

We considered this variant in combination with uncer-
tainty sampling and balancer schemes and used the Jac-
card metric. We did not combine the density weighting
variant with the least similar substring scheme because
they pursue conflicting goals (minimizing and maximizing
similarity, respectively).

5.5. Query-by-committee

Query-by-committee consists in maintaining a set of
alternative hypotheses (the committee) which are all based
on the same learning data. The instance to be selected
from the pool is the one for which the hypotheses most
disagree.

Two key design choices have to be done for applying
query-by-committee: (a) the composition of the commit-
tee and (b) the measure of disagreement. In our case,
we use a committee Q composed of 7 extractors: Markov
chain; AdaBoost with context-aware optimization; Ad-
aBoost with multitoken and context aware optimizations;
Artificial Neural Networks; similarity-based with Jaccar;
similarity-based with Jaccard and context-aware optimiza-
tion; similarity-based with Jaccard, multitoken and context-
aware optimizations. The key idea for this choice was to
select a set of extractors being, at the same time, effective
(see Section 6.4) and based on different working principles.
Concerning the measure of disagreement, we set the dis-
agreement d(x) of the committee on a substring x of s as
the absolute difference between the number of extractors
extracting x and half of the committee size, inverted in
sign:

d(x) = − abs
(∣∣∣{E ∈ Q : (x, c) ∈ E(s) ∧ c > 0

}∣∣∣− |Q|
2

)
(2)

If the substring which maximizes d(x) overlaps a substring
in Xm ∪Xu, then the second substring with greatest dis-
agreement is selected, and so on.

In the extraction phase, a set {(x, c)} of substrings has
to be extracted. When working according to query-by-
committee, our system uses many extractors: we use only
one of them to actually produce the set {(x, c)}. The
key idea is to select the extractor which, on the current
learning sets Xm and Xu, has the greatest discrimination
ability between substrings known to be extracted and sub-
strings known not to be extracted. We proceed as follows.
First, for each extractor E ∈ Q, we obtain the set Cm

of desired extractions scores and the set Cu of undesired
extractions scores: starting from Cm = Cu = ∅, for each
(x, c) ∈ E(s), we add c to Cm if x ∈ Xm, otherwise we add
c to Cu—ideally, all scores in Cm should be positive and
all scores in Cu should be negative. Second, we compute
the overlapness o(Cm, Cu) of the sets Cm and Cu, where

Tokenization

P w/o optimizations
M Multitoken
C Context-aware
B Multitoken and context-aware

String classifier

MC Markov chain
pMC Markov chain w/ preprocessing
AB AdaBoost on building blocks
NN Art. neural net. on building blocks
NB Naive Bayes on building blocks
bRF Random Forest on building blocks
nRF Random Forest on n-grams
jS Similarity-based w/ Jaccard

jwS Similarity-based w/ Jaro-Winkler
nwS Similarity-based w/ Needleman-Wunsch

Active learning scheme

R Random query
U Uncertainty sampling

QbC Query-by-committee
B Balancer
L Least similar instance

dU Density-weighting uncertainty sampling
dB Density-weighting balancer

Table 1: A summary of the abbreviations of the names for the consid-
ered variants of the three key components of our system. The name
of a specific variant of the full system is given by the concatenation
of the component variant names: e.g., dU/bRF-B is Random For-
est on building blocks with both tokenization optimizations and the
density-weighted uncertainty sampling scheme; QbC/* is the com-
mittee of 7 extractors described in Section 5.5.

the o(A,B) for numeric sets A and B is defined as:

o(A,B) =
|{a ∈ A : a ≥ minb∈B b}|

|A|+ |B|

+
|{b ∈ B : b ≤ maxa∈A a}|

|A|+ |B|

(3)

Finally, we select as the actual extractor the one for which
the overlapness is the lowest.

In other words, we select the extractor which proves to
have, on the learning sets Xm and Xu, the greatest sep-
aration ability according to scores assigned to substrings
known to be or not to be extracted. This measure for
discrimination ability has indeed already been used in the
context of text extraction as the main component of fitness
function for a string similarity metric synthesis method
based on Grammatical Evolution (Bartoli et al., 2016d).

For the sake of presentation clarity, in the next sections
we abbreviate the names of the variants of our system (re-
sulting by combining different options for the tokenization,
classification, and active learning scheme) as shown in Ta-
ble 1.

9

6. Experimental evaluation

6.1. Overview

In this work we are concerned with the identification
of text items which follow a certain pattern to be specified
by the user by means of examples; all the relevant items
have to be identified very quickly, within a time budget
that we assume to be bounded within a few minutes. We
chose this bound based on the interactive use cases that
we believe are most relevant, as outlined in the introduc-
tion. Solutions to the problem may be assessed in terms of
accuracy (i.e., whether the identified items indeed follow
the pattern and no relevant items are missed) and in terms
of the time required for identifying all the relevant items.

It is important to emphasize that these performance
indexes, defined precisely in the next sections, complement
each other and assessing a solution based on only one of
them would be misleading. For example, an approach with
very high accuracy that takes hours to complete would be
unsuitable. On the contrary, an approach that is extremely
fast but delivers very low accuracy would be unsuitable as
well.

Since the time for identifying all the relevant items is
a crucial issue, we quantified this index very carefully and
took all the following components into account: (1) the
time it takes to the user for selecting and annotating the
initial examples; (2) the time it takes to the system for
selecting queries to be submitted to the user; (3) the time
it takes to the user for answering queries; and, (4) the
time it takes to the system for identifying all the items
that follow the currently specified pattern. We executed a
number of experiments for assessing all our design variants
in terms of accuracy and overall execution time, in the
sense described above.

In order to gain further insights into our results, we an-
alyzed also the behavior of an earlier proposal developed
by our research group for constructing a pattern by means
of examples (Bartoli et al., 2016b,e). The cited work de-
scribes a tool based on a passive learning framework, in
which the user is required to analyze the full input text
and specify all the examples to be input to the system at
once, without any interaction with the system. This pas-
sive learning tool delivers state-of-the-art accuracy, but
has been designed with different requirements and, in par-
ticular, is unfit for scenarios in which the results must
be available within a few minutes. As we shall see, the
approach proposed in this work delivers results with a la-
tency that is order or magnitudes smaller than that of the
passive learning tool, with accuracy that is smaller but
roughly comparable. In other words, our proposal com-
plements the tool previously proposed by Bartoli et al.
(2016b,e) and provides a practical solution for scenarios
that call for a different trade off between accuracy and
execution time.

6.2. User annotation time

As discussed in the previous section, we devoted special
effort in modelling the overall execution time accurately.
Concerning the annotation time ta spent by the user, we
followed the same procedure of Bartoli et al. (2017) and
proceeded as follows.

We observed in preliminary experimentation that the
annotation time for a given query strongly depends on the
type of answer, i.e., binary answer vs. edit answer (Sec-
tion 3). We also observed that the time spent for an-
notating a query constructed by the system tends to be
very different from the time required for fully annotating
a long piece of text, as in passive learning (Bartoli et al.,
2016e). We hence constructed three different models for
the annotation time ta and we fitted these models on real
observations, as follows.

We involved a set of 10 users with varying skills and
asked them to annotate a broad variety of datasets on a
webapp that we developed for this purpose. We recorded
user actions in two different scenarios: (i) when answering
queries constructed by a mockup of our system, in order to
emulate interaction with a system based on active learn-
ing; and, (ii) when fully annotating a dataset, in order to
emulate the annotation required by a passive learning tool.
In the former case, each user was asked to answer a num-
ber (≈ 20) of queries whose expected answers were roughly
equally distributed among positive binary answers, nega-
tive binary answers, and edit answers. The web applica-
tion was instrumented for taking note, for each query, of
the time the user took to answer, the answer length, and
the number of desired extractions in the query. Based on
the collected data, we fitted several models for the annota-
tion time and chose those that proved to be more accurate.
The resulting models for ta (expressed in seconds) are the
following:

tbinarya = 0.02`(Xm
q ∪Xu

q) + 2.0 (4)

tedita = 3.4|Xm
q |+ 0.01`(Xm

q ∪Xu
q) + 3.1 (5)

tpassivea = 3.4|Xm|+ 0.003`(Xm ∪Xu) (6)

where `(Xm
q ∪ Xu

q) is the overall length of the answer,
|Xm

q | is the number of desired extractions in the answer,
|Xm| is the number of desired extractions in the fully an-
notated dataset, and `(Xm ∪Xu) is the overall length of
the fully annotated dataset. These figures correspond, in
active learning, to an annotation time of ≈ 2.5 s for binary
queries and ≈ 7 s for edit queries, assuming that queries
lenght is in the order of few tens of characters.

