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Abstract To investigate the petrogenesis of cyclic units in layered intrusions, we examined chromitite, dunite,
poikilitic harzburgite and bronzitite from the ultramafic zone of the Stillwater complex and measured
stable isotopes of Li and O in their major minerals. The Li isotopes in olivine range from 4 to 26‰ in δ7Li
with uniform Li contents of 1–3 ppm, whereas orthopyroxene and clinopyroxene have Li contents of 0.5–
5 ppm and 4–8 ppm, and δ7Li ranges of −13 to 7‰ and −14 to −6‰, respectively. The δ18O values vary
from 4.91 to 5.72‰ in olivine, from 5.11 to 5.87‰ in orthopyroxene, and from 4.64 to 5.86‰ in
clinopyroxene. For a given sample, olivine displays more variable and higher δ7Li but lower δ18O values
than orthopyroxene, indicating that olivine experienced more extensive compositional modification after
crystallization relative to orthopyroxene. The general Li and O isotopic compositions are interpreted as the
result of re-equilibration between interstitial liquids, from which pyroxenes crystallized, and cumulus
minerals. The inter-mineral and inter-sample isotopic variations correlate with mineral assemblages, crystal
sizes and major and trace element compositions, revealing that the interstitial liquids varied
compositionally mainly due to mixing between fractionated magma and newly injected primitive magma.
Abrupt mineralogical and geochemical changes from silicate rocks to chromitites imply that hydrous
fluids, which collected on chromite surface and were later released from chromite seams, played an
additional, critical medium of chemical exchange between minerals in the chromitites.

Keywords (separated by '-') Li isotopes - Oxygen isotopes - Chromite - Olivine - Pyroxene - Layered intrusion
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Abstract

To investigate the petrogenesis of cyclic units in layered intrusions, we examined chromitite, dunite, poikilitic harzburgite 

and bronzitite from the ultramaic zone of the stillwater complex and measured stable isotopes of Li and O in their major 

minerals. The Li isotopes in olivine range from 4 to 26‰ in δ7Li with uniform Li contents of 1–3 ppm, whereas orthopy-

roxene and clinopyroxene have Li contents of 0.5–5 ppm and 4–8 ppm, and δ7Li ranges of −13 to 7‰ and −14 to −6‰, 

respectively. The δ18O values vary from 4.91 to 5.72‰ in olivine, from 5.11 to 5.87‰ in orthopyroxene, and from 4.64 

to 5.86‰ in clinopyroxene. For a given sample, olivine displays more variable and higher δ7Li but lower δ18O values than 

orthopyroxene, indicating that olivine experienced more extensive compositional modiication after crystallization rela-

tive to orthopyroxene. The general Li and O isotopic compositions are interpreted as the result of re-equilibration between 

interstitial liquids, from which pyroxenes crystallized, and cumulus minerals. The inter-mineral and inter-sample isotopic 

variations correlate with mineral assemblages, crystal sizes and major and trace element compositions, revealing that the 

interstitial liquids varied compositionally mainly due to mixing between fractionated magma and newly injected primitive 

magma. Abrupt mineralogical and geochemical changes from silicate rocks to chromitites imply that hydrous luids, which 

collected on chromite surface and were later released from chromite seams, played an additional, critical medium of chemi-

cal exchange between minerals in the chromitites.

Keywords Li isotopes · Oxygen isotopes · Chromite · Olivine · Pyroxene · Layered intrusion

Introduction

It has been suggested that parental magmas of large 

maic–ultramaic layered intrusions worldwide vary in com-

position due to diferent mixing proportions, consequently 

leading to chemical disequilibrium between the magmas and 

crystallizing minerals (e.g., Bushveld, Mondal and Mathez 
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2007; Stillwater, McCallum 1996, 2002). This results in 

compositional variations and modiications in minerals via 

re-equilibration and interaction (Pagé et al. 2011). Further 

interaction or chemical difusion may also occur between 

crystallized minerals and interstitial liquids (Raedeke and 

McCallum 1984; Lenaz et al. 2012) and between subsoli-

dus mineral phases, such as olivine and chromite during 

solidiication and cooling (Jackson 1961; McCallum 2002; 

Bai et al. 2019). The extent of such interactions depends 

largely on the spatial migration of the melts; O’Driscoll et al. 

(2009) proposed downward iniltration of a melt during the 

formation of layers in such intrusions, whereas others have 

argued for upward-percolation of the melts (Kaufmann et al. 

2018) owing to compaction of the underlying crystal pile 

(Irvine 1980) or a temperature gradient-driven lux (Latypov 

et al. 2008). Thus, the cooling and crystallization history 

of large layered intrusions is long, complex, and involves 

multiple injections of primitive magma into an evolving and 

fractionating magma chamber. These processes would have 

modiied the primary melt compositions and the constitu-

ent minerals, making it diicult to identify a clear parental 

magma. Moreover, much of the mineralogical evidence for 

mineral-interstitial melt interactions would likely have been 

obliterated during late post-magmatic textural maturation 

and recrystallization (Pagé et al. 2011). These considera-

tions have lead to several hypotheses for the formation of 

stratiform chromitite layers in layered intrusions including 

magma mixing (Irvine 1975; Horan et al. 2001; Spandler 

et al. 2005), mechanical sorting (Cooper 1990; Mondal and 

Mathez 2007; Maier et al. 2012; Mungall et al. 2016; Jenkins 

and Mungall 2018), luid immiscibility (McDonald 1965; 

Spandler et al. 2005) and incongruent melting (Boudreau 

2016).

Because lithium (Li) and incompatible trace elements are 

sensitive to changing magma compositions, luid activity 

and limited Li difusion between silicates and chromite 

(Lambert and Simmons 1987; Eiler et al. 1995; Su et al. 

2016, 2018; Tomascak et al. 2016), integration of such data 

and oxygen (O) isotopes may shed new light on the for-

mation of large layered maic–ultramaic intrusions. In this 

study, we conducted in situ analyses of major and trace ele-

ments and Li and O isotopes of major silicate minerals from 

the ultramaic zone of the stillwater complex following pet-

rographical and mineralogical investigations. These datasets, 

together with the Cr isotope data from the same samples in 

Bai et al. (2019), are used to identify elemental and isotopic 

variations in diferent rock types and to constrain potential 

melt/luid activity as well as chemical interactions between 

various components.

Geology of the stillwater complex

The 2.7-Ga stillwater complex was emplaced into Archean 

meta-sedimentary rocks on the northern margin of the 

Wyoming Craton (Fig. 1a) (Jones et al. 1960; McCallum 

1996). It has an exposed strike length of ~45 km (Fig. 1b) 

and a maximum thickness of 6.5 km (Jackson 1961). The 

stillwater complex has been divided into three major strati-

graphic zones based on lithology and mineralogy, named 

in order from the bottom upward: the basal zone, the ultra-

maic zone and the banded zone (McCallum 1996). The 

basal zone, which is composed chiely of diabasic norite 

with minor local harzburgite, separates the complex from 

its footwall country rocks (McCallum 2002). This zone 

commonly contains sulide grains and patches of pyrrho-

tite and chalcopyrite (Peoples and Howland 1940; Aird 

et al. 2017). The ultramaic zone may be subdivided into 

two subzones (Zientek et al. 1985). The lower peridotite 

subzone is characterized by lithologically similar, cyclic 

Fig. 1  a Distribution of Precambrian basement (in black) and location of the stillwater complex in the Wyoming Craton, and (b) geologic map of 

the stillwater complex (after Jackson 1961)
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units of olivine-chromite-orthopyroxene layers (Raedeke 

and McCallum 1984; Cooper 1997; Lenaz et al. 2012). 

The upper bronzitite subzone consists almost exclusively 

of medium- to coarse-grained bronzitite. The overlaying 

banded zone is composed of norite, gabbronorite and gab-

bro, to troctolite and anorthosite (McCallum 2002). The top 

of the intrusion is eroded and overlain unconformably by 

Cambrian sedimentary rocks.

The chromite deposits occur as massive layers and as dis-

seminations near the lower half of the ultramaic zone and 

are referred to as A through K (Campbell and Murck 1993). 

