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Abstract: Over the last decade, our understanding of the mechanisms underlying immune
modulation has greatly improved, allowing for the development of multiple therapeutic approaches
that are revolutionizing the treatment of cancer. Immunotherapy for gastric cancer (GC) is
still in the early phases but is rapidly evolving. Recently, multi-platform molecular analyses
of GC have proposed a new classification of this heterogeneous group of tumors, highlighting
subset-specific features that may more reliably inform therapeutic choices, including the use of new
immunotherapeutic drugs. The clinical benefit and improved survival observed in GC patients treated
with immunotherapeutic strategies and their combination with conventional therapies highlighted
the importance of the immune environment surrounding the tumor. A thorough investigation
of the tumor microenvironment and the complex and dynamic interaction between immune cells
and tumor cells is a fundamental requirement for the rational design of novel and more effective
immunotherapeutic approaches. This review summarizes the pre-clinical and clinical results obtained
so far with immunomodulatory and immunotherapeutic treatments for GC and discusses the novel
combination strategies that are being investigated to improve the personalization and efficacy of
GC immunotherapy.

Keywords: gastric cancer; immunotherapy; immune checkpoint; chimeric antigen receptor;
cancer vaccine; adoptive immunotherapy; Epstein–Barr virus; microsatellite instability;
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1. Introduction

Gastric carcinoma (GC) is the third most common cause of cancer deaths worldwide with a median
overall survival (OS) time for patients diagnosed in a metastatic stage still less than one year [1]. A high
proportion of patients diagnosed with GC (≈65%) present with inoperable or metastatic disease,
and the survival rate of GC patients decreases dramatically as the tumor stage increases (Table 1).
Surgical resection is the primary choice of treatment, with limited resection in stage T1N0; preoperative
chemotherapy and surgery, followed by post-operative adjuvant chemo/radiotherapy in stages >T1N0
(advanced tumor); and palliative chemotherapy (supportive care, double, triple regimens ± targeted
therapy) in metastatic disease (metastatic tumor) (Table 1). Currently, in non-metastatic advanced
GC (>T1N0), the best available systemic therapy combinations only yield a median progression-free
survival (PFS) time of 5 to 7 months and a median OS in the range of 8 to 11 months.
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Table 1. Tumor stage and associated survival rate.

Tumor Stage TNM Classification Survival Rate
(%, 5 Years) Treatment

1 T1-2, N0-1, M0 69 Surgical resection

2 T1-4a, N0-3a, M0 43 Preoperative chemotherapy and surgery followed by
post-operative adjuvant chemo/radio-therapy

3 T1-4b, N1-3b, M0 28

4 Tx, Nx, M0 9 Palliative chemotherapy ± targeted therapy

TNM Classification of malignant tumors [2]. T: size of the primary tumor; N: lymph node involvement; M: metastasis.

Recently, immunotherapy has emerged as one of the most promising strategies in cancer
treatment, with outstanding results in several tumor types [3–5]. The clinical successes of immune
checkpoint inhibitors have revolutionized cancer treatment, clearly indicating that targeting the
host’s immune system rather than the tumor may be more effective than conventional therapies.
Although encouraging, the results obtained so far in GC patients have, however, still been
unsatisfactory, and the majority of novel immunotherapies in this setting are still in the early
phases of clinical investigation [6,7]. The most promising response rates obtained so far by
this class of immunotherapeutic drugs were induced by pembrolizumab monotherapy, targeting
programmed death 1 (PD-1) cells in pre-treated patients with advanced GC [8]. Now, ongoing
randomized clinical trials are conducted to assess pembrolizumab’s safety and efficacy in earlier lines
of therapy and in combination with chemotherapy for patients with advanced adenocarcinomas of the
gastroesophageal junction (GEJ) [9]. Several complex factors are limiting the development of effective
immunotherapeutic strategies for GC, including the heterogeneous immunogenicity among and within
tumor subtypes and the different and still poorly defined immunosuppressive mechanisms that may
hamper effective control of the tumor by host immune cells. In the recently proposed molecular
Cancer Genome Atlas (TCGA) GC classification, the PD-L1 gene was found to be amplified more
commonly in Epstein–Barr virus (EBV)-positive and microsatellite instable (MSI)-high GC subtypes
with respect to the other subtypes [10,11]. Nonetheless, clinical responses were also observed both in
PD-L1- and EBV-negative patients, again highlighting the complexity of the mechanisms underlying
the responses to immune checkpoint blockade. Thus, at the clinical level, it is not clear why some
patients respond to certain immunotherapies and others do not. Therefore, there are no validated
biomarkers allowing reliable discrimination of responders from non-responders. A deeper genetic and
immunologic characterization of GC is required to guide patient selection and identify those who could
benefit from immune intervention in monotherapy, or more likely, within combination schedules.

2. Immunosurveillance and Immunoescape

The critical role of host immunity in controlling cancer development and progression is now well
recognized [12]. Data accumulated so far are consistent in indicating that our immune system is able
to prevent cancer development through a process termed immune surveillance [12]. This complex
process functions through a mechanism of “immunoediting”, which consists of three sequential phases:
(1) the elimination phase, in which growing tumors are effectively recognized and cleared by the
synergic actions of innate and adaptive immune responses that also recognize remodeling of stroma
and changes in the microenvironment; (2) The equilibrium phase, during which, antigen presenting
cells, tumor cells and CD8+ T cells remain in a state of dynamic balance and the surviving tumor
cells remain quiescent under the pressure of immune cells. In this long phase, the immune system of
the host sculpts the immunogenicity of genetically unstable tumor clones, allowing for the selection
of resistant tumor cells, thus leading to (3) the escape phase, favored by regulatory (Treg) cells and
immunosuppressive cytokines, including transforming growth factor-β (TGF-β), Tumor Necrosis
factor (TNF)-α, and Interleukin (IL)-10 [12].
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Dying cancer cells may express and release tumor-specific and tumor-associated antigens
that can be taken up and processed by tissue resident dendritic cells, which then maturate in
professional antigen-presenting cells in the presence of an appropriate microenvironment, usually
enriched in activator molecules, the so-called danger-associated molecular patterns (DAMPs) [12].
Induction of effective anti-cancer immunity generally requires that mature antigen presenting cells
efficiently present tumor antigens in the form of peptides to CD8+ T lymphocytes through major
histocompatibility complex (MHC) Class I molecules and to CD4+ T lymphocytes through MHC
Class II molecules. The immunogenicity of tumor antigens varies considerably, the strongest tumor
antigens being those provided by non-self or mutated proteins, such as those encoded by viruses or
generated by somatic mutations occurring in expressed genes. These latter antigens, the so-called
neo-antigens, are generally unique for each individual tumor, thus providing the rationale for
personalized immunotherapy. For efficient activation of the CD8+ T cells, three different signals
are required: T-cell receptor signalling activation after recognition of antigenic peptides in the context
of MHC Class I molecules, co-stimulatory molecules, and cytokines provided by professional antigen
presenting cells [12]. After activation, T lymphocytes proliferate, infiltrate the tumor, promote the
recruitment of other immune cells, and directly kill the cancer cells through the release of cytokines,
perforin and granzymes [12]. Incomplete T-cell activation in response to suboptimal amounts of
IL-2 or the absence of co-stimulatory signals usually results in T-cell anergy. Another important
phenomenon negatively affecting the efficacy of antitumor immune responses is the induction of
T-cell exhaustion promoted by the complex network of immunosuppressive cells and cytokines that
characterize the tumor microenvironment [13]. T cell exhaustion is a state of altered functionality of
these cells, which progressively lose their proliferation, cytokine production, and cytotoxic capabilities.
Evidence accumulated so far clearly indicates that exhausted T cells up-regulate the expression of
inhibitory receptors, including programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte
antigen-4 (CTLA-4), lymphocyte activation gene 3 (LAG-3), T cell immunoglobulin and mucin domain
containing-3 (TIM-3), B and T lymphocyte attenuator (BTLA), and T cell immunoreceptor with Ig and
ITIM domains (TIGIT) [13,14].

