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a b s t r a c t

Voxel-based soft robots (VSRs) are robots composed of many small, cubic blocks of a soft material
with mechanical properties similar to those of living tissues and that can change their volume based
on signals emitted by the robot controller, i.e., by its brain. Designing the body and the brain of a
VSR suitable for a specific task is a complex activity that requires suitable optimization heuristics.
We here present a software, 2D-VSR-Sim, for facilitating research on the optimization of VSRs body
and brain. 2D-VSR-Sim, written in Java, provides consistent interfaces for all the VSRs aspects suitable
for optimization and considers by design the presence of sensing, i.e., the possibility of exploiting the
feedback from the environment for controlling the VSR. We present the mechanical model employed by
2D-VSR-Sim and we experimentally characterize the computational burden of the simulation. Finally,
we show how 2D-VSR-Sim can be used to repeat the experiments of significant previous studies and,
in perspective, to provide experimental answers to a variety of research questions.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

Soft robotics [1–3] is a field of robotics that studies robots built
rom materials with mechanical properties similar to those of
iving tissues. Such soft robots have several advantages over their
rigid body counterparts, such as, e.g., conforming to uneven sur-
faces, distributing stress over a larger volume, increasing contact
time [4]. They may also be able to undertake tasks which would
be impossible for a traditional, i.e., a rigid body, robot, such as
passing through small apertures [5], non-invasively access human
tissue [6], camouflage through transparency while still being able
to move [7]. This potential comes at the cost of an increased
complexity involved in designing the body of a soft robot and the
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corresponding controller, i.e., the brain of the robot. Such a design
is often executed by means of optimization techniques [8,9].

In this context, a popular framework considers a kind of soft
robots composed of many small, cubic blocks that can change
their volumes over the time, according to control signals emitted
by the robot controller. Such cubic blocks are called voxels and
the corresponding soft robots are called voxel-based soft robots
(VSRs) [10]. Optimization techniques are even more crucial for
VSRs than for soft robots in general: there is a huge variety
regarding the shape that can be assumed by a VSR, depending
on how its voxels are distributed and assembled. Furthermore,
determining the complex interactions that may emerge from the
concurrent ‘‘behavior’’ of many small blocks is hard. Indeed, many
applications of optimization to VSRs have been proposed, e.g., [5,
11–17]. Automation offered by optimization fostered research by
allowing researchers and practitioners to focus more on the broad
ttps://doi.org/10.1016/j.softx.2020.100573
352-7110/© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).
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goal of optimization, rather than on the finer details about how
to perform it.

In this work, we present a software, called 2D-VSR-Sim, for
facilitating research in the optimization of VSRs. We designed 2D-
VSR-Sim focusing mainly on two key steps of optimization: what
to optimize and toward which goal. As a result, 2D-VSR-Sim offers
a consistent interface (a) to the different components (e.g., body,
brain, specific mechanisms for control signal propagation) of a
VSR which are suitable for optimization and (b) to the task the
VSR is requested to perform (e.g., locomotion, grasping of moving
objects). We designed 2D-VSR-Sim without any specific optimiza-
tion technique in mind. That is, 2D-VSR-Sim leaves researchers
great freedom on how to optimize: different techniques, e.g., evo-
lutionary computation or reinforcement learning, can be used on
VSRs by researchers of different disciplines, e.g., robotics, artificial
life, learning representations.

Some software frameworks originated from needs similar to
ours, namely [18] (later wrapped in Evosoro [19]) and [20]. Other
frameworks could be used for modeling and simulating VSRs,
e.g., [21], but operate at a much lower abstraction level and
require a larger design effort to the researcher. 2D-VSR-Sim dif-
fers from those frameworks because it offers an higher level of
abstraction to the description of the VSRs that favors the task of
defining what to optimize. In particular, we included by design
the possibility for the VSR to sense itself and the environment:
that is, the controller under optimization can use as inputs the
current velocities, accelerations, rotations, etc., of each of the
voxels. 2D-VSR-Sim allows the user (i.e., a researcher) to exploit
those sensing abilities out-of-the-box, thereby saving the effort
for modeling and implementing them in the simulation. A recent
study showed that sensing the environment may be beneficial
for obtaining a broader range of behaviors [15]. Moreover, sens-
ing might lead to a sharper arising of the embodied cognition
paradigm, according to which the complexity of the behavior of a
robotic agent depends on both its brain and its body [22].