The chromitites in the ultramafic zone are interlayered 

with poikilitic harzburgite, and bronzitite and dunite (Jack-

son 1970; Cooper 1997) (Fig. 2a–c), whereas those in the 

banded zone occur as disseminated bodies in olivine-bearing 

rocks and as rare chromite-rich seams associated with thin 

anorthosites. The (semi-)massive chromitite generally shows 

sharp contacts with disseminated or anti-nodular chromitite 

and then gradually grades into poikilitic harzburgite and 

bronzitite (Fig. 2a, d). Chromitite seams may also bifurcate, 

splitting and joining with other seams along-strike (Fig. 2d), 

similar to bifurcations in the Bushveld complex (Pebane 

and Latypov 2017). The poikilitic harzburgite may locally 

replace the granular harzburgite as shown by the presence 

of poikilitic ingers intruding into the granular harzburgite 

(Boudreau 2016).

Sample descriptions

The samples in this study were collected mainly from the 

peridotite subzone of the ultramaic zone. Six samples were 

collected from the cyclic chromitite unit of seam G in the 

mountain view section, and seven samples were collected 

from the unmineralized lowermost cyclic unit in the Gish 

area (Figs. 1b, 3a; Supplementary Table S1). One basal har-

zburgite sample was also collected from the contact between 

the basal zone and the ultramaic zone. The principal rock 

types vary from poikilitic harzburgite and dunite to chromi-

tite and bronzitite (Fig. 3b–g). They are mostly composed of 

olivine, orthopyroxene and chromite with varying amounts 

of plagioclase and clinopyroxene. Plagioclase is absent or 

less abundant in the chromitites than in the harzburgites. 

Previous studies (Jones et al. 1960; Campbell and Murck 

1993; Jenkins and Mungall 2018), and our Fig. 3, show that 

orthopyroxene, clinopyroxene, and plagioclase mainly occur 

as oikocrysts including olivine and chromite chadacrysts in 

the peridotite subzone of the stillwater complex. The crys-

tallization sequence is olivine → chromite → orthopyroxene 

(→ plagioclase → clinopyroxene). Note that it is diicult to 

determine the crystallization order of the last two members 

of the sequence solely from the ultramaic rocks. There are 

some ield outcrops and hand specimens in which plagio-

clase follows orthopyroxene and clinopyroxene follows pla-

gioclase (Jackson 1961; McCallum 1996, 2002).

Poikilitic harzburgite

Harzburgites in the ultramaic zone are coarse-grained 

rocks with either granular or poikilitic textures (Howland 

et al. 1949; Jones et al. 1960). The granular harzburgites 

comprise only a small stratigraphic proportion (Fig. 3a) 

and consist chiely of olivine and pyroxene grains which 

may exceed 1 cm in length. Plagioclase, chromite, biotite 

and even apatite are locally present as interstitial accessory 

minerals (Howland et al. 1949). The poikilitic harzburgite 

Fig. 2  Field outcrops showing contacts between chromitite seams 

and silicate rocks and their crystal size variations. Massive chromitite 

shows sharp contacts with anti-nodular chromitite and then gradually 

grades into poikilitic harzburgite (a), and average chromite crystal 

size increases uniformly upward (a–c). Chromitite seams may also 

bifurcate, splitting and joining with other seams along-strike (d)
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occurs mostly in the peridotite subzone where it hosts most 

of the economic chromitites (Fig. 3a). This variety occurs 

on both sides of the chromite seams, and in some places, 

merges gradually into chromitite (Peoples and Howland 

1940). The poikilitic harzburgites contain the same min-

erals as the granular varieties, but are characterized by 

relatively large, skeletal or poikilitic crystals enclosing 

rounded grains of olivine (Fig. 3h, i). Interstitial plagio-

clase is usually present and can constitute up to 15% of the 

rock, whereas small, black chromite grains are enclosed in 

both the plagioclase and orthopyroxene (Fig. 3i).

Dunite

Dunite bodies, together with olivine-rich harzburgite and 

coarse-grained pyroxenite, typically occur in the lower part 

of the ultramaic zone, where they cut and locally obscure 

the primary layers of bronzitite and harzburgite (Peoples and 

Howland 1940; Jones et al. 1960). Gradations from dunite 

through harzburgite into layered bronzitite have also been 

observed in a few outcrops (Jones et al. 1960). Olivine crys-

tals in the layered dunites studied here are variable in size 

from mm to cm (Fig. 3d, e, j). Orthopyroxene crystals are 

Fig. 3  a Generalized columnar section of the ultramaic zone, east-

ern part of the stillwater complex (after McCallum 1996) with sam-

ple locations (star symbol). BR bronzitite, Bc basement complex, Gr 

granite, GH granular harzburgite, Nor norite, PH poikilitic harzbur-

gite. b–g Scanned images of thin-sections of the stillwater samples 

showing distribution and relation of minerals and general variations 

of crystal size from harzburgite (b–c) and dunite (d–e) to chromi-

tite (f–g); h harzburgite sample 16SW3-5 showing chromite (Chr) 

enclosed in orthopyroxene (Opx); (i) Harzburgite sample 16SW3-9 

showing orthopyroxene poikilitic crystals enclosing rounded oli-

vine (Ol); j dunite sample 16SW3-3 showing equigranular olivine; k 

chromitite sample 16SW1-8 showing euhedral chromite and rounded 

olivine grain within poikilitic orthopyroxene; l chromitite sample 

16SW1-26 showing tiny clinopyroxene (Cpx) in orthopyroxene, 

which encloses chromite and olivine; m chromitite sample 16SW1-8 

showing olivine grains in variable size within orthopyroxene; n 

chromitite sample 16SW1-34 showing occurrence of euhedral chro-

mite grains within olivine and orthopyroxene associated with minor 

clinopyroxene; o chromitite sample 16SW1-8 showing well-deined 

boundary between olivine and clinopyroxene; p chromitite sample 

16SW1-9 showing clinopyroxene poikilitic crystal enclosing chro-

mite and olivine and fracture development in chromite; q chromitite 

sample 16SW1-27 showing residual orthopyroxene poikilitic crystal 

in large clinopyroxene grain; r chromitite sample 16SW1-26 showing 

altered boundaries of chromite enclosed in clinopyroxene; s chromi-

tite sample 16SW1-27 showing clinopyroxene-chromite association 

within or surrounding olivine
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present as skeletal oikocrystals making up a very small pro-

portion of the rock. Chromite is ubiquitous in the dunites, 

whereas plagioclase is rare.

Chromitite

In the stillwater complex, the chromite deposits are generally 

found with the poikilitic harzburgite (Peoples and Howland 

1940; Jones et al. 1960) in the lower part of individual cyclic 

units. There are almost continuous gradations in places from 

nearly pure chromite to harzburgite with scattered chromite 

crystals (Jackson 1970; Cooper 1997). In chromitite, chro-

mite and olivine are equigranular with various proportions 

(Fig. 3f, g), and orthopyroxene occurs as oikocrysts includ-

ing olivine and chromite chadacrysts (Fig. 3k–n). Olivine 

grains are relatively uniform in grain size compared to 

those in the silicate rocks (Fig. 3g). Clinopyroxene may 

also be present as smaller poikilitic grains in some samples 

(Fig. 3o–r) or as swarm-like grains associated with chro-

mite within orthopyroxene (Fig. 3l–n) or olivine (Fig. 3s). It 

should be noted that the chromite grains enclosed in clino-

pyroxene show well-developed fractures (Fig. 3p, q) and 

smoothed or poorly deined boundaries (Fig. 3o–r) relative 

to those in orthopyroxene. The silicate minerals are mostly 

well preserved in disseminated chromitites, whereas they 

are partially or completely serpentinized in massive chromi-

tites. It is also noticeable that olivine crystals in the studied 

samples are typically anhedral and exhibit peritectic texture 

with orthopyroxene rims (Fig. 3b–n) and rarely show direct 

contact with chromite. In addition, the chromitite layers are 

commonly associated with maic pegmatite layers (Jones 

et al. 1960). Those pegmatites associated with the chromi-

tite horizons are stratiform or locally cross-cut other layers, 

and they contain all combinations of minerals found in the 

ultramaic zone (Jenkins and Mungall 2018).