6.3. Data

We considered 10 datasets, each representing a differ-
ent use case, i.e., each consisting in different text items of
interest. All the datasets have already been used in previ-
ous studies2. Some of those datasets were obtained from

2All the datasets developed by our group and that do not con-
tain personally identifiable information are available on our web

10

earlier publications not published by our research group.
We briefly describe them here.

• BibTex-Author. A set of bibtex entries from which
individual authors names should be extracted. Used
by Bartoli et al. (2016e).

• Bills-Date. A set of US Congress bills from which
dates in 9 different formats should be extracted. Used
by Bartoli et al. (2016e, 2015a).

• Email-Phone. A set of email excerpts from which
phone numbers should be extracted. Used by Bartoli
et al. (2016e,a, 2014a); Brauer et al. (2011); Li et al.
(2008).

• Headers-ForToEmail. A set of email headers from
which email addresses occurring right after the strings
for: or to: (possibly capitalized) should be extracted.
Used by Bartoli et al. (2016e, 2014a).

• HTML-href. A set of HTML documents from which
href attributes (both name and value) should be
extracted. Used by Cetinkaya (2007); Bartoli et al.
(2016e,a, 2014a).

• Log-IP. A set of log entries of a firewall software from
which IP addresses should be extracted. Used by
Bartoli et al. (2016e,a, 2014a).

• Twitter-Hashtag+Citation. A set of Twitter posts
from which hashtags (e.g., #machinelearning) and
citations (e.g., @MaleLabTs) should be extracted. Used
by Bartoli et al. (2016e,a, 2014a).

• Twitter-URL. A set of Twitter posts from which
URLs should be extracted. Used by Bartoli et al.
(2016e,a, 2014a).

• Twitter-Usernames. A set of Twitter posts from
which user names in citations (e.g., just MaleLabTs

in the substring @MaleLabTs) should be extracted.
Used by Bartoli et al. (2016e).

• Web-URL. A set of web pages (in HTML) from which
URLs should be extracted. Used by Bartoli et al.
(2016e,a, 2014a); Li et al. (2008).

Table 2 shows salient information about the datasets.
It shows the average length `(x?) of a desired extraction,
the average length `(s) of a text portion including 100 de-
sired extractions, the ratio ρ? between the number of char-
acters to be extracted and all characters, and the average
time a user would take to fully annotate a text portion in-
cluding 100 desired extractions, according to the model of
Eq. 6. It can be noted that there are significant differences
(0.02–0.24) among the datasets concerning ρ?: in other
words, desired extractions are more or less sparse. For in-
stance, 100 desired extraction takes ≈ 5500 characters for
Log-MAC+IP and ≈ 136 000 characters for Web-URL.

site: http://machinelearning.inginf.units.it/data-and-tools/

Extractor `(x?) ρ `(s) tpassivea

BibTex-Auth. 15.5 0.17 9185 368
Bills-Date 10.6 0.02 50 693 492
Email-Phone 13.2 0.04 35 140 445
Headers-learn. 23.5 0.03 76 924 571
HTML-href 62.9 0.09 73 250 560
Log-IP 12.9 0.24 5462 356
Twit.-Hash.+Cit. 11.2 0.11 10 251 371
Twit.-URL 19.9 0.07 28 490 425
Twit.-Usern. 11.0 0.08 13 283 380
Web-URL 52.2 0.04 135 412 746

Table 2: Salient information about the datasets. Annotation time
ta is expressed in seconds.

6.4. Extraction assessment

6.4.1. Procedure

We performed a first experimental campaign aimed at
assessing effectiveness and time efficiency of each extrac-
tor without active learning. That is, we constructed a set
of desired extractions, a set of undesired extractions and
then we synthesized and applied each extractor only once
(i.e., we executed only step 1 of Section 3). We considered
29 extractors, resulting from a number of combinations be-
tween tokenization procedures and classifiers. This cam-
paign allowed us to reduce the number or extractors to
consider and thus obtain a manageable number of design
alternatives for the full system, i.e., with active learning.
The second campaign aimed at assessing the full system is
described in the next section.

We proceeded as follows. For each dataset, we built a
number of problem instances by selecting a random sub-
string s of the dataset text such that the number of de-
sired extractions in s was exactly |X?| = 100; then we
annotated an initial portion of s such that the time taken
for the (simulated) annotation was ta, according to the
model of Eq. 6 for tpassivea . We repeated this procedure for
ta ∈ {30 s, 60 s, 90 s, 120 s} and, for each ta value, 30 times
by varying the substring s: we hence built 120 problem
instances (s,Xm, Xu, X?) for each dataset.

Then, for each extractor, we learned the extractor on
(s,Xm, Xu) and then applied it to s. Finally, we measured
the extractor effectiveness in extracting all and only the
substrings in X?. The effectiveness has been computed
as F-measure, which is the harmonic mean of precision
|X∩X?|
|X| and recall |X∩X

?|
|X?| , where X is the set of substrings

extracted by the learned extractor—since F-measure and
precision cannot be computed if the extractor does not ex-
tract any substring, we set F-measure and precision to zero
in that case. We also measured the learning time tl, i.e.,
the time the extractor took to be learned on (s,Xm, Xu),
and the extraction time te, i.e., the time the extractor took

annotated-strings-for-learning-text-extractors.

11

to analyze s and extract the substrings in X. We recall
that both the learning and extraction times are worth to
be investigated, because the iterative procedure described
in Section 3 involves, for each iteration, both the steps.
All the experiments have been carried out on a worksta-
tion equipped with 8 GB and a Intel Core2 Quad CPU
2.5 GHz.

In order to place our results in perspective, we also ex-
ecuted the state-of-the-art passive learning tool (Bartoli
et al., 2016e) on the same datasets with a similar proce-
dure: we considered a single substring s of the dataset
(instead of 30) built with ta = 60 s and we ran the cited
tool 5 times on the instance constructed from s—the latter
repetition due to the stochastic nature of the tool proposed
by Bartoli et al. (2016e), which is based on Genetic Pro-
gramming.

6.4.2. Results and discussion: overview

The results of the first experimental campaign are shown
in Table 3, Table 4, Table 5, and Figure 5. In particular,
Table 3 shows the effectiveness (F-measure) and efficiency
(tl, te, and tl + te) for each extractor, averaged across
datasets and repetitions, obtained for ta = 60 s, i.e., when
the user spends one minute for annotating the data (in
passive learning mode). Several interesting observations
can be done.

First, six extractors obtain an average F-measure larger
or equal to 0.60—the best extractor (AB-B) scoring 0.66—
while requiring a short time for learning and extracting
(from ≈ 170 ms to ≈ 2050 ms for tl + te). This result fits
our scenario presented in Section 3. To place these figures
in a perspective, we also show the F-measure obtained by a
state-of-the-art method for syntax-based entity extraction
(Bartoli et al., 2016e) (last row of Table 3). The cited
method obtains an average F-measure of 0.82, taking a
learning time which is 1000 times longer than the one taken
by AB-B—half-an-hour against two seconds.

Second, there is a noticeable variation in both effective-
ness (F-measure) and time efficiency (tl and te) among
extractors: for ta = 60 s, F-measure spans between 0.17
to 0.66 (nRF and AB-B, respectively), tl spans between
6 ms and 1942 ms (MC and AB-B, respectively), and te
spans between 20 ms and 1431 ms (NB and jS-B, respec-
tively). Moreover, it can be seen that (i) there exists a
trade-off between the effectiveness and time efficiency and
(ii) some methods define a Pareto frontier in the space of
the two goals. These findings are further supported by
Figure 4, which compares the extractors by plotting effec-
tiveness (F-measure) vs. time efficiency (tl + te). More in
detail, results of Table 3 and Figure 4 suggest that Markov
chain extractors are (in general) faster, yet they performs
poorly in terms of F-measure. On the other hand, feature-
based and similarity-based extractors obtain very good F-
measure figures, but take longer to be learned or to be
applied, respectively, in particular in the context-aware (-
C) variant—mainly due to the validation procedure (see
Section 4.1.1).

