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1 Mathematical and computational background

1.1 Bounded noises

Temporal bounded noises can be synthesized either via stochastic differential equations, e.g. [WT04,CW04],
or via application of a bounded function to a random process, e.g. [BC05,Dim88].

We recall the definition and some basic properties of the two noises that are used in our applications,
further details are available in [d’O13].

• Cai-Lin bounded noise. Consider the following Langevin equation

ξ̇(t) = −1

τ
ξ(t) +

√
B2 − ξ2
τ(1 + z)

η(t), (1)

where η(t) is a Gaussian white noise. As it is easy to verify, if ξ(0) ∈ [−B,+B] then ξ(t) ∈ [−B,+B].
Moreover, it has zero mean and the same stationary autocorrelation of the Ornstein-Uhlenbeck
process. The steady-state probability density of this bounded stochastic process is

Pst(ξ) = C(B2 − ξ2)z.

The above stationary probability density exhibits different shapes according to the values of the
parameter z. For z > 0 it is unimodal and centered in 0, while for −1 < z < 0 it is bimodal with
two vertical asymptotes at ξ → ±B (i.e., it is “horned”).

• Sine-Wiener bounded noise. This is obtained by applying the bounded function B sin(.) to a
Wiener process W (t) yielding

ξ(t) = B sin

(√
2

τ
W (t)

)
. (2)

The noise steady-state distribution is horned and equal to the one of the Cai-Lin case for z = −0.5.
In Figure S1 some typical steady-state distributions from Cai-Lin and sine-Wiener approaches are
depicted.

Noise autocorrelation. Regardless the type of noise considered, a fundamental concept its autocorre-
lation, also known as serial correlation, namely the cross-correlation of a signal (a temporal series) with
itself. Informally, it is the similarity between observations as a function of the time-lag between them.

Let suppose the noise has at time t̂ a value ξ(t̂). Autocorrelation characteristic time τ measures the
time window in which the noise has a tendency to “remember” its past history, so up to t̂+ τ the value of
ξ(t) is somewhat similar to ξ(t̂). When the noise is totally uncorrelated, like is the case of Gaussian white
noise, the value ξ(t̂+dt) is totally independent from ξ(t̂) for any dt (in other words one can say that τ → 0).

1.2 Gillespie’s algorithm for systems perturbed by bounded noises

The simulation of a set of chemical reactions described by a stoichiometry vector νi and with propensity func-
tion aj(·) is performed by using Gillespie’s algorithm [Gil77], here adapted to support time-inhomogenous
propensity functions arising either from the presence of noise or from the approximation discussed in the
Main Text. A detailed background on such extension can be found, e.g., in [CMd13]. The translation of a
birth-death process to the algebraic representation is straightforward; see [Gil77].

When the system state at time t is xt = [xgene xprot xξ]
>, where xgene is the value of G (number of

active genes), xprot is the number of/density of y/Y (number of proteins), and xξ is the noise scalar value
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Figure S1. Stationary distributions of the Cai-Lin (horn-shaped) and the sine-Wiener (bell-alike)
bounded noises suggest different types of perturbations, according to the parameters.

(e.g., such as one of those described in §1.1), the probability density function for the time of the next
jump follows

p(τ | x0, t0) = a0(t+ τ) exp

(
−
∫ τ

0

a0(t+ w)dw

)
for an initial state x0 at time t0, with a0(t+w) =

∑
j aj(xt+w). Notice that these propensity function are

computed in the state that the system will be, at times afterwards t, e.g., xt+w, which will be generally
different from xt as the system is not homogenous in time. Given τ , the event of firing reaction j has
density

p(j | τ,x0, t0) =
aj(t+ τ)

a0(t+ τ)
.

When noise is present, or when the system is hybrid – Models 2 and 3 – an evolution equation for
noise/proteins (Table 2, Main Text) is coupled to common strategies to samples from such distributions,
as described for instance in [CMd13].