Analytical methods

Olivine, orthopyroxene and clinopyroxene grains were hand-

picked under a binocular microscope, and together with ref-

erence materials were mounted in epoxy. The mount was 

then polished to expose the crystals, which were identiied 

using both transmitted and relected light images. The min-

erals were irst analyzed for major elements using an elec-

tron probe microanalyzer (EPMA) followed by oxygen and 

then Li isotopes with a Cameca IMS-1280 secondary ion 

mass spectrometry (SIMS). Finally, trace elements were 

measured using laser ablation inductively coupled plasma 

mass spectrometry (LA-ICP-MS). The same spots of the 

mineral grains were selected for all measurements to yield 

corresponding element and isotope data. All analyses were 

conducted at the Institute of Geology and Geophysics, Chi-

nese Academy of Sciences.

The major element analyses were carried out using a 

JEOL JXA8100 EPMA at an accelerating voltage of 15 kV 

and 10 nA beam current, 5 μm beam spot and 10–30 s count-

ing time on peak. Natural and synthetic mineral standards 

were used for calibration. A program based on the ZAF pro-

cedure was used for matrix corrections. Typical analytical 

uncertainty for all of the elements analyzed was better than 

1.5%.

The SIMS oxygen isotope analyses of minerals were 

conducted using  Cs+ ions as a primary beam with ~ 0 μm 

diameter, and ~2 nA in intensity. The 16O and 18O ions 

are detected simultaneously by two faraday cups, and the 

signals were amplified by 10E10 ohm and 10E11 ohm 

resistors, respectively. A normal electron gun was used to 

compensate for the charging efect in the bombarded area. 

The entrance slit was set at ~120 μm; the ield aperture at 

6000 × 6000 μm2; the energy slit at 40 eV, and the exit slit 

at ~500 μm. The magniication of the transfer system was 

conigured as ~ 133. Each analysis consisted of pre-sputter-

ing, beam centering, and signal collecting. The collecting 

process consisted of 16 cycles, each of which took 4 s. The 
18O/16O ratios were normalized to VSMOW and expressed 

as δ18O. Standards used to correct instrument mass fraction-

ation included olivine 06JY06OL (δ18O = 5.20‰), orthopy-

roxene 06JY34OPX (δ18O = 5.64‰) and clinopyroxene 

06JY31CPX (δ18O = 5.19‰) (Tang et al. 2019). Detailed 

analytical procedures are described by Li et al. (2010) and 

Tang et al. (2015, 2019).

After the oxygen isotope analyses, the same mount was 

again polished to remove the analytical spots and vacuum-

coated with high-purity gold for Li isotope analyses. The 

O-primary ion beam was accelerated at 13 kV, with an inten-

sity of about 15–30 nA. The elliptical spot was approxi-

mately 20 × 30 μm in size. Positive secondary ions were 

measured on an ion multiplier in pulse counting mode, with 

a mass resolution (M/DM) of 1500 and an energy slit open 

at 40 eV without any energy ofset. A 60-s pre-sputtering 

with raster was applied before analysis. The secondary ion 

beam position in apertures, as well as the magnetic ield 

and the energy ofset, were automatically centered before 

each measurement. Eighty cycles were measured with count-

ing times of 7 and 2 s for 6Li and 7Li, respectively. The 

measured δ7Li values are given as δ7Li ([(7Li/6Li)sample/

(7Li/6Li)L-SVEC − 1] × 1000] relative to units of the standard 

NIST SRM 8545 (L-SVEC) with 7Li/6Li of 12.0192. The 

same standards as in oxygen isotope analyses were used to 

correct instrument mass fractionation. The olivine stand-

ard 06JY06OL has a Mg# (100 × Mg/(Mg + Fe)) value of 

89.6, Li concentration of 2.23 ppm and δ7Li of 5.34‰; the 

orthopyroxene standard 06JY34OPX has a Mg# of 92.1, Li 

concentration of 1.07 ppm and δ7Li of −0.77‰; and the 
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clinopyroxene standard 06JY31CPX has a Mg# of 91.1, Li 

concentration of 1.16 ppm and δ7Li of −2.37‰ (Su et al. 

2015). Lithium concentrations of the samples were calcu-

lated on the basis of 7Li+ count rates (cps/nA) relative to the 

standard. The detection limit of Li was <1 ppb and uncer-

tainties were mostly <0.90 ppm (1 σ). The internal errors of 

the Li isotopic compositions for both the standard and the 

olivine samples are less than 1.20‰ (1se). Matrix efects, 

in which δ7Li increases by 1.0‰ for each mole percent 

decrease in the Mg# of olivine (Su et al. 2015), were con-

sidered for calibration. Detailed analytical procedures are 

described in Su et al. (2015, 2018).

After removing the gold coating on the mount, trace 

elements concentrations were determined with a 193 nm 

Coherent COMPex Pro ArF Excimer laser coupled to an 

Agilent 7500a ICP-MS. Each analysis was performed using 

80  μm-diameter ablating spots at 6  Hz with an energy 

of ~100 mJ per pulse for 45 s after measuring the gas blank 

for 20 s. References materials NIST610 and NIST612 were 

used as external standards to produce calibration curves. 

Every eight analyses were followed by two analyses of the 

standards to correct for time-dependent drift. Calibration 

was performed using NIST612 as an external standard. Of-

line data processing was performed with the GLITTER 4.0 

program using Mg for olivine and Si for orthopyroxene and 

clinopyroxene as internal standards, which were obtained by 

EPMA and shown in Supplementary Table S2.

Results

Because of distinct rock types studied here from the G chro-

mitite seam (all chromitites but one harzburgite sample) and 

the lowermost layer (a series of silicate rocks with no chro-

mitite sample), mineral compositional diferences between 

rock types basically relect variations between the two layers 

in the stratigraphic section (Figs. 4, 5, 6).

Major and trace elements

Elemental compositions of olivine, orthopyroxene and 

clinopyroxene in the rocks from the stillwater complex are 

illustrated in Fig. 4. Olivine and orthopyroxene in silicate 

rocks from the lowermost layer have lower Mg# values of 

84–85 and 84–87, respectively, than those in the G chro-

mitite (olivine Mg# = 86–89; orthopyroxene Mg# = 87–91), 

whereas clinopyroxene in chromitites has higher Mg# val-

ues of 89–92 (Supplementary Table S2). These Mg# val-

ues overlap those of published datasets from the stillwa-

ter complex (Raedeke and McCallum 1984; Campbell and 

Murck 1993; McCallum 2002). The Li contents in olivine 

are relatively uniform in a range of 1–3 ppm; orthopyroxene 

shows highly variable Li contents from 0.5 to 5 ppm, with 

the lowest contents in orthopyroxene from the chromitite 

samples. Clinopyroxene grains in the three analyzed chromi-

tite samples have the highest Li contents of 4–8 ppm (Sup-

plementary Table S2).

Transition elements in both olivine and orthopyroxene 

are distinctly diferent between the lowermost layer silicate 

rocks and the G chromitites. The chromitites have overall 

larger variations and higher Ni concentrations in olivine 

and orthopyroxene than their counterparts in the harzbur-

gites and dunites, whereas Mn, Co and Ti concentrations 

are lower (Fig. 4). Cr concentrations in both olivine and 

orthopyroxene overlap values in diferent rocks types. The 

basal harzburgite and bronzitite samples commonly display 

maximum or minimum concentrations in these transition 

elements as well as in Mg# and Li content. In addition, oli-

vine in chromitite has clearly higher Al contents than those 

in harzburgite and dunite, whereas Al concentrations in 

orthopyroxene show large inter- and intra-sample variations 

in all rock types (Fig. 4).

Trace element concentrations of orthopyroxene obtained 

in this study (Supplementary Table S2) are at the same lev-

els as those in the ultramaic zone of the stillwater complex 

(Lambert and Simmons 1987) and those from the chromitite 

layers of the Bushveld Complex as given in Kaufmann et al. 