The tumor microenvironment may also impair anti-tumor immunity by promoting the
polarization of infiltrating immune cells towards less cytotoxic and pro-inflammatory subsets of T cells
(e.g., TH2, TH17 and Treg cells). In GC, the tumor-associated macrophages (TAMs) constitute one
of the most abundant immune cell populations present in the tumor microenvironment. These cells
can exert anti-tumor activities, or have pro-tumorigenic effects supporting cancer initiation and
malignant progression according to differentiation patterns into M1 or M2 subtypes [15]. M1 TAMs
exert anti-tumor effects through the release of pro-inflammatory cytokines (IL-1, IL-6, IL-23, TNF-α),
whereas M2 TAMs may drive local immune suppression by producing IL-10 and TGF-β. Indeed, TAM
infiltration has been shown to functionally inhibit T cells in GC [16,17] and may be a marker of
poor prognosis [18,19]. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population
of immature myeloid cells able to inhibit both innate and adaptive immune responses against
tumors [20]. These cells are characterized by the ability display have unique features according
to the different environments to which they are recruited. The various suppressive properties
and functions displayed by MDSCs include increased arginase-1 (Arg-1) and inducible nitric oxide
synthase activities, elevated production of nitric oxide and reactive oxygen species, and secretion of
various pro-inflammatory cytokines [21]. It has been demonstrated that GC patients have increased
numbers of MDSCs in the blood compared with healthy individuals, and this increase was associated
with poor clinical outcomes [22]. Another major component of the immune suppressive tumor
microenvironment is represented by Treg cells, which may inhibit cytotoxic lymphocytes and/or
helper T-cell activity as well as natural killer (NK) cells. Physiologically, Treg cell function is critical
to maintain immunological tolerance to self-antigens and suppress excessive immune responses that
could potentially be deleterious to the host. Tregs have also been identified as the major regulatory
component of the adaptive immune response in H. pylori-related inflammation, GC and bacterial
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persistence [23] as well as in EBV-related GC [24]. A recent study demonstrated that Foxp3+CD4+ICOS+

effector Tregs (eTregs), which has highly suppressive functions, was more abundant in late stage
GCs [25]. These tumor infiltrating Tregs exhibited the ability to produce IL-10, but not IFN-γ, TNF-α,
or IL-17 and to inhibit the proliferation of responder CD8+ T cells.

The presence of tumor infiltrating lymphocytes (TILs) can be detected in various cancers,
including GC. Nevertheless, the considerable variability in the number, types and spatial distribution
of infiltrates suggests that some tumor types are more immunogenic than others. Indeed, tumors with
a low burden of neo-antigens generated by somatic mutations are considered poorly immunogenic and
usually show limited or a total absence of infiltration by TILs (immune-desert tumors). The absence
of intra-tumoral lymphoid infiltrate may also be due to defects intrinsic to the multi-step T-cell
trafficking and homing cascade, a phenomenon that may significantly contribute to immunotherapy
resistance [26].

Evidence accumulated so far indicates that TILs may have an important role in influencing the
clinical course of various tumors, also including GC [27]. A higher density of both intra-tumoral cytotoxic
CD8+ TILs and regulatory FoxP3+ Treg cells is associated with good prognosis, and this is particularly
true for MSI GC, including those that are H. pylori- or EBV-positive [24,28]. A recent meta-analysis
of 31 observational studies including 4,185 GC patients investigated the significance of the prognostic
role of specific T-cell subsets, focusing on overall survival and disease-free survival [29]. In particular,
the study concluded that the numbers of CD8+, FOXP3+, CD3+, CD57+, CD20+, CD45RO+, Granzyme
B+ and T-bet+ infiltrating lymphocytes were significantly associated with improved survival (p < 0.05).
Notably, the amount of CD3+ TILs in the intra-tumoral compartment was the most significant prognostic
marker (pooled Hazard ratio, HR = 0.52; 95% CI = 0.43–0.63; p < 0.001). B-cell activation may also influence
tumor prognosis, by producing antibodies against tumor antigens and by activating of a specific B-cell
subset (i.e., Breg) that secrete anti-inflammatory mediators (e.g., IL-10) and convert T cells to regulatory
T cells (Treg), thus attenuating anti-tumor immune responses [30]. It has been demonstrated that in vivo
primed and in vitro activated B cells have showed therapeutic efficacy in adoptive immunotherapy
protocols [31,32]. Notably, effector B cells were shown to directly kill tumor cells [32]. On the other hand,
resting B cells can promote the development or malignant progression of cancer [33,34].

3. Immune-Based Therapies

3.1. Adoptive Cell Immunotherapy

The tumor-killing properties of T cells and natural killer (NK) cells provide opportunities to
treat cancer. Tumor infiltrating lymphocytes (TILs) and NK cells may have predictive and prognostic
relevance in GC [35–39]. Adoptive cell therapies may harness this potential with different modalities.
The main strategy involves the isolation of immune cells from a cancer patient, their subsequent
genetic modification or treatment to enhance their activity to specifically recognize and kill tumor cells.
After adequate ex vivo expansion, these immune cell populations are re-infused into the patient [40].
This process is applicable to most of cancer patients who are unable to mount an effective anti-cancer
immunity, and therefore, probably also unable to respond to immune checkpoint inhibitors. There are
several different strategies of adoptive cell therapy being used for cancer treatment, most of them have
been or are being investigated in the clinical setting for their potential efficacy in GC patients.

In this setting, MHC Class I-restricted T cells specifically recognizing GC antigens can be
successfully isolated from primary tumors, metastatic lymph nodes and ascites from GC patients [41].
However, the limited proportion (about 40%) of biopsies yielding satisfactory T cell populations and
the time (about 6 weeks) required to generate adequate numbers of cells for infusion have limited
the applicability of approaches using TIL cells [35]. Alternative modalities to generate tumor-specific
immune cells have been investigated to overcome these limitations, including the use of cytotoxic T-cell
lines generated from the spleen of GC patients [42] or the expansion and re-infusion of T lymphocytes
taken directly from a patient’s blood after they have received a cancer vaccine. Indeed, it has been
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shown that “priming” rare tumor antigen specific T cells first, with active immunization, is associated
with more effective expansion of tumor-specific T cells, which can be obtained in greater numbers for
therapeutic infusion [35].