The original Gillespie approach has scalability issues when xprot is high. In particular, the total exit
rate of the process is dominated by feedback and degradation, i.e.

a0(t) ∝ afeed(t) + adegr(t)

which grows as O(x2prot) when xprot is high, as xgene < 2. If we assume noise to change smoothly, we can
consider the propensities to be time-homogenous and observe that

〈τ〉 = a0(t)−1 .

Hence the average time-increment of each jump is small (precisely, decreases quadratically with the number
of proteins), and it might get computationally hard to sample many independent trajectories of the system,
unless we switch to an hybrid representation of xprot. In this case, xprot varies via a differential equation,
the total contribution of the rates to a0(t) is smaller so allowing the system to leap over longer jumps,
with the overhead of integrating such a differential equation.

2 Biological details of the adopted model

The simple model that we adopted, introduced in literature by Smolen, Baxter and Byrne in their
well-known paper [SBB98], represents a single transcription factor (TF, variable Y ) that self-activates. In
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detail:

1. the gene producing the TF has only one promoter;

2. the active form of the TF is its dimer;

3. the dimerization rate is very fast, thus the dimer is at equilibrium with the TF and the dimerization
process is not directly represented in the model;

4. the activation of the gene is thus triggered by its binding with the dimer;

5. however, also in absence of binding there is a small baseline activation rate, independent from the
gene binding to dimers.

Besides the assumptions made in [SBB98], we further assume that:

6. due to the interplay with unknown signals (modelled as bounded noise) the deactivation rate
stochastically fluctuates.

The mathematical translation of this biological scenario leads to a stochastic model with total activation
rate in bimolecular form

act(Y ) = c0 + c2Y (Y − 1)

which, according to the the relation between reaction rate equations and propensity functions for stochastic
systems – see, e.g., [Gil77] – leads to the approximation

act(Y ) = c0 + c2Y
2

in the case of large amount of the TF as

act(Y ) ≈ c0 + c2Y
2 = act(Y ).

We used this form of the rate in all settings, as stochastic models where the dimerization follows law of
the type Y 2 instead of Y (Y − 1) are widely used in the literature [BG05,WSW16].

3 Detailed analyses

In this section, we drop the bar over the symbols c̄0, c̄2 and b̄0. This is an abuse with respect to the main
text, but it is done for the sake of the simplicity of notation.

3.1 Analytical results: fast gene-switching and large protein counts

Concerning model D (fast gene switching and large protein counts), we may give some analytical results
of interest. Here we assume that the parameters of the FC model are such that the system is multistable.
We define the utility functions F (U) (with U ≥ bl), G(U) (with U ∈ [bl, br]) and H(u) (with U ≤ br)
which compute, respectively, the smallest, the intermediate and the largest of the three real solutions of
the equation:

sn
c0 + c2y

2

U + c0 + c2y2
− dy = 0.

First suppose that b∗(1 − B) ≥ bl. Thus, if y(0) ∈ [0, G(b∗(1 − B))] then for large times y(t) ∈
[F (b∗(1 +B)), F (b∗(1−B))]. This results follows from the following differential inequalities:

sn
c0 + c2y

2

b∗(1 +B) + c0 + c2y2
− dy ≤ y′ ≤ sn c0 + c2y

2

b∗(1−B) + c0 + c2y2
− dy (3)



5

Indeed, the above inequalities imply that ya(t) < y(t) < yb(t) where ya(t) solve the following ODEs:

y′a = sn
c0 + c2y

2
a

b∗(1 +B) + c0 + c2y2a
− dya, ya(0) = y(0)

y′b = sn
c0 + c2y

2
b

b∗(1−B) + c0 + c2y2b
− dyb, yb(0) = y(0).