(2018) and Yang et al. (2019). Briely, all these orthopy-

roxene crystals are characterized by relative enrichment in 

the heavy rare earth elements (HREE) relative to the light 

rare earth elements (LREE) and show large LREE variations 

(Fig. 5a, b). Orthopyroxene grains in the harzburgites and 

bronzitites (Fig. 5a) show remarkably negative Eu anoma-

lies, as noted in literature (Lambert and Simmons 1987), 

whereas grains in the dunites and chromitites show no or 

weakly negative Eu anomalies (Fig. 5b). The LREE concen-

trations of orthopyroxene are most enriched in bronzitite, the 

most depleted and variable in chromitite, and moderate in 

harzburgite and dunite. Clinopyroxene grains from the three 

chromitite samples show lat REE patterns with uniform 

LREE concentrations relative to HREE and slightly positive 

or negative Eu anomalies (Fig. 5c), which is similar to those 

in chromitite from the Bushveld complex (Yang et al. 2019).

Li and O isotopic compositions

Lithium isotopic compositions are highly variable with a 

decreasing δ7Li order of olivine (4–26‰) > orthopyroxene 

(−13 to 7‰) > clinopyroxene (−14 to −6‰). The dunites 

and harzburgites from the lowermost layer and one harz-

burgite sample from the G chromitite have overlapping δ7Li 

ranges in olivine and restricted δ7Li variations in orthopy-

roxene, considerably higher than their counterparts in the 

G chromitites, whereas the orthopyroxene grains in the 

basal harzburgite and bronzitite have the lowest δ7Li values 

(Fig. 6a).
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In contrast to Li isotopes, oxygen isotopic composi-

tions are rather homogeneous in olivine, orthopyroxene 

and clinopyroxene. Regardless of the host lithology, 

olivine has limited δ18O variation from 4.91 to 5.72‰ 

(except for one analysis of 4.45‰), overlapping the δ18O 

values of clinopyroxene (4.64–5.86‰) and orthopyroxene 

(5.11–5.87‰) (Table 1), slightly lower than the values of 

Fig. 4  Major and trace element compositions of minerals in the stratigraphic section of the ultramaic zone of the stillwater complex. BR bronzi-

tite, Chrt chromitite, Hz harzburgite
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orthopyroxene (5.7, 5.9 and 6.4‰) in maic rocks of the 

stillwater complex (Dunn 1986) (Fig. 6b).

For convenience in the following discussion, Cr isotopic 

compositions reported in Bai et al. (2019) are also illustrated 

in Fig. 6c. Except for the basal harzburgite sample 16SW3-11 

which has similar δ53Cr values in all its minerals, all the ana-

lyzed samples exhibit signiicant isotope fractionation between 

chromite and silicates. Olivine has higher δ53Cr values and 

larger variations than coexisting orthopyroxene, whereas δ53Cr 

values in chromite are uniform within analytical uncertainty 

(Bai et al. 2019).

Discussion

The minerals in the ultramaic zone of the stillwater com-

plex show signiicant variations in Li and O isotopes and 

major and trace element compositions, which are compa-

rable to the data reported in previous studies of the same 

complex and the Bushveld complex. Experimental and 

empirical Li partition coeicients between silicate min-

erals have been well established e.g., DLi = 0.7 (Brenan 

et al. 1998) and 0.8 (Eggins et al. 1998) for orthopyrox-

ene/clinopyroxene, and DLi = 1.3 (Brenan et al. 1998) and 

1.1–1.3 (Eggins et al. 1998) for olivine/clinopyroxene at 

temperature range of 800–1400 °C. The relative contents 

of Li between the diferent mineral phases from the still-

water complex are variable with Ol/OpxD  (LiOl/LiOpx) values 

of 0.6–1.1 in the lowermost layer and 1.9–7.6 in the G 

chromitite and Ol/Cpx
D  (LiOl/LiCpx) of 0.4–0.6 (Supplemen-

tary Table S3). They all do not match the above equilib-

rium values. The ∆7LiOl − Opx (δ
7LiOl − δ7LiOpx = 7.7–18.2) 

and ∆7LiOl − Cpx (δ7LiOl δ
7LiOl − δ7LiCpx = 18.0–27.2) val-

ues (Supplementary Table S3) range well beyond those 

expected for equilibration at high temperatures (−5 to 4‰; 

Rudnick and Ionov 2007). The inter-mineral Li elemen-

tal and isotopic disequilibria, as well as Cr isotopic dis-

equilibrium (Fig. 6c; Bai et al. 2019), could be caused by 

subsolidus element exchange, magma diferentiation and 

various reactions with melts/luids. In the following sub-

sections, we irst constrain efects of subsolidus element 

exchange and crustal contamination on isotopic composi-

tions of minerals, and then summarize the genetic con-

nection between chemical compositions and variations in 

mineral assemblages and crystal sizes and magma difer-

entiation control. We inally discuss the possible reactions 

to account for the inter-mineral and inter-sample mineral-

ogical and geochemical variations.

Efects of subsolidus element exchange 
on disequilibrated isotopic fractionations 
between minerals

The subsolidus element exchange between minerals is pre-

sumably extensive in the long cooling history of large lay-

ered intrusions (McCallum 2002; Schulte et al. 2010), and 

its efects on minerals depend on their composition and 

modal proportion (Jackson 1969; Xiao et al. 2016). Theo-

retically, the primary compositions of silicates are retained 

in silicate rocks whereas the silicates in chromitite have 

undergone extensive subsolidus exchange with chromite 

(Irvine 1967; Mondal et al. 2006; Mukherjee et al. 2010). 

In chromitites, olivine and pyroxenes reach their maximum 

Mg#s and Ni contents and their minimum Mn, Co and Ti 

Fig. 5  Chondrite-normalized rare earth element patterns of orthopy-

roxene (a, b) and clinopyroxene (c) in rocks from the ultramaic 

zone of the stillwater complex. Samples from the G chromitite zone 

are indicated in dashed lines, and samples from the lowermost layer 

in solid lines. Chondrite normalizing values are from Anders and 

Grevesse (1989)
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contents (Fig. 4), whereas the reverse compositions were 

observed in the associated chromite (Campbell and Murck 

1993; Schulte et al. 2010). This is consistent with chemical 

exchange between silicate and chromite because elements 

such as Mg and Ni in chromite are relatively incompatible 

compared to Fe, Mn, Co, and Ti (Su et al. 2019).

Likewise, Cr is a major component in chromite but is 

typically present only as a trace to minor element in olivine 

and pyroxenes. Its difusion from silicates to chromite should 

lead to negligible fractionation of Cr isotopes in chromite 

but signiicant fractionation in silicates, particularly for 

those in chromitites. This prediction, however, contradicts 

the measured inter-mineral δ53Cr fractionations of silicate 

rocks > chromitites (Fig. 6c; Bai et al. 2019). Moreover, in 

our basal harzburgite and bronzitite samples, identical δ53Cr 

values in orthopyroxene and olivine to chromite (Fig. 6) can-

not be attributed to subsolidus element exchange between 

them.

The presence of orthopyroxene between olivine and chro-

mite implies that in subsolidus exchange between olivine 

and chromite, if occurred, would have been impeded by the 

orthopyroxene mantles around the olivine grains. Because 

there are extremely low Li contents in chromite (Su et al. 