Besides sensing, 2D-VSR-Sim differs from existing software
tools also because it simulates a 2-D version of VSRs: operating
in 2-D, rather than in 3-D, makes the search space in general
‘‘smaller’’ and hence potentially facilitates the optimization. On
the other hand, optimized artifacts have no clear real counter-
parts. Indeed, some attempts to physically build VSRs are being
made [10,23–25], at different scales and with different actuation
mechanisms, but practicality is still limited. The model used by
2D-VSR-Sim internally is not tailored to any specific VSR imple-
mentation: different implementations could require significantly
different models and no reference implementation has emerged
yet. The modular structuring of 2D-VSR-Sim should facilitate the
modeling of specific VSR properties, though, perhaps by means
of specialized plugins. We plan to extend 2D-VSR-Sim to the 3-D
case as future work.

Finally, 2D-VSR-Sim provides components for visualizing the
simulated behavior of a VSR, which is very important in an ex-
ploratory research field of this kind. Moreover, this functionality
has been obtained by the separation of concerns design principle,
by exploiting the programming language features offered by Java,
which greatly simplifies possible extensions of 2D-VSR-Sim.

2. Software description

2D-VSR-Sim is a simulator of one or more 2-D VSRs that
perform a task, i.e., some activity whose degree of accomplish-
ment can be evaluated quantitatively according to one or more
indexes. The simulation is discrete in time, using a fixed time-
step, and continuous in space: the position and configuration of
each voxel of the VSR is updated at each time-step according to
the mechanical model and to the VSR controller.

Fig. 1. The mechanical model of the voxel. The four masses are depicted in
gray and numbered (for later reference) in black; the different components of
the scaffolding are depicted in blue, green, red, and orange (see text); the ropes
are depicted in black.

Table 1
Voxel configurable properties.
Description and symbol Def. val. Domain Unit

Side length l 3 ]0, +∞[ m
Mass side length ratio lm 0.3 ]0, 0.5]
Mass linear damping dlm 1 [0, +∞[
Mass angular damping dω

m 1 [0, +∞[
Mass mm 1 ]0, +∞[ kg
Mass friction coefficient ρm 100 [0, +∞[
Mass restitution coefficient rm 0.1 ]0, +∞[
SDS frequency fs 8 [0, +∞[ Hz
SDS damping ratio ds 0.3 [0, 1]
Max area change ρA 0.2 [0, 1]

2.1. Voxel model

In 2D-VSR-Sim a voxel is a soft 2-D block, i.e., a deformable
square modeled with four rigid bodies (square masses), a number
of spring–damper systems (SDSs) that constitute a scaffolding, and
a number of ropes. SDSs and ropes have zero mass; ropes act as
upper bounds to the distance that two bodies can have. Fig. 1
shows the mechanical model of a single voxel.

Most of the properties of the voxel model are configurable
by the user, as explained below. The user can configure the
scaffolding specifying a subset of the following groups of SDSs:
(a) side external, one outer SDS connecting the two masses for
each voxel side (blue in Fig. 1); (b) side internal, one inner SDS
connecting the two masses for each voxel side (red in Fig. 1);
(c) side cross, two crossing SDSs connecting the two masses for
each voxel side (green in Fig. 1); (d) central cross, two crossing
SDSs connecting the four masses (orange in Fig. 1). The presence
of the ropes can be configured (enabled or disabled) by the user
too. Table 1 shows the main parameters of the voxel model along
with their default values and domains. Mass friction and restitu-
tion coefficients are used by the physics engine (see Section 2.6)
while determining the effects of collisions of masses with other
bodies (e.g., the ground).

By varying the values of the parameters, the user can im-
pact on the properties of the material constituting the voxel. In
particular, for impacting on the softness of the voxel, the user
can operate on the scaffolding and/or on the SDS frequency fs;
with the former, the more the selected groups, the more rigid
the voxel. After a few exploratory experiments, we set as default
value fs = 8Hz and the scaffolding composed of all the groups.