As it is easy to verify, these ODEs are such that for large times ya ≥ F (b∗(1 +B)) and yb ≤ F (b∗(1−B))].
Similarly, if b∗(1 + B) ≥ br and y(0) ≥ G(b∗(1 + B)) then for large times it must be y(t) ∈ (H(b∗(1 −
B)), H(b∗(1 +B))). Moreover, if

b∗(1−B) < bl < b∗ < b∗(1 +B) < br

and y(0) < F (bl) it apparently follows the quite neutral result that for large times it must be y(t) ∈
[H(b∗(1−B)), F (b∗(1 +B))]. However, if in a time instant t̂ it is y(t̂) ≥ G(b∗(1 +B)) then (based on the
above inequalities) it must be that for t > t̂ it is y(t) ∈ [H(b∗(1−B)), G(b∗(1 +B))]. Due to the random
nature of the perturbations, the existence of such a t̂ is very likely, if not sure. Indicating with

PL(Y, t) = P
(
y(t) ∈ (Y, Y + dY )

∣∣∣y(0) ∈ [0, F (bl)]
)

and with PstL (Y ) = PL(Y,+∞) the above results suggest that in the case y(0) ∈ [0, F (bl)]:

• if b∗ ∈ (bl, br) and b∗(1−B) > bl then PstL (Y ) it is null outside [F (b∗(1 +B)), F (b∗(1−B))].

• if b∗ ∈ (bl, br), b∗(1 − B) < bl, and b∗(1 + B) > br then PstL (Y ) it is null outside [H(b∗(1 +
B)), H(b∗(1−B))]

The second result suggests that defining the “order parameter” 〈y〉, and considering its variation with
B ≥ 0, it may undergo a first order transition at b∗(1−B) = bl, because there 〈y〉(B) is discontinuous. A
similar result can be obtained with reference to the upper branch of the bifurcation diagram. Indeed,
defining

PH(Y, t) = P
(
y(t) ∈ (Y, Y + dY )

∣∣∣y(0) ≥ F (br)
)

and PstH (Y ) = PH(Y,+∞) it follows that in the case y(0) ≥ F (br)

• if b∗ ∈ (bl, br) and b∗(1 +B) > br then PstH (Y ) it is null outside [H(b∗(1 +B)), H(b∗(1−B))].

• if b∗ ∈ (bl, br), b∗(1+B) > br, and b∗(1−B) > bl then PstH (Y ) it is null outside [F (b∗(1+B)), F (b∗(1−
B))]

With respect to the unconditioned probability density P(Y, t) the above results show that its asymptotic
behavior (in the functional space of the probability densities) strongly depends on its initial conditions.
In other words, for small to moderate amplitude B of the noise y(t) has two distinct stochastic attractors
(two distinct phases). By increasing B over a threshold BC the asymptotic behavours changes and there
is a unique attractor. Of course, if the nosie amlitude is slightly over the threshold and then decrase to a
value under the threshold, one passes for a scenario with a unique attractors to another one with two
attractors.
For example, in theory, in numerical simulations with y(0) ∈ [0, F (bl)] we would expect to observe such
a first order transition, i.e. that it exists a Bc (with b∗(1 − Bc) = bl) such that for 0 ≤ B < Bc the
stationary density PstL (Y ) is unimodal and located at low values of y, whereas for Bc < B the density
jumps at larger values of y.
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As far as this first-order transition due to the double distinct attractors of y(t) that disappear when
the parameter B increases and crosses a threshold, we recall that the non-uniqueness of the asymptotic
attractors in a physical system (and, as a consequence, in its associated Fokker-Planck equation) is a
landmark of genuine phase transitions, as discussed in depth by Shiino [Shi87] (see also [VdBPT94]). This
phenomenon is rarely observed in non-spatial systems, and it makes our observed first-order transition
quite close to ’true’ phase transitions.

We note that in the statistical physics the search for multiple attractors has traditionally been done in
non-linear Fokker-Planck equations, obtained by applying mean field approximations to large number of
interacting nonlinear systems (e.g. by diffusion [Shi87,VdBPT94]). In our case, instead, the system is
unique and non-spatial, and the Fokker-Planck equation (describing the jont properties of the noise and
of the variable y) is linear, although it has a different peculiar characteristic: it has degenerate diffusion
because the dynamics of y does not depend on white noises.