2016, 2018), the occur of Li in olivine would relect isotopic 

exchange between orthopyroxene and olivine. Because of 

higher partition coeicient of Li in olivine than in orthopy-

roxene (Seitz and Woodland 2000), Li is expected to difuse 

from orthopyroxene to olivine, resulting in Li depletion and 

δ7Li elevation in orthopyroxene and the reverse in olivine 

as 6Li difuses faster than 7Li (Richter et al. 2003). It is, 

however, opposite to the obtained data (Figs. 7a, b, 8a, b), 

particularly, in some of our samples olivine has more vari-

able and higher δ7Li values than orthopyroxene (Fig. 6a), 

although Li contents and δ7Li values of olivine plot along the 

modeling results of difusion process (Fig. 7a). The relation-

ship can apply to compositional variations between poikilitic 

clinopyroxene and olivine (Figs. 3o–s, 7c, 8c). Although 

most individual olivine grains exhibit Li enrichment and 

δ7Li depletion in their rims relative to the cores (Fig. 9), 

following the expected trends of ingressive difusion, co-

variations of Li contents and δ7Li values of orthopyroxene 

and clinopyroxene in the rim-core proile analyses (Fig. 9) 

and their distribution of the whole dataset shifting away 

from modeling results (Fig. 7b, c) are totally inconsistent 

with kinetic difusion process. Therefore, the compositional 

variations of the minerals in the ultramaic zone of the still-

water complex cannot be explained solely by subsolidus ele-

ment exchange, and complex δ7Li proiles in olivine grains 

at inter- and intra-sample scales suggest additional processes 

to account for their compositional characteristics.

Fig. 6  Li–O–Cr isotopic 

compositions of minerals in 

the stratigraphic section of the 

ultramaic zone of the stillwa-

ter complex. Oxygen isotopic 

compositions of orthopyroxene 

in peridotites of the ultramaic 

zone of the stillwater complex 

from Dunn (1986) are also 

plotted for comparison. The 

Cr isotopic data are from Bai 

et al. (2019). Normal mantle 

ranges of δ7Li (2.0–5.0‰), 

δ18O (4.90–5.46‰) and δ53Cr 

(−0.22 to −0.02‰) are from 

Elliott et al. (2006), Mattey 

et al. (1994), and Schoenberg 

et al. (2008), respectively. The 

bold black line in (b) represents 

a calculated δ18O value of 5.9‰ 

for the parental magma of the 

stillwater complex (Dunn 1986)
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Table 1  Li and O isotopes of olivine (Ol), orthopyroxene (Opx) and clinopyroxene (Cpx) in the rocks from the ultramaic zone of the stillwater 

complex

Sample Rock type Mineral Grain@no Comment δ18O 2se Li 1se δ7Li 1se

16SW3-3 Dunite Ol 1@1 5.18 0.23

2@1 5.22 0.20

3@1 Rim 5.20 0.35 1.96 0.01 24.16 0.51

3@2 5.14 0.19 1.97 0.01 24.10 0.56

3@3 5.31 0.25 1.88 0.01 22.74 0.64

3@4 Core 5.41 0.22 1.62 0.01 24.33 0.63

4@1 Rim 5.08 0.27 2.46 0.01 15.14 0.51

4@2 5.14 0.19 2.50 0.01 15.38 0.60

4@3 5.07 0.23 2.47 0.01 16.71 0.52

4@4 Core 5.65 0.18 2.42 0.01 16.35 0.78

16SW3-4 Dunite Ol 1@1 Rim 5.11 0.20 2.39 0.01 13.96 0.58

1@2 5.31 0.22 2.20 0.01 15.52 0.57

1@3 5.33 0.17 2.08 0.01 16.47 0.54

1@4 Core 5.41 0.17 2.16 0.01 15.19 0.52

2@1 5.41 0.18

3@1 5.15 0.24

4@1 5.44 0.26 2.28 0.01 11.81 0.60

16SW3-2 Harzburgite Ol 1@1 Rim 5.30 0.18 3.47 0.01 17.14 0.40

1@2 5.53 0.26 3.21 0.01 16.42 0.50

1@3 5.63 0.14 3.07 0.01 15.59 0.48

1@4 Core 5.65 0.18 2.90 0.01 17.26 0.49

2@1 5.44 0.10

16SW3-9 Harzburgite Ol 1@1 5.00 0.18

2@1 Rim 5.27 0.20 2.60 0.01 17.01 0.51

2@2 5.26 0.27 2.43 0.01 20.43 0.41

2@3 5.25 0.33 2.34 0.01 16.89 0.44

2@4 Core 5.15 0.25 2.27 0.01 17.44 0.55

3@1 5.09 0.15

16SW3-5 Harzburgite Ol 1@1 Rim 5.27 0.24 2.62 0.01 16.40 0.47

1@2 4.99 0.25 2.39 0.01 12.93 0.54

1@3 5.33 0.23 2.34 0.01 17.29 0.50

1@4 Core 4.96 0.18 2.36 0.01 17.50 0.54

2@1 5.28 0.12

3@1 4.45 0.56 1.42 0.00 24.87 0.54

16SW1-8 Disseminated chromitite Ol 1@1 5.27 0.19

2@1 Rim 5.43 0.31 3.15 0.01 8.10 0.44

2@2 5.46 0.36 2.98 0.01 11.12 0.50

2@3 5.47 0.26 3.12 0.01 10.14 0.50

2@4 Core 5.23 0.22 3.19 0.01 7.71 0.42

3@1 5.72 0.20 2.84 0.01 10.43 0.46

16SW1-9 Disseminated chromitite Ol 1@1 5.44 0.22

2@1 Rim 5.66 0.12 2.84 0.01 8.41 0.38

2@2 5.35 0.31 2.76 0.01 11.84 0.46

2@3 Core 5.35 0.19 2.47 0.01 11.92 0.55

3@1 Rim 5.47 0.16 2.93 0.01 9.55 0.38

3@2 5.01 0.28 2.90 0.01 11.22 0.52

3@3 5.33 0.19 2.76 0.01 9.61 0.50

3@4 5.31 0.19 2.04 0.01 13.48 0.63

3@5 Core 5.30 0.21 1.92 0.01 14.13 0.56
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Table 1  (continued)

Sample Rock type Mineral Grain@no Comment δ18O 2se Li 1se δ7Li 1se

16SW1-26 Disseminated chromitite Ol 1@1 Rim 5.37 0.14 7.07 0.02 4.45 0.33

1@2 5.26 0.19 6.88 0.03 4.14 0.29

1@3 5.33 0.18 4.29 0.01 7.00 0.45

1@4 Core 5.15 0.20 4.14 0.01 6.85 0.46

16SW1-27 Disseminated chromitite Ol 1@1 5.23 0.19

2@1 5.32 0.32

3@1 Rim 4.91 0.22 1.41 0.01 25.91 0.80

3@2 5.25 0.21 1.74 0.01 25.45 0.72

3@3 5.34 0.34 2.03 0.01 22.44 0.62

3@4 Core 5.24 0.26 2.36 0.01 13.97 0.53

16SW1-34 Disseminated chromitite Ol 1@1 Rim 5.49 0.26 2.67 0.01 16.84 0.47

1@2 5.09 0.20

1@3 5.01 0.22

1@4 Core 5.19 0.17 2.93 0.01 16.08 0.46

2@1 5.32 0.24 3.32 0.01 10.07 0.43

3@1 5.30 0.17

4@1 5.19 0.20 1.93 0.00 26.43 0.59

5@1 Rim 5.44 0.16

5@2 Core 5.36 0.20 1.73 0.01 18.08 0.74

5@3 5.23 0.27 1.89 0.01 13.93 0.56

16SW3-3 Dunite Opx 1@1 5.23 0.25 3.72 0.01 1.93 0.45

2@1 5.21 0.20 3.62 0.01 1.33 0.51

16SW3-4 Dunite Opx 1@1 5.72 0.27 3.81 0.03 0.81 0.39

2@1 Rim 5.45 0.23

2@2 5.59 0.19

2@3 5.40 0.18

2@4 Core 5.62 0.19

16SW3-2 Harzburgite Opx 1@1 Rim 5.62 0.12 3.07 0.01 0.94 0.50

1@2 5.59 0.18 3.00 0.01 −0.19 0.48

1@3 5.82 0.13 3.19 0.01 0.10 0.48

1@4 Core 5.29 0.22 3.05 0.01 −1.05 0.49

2@1 5.72 0.28 3.38 0.02 2.24 0.46

3@1 5.46 0.28 3.30 0.02 −0.34 0.53

4@1 5.39 0.19 4.74 0.01 1.76 0.42

16SW3-9 Harzburgite Opx 1@1 5.26 0.22 2.31 0.01 −1.57 0.63

2@1 Rim 5.64 0.23 3.73 0.01 2.96 0.57

2@2 5.43 0.17

2@3 5.22 0.30

2@4 Core 5.83 0.12 3.57 0.01 0.91 0.43

3@1 5.12 0.38 3.35 0.01 0.18 0.48

16SW1-15 Harzburgite Opx 1@1 Rim 5.54 0.20 1.32 0.01 −4.10 0.74

1@2 5.32 0.26 1.27 0.00 −3.27 0.64

1@3 5.35 0.20 1.28 0.00 −2.80 0.72

1@4 Core 5.73 0.29 1.25 0.00 −0.38 0.68

2@1 5.59 0.20

3@1 5.48 0.24

16SW3-5 Harzburgite Opx 1@1 5.58 0.25

2@1 5.37 0.26

3@1 Rim 5.14 0.22 1.30 0.01 0.58 1.61

3@2 5.43 0.30 1.75 0.01 0.57 0.64
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Table 1  (continued)