The VSR can perform its task by varying the area of the
composing voxels over the time, i.e., by actuating each voxel. In
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the mechanical model of 2D-VSR-Sim, the actuation is obtained
by varying the resting length of the SDSs. Given a control value
f ∈ [−1, 1], the resting length of all the SDSs of the voxel is
instantaneously modified such that the voxel side becomes l′ =√
l2(1 − f ρA) where ρA is a parameter representing the maximum

ncrease or decrease of the voxel area.

.2. VSR model

A VSR is modeled as a collection of voxels organized in a 2-
grid, each voxel in the grid being rigidly connected with the

oxel above, below, on the left, and on the right. The connection
etween two voxels is modeled as two rigid joints connecting the
enters of the masses on the common side. The rigid joint does
ot allow rotations of the masses around the connection points,
or variation in the distance between the two connected masses:
n other words, two masses connected by a rigid joint are welded.
ig. 2 shows the mechanical model of an example VSR composed
f 6 voxels.
The parameters of the voxels composing a VSR can have dif-

erent values (with the exception of the side length l); a VSR can
ence be composed of different materials.

.3. VSR controller

The way a VSR behaves is determined by a controller. When-
ever it is invoked, the controller determines, for each voxel vi of
the VSR, the control value fi ∈ [−1, 1] to apply. The control value
is applied by the physics engine (see Section 2.4) and results in a
change in the area of the corresponding voxel and hence a change
in the shape of the VSR. The controller can be implemented by
the user and 2D-VSR-Sim provides ample freedom in this respect:
realizable controllers include those where fi depends only on the
current time t and those where fi is the result of a possibly non
trivial processing of current and previous states of the VSR and
the environment.

A controller has access to several sensors for each voxel, hence
giving the VSR the ability to sense itself and the environment.
For each sensor s and each voxel vi, the controller may use zero
or more of the following: (a) the current value s(t, vi); (b) the
average value 1

n

∑n−1
k=0 s(t − k∆tc, vi) of the last n readings (at

times t, . . . , t − (n− 1)∆tc); (c) the nth difference s(t, vi)− s(t −

n−1)∆tc, vi) between the current value and the n−1th reading.
Available sensors allow to sense the current area of the voxel, the
velocity of its center of mass, its rotation, and the fact that it is
touching another body (e.g., the ground).

We implemented two controllers in 2D-VSR-Sim, one being
stateless and not exploiting any sensor, the other based on a
multilayer perceptron (MLP) and resembling the one presented
in [15]. The two implementations can be used without writing
any code and can be instantiated by setting the values of the
parameters of the corresponding controllers, that we describe
below.

The stateless, non-sensing controller simply applies to each
voxel vi a control value fi = fi(t): the controller parameters
consist hence in a grid of functions fi : R+

→ [−1, 1].
The MLP-based controller computes, at each invocation, the

output y = fMLP(x, θ) of a MLP with a user-defined architecture
and weights θ on an input x. The size of the input layer m, x ∈ Rm

is implicitly defined by the user-defined sensors for each voxel of
the VSR; the size of the output layer n, y ∈ [−1, 1]n is equal to
he number of voxels of the VSR. The control value fi of a voxel vi
is set to the ith element yi of y. Optionally, a supplementary input
can be set to the current value of a user-defined function of the
current time, called driving function. The MLP-based controller
parameters are hence: the grid of sensors to be used, the driving
function, the MLP architecture, and the MLP weights θ.

2.4. Simulation

2D-VSR-Sim exploits an existing physics engine, dyn4j,1 for
solving the mechanical model defined by a VSR subjected to the
forces caused by the actuation determined by its controller and
by the interaction with other bodies (typically, the ground). We
refer the reader to the documentation of dyn4j for the fine details
about how physics is modeled.

The physics engine can be configured in several aspects. One
that is particularly relevant is the time-step ∆t that is used
for numerically solving the model: in order to avoid numerical
instabilities, ∆t has to be small enough with respect to the largest
SDS frequency fs. For the same reason, we made 2D-VSR-Sim to
not invoke the controller of the VSR at every time-step, but every
c + 1 time-steps, c ≥ 0 being the control step interval. After
preliminary experiments, we set the default values for ∆t to 1

60 s
(which is the default value of the underlying physics engine) and
for c to 1, i.e., the controller is invoked every 1

30 s.