Finally, if the noise amplitude B is further increased to values B > Bd, where b : m(1 +Bd) = br, we
expect that PstL (Y ) gets bimodal and 〈y〉(B) decreases. Summarizing, apart the a fist-order transition at
B = BC , at B = Bd there is a noise-induced transition from unimodality to bimodality (and a smooth
decrease of 〈y〉(B)). Two similar transitions should, thus, also be expected in the case y(0) > F (br).

3.1.1 Time-varying Waddington potential

Recently Verd et al. [VCJ14] introduced in the framework of Systems Biology models affected by
deterministic time-varying perturbations the concept of time-varying Waddington’s potential. We believe
that this potential might be extremely useful also for stochastically perturbed systems like ours. Namely,
to our model:

y′ = s
n(c0 + c2y

2)

b0(t) + c0 + c2y2
− dy,

it is associated the following time-varying potential:

W (y, t) =
d

2
y2 − sn

(
y − b0(t)√

b0(t) + c0

1
√
c2
Arctan

(
y

√
c2

b0(t) + c0

))

The shape of the potential W (x, t), and the number and basin of attraction of its ’potential holes’,
stochastically change in the time. Thus, for example, in case of small to moderate fluctuations of b0(t)
the corresponding irreversible transition ’low to large’ (’large to low’) values of y can heuristically be read
as the irreversible ’capture’ by large (low) value attractors of a trajectory initially confined in a potential
hole centered at low values of y.

3.2 Sensitivity analysis on protein transcription

When the continuous model is in it multi-stability region for non-degenerate s results shown in the Main
Text are unchanged. Consider in fact the noise-free continuous equations in model D (Table 2, Main
Text), replace 〈G(t)〉 in the differential equation for proteins.

The equilibrium values for proteins are the zeros of the equation ẏ = 0, which reads as

s
n
[
c0 + c2y

2
]

b0 + c0 + c2y2
− dy = 0

for the noise-free system (i.e., the network isolated from the external environment). This polynomial is
equivalent to

y3dc2 − y2snc2 + y(db0 + dc0)− snc0 = 0
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when y2 6= −(b0 + c0)/c2 and has at most 3 solutions which can be easily retrieved by applying the cubic
formula for root finding.

For a general polynomial we can compute exactly its roots; by setting α = dc2, β = −nc2, γ = db0+dc0
and δ = −nc0 we have

p(y, s) = y3 · α− y2 · β · s+ y · γ − s · δ = 0

whose discriminant is

∆(s) = 18αβsγδs− 4(βs)3δs+ (βs)2γ2 − αγ3 − 27α2(δs)2

= 18αβγδs2 − 4β3δs4 + β2γ2s2 − αγ3 − 27α2δ2s2

= 4β3δs4 + (18αβγδ + β2γ2 + 27α2δ2)s2 − αγ3 .

When ∆(s) > 0 then p(y, s) has 3 roots; numerical conditions for this to hold are

∆(s) > 0 ⇐⇒ 2.2255 ≤ s ≤ 143.7882 .

This means that for any s ∈ [2.2255, 143.7882] we can find conditions to have an hysteresis plot
equilibria such as the one in Figure 1. Such plots will only differ for the values of the equilibrium values
(ylow, yhigh) and (bl, br), as a function of s.

Notice that we picked – on purpose – a set of parameters values in which all the 3 roots exists, as this
is the interesting case where multi-stability can emerge. Thus, for any of such plots, we can always retrieve
our conclusions when the noise baseline value (b0) is close enough to bl - which is the situation described
in the Main Text. For this reason, we did not include any quantitative statement on our predictions (like
specific protein counts) being much aware on the dependency on the specific value of s.

3.3 Multiple noises on gene switching at once: nullification effects

We show that, if two independent noise sources are applied to both the process of gene switching between
inactive and active states and viceversa the extrinsic noise effect is averaged out.