The use of in vitro expanded allogeneic NK cells, which have cytotoxic function and the
potential to exert antibody-dependent cellular cytotoxicity (ADCC), appears particularly promising
for cancer immunotherapy. Compared to autologous NK cells, allogeneic NK cells are more suitable
for quality control and large-scale production and have the advantage of not being inhibited by
self-histocompatibility antigens, unlike T cells. To expand ex vivo NK cells (over 1000-fold expansion),
peripheral blood mononuclear cells of healthy donors or patients are co-cultured in the presence of
irradiated K562 leukemia cells that have been modified to express membrane-bound IL-15 and 4-1BB
ligands in the presence of IL-2 and IL-15 cytokines in the culture media [43]. However, clinical-grade
NK cells at sufficiently high numbers represents a great challenge; therefore, alternative methods to
obtain sufficient functional NK cells have been investigated [44–46]. Cytotoxic cell lines have been
also established from patients with clonal NK-cell lymphoma, and one of them, the NK-92 cell line,
has been infused into patients with advanced cancer and showed clinical benefit with minimal side
effects [29]. The use of an established NK cell line offers several advantages compared to the use
of in vitro expanded NK-cells. Notably, a NK-cell line does not cause graft versus host rejection,
and thus can safely be used in allogeneic settings. Based on these considerations, researchers are
now exploring the use of engineered NK cells, including the NK-92 cell line, for the treatment of
various haematological and non-haematological malignancies. The first chimeric antigen receptor
(CAR)-expressing NK-92 cells were generated almost 15 years ago [47]. These cells demonstrated
high efficacy against Human Epidermal Growth Factor Receptor 2 (HER2)-positive breast and ovarian
cancer cells both in vitro and in vivo [48]. The therapeutic efficacy of this HER2-CAR NK-92 cells
has been tested in established mouse models of orthotopic human glioblastoma, renal cell and breast
carcinoma [49]. Results of these studies demonstrated specific homing of the NK cells to the tumor
sites, a reduction in the number of metastases and significant tumor regression, indicating that this
could constitute a promising therapeutic approach for HER2+ GC.

Another adoptive cell therapy approach is based on the exploitation of the immunotherapeutic
properties of a heterogeneous population of immune effector cells: the cytokine-induced killer
cells (CIK). These cells can be obtained by treating peripheral blood lymphocytes with interferon-γ
(IFN-γ), a monoclonal antibody against CD3 and an interleukin (IL)-2 [50]. CIK cells are mainly
expansions of CD3+CD8+CD56− negative cells to terminally differentiated CD56-positive natural killer
(NK) T cells. These cells have the peculiar capacity of recognising tumor cells both in the presence
and in the absence of antibodies and MHC; thus, they can also recognise tumor cells that are missing
MHC molecules on their surfaces. The cytotoxicity of CIKs is mediated by perforin release and is
dependent on the interaction between killer cell lectin like receptor K1 (NKG2D) and NKG2D ligands.
Moreover, in vivo CIK cells can also regulate and increase host cellular immune function through
the secretion of several cytokines and chemokines. Available evidence indicates that combination
therapy with chemotherapy and CIK generally improves the progression-free survival (PFS) and
overall survival (OS) times of patients with cancer, including GC (Table 2). Some chemotherapies
(e.g., doxorubicin, mitoxantrone, oxaliplatin and cyclophosphamide) may add positive immune effects
by fostering CD8+ T-cell infiltration into the tumor and promoting the release of tumor antigens
through the induction of immunogenic death of tumor cells [51]. Two meta-analyses considering
relevant clinical trials concluded that CIK cell therapy significantly increases the 5-year OS rate of
GC patients compared to conventional chemotherapy, thus providing statistical evidence to support
the activation of large-scale clinical trials with CIK cell therapy [52,53]. Interestingly, the percentage
of lymphocyte subsets (CD3+, CD4+ and CD3−CD56+, CD3+CD56+; p < 0.01) and the levels of
IL-12 and IFN-γ, which reflect immune function, were significantly increased (p < 0.05) after the
CIK/DC-CIK therapy [53]. A particularly attractive perspective for the clinical exploitation of CIK
cells is their combination with monoclonal antibodies [54]. Indeed, pre-clinical evidence has been
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provided indicating that CIK cells combined with a monoclonal antibody against epidermal growth
factor receptor (EGFR) enhance the antitumor ability of CIK cells both in vitro and in vivo [55].

In summary, the overall data reported so far indicates that autologous immune cell administration
with adjuvant chemotherapy is associated with better prognosis for patients with GC compared to those
treated with chemotherapy only [34]. Some examples are reported in Table 2. Nevertheless, current
approaches of adoptive cell-based immunotherapy need to be improved to make clinical application
more feasible. In this respect, it has been shown that T/NK cell-mediated anti-tumor activity may
be suppressed by tumor or stromal cells via inhibitory soluble factors/cytokines or through the
engagement of inhibitory immune checkpoint molecules. These findings strongly suggested that
blocking inhibitory regulators of T/NK cells might be an attractive and promising strategy to increase
the efficacy of T/NK cell-based tumor immunotherapy [56].

Table 2. Adoptive cell immunotherapy for gastric carcinoma (GC).

Type of Treatment Setting Primary End-Point References

Autologous tumor infiltrating
lymphocytes (TILs) combined
with rIL-2

advanced GC (n = 23) 13% CR 21.7% PR [57]

Autologous peripheral blood
lymphocytes activated by
anti-CD3 antibody and interleukin
(IL)-2 + chemotherapy

GC with a life expectancy
>12 weeks (n = 84)

OS in patients that had received
surgery was prolonged after
EAAL immunotherapy

[58]

Ex vivo expanded natural killer
(NK) in co-culture with K562 [43]

NK expansion using recombinant
human fibronectin fragment
(FN-CH296) + target-
based chemotherapy

unresectable, locally
advanced, and/or
metastatic GC (n = 3)

phase I trial, good tolerability [44]

Expanded NK with OK432, IL-2,
and modified FN-CH296

unresectable, locally
advanced and/or
metastatic GC (n = 3)

phase I well tolerated with no
severe adverse events [45]

NK-92 cell line advanced solid tumors only pre-clinical studies [29]

Autologous cytokine-induced
killer cells (CIK)

post-operative locally
advanced GC (n = 151)

5-year OS 46.8 vs. 31.4% intestinal
type (p = 0.045), 5-year DFS 28.3
versus 10.4% (p = 0.044)

[59]

Autologous CIK + chemotherapy post-operative locally
advanced GC (n = 95)

DFS and OS were longer in pts
with higher major
histocompatibility complex
(MHC)-I-related gene A (MICA)

[58]

Autologous CIK + chemotherapy post-operative locally
advanced GC (n = 156) longer OS [60]

Autologous CIK + chemotherapy GC stage II-III (n = 226) longer DFS and OS [61]

Autologous CIK + oxaliplatin post-operative stage II-III
GC (n = 167)

higher 5-year OS rate (56.6% vs.
26.8%, p = 0.014) and
progression-free survival (PFS) rate
(49.1% vs. 24.1%, p = 0.026)

[62]

Autologous CIK + FolFox4 post-operative GC (n = 51) reduced GC recurrence rates and
enhanced survival rates [63]

EAAL: expanded activated autologous lymphocytes; DFS: Disease-free survival.