2.5. Task

The goal of the optimization is represented in 2D-VSR-Sim as
a task to be solved. In general, a task is a function that processes
an input and gives an output: the common case is the one where
the input is a description of a VSR (or of part of it) and the output
is a measure of the degree to which that VSR accomplished the
task. The latter can be based on any quantity made available by
2D-VSR-Sim and the underlying physics engine, e.g., position of
the center of mass of the VSR, consumed energy, and so on.

We implemented one task in 2D-VSR-Sim that represents
locomotion, i.e., a task where the goal of the robot is to travel
as far as possible. We chose this task because it is the one on
which the vast majority of previous studies put their focus. The
implementation of this task can be used without writing any code
and can be instantiated by setting the values of the parameters
describe below.

The input of this task is a description of the VSR, in terms
of its body (grid of voxels described by their parameters) and
brain (controller). The output is given by one or more measures
obtained by simulating the VSR that moves on the ground as,
e.g., the distance traveled along the x-direction. Many aspects of
the locomotion task can be configured, as, e.g., the roughness of
the ground. Upon completion of the simulation, one or more mea-
sures can be taken: this allows to cast the optimization of a VSR
for locomotion as a single- or multi-objective optimization prob-
lem. Measures that may be taken include the average velocity and
the average of the sum of the squared control values of the voxels.
For example, optimizing the controller of a VSR with a given body
for the maximization of the former and the minimization of the
latter corresponds to searching for a controller that is at the same
time good in running and energy-saving.

2.6. Software architecture

2D-VSR-Sim is meant to be used within or together with
another software that performs the actual optimization.

2D-VSR-Sim is organized as a Java package containing
the classes and the interfaces that represent the models and
concepts described previously. The voxel is represented by the
Voxel class and its parameters can be specified using the
Voxel.Builder class, using the builder pattern. The VSR is
represented by the VoxelCompound class; a description of a
VSR, that can be used for building a VSR accordingly, is repre-
sented by the VoxelCompound.Description class. A controller

1 http://www.dyn4j.org/.

http://www.dyn4j.org/
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Fig. 2. The mechanical model of a VSR composed of 6 voxels. The masses, the SDSs, and the ropes are depicted in gray; the rigid joints connecting the voxels are
epicted in red.

s represented by the interface Controller: a controller ex-
loiting sensing can be realized by extending the abstract class
losedLoopController, that takes care of collecting the sensor
eadings and makes them available to the inheriting class. Finally,
task is described by the interface Task.
Since VSRs are defined as grids of voxels, a class of particular

mportance in 2D-VSR-Sim is Grid<T>, that represents a 2-D
grid of objects of type T: Grid may contain null objects, mean-
ing that the corresponding positions are empty. For example, a
Grid<Voxel.Builder> is used for specifying the body of a VSR,
whereas a Grid<SerializableFunction<Double, Double>>
is used for specifying the time functions, one for each voxel,
that are the parameters of the stateless, non-sensing controller
(represented by the class TimeFunction that implements the
Controller interface).

2D-VSR-Sim provides a mechanism for keeping track of
an ongoing simulation based on the observer pattern. A
SnapshotListener interface represents the observer that is
notified of progresses in the simulation, each in the form of a
Snapshot: the latter is an immutable representation of the state
of all the objects (e.g., positions of voxels, values of their sensor
readings) in the simulation at a given time. We implemented
two listeners using this interface. GridOnlineViewer renders
a visualization of the simulated world within a GUI, whereas
GridFileWriter produces a video file: both can process mul-
tiple simulations together, organized in a grid. The possibility of
visualizing many simulations together can be useful, for example,
for comparing different stages of an optimization.

Fig. 3 shows the graphical user interface (GUI) provided by
GridOnlineViewer: four simulations of the locomotion task
are shown with four different VSRs. On top of the GUI, a set of
checkboxes allows the user to customize the visualization with
immediate effect. Several measures can be visualized through the
fill color of the voxel or other means; voxels SDSs and masses can
be visualized too, as well as other useful information.