Let us consider the continuous case, which is model D of our manuscript; the equation for the average
number of active genes can be extended to account for a noise in the activation baseline rate, c0 in the
main text, yielding

〈G(t)〉new =
n
[
c0(t) + c2y

2(t)
]

b0(t) + c0(t) + c2y2(t)

Let us consider the two noises separately. First, applying the bounded noise in b0, we would have that
〈b0(t)〉 = b0 and that, for any t, b0(t) ∈ [b0(1 − B̂), b0(1 + B̂)] which would lead, case of the strongest
possible noise intensity (B̂ = 1) to b0(t) ∈ [0, 2b0]. In this case the state equation for gene number
fluctuates between:

〈G〉b0min =
n
[
c0 + c2y

2(t)
]

2b0 + c0 + c2y2(t)
〈G〉b0Max =

n
[
c0 + c2y

2(t)
]

c0 + c2y2(t)
= n. (4)

With our parameter setting, i.e. c0 = 10 c2 = 16 b0 = 150, we will obtain for a low level of protein
equilibrium yeqlow ' 1, 〈G〉b0min ' n

9 , thus the magnitude of fluctuations is ∆Gb0low ' n8/9. On the other
hand for high level of protein equilibrium yeqhigh ' 4, 〈G〉b0min ' n

2.12 , thus the magnitude of fluctuation now

is ∆Gb0high ' n/2.
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Figure S2. Multiple extrinsic noises affecting gene dynamics. Here we compare the situation of and
extrinsic bounded noise affecting only deactivation (b0(t)) and both activation and deactivation (b0(t) and
c0(t)) of G, in the very extreme case of maximum noise strength (B = 1). This shows how the magnitude
of fluctuations in the average number of active genes is almost nullified in the latter case, compared to
the former.

When the noise is applied to c0, the state equation for gene number fluctuates between:

〈G〉c0min =
nc2y

2(t)

b0 + c2y2(t)
〈G〉b0Max =

n
[
2c0 + c2y

2(t)
]

b0 + 2c0 + c2y2(t)
. (5)

The same consideration of the former case lead us, for yeqlow to 〈G〉c0min ' n
10 and 〈G〉c0Max ' n

4 , and the
magnitude of fluctuations is ∆Gc0low ' n 3

20 < ∆Gb0low. For yeqhigh, 〈G〉c0min ' n
1.6 , 〈G〉c0Max ' n

1.54 , and the

magnitude of fluctuations ∆Gc0high ' 0 < ∆Gb0high.
For further clarification, we plot 〈G(t)〉 in the case of the noise source affecting both activation and

inactivation of G; see Figure S2. The same conclusions can be drawn when the same noise source is
considered.

3.4 From continuous to discrete molecular counts

The discretization of a model do not necessarily preserve the properties of its continuous counterpart.
Different volumes – and hence different normalization constants, Fig. 7 (Main Text), and discretization –
imply different reference biological systems. In general, to the best of our knowledge, it is not possible to
automatically derive results on discrete-level of proteins/genes from a phase-diagram. In practical terms,
this means that there is no theoretical guarantee that standard analysis on the continuous version of the
model (model D) can shed any light on the network functioning in different settings (models A,B and C).
This is indeed what we observe for this system, see Figure S3.

3.5 Extended comparison with related works

In this section we comment on three models of the self-activation transcriptional network motif and its
relation with extrinsic Gaussian noises. In two cases this is the only form of stochasticity considered
[LaLGLL09,LJ04], in a unique case this is in combination with intrinsic fluctuations but without gene-
switching noise [ARLSG13].
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Figure S3. In these plots, we project the hysteresis diagram for the noise-free fully continuous model –
Fig 2a of the Main Text – along with different initial conditions (as of y0 and b0) of the analogous
discrete model (conditions vary in the left and right plots). Top and bottom panels differ for noise
intensity B. Possible trajectories are pictured with their spanned values as bars. We can observe that the
predicted behaviors are independent of the initial condition, but rather dependent on the cellular volume
(via normalization NAV ). Notice that for low noise, B = 0.1, oscillations are only predicted for
low-volume cells, NAV = 6.02. While for higher noise B = 0.1 no matter what the volume is the
dynamics oscillates across high and low protein counts.