Extr. Fm Prec. Rec. tl te tl + te

MC 0.2 ±0.03 0.15 0.64 6 53 59
pMC 0.31±0.04 0.24 0.67 8 63 71
pMC-C 0.43±0.09 0.38 0.62 19 122 141
pMC-M 0.32±0.05 0.25 0.75 8 263 271
pMC-B 0.47±0.1 0.41 0.7 19 305 324

AB 0.61±0.08 0.74 0.58 130 41 170
AB-C 0.65±0.1 0.81 0.61 1940 59 1999
AB-M 0.59±0.1 0.62 0.6 130 78 208
AB-B 0.66±0.11 0.71 0.66 1942 106 2048
NN 0.52±0.08 0.81 0.49 291 54 345
NB 0.4 ±0.05 0.32 0.65 16 20 36
bRF 0.58±0.1 0.69 0.59 70 86 157
bRF-C 0.62±0.12 0.78 0.6 1025 121 1145
bRF-M 0.57±0.11 0.58 0.6 71 156 227
bRF-B 0.63±0.13 0.69 0.64 1024 214 1238
nRF 0.17±0.01 0.99 0.09 1518 854 2372

jS 0.52±0.07 0.71 0.5 24 173 196
jS-C 0.56±0.09 0.66 0.55 92 333 425
jS-M 0.58±0.08 0.71 0.55 23 1236 1259
jS-B 0.64±0.11 0.73 0.62 15 1431 1446
jwS 0.47±0.09 0.44 0.57 10 163 173
nwS 0.51±0.08 0.53 0.61 27 166 192

Base. 0.82 2.01E6 50 2.01E6

Table 3: F-measure, learning time tl, extraction time te, and overall
time tl + te obtained for ta = 60 s with each extractor. Values are
averaged across repetitions and datasets: for F-measure, the average
across datasets of the standard deviation across repetitions on the
same dataset is also shown. Times are expressed in ms. Base stands
for the baseline by Bartoli et al. (2016e).

Third, the method variants proposed to cope with the
limitations of tokenization (i.e., multitoken and context-
aware—see Section 4.1.1) appear to work. We present here
the results obtained by combining them with a limited set
of extractors, but we verified that the findings are more
general. In many cases, the optimized extractors obtain
better F-measure than the corresponding unoptimized ex-
tractors: in particular, for pMC and jS, both -M and -C
outperform the unoptimized extractors, and -B outper-
form -M, -C and unoptimized. On the other hand, these
optimizations impact negatively on both the learning time
tl (up to 15 times longer) and the extraction time te (up
to 8 times longer).

Among the 22 extractor considered in Table 3, we chose
a subset of 7 which we thought were representative of dif-
ferent ways of facing the trade-off between effectiveness
and efficiency. On this subset, we conducted further anal-
ysis. Table 4 shows the difference of average F-measure, tl
and te among pair of extractors of this subset. The abso-
lute value of the difference is shown along with a graphical
indication of the statistical significance (in terms of the p-
value) according to the Wilcoxon signed rank test, which
we performed considering the 300 repetitions which we

12

102 103 104 105 106
0

0.2

0.4

0.6

0.8

tl + te [ms]

F
-m

ea
su

re

Markov chain
Feature-based

Similarity-based

Bartoli et al. (2016e)

Figure 4: Effectiveness (F-measure) vs. time efficiency (tl + te) of
the extractrors for ta = 60 s. Values are averaged across repetitions
and datasets.

performed for each extractor of the pair (with ta = 60 s).
It can be seen that most of the conclusions drawn are con-
firmed, with the notable exceptions concerning the differ-
ences in F-measure between AB-B, jS-B and AB-C, jS-B
which are not significant.

6.4.3. Impact of the learning data size

The impact of the amount of learning data on extrac-
tors effectiveness and efficiency can be appreciated in Fig-
ure 5. The figure plots F-measure, tl, and te against ta,
one curve for extractor (in a subset of 7 relevant extrac-
tors) and one point for the baseline given by Bartoli et al.
(2016e). It can be seen that ta does impact on the F-
measures for all the extractors: the larger ta, the bet-
ter the F-measure. The largest improvement is obtained
when going from 30 s to 60 s. This finding confirms that
the proposed extractors are appropriate for the consid-
ered scenario in which the user wants to spend short time
for annotating the data, that is, when “little” information
is available for learning. In this respects, it is worth to
note that in our experiments the chosen values for ta, i.e.,
30 s, 60 s, 90 s, and 120 s, corresponded to a number |Xm|
of annotated desired extractions available for learning of
5, 9, 14, and 18, respectively, and to an overall number
`(Xm ∪Xu) of annotated characters of 1730, 3547, 5023,
and 7192, respectively. Concerning times, it can be noticed
that ta has different impacts depending on the extractor
family. For Markov chain and feature-based extractors,
tl grows roughly linearly with ta, whereas te appears to
be weakly affected by ta. For similarity-based extractors,
tl grows quadratically with ta, whereas te grows roughly
linearly with ta: this finding is consistent with the way

Extr. p
M

C
-B

A
B

-C

A
B

-B

N
N

jS jS
-M

F
-m

ea
su

re

AB-C 0.18‡

AB-B 0.19‡ 0.02∗

NN 0.05† -0.12‡ -0.14‡

jS 0.05∗ -0.13‡ -0.14‡ -0.00
jS-M 0.10‡ -0.07∗ -0.09‡ 0.05† 0.05‡

jS-B 0.16‡ -0.01 -0.03 0.11‡ 0.12‡ 0.06‡

t l

AB-C 1921‡

AB-B 1923‡ 1
NN 272‡ -1649‡ -1651‡

jS 5‡ -1917‡ -1918‡ -267‡

jS-M 4‡ -1917‡ -1918‡ -268‡ 0.

jS-B -4† -1925‡ -1926‡ -275‡ -8‡ -8‡

t e

AB-C -246‡

AB-B -198‡ 48‡

NN -251‡ -5 -52‡

jS -132 114‡ 66‡ 119‡

jS-M 931‡ 1177‡ 1130‡ 1182‡ 1063‡

jS-B 1126‡ 1372‡ 1325‡ 1377‡ 1258‡ 195‡

Table 4: Differences of average F-measure, tl, and te between pair
of 7 selected extractors, obtained for ta = 60 s. For each pair, the
statistical significance is shown: .: p < 0.1, ∗: p < 0.05, †: p < 0.01,
‡: p < 0.001, p ≥ 0.1 without any subscript.

similarity-based extractors work during the classification
phase, when each token is compared against all strings
available for learning.

6.4.4. Differences among datasets

Concerning the effectiveness on each dataset, results
of Table 5 show that for 3 on 10 datasets the best F-
measure is larger than 0.90 and for 8 is larger than 0.60.
For BibTex-Author and Bills-Date the best F-measure is
rather low (0.52 and 0.45, respectively). Looking at the
raw data, we observed that in the former dataset there is
not a sharp distinction between the content of substrings
to be extracted and not to be extracted.

The Bills-Date dataset is instead intrinsically difficult
due to the presence of several different date formats. In-
deed, also the baseline method struggles into finding an
effective regular expression for extracting dates (obtaining
an F-measure of 0.21): interestingly, several of our extrac-
tors outperforms the baseline on Bills-Date.

Besides providing a more detailed view of the extractor
effectiveness, values shown in Table 5 allow appreciating
the impact of multitoken and context-aware optimizations.
The former is beneficial for datasets BibTex-Author and
Email-Phone, as expected—in both cases, spaces, e.g., oc-
cur both inside desired extractions and as boundaries of
desired extractions. The latter is beneficial for datasets
Headers-ForToEmail, in particular for similarity-based ex-

13

30 60 90 120
0

0.2

0.4

0.6

0.8

1

ta [s]

F
-m

ea
su

re

30 60 90 120

101

103

105

ta [s]

t l
[m

s]
30 60 90 120

102

103

ta [s]

t e
[m

s]

pMC-B AB-C AB-B NN jS jS-M jS-B Bartoli et al. (2016e)

Figure 5: F-measure, learning time tl, extraction time te obtained for different values of ta with four selected extractors (see text) and with
the baseline by Bartoli et al. (2016e): the vertical axis has logarithmic scale for tl and te.