3.2. Engineered Cells for Adoptive Immunotherapy

To broaden the applicability and enhance the efficacy of adoptive cell therapy that could
potentially lead to the elimination of the tumor cells, techniques have been recently developed
to introduce antitumor antigen receptors into normal T cells that could be then used for therapy.
The specificity of T cells can be redirected towards tumor cells by the use of viral vectors,
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allowing the expression of CARs specific for tumor antigens [64,65]. The T-cell receptor (TCR)
recognition process requires antigen presentation via the major histocompatibility (MHC) complex.
However, a significant proportion of tumors down-regulate MHC expression to escape immune
surveillance. Engineering T lymphocytes with chimeric antigen receptors (CAR) and combining B cell
receptor-derived and T cell receptor domains, has the advantage of bypassing the need for MHC
interaction and costimulatory molecules. The extracellular portion of CAR-T cells is a ligand-binding
domain composed of a B cell receptor-derived single-chain variable fragment, whereas the signalling
domain is composed of CD3ζ and one or more intracellular costimulatory domains (Figure 1).

The adoptive transfer of CAR-T cells has so far demonstrated promising antitumor effects in
advanced hematologic malignancies, but only limited benefits in patients with solid tumors. This may
be due to the heterogeneous tumor antigen expression, immunosuppressive networks in the tumor
microenvironment, the suboptimal trafficking of T cells into solid tumors and the lack of effective
costimulatory signals required for CAR-T persistence after infusion [64–66]. In pre-clinical models of
GC, treatment with CAR-T cells specific for the HER2 oncoprotein as well as the use of a bifunctional
αHER2(Ag1)/CD3 (Ag2) RNA-engineered CAR-T-like human T cells, induced a marked regression of the
tumor and prolonged the survival of tumor-bearing mice [67,68]. Of note, in addition to classical CAR-T
cells, CAR T-like constructs also able to secrete soluble forms of the CAR receptor were able not only to
directly kill HER2+ GC, but also to transfer this ability to bystander T cells [68]. Another HER2-targeting
CAR-T constructs harboring T-costimulatory molecules (i.e., 4-1BB, CD3ζ exhibited a considerably
enhanced tumor inhibition ability and was able to promote long-term survival and T-cell homing to GC
xenotransplanted mice [69]. CAR-T cells were also shown to eliminate patient-derived GC stem-like cells,
an important effect to search for and implement, to enhance the possibility of eradicating tumor cells [50].
A phase I/II clinical study (NCT02713984) involving patients with several HER2-expressing tumor types,
including GC, and treatment with HER2-targeting CAR-T cells is ongoing. Another therapeutic target
antigen for GC is the Human Carcinoembryonic Antigen (CEA), an oncofetal glycoprotein overexpressed
in gastrointestinal carcinomas. With the aim of enhancing the antitumor activity and in vivo persistence
of CAR-T cells, CAR-T were engineered with a construct, combining CEA with a fusion protein of IL-2.
In comparison with free IL-2, the combination of CAR-T cells with IL-2 significantly enhanced the
antitumor activity against human GC cell line MKN-45 cells [70]. Several phase I studies are investigating
the safety and therapeutic efficacy of CAR T cells redirected towards different GC antigenic targets,
including CEA, MUC1 (mucins lining the apical surface of epithelial cells in GC) and EpCAM (an epithelial
cell adhesion/activating molecule) (Table 3).
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Figure 1. Chimeric antigen receptor (CAR)-T cell therapy T cells are isolated from blood of the patient 
or a donor, activated, and genetically engineered to express the CAR construct. Engineered CAR-T 
cells are then reinfused into the patient. The extracellular portion of CAR-T cells is a ligand-binding 
domain composed of a B cell receptor-derived single-chain variable fragment (VH-VL), whereas the 
T-cell receptor molecule signalling domain is composed of CD3 molecules and a ζ-chain (zeta chain) 
and one or more intracellular costimulatory domains required for T-cell stimulation (i.e., CD28 and 
4-1BB or CD137). CAR-T cells can also be engineered to recognize two different antigens (dual 
specificity CAR-T cells). In addition to classical CAR-T cells, new CAR T-like constructs are also able 
to secrete soluble forms of the CAR receptor. The secreted CAR construct was demonstrated to be 
able not only to directly kill HER2+ GC, but also to transfer this ability to bystander T cells. More 
recent approaches have been based on the use of CAR-T cells genetically modified to express CARs 
along with a gene cassette driving the expression of cytokines (red arrow) that enhance T-cell activity. 

Despite the efficacy shown by CAR-T-cell therapy in some clinical settings, this novel treatment 
strategy may be burdened by unique acute toxicities, which can be severe or even fatal [71]. Cytokine-
release syndrome (CRS) is the most frequently observed adverse event, which can range in severity 
from low-grade constitutional symptoms to a high-grade syndrome associated with life-threatening 
multi-organ dysfunction. Only rarely, severe CRS can evolve into fulminant haemophagocytic 
lymphohistiocytosis. Neurotoxicity, defined as CAR-T-cell-related encephalopathy syndrome, is the 
second most frequent adverse event, and can occur concurrently with or after CRS. Considering that 
antigens on cancer cells may be also expressed on normal cells, on target off-tumor toxicity can occur 
upon stimulation of T cells following the binding of CARs to their antigens on the normal 
cells/tissues. Life-threatening on target off-tumor toxicity may particularly occur in cases in which 
the target antigen is expressed in vital tissues such as the respiratory system. This fatal occurrence 
was reported in a patient with metastatic colorectal cancer following the administration of ERBB2 
CAR-Ts where low expression of ERBB2 on respiratory normal epithelial cells led to acute pulmonary 
manifestation and the patient’s death 5 days after the injection of CAR-Ts [72]. New strategies such 
as designing CAR-Ts with limited life-span or “on-switch CARs” are under investigation to 
ameliorate the toxicity of CAR-T. 
  

Figure 1. Chimeric antigen receptor (CAR)-T cell therapy T cells are isolated from blood of the patient
or a donor, activated, and genetically engineered to express the CAR construct. Engineered CAR-T cells
are then reinfused into the patient. The extracellular portion of CAR-T cells is a ligand-binding domain
composed of a B cell receptor-derived single-chain variable fragment (VH-VL), whereas the T-cell
receptor molecule signalling domain is composed of CD3 molecules and a ζ-chain (zeta chain) and
one or more intracellular costimulatory domains required for T-cell stimulation (i.e., CD28 and 4-1BB
or CD137). CAR-T cells can also be engineered to recognize two different antigens (dual specificity
CAR-T cells). In addition to classical CAR-T cells, new CAR T-like constructs are also able to secrete
soluble forms of the CAR receptor. The secreted CAR construct was demonstrated to be able not only
to directly kill HER2+ GC, but also to transfer this ability to bystander T cells. More recent approaches
have been based on the use of CAR-T cells genetically modified to express CARs along with a gene
cassette driving the expression of cytokines (red arrow) that enhance T-cell activity.