As we mentioned in the main text, this model in absence of extrinsic noise reads as follows:

y′ = s
n(c0 + c2y

2)

(c0 + c2y2) + b0
− dy,

but, in the literature, e.g., [SBB98,LJ04,LaLGLL09,ARLSG13], it is often written in the algebraically
equivalent form

ẏ = Rb +
Kfy

2

Kd + y2
− dy, (6)

where Rb and the sum Kf +Rb can be, respectively, legitimately read as a baseline and an “asymptotic”
production rates. However, since it holds that

Rb = ns
c0

c0 + b0

Kf = ns

Kd =
c0 + b0
c2

it follows that the parameters Rb, Kf and Kd must not be dealt with as they were independent. In
particular, a fluctuation of the baseline rate Rb cannot be deconvolved by fluctuations in the other two
parameters.
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Unfortunately this is what happens in literature. For example, in [LaLGLL09] the Smolen-Baxter-
Byrne model was studied in the framework of the above mentioned continuous approximation with
fast gene-switching and large number of proteins. The authors of [LaLGLL09] analytically investigated
the consequences of white stochastic oscillations affecting the baseline production rate Kd and/or the
parameter Kf . Thus, the model in [LaLGLL09] reads as follows

ẏ = Rb(1 + ξ0(t)) +Kf (1 + ξ1(t))
y2

Kd + y2
− dy . (7)

Unfortunately, according to what we above showed, the stochastic differential equation (7) does not
correspond to a biologically meaningful scenario, unless both ξ0(t) = ξ1(t) and, of course, the noises
are bounded. We note here that, in such a particular case, eq. [LaLGLL09] can be read as a model of
fluctuations in the parameter s.

In [LJ04] it is investigated a model where both the baseline protein production rate and the degradation
rate were perturbed by white noises, yielding the following stochastic differential equation

ẏ = Rb(1 + ξ0(t)) +Kf
y2

Kd + y2
− d(1 + ξd(t))y , (8)

Again, isolated oscillations of the parameter Rb are not meaningful.
As briefly mentioned in the introduction, by means of semi-analytical methods, joining the Wentzel-

Kramers-Brillouin (WKB) approximation and numerical simulations, Assaf and colleagues recently
investigated the interplay between extrinsic and intrinsic noise in the circuit of a self-transcription factor
with a sharp positive feedback [ARLSG13]. The biological differences between their model and ours are
worth to be described in some detail.

Indeed, in their main model the extrinsic noise perturbs the production rate of the transcription
factor, and the perturbation is state-dependent being active only if the state of the protein is “high”.
Indeed, under the implicit hypothesis that the gene switching velocity is large they assume the following
probability law for the production of the transcription factor in the time interval (t, t+ dt)

P(Y → Y + 1) = dt A(α0 + (1− α0 + ξ(t))θ(Y − Y∗)) (9)

where θ(.) is the Heavyside function and α0 � 1. Thus if Y (t) is under the threshold then the production
rate of the transcription factor is unperturbed.

The mechanism through which this state-dependent fluctuation of the production rate can be enacted
is not specified. In absence of such specification, the asymmetry of the perturbation acting on the baseline
and on the large protein synthesis rates remains unclear.

Note that in [ARLSG13] it is also briefly investigated a model where a smooth feedback is enacted (as
in the Smolen-Baxter-Byrne model [SBB98,SBB99]):

P(Y → Y + 1) = dt A

(
α0 + (1− α0 + ξ(t))

Y 2

Kd + Y 2

)
(10)

Thus, the perturbation adopted in [ARLSG13] for such a smooth case is equivalent to the perturbation of
the parameter Kf alone investigated in the paper [LaLGLL09] in the case ξ0(t) = 0.