Extr. B
ib

T
ex

-
A

u
th

or

B
il

ls
-

D
a
te

E
m

ai
l-

P
h

on
e

H
ea

d
er

s-
F

or
T

oE
m

ai
l

H
T

M
L

-
h

re
f

L
og

-
IP T

w
it

te
r-

H
as

h
ta

g+
C

it
.

T
w

it
te

r-
U

R
L

T
w

it
te

r-
U

se
rn

am
e

W
eb

-
U

R
L

A
ve

ra
ge

MC 0.07 0.04 0.07 0.08 0.16 0.92 0.29 0.13 0.17 0.03 0 .20
pMC 0.07 0.13 0.21 0.11 0.15 0.89 0.70 0.48 0.24 0.10 0 .31
pMC-C 0.12 0.19 0.25 0.43 0.50 0.98 0.70 0.52 0.53 0.12 0 .43
pMC-M 0.34 0.11 0.06 0.11 0.14 0.89 0.70 0.48 0.24 0.10 0 .32
pMC-B 0.50 0.12 0.33 0.43 0.50 0.98 0.70 0.52 0.53 0.12 0 .47

AB 0.19 0.44 0.48 0.30 0.65 1.00 0.87 0.95 0.60 0.64 0 .61
AB-C 0.19 0.44 0.48 0.40 0.68 1.00 0.86 0.95 0.83 0.64 0 .65
AB-M 0.15 0.18 0.67 0.28 0.63 1.00 0.86 0.95 0.60 0.64 0 .59
AB-B 0.42 0.18 0.67 0.41 0.67 1.00 0.87 0.95 0.82 0.65 0 .66
NN 0.19 0.45 0.41 0.14 0.24 1.00 0.91 0.97 0.69 0.23 0 .52
NB 0.08 0.14 0.20 0.18 0.33 0.82 0.76 0.66 0.59 0.24 0 .40
bRF 0.18 0.41 0.44 0.31 0.61 1.00 0.77 0.95 0.54 0.62 0 .58
bRF-C 0.19 0.40 0.45 0.48 0.58 1.00 0.76 0.95 0.76 0.58 0 .62
bRF-M 0.13 0.16 0.58 0.32 0.60 1.00 0.77 0.95 0.55 0.62 0 .57
bRF-B 0.48 0.17 0.61 0.47 0.56 1.00 0.77 0.95 0.75 0.58 0 .63
nRF 0.19 0.15 0.17 0.14 0.15 0.20 0.19 0.17 0.19 0.11 0 .17

jS 0.19 0.32 0.27 0.42 0.78 0.99 0.35 0.98 0.24 0.66 0 .52
jS-C 0.13 0.27 0.28 0.64 0.75 0.99 0.34 0.98 0.68 0.58 0 .56
jS-M 0.40 0.28 0.67 0.42 0.77 0.99 0.35 0.98 0.24 0.66 0 .58
jS-B 0.52 0.25 0.64 0.64 0.74 0.99 0.34 0.98 0.68 0.58 0 .64
jwS 0.12 0.21 0.25 0.26 0.68 0.85 0.62 0.97 0.25 0.48 0 .47
nwS 0.16 0.39 0.43 0.23 0.48 0.98 0.61 0.99 0.40 0.47 0 .51

Bartoli et al. (2016e) 0.79 0.21 0.91 0.58 0.91 1.00 0.94 0.98 1.00 0.84 0 .82

Table 5: F-measure obtained for ta = 60 s with each extractor and dataset (values are averaged across repetitions). The best figures among
our methods for each dataset are highlighted in bold.

14

tractors, and Twitter-Username, for which the improve-
ment is large (up to ≈ +100%).

Finally, Table 5 gives an high level indication of which
kinds of classifiers are suitable to which datasets. In par-
ticular, it can be seen that similarity-based classifiers ap-
pear to outperform feature-based classifiers on datasets in
which the extractions are long, and the opposite. Indeed,
the 5 datasets with the largest average length `(x?) of a
desired extraction (see Table 2) are exactly the ones in
which the best F-measure is achieved by a similarity-based
classifier.

6.5. Full system assessment

6.5.1. Procedure

In the second experimental campaign we assessed our
system as a whole, limiting to a set of combinations of
extractors and active learning schemes selected based on
the results in the first campaign. We chose the following
7 extractors—pMC-B, AB-C, AB-B, NN, jS, jS-M, jS-B—
the sames we chose to build QbC. We combined these ex-
tractors with the 6 active learning variants presented in
Section 5 (U, QbC, B, S, dU, and dB) and with an addi-
tional baseline scheme which selects as query xq a random
substring of s such that (i) its length is equal to the average
length of substrings in the current learning sets Xm and
Xu and (ii) it does not overlap any substring in Xm∪Xu.
We denote by R this active learning scheme; as an opti-
mization, which also implies an advantage of R w.r.t. the
other active learning schemes, the extractor is learned only
once with R, just after the last user answer.

For each dataset, we built a number of problem in-
stances (s, xm0 , x

u
0 , X

?) as follows: (i) we selected a random
substring s of the dataset text such that the number |X?|
of desired extractions in s was exactly 100; (ii) we ran-
domly selected xm0 in X?; and (iii) we randomly selected
as xu0 a substring in s, not overlapping with any substring
in X? and such that `(xu0) = `(xm0). We repeated this
procedure 30 times for each dataset.

Finally, we applied the 43 variants of our method (42
resulting from the combination of the 7 extractors with the
6 active learning schemes—without QbC and with R—plus
QbC) to each problem instance. We simulated the user by
means of a program which always answered correctly to
the query and required a time ta for each query as defined
in Eqq. 4 and 5. We stopped the execution after a (sim-
ulated) elapsed time of 60 s, i.e., upon the first query for
which overall annotation and learning times exceeded one
minute.

In order to place our results in perspective, we also
executed a recent proposal for active learning of extrac-
tors of syntax-based entities (Bartoli et al., 2016a). The
cited work is internally based on the work of Bartoli et al.
(2016e) and hence uses Genetic Programming to build reg-
ular expressions tailored to learning examples. The active
learning scheme of (Bartoli et al., 2016a) is a form of query-
by-committee. We applied the cited approach on the same

datasets with the same procedure used to assess our meth-
ods, with the exception of the termination criterion: for
the tool by Bartoli et al. (2016a), due to its long execu-
tion time, we took into account only the annotation time
ta, rather than the elapsed time ta + tl, when comparing
against the 60 s time budget. Moreover, due to the stochas-
tic nature of Genetic Programming, we run the cited tool
5 times on each instance (s, xm0 , x

u
0 , X

?) (in a subset of 3
on the 30 instances) and averaged the results.

6.5.2. Results and discussion: overview

Table 6 shows the main results, averaged across datasets
and repetitions: it shows the F-measure, the number |Xm|
(|Xu|) of annotated desired (undesired) extractions, the
overall number `(Xm ∪ Xu) of annotated characters, the
number #Q of queries, the percentage %BA of queries
with a binary answer, the overall time

∑
ta spent by the

simulated user for annotating, and the overall time
∑
tl

spent by our system in executing the active learning pro-
cedure. All those figures refer to the end of the execution,
i.e., after one minute. Some interesting observations can
be done.

First, the proposed system, in its best variant, appears
to meet the requirements: it is possible to achieve a good
F-measure (0.67, for dU/AB-B) within the tight time bud-
get of 60 s. To place this result in a perspective, recall
that in the best case of passive learning, AB-B obtained a
slightly lower F-measure (0.66 vs. 0.67, the difference be-
ing not statistically significant according to the Wilcoxon
signed rank task, for which p = 0.33) with a learning set of
substrings corresponding to 3547 characters; the 16 queries
of dU/AB-B correspond instead to ≈ 431 characters. In
other words, a neat decrease in the need for learning infor-
mation is achieved by means of the proposed interactive
learning system, without affecting the extraction effective-
ness. With respect to the baseline (Bartoli et al., 2016a),
Table 6 shows that our best variant obtains an F-measure
which is only slightly smaller (0.67 vs. 0.69), but it takes a
remarkably shorter learning time tl (9.4 s vs. 558.2 s): the
latter figure corresponds to an overall time ta + tl which
abundantly exceeds the 1 min budget. From another point
of view, the time taken by the baseline between two con-
secutive queries is ≈ 40 s, which definitely does not allow
to use that tool interactively: our best method, instead,
takes around ≈ 0.5 s to propose a new query to the user.