Sample Rock type Mineral Grain@no Comment δ18O 2se Li 1se δ7Li 1se

3@3 5.76 0.25 2.21 0.01 0.20 0.53

3@4 5.71 0.25 2.56 0.01 1.13 0.63

3@5 Core 5.11 0.22 2.67 0.01 1.01 0.50

16SW3-11 Basal Pl-harzburgite Opx 1@1 5.60 0.27

2@1 Rim 5.53 0.18 2.68 0.01 −11.81 0.64

2@2 Core 5.52 0.21 3.55 0.01 −13.05 0.47

3@1 5.89 0.23 3.45 0.01 −12.06 0.45

4@1 5.74 0.18 4.45 0.02 −10.51 0.48

5@1 5.78 0.29

6@1 Rim 5.83 0.28 4.11 0.01 −10.87 0.44

6@2 5.58 0.20 4.14 0.01 −11.08 0.41

6@3 5.50 0.28 3.91 0.01 −11.13 0.42

6@4 Core 5.54 0.28 4.27 0.01 −12.21 0.50

16SW3-6 Orthopyroxenite Opx 1@1 5.50 0.19

2@1 5.59 0.27

3@1 Rim 5.65 0.14 5.07 0.01 −3.97 0.41

3@2 5.61 0.17 5.13 0.01 −2.61 0.35

3@3 5.52 0.24 4.92 0.01 −3.50 0.41

3@4 5.61 0.26 4.70 0.02 −1.05 0.44

3@5 Core 5.78 0.28 4.45 0.01 −2.81 0.46

16SW1-8 Disseminated chromitite Opx 1@1 5.71 0.27 1.33 0.00 2.10 0.68

2@1 5.37 0.21 1.67 0.01 −3.36 0.77

3@1 5.65 0.23 1.89 0.00 −5.61 0.52

4@1 Rim 5.45 0.29

4@2 5.21 0.17

4@3 5.40 0.23

4@4 5.32 0.21

4@5 Core 5.48 0.23

16SW1-9 Disseminated chromitite Opx 1@1 5.84 0.15 1.36 0.00 2.61 0.84

2@1 5.71 0.21 1.09 0.01 1.41 0.88

16SW1-26 Disseminated chromitite Opx 1@1 Rim 5.59 0.33 0.60 0.00 −5.01 1.07

1@2 Core 5.85 0.15 0.84 0.00 5.92 1.03

2@1 5.67 0.26 0.72 0.00 −4.09 1.08

3@1 5.80 0.23 0.85 0.00 −4.06 1.01

4@1 5.87 0.21 0.66 0.00 −3.27 1.16

16SW1-34 Disseminated chromitite Opx 1@1 5.71 0.18 1.25 0.00 7.35 0.66

16SW1-8 Disseminated chromitite Cpx 1@1 Rim 5.19 0.30 5.58 0.01 −6.19 0.43

1@2 5.17 0.25 5.76 0.01 −8.47 0.38

1@3 5.05 0.19 5.58 0.01 −5.81 1.47

1@4 4.87 0.17 5.60 0.01 −7.09 0.42

1@5 Core 4.85 0.23 5.89 0.01 −6.90 0.33

2@1 5.33 0.30 5.97 0.01 −14.27 0.40

3@1 5.19 0.25 6.40 0.02 −10.60 0.36

16SW1-9 Disseminated chromitite Cpx 1@1 5.57 0.34

2@1 Rim 5.22 0.17 3.93 0.01 −9.02 0.58

2@2 4.64 0.25 4.05 0.01 −10.32 0.51

2@3 5.11 0.33 4.77 0.01 −8.27 0.44

2@4 Core 5.18 0.13 4.06 0.01 −9.32 0.54

3@1 5.61 0.26

16SW1-34 Disseminated chromitite Cpx 1@1 Rim 5.25 0.42
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Efects of crustal contamination on mineral Li and O 
isotopic compositions

The properties of Li, a moderately incompatible and luid-

mobile element with a mass diference of ~17%between the 

two stable isotopes (6Li and 7Li), make it a useful tracer for 

various melt/luid-rock interactions (Chan et al. 1992; Su 

et al. 2014, 2018). Crustal contamination in mantle-derived 

magmas can be identiied by Li isotope systematics, because 

crustal rocks typically have higher Li concentrations (several 

to hundreds ppm) and more variable but overall higher δ7Li 

values than mantle rocks (Tomascak et al. 2016). Studies of 

the Bushveld complex revealed that involvement of country 

rocks resulted in signiicant elevation of Li concentrations 

Table 1  (continued)

Sample Rock type Mineral Grain@no Comment δ18O 2se Li 1se δ7Li 1se

1@2 Core 5.50 0.22

2@1 Rim 5.67 0.20 5.94 0.01 −9.99 0.45

2@2 5.86 0.33 5.76 0.01 −11.08 0.42

2@3 5.35 0.22 5.87 0.01 −10.49 0.34

2@4 Core 5.26 0.23 6.36 0.04 −9.50 0.42

3@1 Rim 5.82 0.23 6.79 0.01 −9.94 0.36

3@2 Core 5.63 0.26 7.79 0.02 −10.52 0.36

Fig. 7  Correlation diagrams of Li and δ7Li for olivine (a), orthopy-

roxene (b) and clinopyroxene (c) in rocks from the ultramaic zone of 

the stillwater complex, with comparison of data from the Bushveld 

complex (Ireland and Penniston-Dorland 2015) (d). Red solid line 

with stars in (a–c) is the modeling result of Li difusion between solid 

phases and interstitial liquid using a Rayleigh distillation process. Ini-

tial compositions of olivine are assumed as 7 ppm Li and 3.0‰ δ7Li, 

and the compositions of the interstitial liquid are the mean values 

of orthopyroxene (Li = 3  ppm; δ7Li = −2.0‰). Initial compositions 

of orthopyroxene are assumed as 5 ppm Li and −4.0‰ δ7Li of the 

Li-richest analysis, and the compositions of the interstitial liquid are 

4 ppm Li and −11.6‰ δ7Li of the δ7Li-lowest analysis. Initial com-

positions of clinopyroxene are assumed as 7.8 ppm Li and −10.5‰ 

δ7Li of the Li-richest analysis, and the compositions of the intersti-

tial liquid are 6 ppm Li and −14.3‰ δ7Li of the δ7Li-lowest analysis. 

Samples from the G chromitite zone are indicated in dashed symbols, 

and samples from the lowermost layer in solid symbols
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in maic rocks (Li > 10 ppm) and felsic ones (Li < 10 ppm) 

but only slight δ7Li variations in bulk rock samples (Fig. 7d) 

(Ireland and Penniston-Dorland 2015). Since olivine and 

pyroxene are the major hosts of Li in the studied rocks from 

the stillwater complex, their <7 ppm Li concentrations and 

large δ7Li variations (Fig. 7a–c) could approximately repre-

sent whole-rock compositions and are apparently inconsist-

ent with indicators of contamination in the Bushveld com-

plex. The negative correlation between Li and δ7Li in the 

olivine (Fig. 7a) and the lack of their correlations in either 

orthopyroxene or clinopyroxene (Fig. 7b, c) in the stillwater 

complex suggest insigniicant efects of crustal contamina-

tion on their Li isotope systematics.