Despite the efficacy shown by CAR-T-cell therapy in some clinical settings, this novel treatment
strategy may be burdened by unique acute toxicities, which can be severe or even fatal [71].
Cytokine-release syndrome (CRS) is the most frequently observed adverse event, which can range
in severity from low-grade constitutional symptoms to a high-grade syndrome associated with
life-threatening multi-organ dysfunction. Only rarely, severe CRS can evolve into fulminant
haemophagocytic lymphohistiocytosis. Neurotoxicity, defined as CAR-T-cell-related encephalopathy
syndrome, is the second most frequent adverse event, and can occur concurrently with or after CRS.
Considering that antigens on cancer cells may be also expressed on normal cells, on target off-tumor
toxicity can occur upon stimulation of T cells following the binding of CARs to their antigens on the
normal cells/tissues. Life-threatening on target off-tumor toxicity may particularly occur in cases
in which the target antigen is expressed in vital tissues such as the respiratory system. This fatal
occurrence was reported in a patient with metastatic colorectal cancer following the administration
of ERBB2 CAR-Ts where low expression of ERBB2 on respiratory normal epithelial cells led to
acute pulmonary manifestation and the patient’s death 5 days after the injection of CAR-Ts [72].
New strategies such as designing CAR-Ts with limited life-span or “on-switch CARs” are under
investigation to ameliorate the toxicity of CAR-T.
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Table 3. Engineered adoptive T/NK cells—CAR-T cells.

Type of Treatment Setting Type of Study/Trial Reference/Trial No.

CAR T cell therapy targeting
human epidermal growth factor

receptor 2 (HER2)
HER2+ GC pre-clinical studies [67,69]

CAR-T-like T cells targeting HER2 HER2+ GC pre-clinical study [68]

CAR targeting HER2+

HER2-positive solid tumors
(breast cancer, ovarian cancer,

lung cancer, GC, colorectal cancer,
glioma, pancreatic cancer)

ongoing phase I studies NCT02713984

CAR targeting the
carcinoembryonic antigen (CEA) GC CEA-positive ongoing phase I studies

NCT02349724
NCT02850536
NCT02416466

CAR targeting Human
Mucin-1 (MUC1) GC MUC1-positive ongoing phase I NCT02617134

CAR targeting the epithelial cell
adhesion molecule (EpCAM) GC EpCAM-positive ongoing phase I studies NCT02725125

NCT03013712

3.3. Immune Checkpoint Inhibitors/Immune Modulatory Pathways

Immune checkpoint therapy exploits the function of molecules that physiologically regulate and
balance immune responses by inhibiting T-cell activation or, alternatively, by activating stimulatory
pathways with the final result to maintain homeostasis and avoid tissue damages due to excessive
immune activation. In the field of cancer immunotherapy, these treatments are designed to release or
enhance pre-existing anti-cancer immune responses. Indeed, tumor cells may induce T-cell suppressive
signalling to successfully evade immune-mediated tumour eradication, a phenomenon called adaptive
immune resistance. The inhibitory signals suppressing T-cell activation are mediated by a variety
of “immune-checkpoint” molecules (inhibitory ligands and their cognate receptors), including the
CD28/cytotoxic T-lymphocyte antigen 4 (CTLA-4) axis, and PD-L1/PD-1 pathway, which have
emerged as promising targets. Other checkpoint molecules, such as TIM3, B7H3, VISTA, LAG3,
and TIGIT, are currently being evaluated as potential targets for cancer immunotherapy [73] (Figure 2).
Pathways involving these regulatory molecules are crucial for maintaining the tolerance against
self-antigens and modulating the duration and amplitude of immune responses against non-self or
mutated tumor antigens in order to avoid tissue damage. When these negative regulatory proteins are
blocked, the inhibition of immune effectors is released, and these cells regain their ability to become
activated and kill tumour cells. The binding of the PD-1 receptor expressed at the surface of T cells
with its cognate ligands, PD-L1 and PD-L2, results in the inhibition of T-cell effector function and
decreased cytotoxic activity within the tumor bed. This is consistent with the notion that antibodies
targeting the PD-1/PD-L1 axis require the presence of tumor-specific T lymphocytes to be effective.
On the other hand, the ubiquitous CTLA-4 has non-overlapping suppressive effects on antitumor
immunity, being preferentially involved in controlling the earlier phases of the immune response
(priming), primarily in lymphoid organs. These effects occurring at different sites and during different
phases of the immune response support the rationale to combine the CTLA-4 blockade with antibodies
targeting the PD-1/PD-L1 axis.
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Figure 2. Blocking the immune checkpoint restores the ability of tumor-specific T lymphocytes to kill
tumor cells. Antibodies/agents against receptors on T cells (i.e., CTLA-4, PD-1, etc.), and/or their
relative ligands (i.e., B7, PDL-1, etc.) on antigen presenting cells or tumor cells re-activate pre-existing
anti-tumor T cells that can induce tumor cell killing. Recognition of the human leukocyte antigen (HLA)
Class I/peptide antigen complex by the T-cell receptor present on T cells is required to induce tumor
cell killing; (A) Inhibitory receptor/ligand interaction is not blocked and the tumor cell is not killed;
(B) the immune checkpoint receptor is blocked by an inhibitory antibody and the T-cell is re-activated
and is thus able to kill tumor cells. PVR: poliovirus Receptor; MHC: Major Histocompatibility Complex;
VISTA: V-domain Ig suppressor of T cell activation; VISTA-R: VISTA Receptor; Gal-9: Galectin-9;
PtdSer: Phosphatidylserine; HMGB1: High Mobility Group Box 1; CEAcam-1: Carcinoembryonic
antigen-related cell adhesion molecule 1; PD-L1: Programmed death-ligand 1; CTLA-4: Cytotoxic
T-Lymphocyte Antigen 4; PD-1: PD-L1: Programmed death 1; TIM-3: T cell immunoglobulin and
mucin domain 3; LAG-3: Lymphocyte-activation protein 3; TIGIT: T-cell immunoreceptor with Ig and
ITIM domains.