Second, with the best extractors (AB-B and jS-B, and
variants), all the considered active learning schemes (with
the exception of S) outperform the random baseline (R)
in F-measure: the uncertainty sampling scheme (U) and
its density weighting variant (dU) obtain the best results,
with an average increase of +75% over the baseline. This
finding is corroborated by Table 7, which shows the ab-
solute difference in the average F-measure along with the
statistical significance (with Wilcoxon signed rank test),
for the two best extractors (AB-B and jS-B) coupled with
the two best active learning schemes (dU and U) and the
baseline (R). It can be seen that dU/AB-B is significantly

15

AL Extr. Fm Prec. Rec. |Xm| |Xu| ` #Q %BA
∑
ta

∑
tl

R pMC-B 0.35±0.13 0.3 0.52 4 20 482 20 0.84 62 0
R AB-C 0.4 ±0.16 0.51 0.44 4 20 482 20 0.84 62 0
R AB-B 0.43±0.17 0.49 0.49 4 20 482 20 0.84 62 0
R NN 0.41±0.13 0.55 0.45 4 20 482 20 0.84 62 0
R jS 0.32±0.12 0.78 0.28 4 20 482 20 0.84 62 0
R jS-M 0.35±0.14 0.74 0.31 4 20 482 20 0.84 62 0
R jS-B 0.38±0.18 0.76 0.34 4 20 482 20 0.84 62 0

U pMC-B 0.38±0.13 0.36 0.54 5 20 364 21 0.89 58 3.8
U AB-C 0.6 ±0.14 0.78 0.59 7 14 407 18 0.84 53.2 9
U AB-B 0.62±0.16 0.68 0.64 7 14 427 17 0.83 53 9.3
U NN 0.48±0.1 0.76 0.49 8 15 473 19 0.81 60.9 1.3
U jS 0.53±0.08 0.75 0.5 11 11 436 19 0.76 60.6 1.5
U jS-M 0.58±0.1 0.78 0.54 11 11 434 18 0.74 59.9 2.4
U jS-B 0.61±0.16 0.83 0.55 11 11 406 19 0.79 58.4 3.8

QbC 0.37±0.15 0.36 0.63 7 10 322 13 0.77 42.9 20.4

B pMC-B 0.33±0.1 0.31 0.51 11 12 408 21 0.89 58.5 3.3
B AB-C 0.56±0.12 0.71 0.56 10 11 428 18 0.85 53.2 9
B AB-B 0.6 ±0.15 0.66 0.62 10 11 432 17 0.84 52.9 9.4
B NN 0.48±0.08 0.71 0.52 10 13 584 19 0.83 60.7 1.2
B jS 0.48±0.11 0.76 0.45 11 12 375 20 0.79 60.4 1.4
B jS-M 0.53±0.13 0.79 0.49 11 13 379 19 0.79 59.9 2
B jS-B 0.55±0.17 0.83 0.48 11 12 385 20 0.84 58.1 3.9

S pMC-B 0.25±0.11 0.27 0.33 2 22 247 23 0.93 55.5 6.3
S AB-C 0.26±0.16 0.53 0.23 2 22 236 23 0.92 54.8 7.3
S AB-B 0.27±0.16 0.48 0.26 2 21 234 22 0.92 53.8 8.3
S NN 0.32±0.12 0.36 0.4 2 24 246 24 0.93 58 3.8
S jS 0.23±0.1 0.76 0.19 3 23 246 24 0.92 58.4 3.3
S jS-M 0.25±0.11 0.7 0.21 3 23 244 24 0.92 57.5 4.3
S jS-B 0.24±0.15 0.79 0.2 3 22 247 23 0.93 56 5.9

dU pMC-B 0.35±0.12 0.31 0.61 6 17 427 20 0.85 58.3 3.6
dU AB-C 0.63±0.12 0.75 0.65 8 12 417 17 0.82 53.3 9
dU AB-B 0.67±0.15 0.7 0.7 8 12 431 16 0.8 52.8 9.4
dU NN 0.49±0.09 0.67 0.52 9 13 433 19 0.77 60.5 1.4
dU jS 0.52±0.08 0.79 0.49 11 11 438 19 0.77 60.3 1.7
dU jS-M 0.57±0.1 0.82 0.53 11 12 439 18 0.74 59.7 2.9
dU jS-B 0.63±0.13 0.81 0.6 12 10 416 18 0.77 58 4.2

dB pMC-B 0.32±0.09 0.26 0.57 11 12 453 20 0.85 58.3 3.5
dB AB-C 0.59±0.11 0.7 0.61 10 11 418 17 0.84 52.8 9.4
dB AB-B 0.61±0.13 0.62 0.67 10 11 428 17 0.81 52.4 10
dB NN 0.5 ±0.09 0.66 0.55 10 12 502 19 0.81 60.5 1.4
dB jS 0.47±0.1 0.79 0.43 10 13 398 20 0.81 60.3 1.5
dB jS-M 0.52±0.11 0.82 0.48 10 13 401 20 0.78 59.7 2.5
dB jS-B 0.58±0.14 0.77 0.53 11 12 405 19 0.81 57.9 4.2

Bartoli et al. (2016a) 0.69 6 8 452 13 0.85 60.0 558.2

Table 6: Results of the full system variants. Values are averaged across repetitions and datasets: for F-measure, the average across datasets
of the standard deviation across repetitions on the same dataset is also shown.

∑
ta and

∑
tl are expressed in seconds. ` columns shows

`(Xm ∪Xu) values.

16

AL Extr. R jS
-B

U A
B

-B

U jS
-B

d
U

A
B

-B

d
U

jS
-B

R jS-B -0.05∗

U AB-B 0.19‡ 0.24‡

U jS-B 0.17‡ 0.22‡ -0.01
dU AB-B 0.23‡ 0.28‡ 0.04† 0.06∗

dU jS-B 0.20‡ 0.25‡ 0.01 0.02. -0.04

Table 7: Differences of average F-measure, between pair of 6 selected
methods. For each pair, the statistical significance is shown: .: p <
0.1, ∗: p < 0.05, †: p < 0.01, ‡: p < 0.001, p ≥ 0.1 without any
subscript.

better (p ≤ 0.05) than all the other methods with the ex-
ception of dU/jS-B: we argue that the small gap between
the two methods is favored by the fact that jS-B is in
general faster in learning, hence allowing for more time
devoted to user annotation with repsect to dU/AB-B—
indeed, Table 6 shows that, on average, the latter poses
two queries less than dU/jS-B (16 vs. 18). Concerning the
other two extractors (pMC-Ms and NN), it appears from
the results in Table 6 that their learning effectiveness is not
clearly positively affected by any active learning scheme:
in particular, the former delivers an F-measure which is
likely too low, regardless of the annotated data it can learn
on. According to the F-measure, QbC/* appears to be
not adequate for the considered scenario: its effectiveness
is roughly the same of the average extractor when coupled
with the baseline active learning scheme (R). Moreover,
QbC/* takes the longest time to learn (tl = 20.4 s), a fig-
ure which is consistent with the scheme working principle
which requires to train, before each query, 7 competing
extractors. Finally, Table 6 shows that the least similar
instance active learning scheme S performs poorly, regard-
less of the extractor. We explain this finding by the fact
that undesired extractions have larger entropy (i.e., they
are more dissimilar) than extractions: this leads the sys-
tem to builds queries which will be answered by the user
as undesired extractions, making the learning set Xm∪Xu

unbalanced and, eventually, the extractor ineffective.
Third, it can be seen that in most cases the available

time has been used almost entirely for exploiting user feed-
back, i.e.,

∑
ta �

∑
tl. Moreover, queries caused in gen-

eral binary answers (%BA ≈ 80%) rather than edit an-
swers.

Fourth, it can be observed that F-measure tends to
be greater when the system allowed the user to provide a
balanced learning information. This consideration applies
mainly to B and dB active learning schemes, which were
indeed designed right with this aim. Moreover, the bal-
ancing is near optimal also for combinations of U and dU
schemes with similarity-based extractors.

6.5.3. Differences among datasets

Table 8 shows the F-measure of our variants and the
baseline for the 10 datasets, averaged across repetitions.