We note here that this equivalence can be extended to the ’sharp’ model defined by 9 because in
absence of extrinsic noise eq 9 is the limit case of a generalization of our model B (fast gene switching and
small number of proteins) with constant b0. Indeed, in the hypothesis that gene switching is fast and that
the activation is caused by ’Q-meric’ forms (and not dimeric), proceeding as in our main text one gets (in
absence of noise on b0):

P(Y → Y + 1) = dtsNAV 〈G(t)〉 = dtsNAV
n
[
c0 + c2y

Q
]

b0 + c0 + c2yQ
, (11)
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which may be rewritten as follows:

P(Y → Y + 1) = dtA(α0 + (1− α0)
(Y/Y ∗)Q

1 + (Y/Y ∗)Q
, (12)

where

Y∗ = (
b0 + c0
c2

)1/Q

Aα0 ≈ sNAV n
c0

b0 + c0
.

Thus, if Q is sufficiently large eq. (12) reads:

P(Y → Y + 1) ≈ dt A (α0 + (1− α0)θ(Y − Y∗))

Summarizing, we may say that for both the sharp and the smooth models of [ARLSG13] the extrinsic
noise acts in a biologically unrealistic way, equal (for Q = 2) or remindful (for Q� 1) of that investigated
in [LaLGLL09] in the case ξ0(t) = 0.

As far as the type of extrinsic noise is concerned, Assaf and coworkers considered an unbounded
Orenstein-Uhlenbeck noise defined as follows

ξ̇ = −1

τ
ξ +

√
2σex
τ

η(t) ,

where η(t) is a unitary white noise. In this way the stationary probability density function of the noise ξ
is Gaussian with variance σex. However, from the above equations it follows that it must be

ξ(t) > 1− α0 .

One might roughly consider tolerable the error if

2σex < 1− α0 ,

which, however, does not seem the case in [ARLSG13]. Indeed in the simulations presented in [ARLSG13]
the employed “stochastic bifurcation parameter” is the ratio between the standard deviation of the
Orenstein-Uhlenbeck noise and a parameter named µ. This parameter is defined as the average of the
(transitory) “quasi-stationary distribution about the high state” [ARLSG13]. Since in their simulations
the high state is large (it ranges from 300 to 5000), even µ has to be large. Indeed, we simulated the
sharp feedback model by means of the (exact) Gillespie algorithm and we got that the average value of
the probability density function is very close to the high equilibrium state. This means that the standard
deviation σex in most of the simulations reported in [ARLSG13] largely exceeds 0.5(1− α0).

3.6 Bounded versus unbounded forms of noise

Consider the continuous version of the model and the phase-transition that we observe. The fact that
more common approaches based on unbounded extrinsic perturbations will not predict such dynamics is
one of the motivations for our work. It is indeed the case that, for the parameters that we have considered,
the network interplaying with unbounded white/colored noises predicts oscillations among high and low
levels of protein Y .

We picture evidences of this from single simulations of the system under the effect of one of the most
famous models of unbounded noise, see Figure S4. We there show two single simulations of the system
under the effect of an Ornstein-Uhlenbeck noise ξ generated from the following stochastic differential
equation

dξ = − ξ
τ
dt+ σ dWt
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Figure S4. Comparison of models prediction with bounded and unbounded noise. On the left, a figure
from the Main Text shows a phase transition (for values of noise intensity B > B∗, with B∗ ≈ 0.066 and
τ = 10) from low to high values of 〈y〉. On the right, two simulations of the system under the effect of an
Ornstein-Uhlenbeck.

where we “compare” the Ornstein-Uhlenbeck noise variance (σ) to the intensity of the bounded noise. In
support of our conclusions we cal also observe that, even for σ � B∗ the system is predicted to stabilize
to either its higher protein state, or to oscillate among equilibria - as a function of τ . We note that this
happens with non-zero probability for all parameter settings of such noises, by the infinite support of the
Gaussian distribution. As such, we feel that this kind of behaviours – emerging only with unbounded
noises – could be considered as a modeling artifact.

For this reason, caution should be adopted to distinguish predictions more likely to be “realistic” (i.e.,
adhere to underlying physics of the system) from modelling artifacts. In this sense, we believe that the
type of behaviour that we have shown, i.e., a phase-transition, shall be considered a peculiari noise-effect,
as it is not whatsoever reproducible in canonical white/colored-noise modeling contexts.
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