With regard to GC, data collected so far indicate that PD-L1 is expressed in about 65% of GC tissues
and CTLA-4 is expressed in 86% of cases, whereas these molecules are undetectable in normal gastric
mucosa of healthy individuals [74–76]. Notably, positive tumour cell staining for PD-L1 or CTLA-4
has been associated with an inferior OS in GC patients and TILs express PD-1, PD-L1, and CTLA-4
molecules at a significantly higher level compared to the T cells of the peripheral blood [77]. A recent
meta-analysis carried out on 15 studies, including 3291 GC patients, confirmed that the expression
level of PD-L1 in tumour cells significantly correlates with a worse OS. In addition, a subgroup analysis
showed that GC patients with deeper tumor infiltration, positive lymph node metastasis, positive
venous invasion, Epstein–Barr virus (EBV) infection, or GC showing microsatellite instability (MSI)
are more likely to express PD-L1. These findings suggest that GC patients, specifically those with
EBV+ and MSI tumors, may be preferred candidates for PD-1-targeting therapies [78]. A FISH analysis
demonstrated amplification of the gene encoding for PD-L1 in 11% of EBV+ cases, suggesting that
this genetic change may be associated with, or even promote, the clonal evolution and malignant
progression of EBV and GC [79]. The expression of PD-L1 by T/NK lymphocytes infiltrating GC may
be also of potential prognostic relevance. Functional studies carried out in vitro revealed that blocking
PD-1/PD-L1 signalling markedly enhanced cytokine production and cytotoxic activity while inhibiting
NK cell apoptosis. Intriguingly, treatment with a PD-1 blocking antibody significantly inhibited the
growth of xenografts in nude mice, an effect that was completely abrogated by NK depletion [80].

Like the alternative immune checkpoint molecule, VISTA appears particularly attractive as
a potential therapeutic target. VISTA is a type I membrane protein expressed predominantly in
myeloid, granulocytic and T cells. Although the ligands for VISTA are not yet known, available
evidence indicates that VISTA may serve both as a ligand (for antigen presenting cells) and as
a receptor (for T cells), and that VISTA suppresses T-cell activation, a function that could be
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independent of PD-1/PD-L1 signalling [81] an analysis of a cohort of 464 therapy-naive GC samples
and 14 corresponding liver metastases disclosed that VISTA expression in tumor cells was detected
in 41 GCs (8.8%) and two corresponding liver metastases (14.3%), but no significant correlation with
patient outcome was observed [82].

TIM-3 is a member of the TNF family and a negative regulator of CD4+ helper 1 and CD8+

cytotoxic T cells. [83]. It has been reported that the expression of TIM-3 defines a subpopulation of
specific PD-1+ exhausted CD8+ T cells with a low production of IFN-γ, TNF-α and IL-2, thus providing
a rationale for combining immunotherapy targeting both TIM-3 and PD-1 inhibitory molecules [84,85].

The anti-CTLA-4 ipilimumab antibody and the anti-PD-1 antibodies, pembrolizumab and nivolumab,
were first approved by the US Food and Drug Administration (FDA) for the treatment of patients with
metastatic melanomas in 2011 and 2014, respectively. However, data accumulated so far indicates that
while anti CTLA-4 antibodies yielded only partially satisfactory results, PD-1/PD-L1 inhibitors show
more promising results (Table 4). Interestingly, patients with a post-treatment CEA antigen proliferative
response had a median survival time of 17.1 months compared with 4.7 months for non-responders to the
anti-CTLA-4, tremelimumab (p = 0.004), suggesting a rationale for combinations of CTLA-4 blockade with
vaccines targeting GC antigens in the future [86]. Moreover, the efficacy of immunotherapies targeting
the PD-1/PD-L1 in different solid tumours stimulated the activation of combination studies with other
active targeted biologic agents or immune modulating treatments. Indeed, several clinical trials using
new antibodies targeting the PD-1/PD-L1 axis in combination with other immunotherapies are ongoing
(Table 4). The rationale supporting the combination of different immunotherapeutic agents is supported
by several pre-clinical data which indicate that targeting only one of the complex steps required for the
generation of effective anti-tumor immune responses is often insufficient. Moreover, taking into account
the ability of several chemotherapeutic drugs to induce immunogenic cell death, therapeutic approaches
combining immunotherapy and chemotherapy are also being actively investigated (Table 4).

Combination therapies with immune checkpoint inhibitors have also targeted the subset of
HER2-overexpressing tumors which almost invariably become resistant to trastuzumab-containing
regimens and progress. Pre-clinical evidence supports the rationale for combining trastuzumab
and inhibitors of the PD-1/PD-L1 axis. In fact, it has been demonstrated that HER-2 inhibition
can promote T-cell activation and trafficking, enhance IFNγ production by NK cells and boost
antibody-dependent cellular cytotoxicity which may efficiently synergize with inhibition of the
PD-1/PD-L1 pathway [87]. A phase Ib/II, open-label, dose-escalation study is investigating the
novel anti-HER2 mAb, margetuximab, in combination with pembrolizumab in patients with advanced
HER2-amplified GC who are refractory to standard trastuzumab-based combination chemotherapy
(NCT02689284) [88]. A variety of other combinations is being investigated in which, on the backbone
of inhibitors of the PD-1/PD-L1 axis, other drugs target additional nodes in the cancer immunity
cycle [89]. The latter include agents inhibiting other immune checkpoints (TIM3, LAG3), T-cell
costimulatory agonist antibodies (GITR, OX40, 4-1BB), enzymatic inhibitors (IDO-1), as well as
radiation and other cytotoxic drugs. In addition, the combination of nivolumab and GS-5745, a matrix
metalloproteinase 9 inhibitor, is also being investigated in patients with unresectable or recurrent
GC/GEJ adenocarcinoma (NCT02864381). Combination with radiotherapy, although still poorly
explored in the setting of GC, represents another promising therapeutic opportunity. Indeed, single
dose and fractionated radiotherapy has been found to upregulate tumor PD-L1 expression in various
pre-clinical models but also promotes the immunogenicity of tumor cells through the generation of new
antigens or enhanced exposure or release of existing tumor antigens. Therefore, concomitant treatment
with anti-PD1 antibodies may overcome the immune suppression activity mediated by PD-L1 that is
up-regulated by radiotherapy, thus allowing for the generation of more effective anti-tumor immune
responses that may lead to long-term tumor control [90]. Clinical trials involving GC patients are
ongoing, including studies combining pembrolizumab with palliative radiotherapy in the metastatic
setting, as well as with neoadjuvant chemoradiotherapy for GEJ and gastric cardia cancers in earlier
stage resettable disease (NCT02730546) [91].
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Table 4. Immune checkpoint inhibitors.

Type of Treatment Setting Primary End-Point Reference/Trial No.