It can be seen that the uncertainty-based scheme (U)
is the best scheme in the largest number of datasets and
improves over the random scheme on the vast majority of
cases. It can also be observed that the improvement is
greater for those datasets in which the desired extractions
are sparser (Headers-ForToEmail, Email-Phone, and Web-
URL): looking at raw results, we also verified that in those
cases the percentage %|Xm| of labeled desired extractions
was remarkably low with R than with the other schemes—
i.e., learning set built with R were highly unbalanced to-
wards undesired extractions. This finding is further cor-
roborated by Figure 6, which shows, for one repetition of
the application of the variants R/jS-B and dU/jS-B on
two datasets, how the F-measure on the full s varies over
the time. In the Log-IP dataset (Figure 6a), where de-
sired extractions are dense (ρ = 0.24), the R scheme is
able to provide informative data to the extractor by sim-
ply querying random substrings; on the other hand, in the
Web-URL dataset (Figure 6b), where desired extractions
are sparse (ρ = 0.04), few improvements are achieved over
the time by R which continuously query substrings which
correspond to undesired extractions, whereas dU is instead
able to query the user with informative substrings. As an
aside, it can also be observed that in the dense Log-IP
dataset, R tends to query substrings requiring edit an-
swers (which hence take longer for the user), whereas U
tends to result in binary answers: this is the reason for
which marks are more spaced for R/jS-B curve than for
dU/jS-B curve in Figure 6a.

Finally, Figure 6 also shows how the F-measures in-
creases with ta, i.e., as the user provides more learning
data. In particular, Figure 6a shows that in the Log-IP
dataset (as in other cases) a perfect (or very high) effec-
tiveness can be achieved with our active learning system
well before one minute. On the other hand, in passive
learning the user is required to spend the full minute in
annotating the text before being able to see which are the
found text items.

6.5.4. Larger data and longer time

We designed our system focusing on a use case in which
the user has a time budget of one minute for extracting
approximately 100 text items of interest from a text of up
to tens of thousands characters.

In this section, we present the results of another experi-
mental campaign we performed for investigating about the
effectiveness of our proposal in a scenario in which the text
and the time budget are longer. To this end, we selected 6
variants of our method (resulting from the combination of
AB-B and jS-B extractors with R, U, and dU active learn-
ing schemes) and repeated the procedure of Section 6.5
with the following changes: we built problem instances
such that |X?| was exactly 500 (instead of 100), we con-

17

AL Extr. B
ib

T
ex

-
A

u
th

o
r

B
il

ls
-

D
at

e

E
m

ai
l-

P
h

on
e

H
ea

d
er

s-
F

o
rT

oE
m

ai
l

H
T

M
L

-
h

re
f

L
og

-
IP T

w
it

te
r-

H
a
sh

ta
g
+

C
it

.

T
w

it
te

r-
U

R
L

T
w

it
te

r-
U

se
rn

a
m

e

W
eb

-
U

R
L

A
ve

ra
ge

R pMC-B 0.40 0.07 0.18 0.27 0.29 0.84 0.56 0.38 0.36 0.14 0 .35
R AB-C 0.10 0.18 0.21 0.21 0.37 0.81 0.60 0.77 0.53 0.25 0 .40
R AB-B 0.37 0.13 0.27 0.22 0.39 0.81 0.61 0.76 0.54 0.25 0 .43
R NN 0.09 0.19 0.19 0.11 0.18 0.93 0.70 0.90 0.47 0.31 0 .41
R jS 0.10 0.11 0.13 0.22 0.35 0.92 0.12 0.92 0.08 0.27 0 .32
R jS-M 0.15 0.10 0.40 0.22 0.35 0.92 0.12 0.92 0.08 0.27 0 .35
R jS-B 0.51 0.06 0.26 0.38 0.46 0.89 0.15 0.71 0.25 0.15 0 .38

U pMC-B 0.48 0.07 0.23 0.25 0.29 0.99 0.67 0.38 0.38 0.12 0 .38
U AB-C 0.12 0.33 0.42 0.33 0.60 1.00 0.80 0.96 0.84 0.59 0 .60
U AB-B 0.36 0.21 0.51 0.37 0.58 1.00 0.82 0.96 0.83 0.58 0 .62
U NN 0.13 0.37 0.32 0.05 0.21 0.87 0.97 0.99 0.65 0.28 0 .48
U jS 0.12 0.30 0.24 0.22 0.96 1.00 0.62 1.00 0.17 0.70 0 .53
U jS-M 0.35 0.21 0.66 0.22 0.91 1.00 0.62 1.00 0.17 0.70 0 .58
U jS-B 0.48 0.17 0.51 0.48 0.85 0.97 0.33 0.99 0.82 0.48 0 .61

QbC 0.39 0.14 0.29 0.15 0.21 0.99 0.65 0.21 0.46 0.21 0 .37

B pMC-B 0.44 0.06 0.12 0.11 0.19 0.97 0.52 0.34 0.42 0.11 0 .33
B AB-C 0.12 0.34 0.34 0.40 0.46 1.00 0.70 0.96 0.79 0.45 0 .56
B AB-B 0.38 0.25 0.47 0.45 0.50 1.00 0.72 0.95 0.79 0.51 0 .60
B NN 0.13 0.31 0.31 0.05 0.18 1.00 0.93 0.99 0.56 0.31 0 .48
B jS 0.12 0.27 0.22 0.20 0.87 0.99 0.41 0.95 0.17 0.62 0 .48
B jS-M 0.32 0.18 0.61 0.20 0.85 0.99 0.41 0.95 0.17 0.62 0 .53
B jS-B 0.51 0.18 0.43 0.43 0.76 0.97 0.29 0.93 0.60 0.35 0 .55

S pMC-B 0.30 0.05 0.14 0.16 0.14 0.87 0.22 0.23 0.30 0.10 0 .25
S AB-C 0.11 0.15 0.11 0.25 0.22 0.76 0.13 0.19 0.40 0.21 0 .26
S AB-B 0.32 0.09 0.13 0.25 0.23 0.73 0.13 0.17 0.40 0.22 0 .27
S NN 0.06 0.16 0.13 0.12 0.16 0.85 0.33 0.85 0.31 0.22 0 .32
S jS 0.08 0.08 0.06 0.20 0.12 0.98 0.03 0.51 0.07 0.19 0 .23
S jS-M 0.14 0.07 0.15 0.20 0.12 0.98 0.03 0.51 0.07 0.19 0 .25
S jS-B 0.44 0.06 0.10 0.33 0.27 0.86 0.03 0.04 0.18 0.12 0 .24

dU pMC-B 0.45 0.09 0.15 0.25 0.27 0.91 0.68 0.25 0.36 0.10 0 .35
dU AB-C 0.11 0.38 0.45 0.44 0.69 1.00 0.87 0.94 0.86 0.55 0 .63
dU AB-B 0.37 0.31 0.56 0.49 0.71 1.00 0.87 0.92 0.87 0.57 0 .67
dU NN 0.13 0.34 0.26 0.07 0.28 0.92 0.97 0.98 0.64 0.32 0 .49
dU jS 0.14 0.31 0.23 0.22 0.96 1.00 0.54 0.98 0.11 0.75 0 .52
dU jS-M 0.30 0.21 0.66 0.22 0.96 1.00 0.54 0.98 0.11 0.75 0 .57
dU jS-B 0.50 0.16 0.42 0.55 0.90 0.99 0.33 0.99 0.88 0.58 0 .63

dB pMC-B 0.41 0.07 0.10 0.13 0.19 0.89 0.61 0.30 0.39 0.09 0 .32
dB AB-C 0.11 0.38 0.36 0.44 0.63 1.00 0.75 0.94 0.81 0.45 0 .59
dB AB-B 0.41 0.27 0.49 0.45 0.62 1.00 0.67 0.94 0.82 0.42 0 .61
dB NN 0.12 0.37 0.28 0.09 0.25 1.00 0.93 0.98 0.60 0.35 0 .50
dB jS 0.13 0.28 0.21 0.21 0.92 0.97 0.36 0.93 0.11 0.61 0 .47
dB jS-M 0.29 0.21 0.64 0.21 0.92 0.97 0.36 0.93 0.11 0.61 0 .52
dB jS-B 0.52 0.17 0.38 0.58 0.80 0.98 0.29 0.93 0.71 0.41 0 .58

Bartoli et al. (2016a) 0.61 0.34 0.76 0.24 0.68 0.97 0.86 0.97 0.88 0.54 0 .69

Table 8: F-measure for each dataset (values are averaged across repetitions). The best figures among our methods for each dataset are
highlighted in bold.