Previous studies of O isotopes of the Stillwater complex 

revealed that the intrusion has retained its magmatic isotopic 

composition with a calculated δ18O value of 5.9‰ (Dunn 

1986), agreeing well with mantle-derived melts (~5.7‰, 

Eiler 2001). These values show that most of the isotopic 

variations within the complex can be accounted for by sim-

ple fractional crystallization (Dunn, 1986). The δ18O ranges 

of both olivine and pyroxenes in the ultramaic zone of the 

complex are between normal mantle values and those esti-

mated for the entire complex (Fig. 6b), indicating negligible 

efects of crustal contamination on O isotope systematics. 

The O isotopic compositions of these minerals do not co-

vary with δ7Li values (Fig. 8a–c), which is inconsistent 

with contamination trend deined from the studies of the 

Bushveld complex (Fig. 8d; Ireland and Penniston-Dorland 

2015). Hence, crustal contamination, if it occurred, did not 

signiicantly modify the Li and O isotopic compositions of 

Fig. 8  Correlation diagrams of δ18O and δ7Li for olivine (a), orthopy-

roxene (b) and clinopyroxene (c) in rocks from the ultramaic zone of 

the stillwater complex, with comparison of data from the Bushveld 

complex (Ireland and Penniston-Dorland 2015) (d). Samples from the 

G chromitite zone are indicated in dashed symbols, and samples from 

the lowermost layer in solid symbols

Fig. 9  Representative rim-core proile analyses of Li elemental and isotopic compositions of mineral grains in rocks from the ultramaic zone of 

the stillwater complex
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the parental magma of the stillwater complex. In addition, 

large inter-sample δ7Li and intra- and inter-sample δ18O 

variations of orthopyroxene and clinopyroxene cannot be 

explained by incongruent melting, which would not produce 

Li and O isotopic fractionation but signiicant Li depletion.

Links between mineral composition, mineral 
assemblage and crystal size, and controls of magma 
diferentiation

Compositionally, there are no observable variations in 

terms of element concentrations and Li and O isotopes in 

olivine from the Stillwater harzburgites and dunites, but 

abrupt changes, particularly in Mg#, transition metal ele-

ment contents, and Li and Cr isotopes, are obvious between 

silicate rocks and chromitite seams (Figs. 4, 6), probably 

related to cooling and re-equilibration between minerals and/

or interstitial liquids. Correspondingly, in transitions from 

chromitite and dunite to poikilitic harzburgite and bronzi-

tite chromite and olivine abundances generally show gradual 

decreasing trends whereas orthopyroxene, clinopyroxene 

and plagioclase increase. The average chromite crystal size 

increases uniformly upward from the base within an individ-

ual cyclic unit (Fig. 3g; Boudreau 2011), but then decrease 

abruptly directly above the chromitite seam. From there it 

increases monotonically to the top of the unit (Figs. 2a–c, 

3; Cooper 1990). In general, increases in olivine crystal size 

are most conspicuous in poikilitic harzburgites and some 

dunites (Fig. 3b–e; Boudreau 2011). These links between 

mineral assemblage, crystal size and chemical composi-

tion are also compatible to ield observations (Fig. 2a, d). A 

regular decrease in the size and abundance of orthopyrox-

ene oikocrysts in olivine-rich rocks occurs near gradational 

contacts or, more rarely, sharp contacts between dunite 

and poikilitic harzburgite over a meter scale (Jones et al. 

1960; Jackson 1961; Jenkins and Mungall 2018). The sharp 

physical contact and the abrupt chemical changes have been 

related to breaks in injection of magma into the chamber 

(Jackson 1970) or truncation of the previous cyclic unit by 

a low-angle magmatic unconformity (Cooper 1997). Both 

explanations imply distinct parental magmas or various post-

cumulus modiications for chromitites and silicate rocks or 

abrupt compositional changes of a single magma pulse dur-

ing formation of an individual unit.

The inter-lithological compositional diferences might 

also be controlled by crystallization sequence and the spa-

tial relations of minerals. This inference is supported by a 

lack of negative Eu anomalies and slight LREE enrichment 

in orthopyroxene and clinopyroxene in some chromitite 

samples (e.g., 16SW1-8; Fig. 5b, c) in which plagioclase is 

absent, because plagioclase normally accommodates large 

amounts of LREE and Eu (Lambert and Simmons 1987). 

Consequently, REE patterns of orthopyroxene in harzburgite 

and bronzitite (Fig. 5a) suggest that these rocks formed from 

an evolved magma which had previously experienced pla-

gioclase fractionation. In a few chromitite samples LREE 

depletion and Eu anomalies of their pyroxenes (Fig. 5b, c; 

Lambert and Simmons 1987) suggest that the parental mag-

mas of these chromitites experienced concurrent crystalli-

zation of plagioclase (McCallum 1996) or mixing with an 

evolved magma.

Isotopically, the generally decreasing trend of δ7Li val-

ues (and its increasing trend of Li contents in the lower-

most layer) from olivine to orthopyroxene and clinopyrox-

ene (Fig. 8a–c) is consistent with magma diferentiation, 

which normally results in Li evaluation and 6Li enrichment 

in evolving melts (Su et al. 2017), and further conirms the 

crystallization order of these coexisting minerals. The Li 

content and δ7Li co-variations in rim-core proile analyses 

of orthopyroxene and clinopyroxene (Fig. 9) reveal their 

growth from evolving magmas. Taking into account inter-

sample variations, δ7Li values in olivine, although nega-

tively correlated with Li concentrations as a whole, show 

larger variations in chromitite than in silicate rocks (Fig. 7a). 

This indicates formation from distinct parental magmas or 

various post-cumulus modiications. Moreover, the absence 

of correlations between Li and δ7Li in orthopyroxene and 

clinopyroxene (Fig. 7b, c) is compatible with crystallization 

from diferent parental magmas.

Formation of poikilitic pyroxenes

The above discrepancies are closely related to the forma-

tion of orthopyroxene and clinopyroxene oikocrysts in large 

layered intrusions. The formation of poikilitic textures is 

dependent on diferences in the nucleation rate and/or the 

growth rate of the diferent minerals: oikocrysts form if one 

mineral has a lower nucleation rate but higher growth rate 

than co-accumulating crystals of another phase (Kaufmann 

et al. 2018). Three main hypotheses have been proposed. (1) 

oikocrysts form in the post-cumulus stage by solidiication 

of interstitial liquid (e.g., Wager et al. 1960); (2) they are 

cotectic grains lacking compositional zonation but having 

compositions typical primocrysts of the same phase (Barnes 

et  al. 2016). (3) Pyroxene oikocrysts form by reactive 

replacement of olivine primocrysts by upward-percolating 

melts, followed by poikilitic overgrowth of oikocryst cores 

from a more primitive melt (Kaufmann et al. 2018).

The occurrence and morphological features of chromite 

and olivine in ultramaic rocks show that they are cumulus 

phases (Fig. 3b–s; Jackson 1961; McCallum 1996; Cooper 

1997). The nature of contacts between chromite and olivine 

through orthopyroxene or clinopyroxene does not always 

it the classic cumulus model. For example, most chromite 

grains in the ultramaic zone are surrounded by pyroxenes 

and the abundance of chromite in diferent sections varies. 
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Where chromite is concentrated in thin and massive lay-

ers, the interstitial mineral is largly orthopyroxene, whereas 

where chromite is less abundant, olivine is more abundant 

(Howland et al. 1949). These characteristics suggest that 

chromite and olivine did not crystallize simultaneously in 

cotectic proportions, rather the chromite grains appear to 

have been transported by liquids, from which the pyroxenes 

crystallized, and were then emplaced within cumulus oli-

vine piles. The intrusion of chromite-rich liquids physio-

chemically modiied the olivine grains before their complete 

solidiication. The olivine crystals were smoothed to round 

shapes (Fig. 3b–s), and the presence of tiny olivine remnants 

in pyroxene (Fig. 3m) indicates reaction replacement. The 

reaction should have been less extensive than that observed 

in the Bushveld complex, where orthopyroxene oikocrysts 

are larger but contain fewer remnants of olivine (Kaufmann 

et al. 2018). The narrow variation of intra-grain Li isotopic 

compositions (Figs. 6a, 9) and the absence of a negative 

correlation between δ7Li and Li abundance (Fig. 7b, c) in 

the pyroxenes relect no signiicant elemental difusion after 

crystallization. We thus conclude that poikilitic pyroxenes 

formed from a chromite-saturated liquid, which added an 

external component to cumulus olivine piles and resulted in 

replacive reaction of the olivine.