Tremelimumab (IgG2 anti B7 ligand
of CTLA-4) metastatic gastric and esophageal carcinomas (n = 18) phase II, OS similar to conventional therapy [86]

Tremelimumab + Durvalumab GC/gastroesophageal junction (GEJ) (n = 135) phase Ib/II, ongoing NCT02340975

Ipilimumab (IgG1κ anti CTL-4) unresectable locally advanced/metastatic GC/ GEJ (n = 143) phase II, OS similar to conventional therapy [92]

Ipilimumab + Nivolumab (Anti-PD-1) GC/GEJ pre-operative setting and nivolumab combined with
chemo-radiation phase Ib, ongoing NCT03044613

Pembrolizumab (IgG4 anti PD-1)

recurrent or metastatic GC/GEJ (n = 39) phase Ib, 22% partial response, toxicity manageable [93]

PD-L1+ advanced solid tumors including GC/ GEJ (n = 23) phase Ib, 30% Overall response rate (ORR), median 15 months, better
response in patients with high interferon (IFN)-γ gene signature [94]

recurrent or metastatic GC/GEJ, 2 line (n = 259) phase II. improved ORR (12%), progression-free survival (PFS) 2 months,
and OS 6 months [95]

recurrent or metastatic GC/GEJ ≥1% PD-L1+, 1 line phase II. improved ORR (26%), PFS 3 months, and OS not reach in GC with
≥1% expression of PD-L1 [95]

Pembrolizumab + chemotherapy recurrent or metastatic GC/GEJ phase II. improved ORR (60%), PFS 7 months, and OS 14 months [95]

recurrent or metastatic GC/GEJ phase III ongoing [96]

Pembrolizumab + Ramucirumab
(anti VEGFR2)

locally advanced and unresectable or metastatic GC and other
tumors (n = 155) phase I, study ongoing [97]

Pembrolizumab + Margetuximab
(anti HER2) advanced and metastatic GC/GEJ HER2+ (n = 72) phase I, dose escalation, safety, efficacy. Study ongoing [88]

neoadjuvant Pembrolizumab +
chemo/radiotherapy resectable, locally advanced GEJ or GC of cardia (n = 68) phase Ib/II, side effects and best way to give the treatment. Study ongoing [91]

Nivolumab (IgG4 anti PD-1) recurrent or metastatic GC/GEJ (n = 160) phase I/II, ORR 24% Nivolumab and Ipilimumab vs 12% Nivolumab in
monotherapy with lower toxicity [98]

Nivolumab + Ipilumumab
unresectable advanced or recurrent gastric or GEJ cancer,
refractory to, or intolerant of, two or more prior chemotherapy
regimens, only patients from Asian countries

phase III, improved OS (26.6% at 1 year, median 5.32 months),
PFS (1.61 months). ORR 11.2% [99]

Avelumab (IgG1 anti PD-L1)

advanced or metastatic previously treated solid tumors,
including GC/GEJ phase Ia, dose escalation trial, acceptable toxicity [100]

3 line recurrent or metastatic GC/GEJ (n = 371) phase III, Avelumab + best supportive care (BSC) vs BSC ± chemotherapy,
study on going at the moment, it did not improve overall survival (OS) [101]

unresectable, locally advanced or metastatic GC Avelumab vs continuation of first-line chemotherapy [102]

Durvalumab (IgG1κ anti PD-L1) 2/3 line metastatic GC phase Ib/II Durvalumab or Durvalumab + Tremelimumab vs
Tremelimumab alone. study is ongoing [103]
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Table 4. Cont.

Type of Treatment Setting Primary End-Point Reference/Trial No.

Durvalumab + Ramucirumab
(anti VEGFR2) refractory GC/GEJ (n = 114) phase Ia/Ib. Safety and efficacy [104]

Durvalumab + Indoleamine
2,3-dioxygenase (IDO) Inhibitor selected advanced solid tumors (n = 192) phase I/II safety, tolerability, and efficacy. study ongoing NCT02318277

Atezolizumab (IgG1κ anti PD-L1) locally advanced or metastatic solid tumors including GC (n =
661)

phase I. Dose escalation Study of the safety and pharmacokinetics.
Study is ongoing NCT01375842

Atezolizumab + IDO inhibitor locally advanced, recurrent, or metastatic incurable solid
tumors including GC (n = 158) phase I. Dose limiting toxicity, adverse events. study is ongoing NCT02471846

Atezolizumab + FLOT (docetaxel,
oxaliplatin, and fluorouracil /leucovorin)
chemotherapy

locally advanced unresectable or metastatic GC/GEJ (n = 357) phase Ib/II NCT03281369

Atezolizumab + Ramucirumab +
chemotherapy GC/GEJ (n = 295) phase II, Atezolizumab + FLOT vs. FLOT. study is ongoing NCT03421288
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3.4. Agonistic Antibodies for Costimulatory Receptors

The generation of therapeutically effective immune responses requires not only relieving the
inhibition of negative regulatory pathways but also promoting T cell activation. T cell costimulation
through receptors, like OX40, 4-1BB or ICOS, provides a potent activation signal that actively promotes
the expansion and proliferation of killer CD8 and helper CD4 T cells [105–107]. Studies carried out in
pre-clinical models have demonstrated that treatment with OX40 agonists, including both anti-OX40
mAb and OX40L-Fc fusion proteins, results in tumor regression [105]. These effects are mainly due
to the ability of OX40 ligands to promote the survival and expansion of CD8 and conventional,
non-regulatory CD4 T cells. On the other hand, it is still unclear whether OX40 activation promotes
or inhibits Treg cell responses, as available data in this respect are not univocal [105]. A murine IgG
monoclonal agonistic antibody against OX40 was investigated in a phase I clinical trial in 30 patients
with metastatic solid malignancies. The treatment was overall tolerable, and six patients achieved
stable disease, whereas no partial response was observed [108]. Several phase I clinical trials are
currently ongoing with agonistic monoclonal antibodies targeting OX40 as a single therapy or in
combination with checkpoint inhibitors [105].

4-1BB (CD137) is an inducible costimulatory receptor expressed by T cells, NK cells,
and antigen presenting cells. Activation of 4-1BB by its ligand stimulates the proliferation and
activation of T and NK cells [106] Considering that activation of NK cells results in enhanced
antibody-dependent cell-mediated cytoxicity (ADCC), treatment with anti-41BB agonists not only
increases immune-mediated antitumor activity but may also enhance the therapeutic efficacy
of monoclonal antibodies, such as rituximab and trastuzumab, that function through ADCC
mechanisms [109]. Gonistic 4-1BB antibodies have demonstrated potent anti-cancer efficacy in
murine models and, on the basis of promising pre-clinical findings [110], several clinical trials have
been initiated using the utomilumab and urelumab antibodies, mainly in patients with advanced
solid tumors.

Inducible costimulator (ICOS) is a T cell costimulatory molecule belonging to the CD28/CTLA-4
family, which promotes the proliferation and cytokine production, mainly of CD4 T lymphocytes [111].
Up-regulation of ICOS is frequently found in activated T lymphocytes, particularly in patients treated
with anti-CTLA4 antibodies, and its expression is regarded as a biomarker that is indicative of the
binding of an anti-CTLA4 antibody to its cognate target [112]. Notably, the combination of ICOS agonist
antibodies with CTLA4 blockade results in strong synergistic effects due to the marked up-regulation
of ICOS expression of ICOS after anti-CTLA4 therapy [111]. JTX-2011, GSK3359609 and MEDI-570 are
ICOS agonistic monoclonal antibodies that are currently being investigated in phase I/II clinical trials
as monotherapies or in combination with checkpoint inhibitors, mainly in patients with advanced
solid malignancies.