18

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

Time (s)

F
-m

ea
su

re

R/jS-B

dU/jS-B

(a) Log-IP (ρ? = 0.24).

0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

Time (s)

F
-m

ea
su

re

R/jS-B

dU/jS-B

(b) Web-URL (ρ? = 0.04).

Figure 6: Learning curves for one repetition of the application of two variants on two datasets.

sidered an elapsed time of 300 s (instead of 60 s), and we
built 10 instances for each dataset (instead of 30).

Table 9 shows the results of this experimental cam-
paign: two key observations may be done.

First, it can be seen that the F-measure is larger than
in the reference use case for all the 6 variants. For the
best method (again dU/AB-B) F-measure reaches 0.73,
being 0.66 in the reference use case. It can also be noted
that the improvement is larger for the R scheme. This
finding confirms that in the reference use case, when the
time budget is tight, having a good active learning scheme
is fundamental for achieving a good effectiveness.

Second, in this scenario the differences in F-measure
among the four best variants (based on U, dU and AB-B,
jS-B) look vanishing. On the other hand, the difference in
the learning time tl between AB-B and jS-B is now larger
and opposite with respect to the reference use case: this
is a consequence of how the two extractors work and, in
particular, of the fact that, for similarity-based extractors,
the learning time grows quadratically with the amount of
learning data (see Section 6.4). In practice, the average
time between two consecutive queries is≈ 1.4 s for dU/AB-
B and ≈ 1.7 s for dU/jS-B. It is fair to claim that in both
cases, despite being larger than the respective figures in the
reference use case (≈ 0.5 s and ≈ 0.2 s, respectively), those
times are sufficiently small to enable interactive usage of
our methodology.

7. Concluding remarks

There are several use cases of practical interest, broadly
related to document analysis and exploration, in which the
problem of identifying very quickly text items which follow
a certain pattern is not addressed by existing technologies
well. We have proposed an interactive framework in which
the user provides only examples of the items he is inter-
ested in; the system identifies items similar to those pro-
vided by the user and progressively refines the similarity
criterion by submitting selected queries to the user, in an
active learning fashion.

Actually implementing the proposed framework is chal-
lenging because the requirement for interactive execution
places severe constraints on the algorithms that can be
used for: (i) inferring a general pattern from the available
examples; (ii) selecting from the input document the next
query to be submitted to the user; (iii) allowing the user to
answer the query; and, (iv) actually finding all occurrences
of the current pattern within the document.

We have analyzed a number of different designs and
assessed them experimentally in depth, by carefully mod-
elling the user time involved in the active learning interac-
tion. The key outcome of our work is that our proposal is
indeed practically feasible, as several of the design options
that we have analyzed are able to achieve accuracy com-
parable to that obtained with a state-of-the-art approach
for constructing a regular expression by means examples
of the desired behavior, while requiring an execution time
that is orders of magnitude shorter and that is sufficiently
short to enable interactive execution.

Acknowledgements

This work has been partially supported by the Univer-
sity of Trieste - Finanziamento di Ateneo per progetti di
ricerca scientifica - FRA 2016.

References

Angeli, G., Tibshirani, J., Wu, J., & Manning, C. D. (2014). Com-
bining distant and partial supervision for relation extraction. In
EMNLP (pp. 1556–1567).

Bajaj, K., Pattabiraman, K., & Mesbah, A. (2015). Synthesizing
web element locators (t). In Automated Software Engineering
(ASE), 2015 30th IEEE/ACM International Conference on (pp.
331–341). IEEE.

Bartoli, A., Davanzo, G., De Lorenzo, A., Medvet, E., & Sorio, E.
(2014a). Automatic synthesis of regular expressions from exam-
ples. Computer , 47 , 72–80.

Bartoli, A., Davanzo, G., Medvet, E., & Sorio, E. (2014b). Semisu-
pervised wrapper choice and generation for print-oriented docu-
ments. IEEE Transactions on Knowledge and Data Engineering,
26 , 208–220.

19

AL Extr. Fm Prec. Rec. |Xm| |Xu| ` #Q %BA
∑
ta

∑
tl

R AB-B 0.61±0.11 0.59 0.67 15 97 2361 98 0.85 301.8 0
R jS-B 0.64±0.12 0.73 0.63 15 97 2361 98 0.85 301.8 0

U AB-B 0.71±0.1 0.76 0.72 32 48 1367 69 0.83 207.6 95.2
U jS-B 0.71±0.11 0.86 0.67 47 28 1366 68 0.78 201.3 125.2

dU AB-B 0.73±0.11 0.75 0.75 39 42 1371 67 0.78 210.2 93
dU jS-B 0.71±0.1 0.83 0.7 48 26 1345 66 0.76 200 115.2

Table 9: Results of 4 selected full system variants with larger data (|X?| = 500) and longer elapsed time (300 s). Values are averaged across
repetitions and datasets: for F-measure, the average across datasets of the standard deviation across repetitions on the same dataset is also
shown.

∑
ta and

∑
tl are expressed in seconds. ` columns shows `(Xm ∪Xu) values.

Bartoli, A., De Lorenzo, A., Medvet, E., & Tarlao, F. (2015a).
Learning text patterns using separate-and-conquer genetic pro-
gramming. In Genetic Programming (pp. 16–27). Springer.

Bartoli, A., De Lorenzo, A., Medvet, E., & Tarlao, F. (2016a). Active
learning approaches for learning regular expressions with genetic
programming. In Proceedings of the 31st Annual ACM Sympo-
sium on Applied Computing (pp. 97–102). ACM.

Bartoli, A., De Lorenzo, A., Medvet, E., & Tarlao, F. (2016b). Can
a machine replace humans in building regular expressions? a case
study. IEEE Intelligent Systems, 31 , 15–21. doi:10.1109/MIS.
2016.46.

Bartoli, A., De Lorenzo, A., Medvet, E., & Tarlao, F. (2016c). Pre-
dicting the effectiveness of pattern-based entity extractor infer-
ence. Applied Soft Computing, 46 , 398–406.

Bartoli, A., De Lorenzo, A., Medvet, E., & Tarlao, F. (2016d). Syn-
tactical similarity learning by means of grammatical evolution.
In J. Handl, E. Hart, P. R. Lewis, M. López-Ibáñez, G. Ochoa, &
B. Paechter (Eds.), Parallel Problem Solving from Nature – PPSN
XIV: 14th International Conference, Edinburgh, UK, September
17-21, 2016, Proceedings (pp. 260–269). Cham: Springer Inter-
national Publishing.

Bartoli, A., De Lorenzo, A., Medvet, E., & Tarlao, F. (2017). Ac-
tive learning of regular expressions for entity extraction. IEEE
Transactions on Cybernetics, . doi:10.1109/TCYB.2017.2680466.

Bartoli, A., Lorenzo, A. D., Medvet, E., & Tarlao, F. (2015b). Data
quality challenge: Toward a tool for string processing by examples.
Journal of Data and Information Quality (JDIQ), 6 , 13.

Bartoli, A., Lorenzo, A. D., Medvet, E., & Tarlao, F. (2016e). In-
ference of regular expressions for text extraction from examples.
IEEE Transactions on Knowledge and Data Engineering, 28 ,
1217–1230.

Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., & Fienberg,
S. (2003). Adaptive name matching in information integration.
IEEE Intelligent Systems, 18 , 16–23.

Brauer, F., Rieger, R., Mocan, A., & Barczynski, W. M. (2011).
Enabling information extraction by inference of regular expres-
sions from sample entities. In Proceedings of the 20th ACM inter-
national conference on Information and knowledge management
(pp. 1285–1294). ACM.

Breiman, L. (2001). Random forests. Machine learning, 45 , 5–32.
Budlong, E., Pine, C., Zappavigna, M., Homer, J., Proefrock, C.,

Gucwa, J., Crystal, M., & Weischedel, R. M. (2013). Interac-
tive information extraction and navigation to enable effective link
analysis and visualization of unstructured text. In IAAI .

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr, E. R.,
& Mitchell, T. M. (2010). Toward an architecture for never-ending
language learning. In AAAI (p. 3). volume 5.