The compositions of pyroxene crystallized from chro-

mite-rich magma would depend on competition for elements 

posed by the co-precipitating chromite. The most intense 

competitions will be for Fe, Cr, Al, and Mg rather than Ca, 

Li and O owing to their contrasting partition coeicients 

between chromite and pyroxenes (Schulte et al. 2010). As a 

consequence, in a given cycle in the stillwater complex from 

chromitite through harzburgite to bronzitite, orthopyroxenes 

show signiicant Li increases with only small changes in 

Mg# (Fig. 10a), whereas a generally positive correlation 

between Li and  Cr2O3 (Fig. 10b) relects decreasing com-

petition for Cr due to lower chromite crystallization. These 

relationships are further supported by positive correlations 

between δ18O values and CaO and Li concentrations in the 

clinopyroxene (Fig. 10c, d). Similarly, because chromite 

structurally contains very minor or no REE, its crystalliza-

tion would have negligible efect on the overall REE abun-

dance. The increasing enrichment of LREE in orthopy-

roxene from chromitite to bronzitite (Fig. 5a, b) relects a 

trend of fractional crystallization or compositional change 

of the parental magma. The Li isotopic compositions of the 

orthopyroxene are homogeneous in individual samples but 

are heterogeneous on a larger scale (Fig. 6a), further sug-

gesting that the melts, from which orthopyroxene crystal-

lized, had locally uniform δ7Li values but highly varying 

within the magma chamber. Compositional changes in the 

melts were likely due to mixing between fractionated magma 

and newly injected primitive melts because the variations in 

δ18O of the orthopyroxene luctuate between normal mantle 

values and those of the estimated parental magma of the 

Fig. 10  Correlation diagrams 

of Li vs. Mg# (a) and  Cr2O3 

(b) for orthopyroxene and 

δ18O vs. CaO (c) and Li (d) for 

clinopyroxene in rocks from the 

ultramaic zone of the stillwater 

complex. Raleigh fractionation 

calculation shown in a indicates 

that orthopyroxene crystallized 

from compositionally vary-

ing melts. Samples from the G 

chromitite zone are indicated in 

dashed symbols, and samples 

from the lowermost layer in 

solid symbols
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stillwater complex (Fig. 6b). This inference receives further 

supports from apparent shift of the orthopyroxene data from 

Raleigh fractionation line (Fig. 10a).

Reaction between interstitial liquids and cumulus 
minerals

Olivine grains in the Stillwater chromitites have larger com-

positional variations, particularly in terms of major and trace 

elements (Fig. 4) and Li, O and Cr isotopes (Figs. 6, 7a, 

8a) than those in the silicate rocks. This indicates complex 

processes involved in the olivine formation. For a given 

sample, olivine displays more variable and higher δ7Li but 

lower δ18O values than orthopyroxene, indicating that oli-

vine experienced more extensive post-crystallization com-

positional modiication than the orthopyroxene. Modeling 

results assuming the highest-Li analysis as initial composi-

tions of olivine and mean values of orthopyroxene as the 

compositions of interstitial liquid demonstrate that negative 

correlations between Li and δ7Li in olivine can be attributed 

to kinetic difusion with interstitial liquid (Fig. 7a).

The observed positive correlation between δ7Li and δ53Cr 

values in olivine (Fig. 11a) would not have been generated 

by Cr difusion from olivine to chromite (Xia et al. 2017; 

Bai et al. 2019). Instead, Cr isotopic changes of the react-

ing liquids due to chromite crystallization were more likely 

responsible for the δ53Cr variations in the olivine, which is 

evident from the positive correlation between chromite δ53Cr 

and olivine δ7Li (Fig. 11b). Constant δ18O values in olivine 

showing no correlation with either δ53Cr or δ7Li indicate no 

visible modiication (Figs 7a, 11c) in O isotopes in olivine 

during its reaction with the liquids, which were probably 

newly injected primitive magma (Raedeke and McCallum 

1984; Campbell and Murck 1993; Lipin 1993; Cawthorn 

et al. 2005). The absence of co-variations between δ7Li, 

δ18O and δ53Cr values in pyroxenes, chromite and olivine 

(Figs. 7b, c, 11d–f) further conirm the isotopic variations 

are related to the reacting liquid. Development of fractures 

and poorly-defined grain boundaries of some chromite 

grains enclosed within clinopyroxene (Fig. 3p–r) demon-

strates physical as well as composition modiication by the 

liquids. Low δ18O values (2.2 and 3.2‰) of chromite from 

the stillwater complex reported by Mondal et al. (2003) are 

consistent with high-temperature alteration.

The interstitial liquid, from which pyroxenes mainly crys-

tallized, reacted with the olivine and signiicantly modiied its 

chemical composition (Barnes 1986) (Fig. 6). Simultaneously 

the compositions of the interstitial liquid were also modiied. 

As the chromite grains collected hydrous luids on their crystal 

surface due to the wetting property of chromite (Matveev and 

Ballhaus 2002), chromite compaction would lead to expel-

ling of the hydrous luids and outward penetration or upward 

transportation (Su et al. 2020). Outward penetration yielded 

additional modiication on olivine compositions and occasion-

ally on chromite. The luids are believed to have been par-

ent magma of clinopyroxene and some hydrous minerals in 

Fig. 11  Multiple correlation diagrams of average δ18O, average δ7Li 

and δ53Cr values for minerals in rocks from the ultramaic zone of the 

stillwater complex. Clinopyroxene data are indicated in gray in plots 

d and f. Samples from the G chromitite zone are indicated in dashed 

symbols, and samples from the lowermost layer in solid symbols
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stratiform and podiform chromitites (McDonald 1965; Mat-

veev and Ballhaus 2002; Boudreau 2016; Johan et al. 2017; 

Su et al. 2019, 2020), and, thus, they were likely sources of 

clinopyroxene crystals in chromite seams and pegmatites in 

the stillwater complex. During formation of the harzburgite 

and bronzitite layers, iniltration of upward ascending hydrous 

luids from the chromite seams would have enhanced chemical 

exchange between cumulus minerals (Bai et al. 2019; Su et al. 

2020). The evolved magma after separation from the ultra-

maic cumulates would have become a new starting point of a 

repeated process of magma mixing and subsequent formation 

of a new cyclic unit.

Conclusions

Both olivine and pyroxenes in chromitite, dunite, poikilitic 

harzburgite and bronzitite from the ultramaic zone of the 

stillwater complex show large δ7Li variations and relatively 

homogeneous oxygen isotopic compositions. In individual 

samples, olivine has more variable and higher δ7Li values 

than pyroxenes, whereas δ18O values in olivine are basically 

within normal mantle ranges and lower than orthopyroxene. 

Clinopyroxene in the chromitites displays a narrow δ7Li range 

and the widest δ18O variations. The general Li and O isotopic 

compositions and inter-mineral and inter-sample isotopic vari-

ations are correlated with mineral assemblages, crystal sizes 

and major and trace element compositions, suggesting various 

reactions between interstitial liquids, from which pyroxenes 

crystallized, and the cumulus minerals. Integration of rare 

earth element patterns and Cr isotope variations indicates that 

compositional changes in the interstitial liquids were the main 

controlling factor, in additional to mineral fractionation and 

subsolidus chemical exchange, on the mineral compositions. 

Hydrous luids collected on the surface of chromite grains 

provided a critical medium for extensive chemical exchange 

between chromite and olivine, and their release might have 

attributed to generation of hydrous minerals and pegmatites in 

the stillwater complex. Mixing between fractionated magma 

and a newly injected primitive melts can account for the com-

positional changes in the interstitial liquids.
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