3.5. Safety Issues Related to the Use of Checkpoint Inhibitors

Overall, checkpoint inhibitors are generally better tolerated than chemotherapy regimens
administered to patients with GC. Generally, the profiles of side effects that occur with different
anti–PD-1/PD-L1 inhibitors are broadly similar [113]. About 10–20% of GC patients treated with
anti-PD-1/PD-L1 monotherapy have adverse grade ≥3 events, including fatigue, anemia, and elevated
alanine and aspartate aminotransferase levels. Checkpoint inhibitor therapy may also induce
immune-related AEs (irAEs) that may affect rheumatic, gastrointestinal, skin, pulmonary, endocrine,
neurological, hepatic, cardiac, and renal tissues [114]. In patients with GC, pneumonitis and colitis
are the most common grade ≥3 irAEs. Usually, higher rates of treatment-related adverse events are
observed in patients treated with anti–CTLA-4 antibodies and combination regimens as compared with
anti-PD-1/PD-L1 monotherapies [114]. Although these adverse events are clinically manageable in
most cases, long-term sequelae and deaths have been reported in a small proportion of patients [114],
pointing to the need to adequately educate healthcare professionals and patients, perform close
monitoring, and activate multidisciplinary collaborations to effectively manage these adverse events.
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3.6. Cancer Vaccines

The therapeutic potential of cancer vaccines is due to their ability to activate and boost anti-tumor
immune responses. Dendritic cells (DCs), the critical target of all cancer vaccines, are professional
antigen presenting cells that play a pivotal role in orchestrating and coordinating anti-tumor immune
responses, and are able to activate NK cells, B lymphocytes, and naïve and memory T cells by presenting
tumor antigen/MHC complexes. In GC patients, higher numbers of DCs infiltrating the tumor have
been associated with lower lymph node metastases and better patient survival [115]. Several strategies
have been used to load DCs with tumor antigen as a vaccine, such as (i) synthetic peptide pulsed
on DCs, (ii) DCs engineered with plasmid DNA, RNA, or viruses, (iii) tumor cell lysate (e.g. RNA,
whole cell, phagosomes) mixed with immature DCs, (iv) DCs fused with whole tumor cells via PEG or
electroporation. The most widely used vaccines are based on DCs pulsed with MHC-restricted peptides
derived from known tumor-associated antigens, although the use of DCs in the clinical setting is limited
by the short life span of these cells in vivo. The tumor-associated antigens targeted so far by vaccines
for GC patients are melanoma-associated antigen (MAGE) A3 [116,117], HER2(p369) peptide [116],
gastrin-17 diphtheria toxoid (G17DT) [118,119], URLC10 or VEGFR1 epitopes [120] and heat shock
protein gp96 [121]; adjuvant BCG (Bacillus Calmette–Guérin) was also tested with chemotherapy [122]
(Table 5). To personalize the choice of peptides to be used as vaccines in individual GC patients,
pre-vaccination peripheral blood mononuclear cells of each patients were tested for their reactivity
in vitro to the repertoire of each MHC peptide, and only the reactive peptides were administered
in vivo [120]. Delayed-type hypersensitivity (DTH) to the vaccinated peptides was observed in some
patients, whereas increased cellular and humoral immune responses to the vaccinated peptides were
observed in others, with a concomitant prolonged survival [123]. Recently, encouraging clinical results
were obtained using HLA-A24-restricted vascular endothelial growth factor receptor 1 (VEGFR1)-1084
and VEGFR2-169 peptides, combined with S-1 and cisplatin chemotherapy [120]. Most patients (82%)
showed the induction of VEGFR1-specific cytotoxic T lymphocyte responses, twelve patients (55%)
showed partial responses and 10 had stable disease after two cycles of the therapy. Notably, patients
showing VEGFR-specific T-cell responses had a significant higher OS and time to progression (TTP),
indicating that cancer vaccination combined with standard chemotherapy warrants further analysis
as a promising strategy for the treatment of advanced GC [124]. To enhance GC vaccine efficacy,
antigenic formulations targeting multiple antigens are being explored. In this direction, a cocktail
vaccine including multiple peptides (DEPDC1, FOXM1, KIF20, URLC10, and VEGFR1) combined with
S-1 chemotherapy was administered as a post-operative adjuvant therapy in a series of pathologically
stage III advanced GC patients [125,126]. The treatment was well tolerated, and an optimal relative dose
was achieved, paving the way for further studies aiming at assessing the efficacy of this therapeutic
strategy an alternative approach to target multiple antigens is the fusion of DCs with whole tumor
gastric cells to generate DC-tumor hybrids, e.g., by the electrofusion technique. These hybrid cells
have the advantage of combining the potent antigen presenting capacity of DCs with the availability
of the full repertoire of antigens expressed by tumor cells [127,128]. To circumvent the disadvantage
of the limited availability of viable autologous tumor cells for the fusion, allogeneic GC cells may
be used instead of autologous GC cells (cross-priming antigens) Therefore, it is not necessary to
match the HLA haplotype between patients and allogeneic tumor cells used to generate the fusion.
Although DC-tumor hybrids are safe and have induced efficient antitumor immune responses in early
clinical trials, limited positive clinical responses have been reported in GC, with better results occurring
with the use of costimulation with IL-12 [129] and the use of the of combination of TLR2 and TLR4
agonists [130].
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Table 5. Vaccines.

Type of Vaccine Setting Primary End-Point Reference

DC pulsed with melanoma-associated
antigen (MAGE) A3 peptides

MAGE-3-expressing advanced
GC (n = 12)

phase I, safe and exhibits
antitumor effects in

some patients
[117]

HER2(p369) peptide advanced or recurrent GC
HER2+ (n = 9)

phase I, tumor specific
T-cell response [116]

BCG (Bacillus Calmette–
Guérin) + chemotherapy radically resected stage III/IV GC

prolonged 10-year OS (47.1%)
as compared to

mono-chemotherapy (30%)
or surgery alone (15.2%)

[122]

gastrin-17 diphtheria toxoid
(G17DT) + chemotherapy metastatic GC/GEJ (n = 94) phase II, longer TTP and OS

in responders [118]

URLC10 or VEGFR1 Epitopes chemotherapy-resistant
advanced GC (n = 14)

phase I, tumor specific
T cell responses [120,124]

heat shock protein
GP96 + oxaliplatinum GC (n = 45) phase II, 81.9% 2-year OS [121]

OTSGC-A24 (5 HLA-A24-restricted
peptides DEPDC1, FOXM1, KIF20,

URLC10, and VEGFR1)

inoperable/unresectable,
metastatic GC, 2 line therapy or

greater (n = 23)

favourable results for safety and
immune reactivity [126]

4. Concluding Remarks and Future Perspectives

Over the last decade, our understanding of the mechanisms underlying immune modulation
has greatly improved, allowing for the development of multiple therapeutic approaches that are
revolutionizing the treatment of cancer. Immunotherapy for GC is still in the early phase but is
rapidly evolving. The challenges moving forward are to put much effort into biologic and immunologic
exploration in GC setting to fine-tune and tailor, more precisely, the various available or emerging
immunotherapeutic approaches. In the near future, it will be necessary to design large prospective
trials to validate reliable predictive factors, allowing for the selection of GC patients with the highest
chance of benefitting from immunotherapy.
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