Cetinkaya, A. (2007). Regular expression generation through gram-
matical evolution. In Proceedings of the 2007 GECCO conference
companion on Genetic and evolutionary computation (pp. 2643–
2646). ACM.

Chandrasekar, C. et al. (2013). An optimized approach of modified
bat algorithm to record deduplication. International Journal of
Computer Applications, 62 .

Cheatham, M., & Hitzler, P. (2013a). String similarity metrics for
ontology alignment. In The Semantic Web–ISWC 2013 (pp. 294–
309). Springer.

Cheatham, M., & Hitzler, P. (2013b). String similarity metrics for
ontology alignment. In International Semantic Web Conference.

Chin, W.-S., Zhuang, Y., Juan, Y.-C., Wu, F., Tung, H.-Y., Yu,
T., Wang, J.-P., Chang, C.-X., Yang, C.-P., Chang, W.-C. et al.
(2014). Effective string processing and matching for author dis-
ambiguation. The Journal of Machine Learning Research, 15 ,
3037–3064.

Cochran, R. A., D’Antoni, L., Livshits, B., Molnar, D., & Veanes, M.
(2015). Program boosting: Program synthesis via crowd-sourcing.
In ACM SIGPLAN Notices (pp. 677–688). ACM volume 50.

Cohen, W., Ravikumar, P., & Fienberg, S. (2003). A comparison of
string metrics for matching names and records. In Kdd workshop
on data cleaning and object consolidation (pp. 73–78). volume 3.

Culotta, A., & McCallum, A. (2005). Joint deduplication of multiple
record types in relational data. In Proceedings of the 14th ACM
international conference on Information and knowledge manage-
ment (pp. 257–258). ACM.

Dalvi, B., Bhakthavatsalam, S., Clark, P., Clark, P., Etzioni, O.,
Fader, A., & Groeneveld, D. (2016). Ike-an interactive tool for
knowledge extraction. In 5th AKBC Workshop.

De Lorenzo, A., Medvet, E., & Bartoli, A. (2013). Automatic string
replace by examples. In Proceedings of the 15th Annual Confer-
ence on Genetic and Evolutionary Computation GECCO ’13 (pp.
1253–1260). New York, NY, USA: ACM.

Donmez, P., & Carbonell, J. G. (2008). Proactive learning: cost-
sensitive active learning with multiple imperfect oracles. In Pro-
ceedings of the 17th ACM conference on Information and knowl-
edge management (pp. 619–628). ACM.

Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A.-M.,
Shaked, T., Soderland, S., Weld, D. S., & Yates, A. (2004). Web-
scale information extraction in knowitall:(preliminary results). In
Proceedings of the 13th international conference on World Wide
Web (pp. 100–110). ACM.

Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T.,
Soderland, S., Weld, D. S., & Yates, A. (2005). Unsupervised
named-entity extraction from the web: An experimental study.
Artificial intelligence, 165 , 91–134.

Finkel, J. R., Grenager, T., & Manning, C. (2005). Incorporat-
ing non-local information into information extraction systems by
gibbs sampling. In Proceedings of the 43rd annual meeting on as-
sociation for computational linguistics (pp. 363–370). Association
for Computational Linguistics.

Fisher, K., Walker, D., Zhu, K. Q., & White, P. (2008). From dirt
to shovels: fully automatic tool generation from ad hoc data. In
ACM SIGPLAN Notices (pp. 421–434). ACM volume 43.

Freund, Y., & Schapire, R. E. (1995). A desicion-theoretic gener-
alization of on-line learning and an application to boosting. In
European conference on computational learning theory (pp. 23–
37). Springer.

Gualtieri, M. (2011). Empowering The “Business Developer”. Tech-
nical Report Forrester Research.

20

Gulwani, S. (2016). Programming by examples: Applications, al-
gorithms, and ambiguity resolution. In N. Olivetti, & A. Tiwari
(Eds.), Automated Reasoning: 8th International Joint Confer-
ence, IJCAR 2016, Coimbra, Portugal, June 27 – July 2, 2016,
Proceedings (pp. 9–14). Cham: Springer International Publishing.

Haertel, R., Ringger, E. K., Felt, P., & Seppi, K. (2015). An ana-
lytic and empirical evaluation of return-on-investment-based ac-
tive learning. In The 9th Linguistic Annotation Workshop held
in conjuncion with NAACL 2015 (p. 11).

Haertel, R., Seppi, K. D., Ringger, E. K., & Carroll, J. L. (2008).
Return on investment for active learning. In Proceedings of the
NIPS Workshop on Cost-Sensitive Learning. volume 72.

Hu, H., Zheng, K., Wang, X., & Zhou, A. (2015). Gfilter: A general
gram filter for string similarity search. IEEE Transactions on
Knowledge and Data Engineering, 27 , 1005–1018.

Jiang, Y., Li, G., Feng, J., & Li, W.-S. (2014). String similarity
joins: An experimental evaluation. PVLDB , 7 , 625–636.

Jin, L., Li, C., & Mehrotra, S. (2003). Efficient record linkage in
large data sets. In Database Systems for Advanced Applications,
2003.(DASFAA 2003). Proceedings. Eighth International Confer-
ence on (pp. 137–146). IEEE.

Le, V., & Gulwani, S. (2014). Flashextract: a framework for data
extraction by examples. In ACM SIGPLAN Notices (pp. 542–
553). ACM volume 49.

Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., & Ja-
gadish, H. (2008). Regular expression learning for information
extraction. In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (pp. 21–30). Association for
Computational Linguistics.

McCallum, A., & Li, W. (2003). Early results for named entity recog-
nition with conditional random fields, feature induction and web-
enhanced lexicons. In Proceedings of the seventh conference on
Natural language learning at HLT-NAACL 2003-Volume 4 (pp.
188–191). Association for Computational Linguistics.

McCallum, A., Nigam, K. et al. (1998). A comparison of event mod-
els for naive bayes text classification. In AAAI-98 workshop on
learning for text categorization (pp. 41–48). Citeseer volume 752.

McCallum, A. K., & Nigam, K. (1998). Employing em in pool-based
active learning for text classification. In Proceedings of ICML-98,
15th International Conference on Machine Learning.

Medvet, E., Bartoli, A., & Davanzo, G. (2011). A probabilistic ap-
proach to printed document understanding. International Journal
on Document Analysis and Recognition (IJDAR), 14 , 335–347.

Needleman, S. B., & Wunsch, C. D. (1970). A general method ap-
plicable to the search for similarities in the amino acid sequence
of two proteins. Journal of molecular biology, 48 , 443–453.

Pennacchiotti, M., & Pantel, P. (2009). Entity extraction via ensem-
ble semantics. In Proceedings of the 2009 Conference on Empir-
ical Methods in Natural Language Processing: Volume 1-Volume
1 (pp. 238–247). Association for Computational Linguistics.

Settles, B. (2009). Active Learning Literature Survey. Computer
Sciences Technical Report 1648 University of Wisconsin–Madison.

Settles, B., & Craven, M. (2008). An analysis of active learning
strategies for sequence labeling tasks. In Proceedings of the con-
ference on empirical methods in natural language processing (pp.
1070–1079). Association for Computational Linguistics.

Settles, B., Craven, M., & Friedland, L. (2008). Active learning with
real annotation costs. In Proceedings of the NIPS workshop on
cost-sensitive learning (pp. 1–10).

Yates, A., Cafarella, M., Banko, M., Etzioni, O., Broadhead, M., &
Soderland, S. (2007). Textrunner: open information extraction
on the web. In Proceedings of Human Language Technologies:
The Annual Conference of the North American Chapter of the
Association for Computational Linguistics: Demonstrations (pp.
25–26). Association for Computational Linguistics.

Yessenov, K., Tulsiani, S., Menon, A., Miller, R. C., Gulwani, S.,
Lampson, B., & Kalai, A. (2013). A colorful approach to text
processing by example. In Proceedings of the 26th annual ACM
symposium on User interface software and technology (pp. 495–
504). ACM.

Yu, M., Li, G., Deng, D., & Feng, J. (2016). String similarity search

and join: a survey. Frontiers of Computer Science, 10 , 399–417.
Zhang, Z. (2008). Mining relational data from text: From strictly

supervised to weakly supervised learning. Information Systems,
33 , 300–314.

21