2.7. Impact of main parameters

We experimentally characterized the performance of 2D-VSR-
Sim in terms of the impact of its main parameters. In particular,
we considered two parameters – the scaffolding and the time-
step ∆t – and evaluated their impact on the simulation perfor-
mance, i.e., how many simulation steps can be performed in the
unit of time on a given computing machine. We also performed

of an assembly of simulated voxels: due to space constraints, we
do not include here the results and refer the reader to [26].

We considered a VSR of w×3 voxels with the same properties
(i.e., a sort of worm of length w) actuated by a stateless, non-
sensing controller. The control value for a voxel at position x, y in
the grid is given by fx,y(t) = sin

(
−2π t + π x

w

)
. The VSR moved on

an uneven surface in the attempt of performing the locomotion
task.

For each value of w ∈ {3, 6, . . . , 42, 45} (starting from w =

45), we performed 5 simulations lasting 60 s (simulated time).
We executed the simulations in parallel (as Callables through
the Java ExecutorService framework, one Callable for each
core) on the Galileo partition of the CINECA HPC cluster, where
each node is equipped with 2 × 18 cores based on 2.30GHz Intel
Xeon E5-2697 v4 (Broadwell) and with 128GB RAM. We used
OpenJDK 64-Bit Server VM (build 13 + 33) with the -Xmx8G
option (i.e., with at most 8GB) and repeated the procedure 10
times on 10 different HPC nodes, hence performing 5 × 10 = 50
simulations for each value of w. At the end of each simulation, we
counted the average number of simulated voxel steps per second
(SVSPS), obtained as

( 60
∆t 3w

) 1
τ
, 60

∆t being the number of simulated
steps, 3w the number of voxels, and τ the duration (wall time) in
seconds of the simulation.

Fig. 4 shows the results in terms of SVSPS vs. the VSR length
w for different configurations of the scaffolding (left plot) and for
different values of the time-step ∆t (right plot). It can be seen
that 2D-VSR-Sim is able to perform approximately 20 000 SVSPS
per core on the used machine—we remark that each simulation
has been executed on a single core. Moreover, Fig. 4 shows that
the number of SVSPS depends on the number of voxels: larger
VSRs result in fewer SVSPS. The remarkably lower values of SVSPS
for largest w values in both plots are related to how we executed
the experiments: the Java VM took some time to warm up and
delivered worse performance in the first executed simulations,
that were the ones with w = 45.

Concerning the impact of the scaffolding, it can be seen that,
as expected, the larger the number of simulated SDSs per voxel,
the fewer SVSPS: we recall that E + C, E + I + C, All, and E +

I + X correspond to 6, 10, 18, and 16 SDSs, respectively. Finally,
concerning the time-step ∆t , it can be seen that the lower ∆t , the
more SVSPS, though the differences are small. This finding can
be explained by considering that the underlying physics engine
is required to perform heavier computation when longer time-
steps are performed. We recall, however, that the overall number
of performed steps is inversely proportional to ∆t: this makes,
with other parameters being the same, convenient to prefer large
values for ∆t .
a mechanical characterization of the static and dynamic behavior
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Fig. 3. The GUI provided by 2D-VSR-Sim for visualizing many simulations together (here four simulations in a grid of 2 × 2). In this (default) configuration, each
oxel is filled with a color that is proportional to the variation of the voxel area: red means shrunk, green means no variation, yellow means enlarged. The ground
s filled in dark gray.

Fig. 4. Simulation performance of a worm-shaped VSR of w × 3 voxels performing locomotion: number of simulated voxel steps per second (SVSPS) vs. the length
w. On the left, for different scaffolding configurations; on the right, for different values of the time-step ∆t .

3. Potential impact and illustrative examples

We designed 2D-VSR-Sim to facilitate research on the opti-
mization of VSRs and we believe that, by achieving this goal, it
may have a remarkable impact on many research fields (e.g., soft
robotics, evolutionary computation, reinforcement learning). In
order to corroborate this vision, we repeated the experiments
carried out in three significant papers on this topic [10,14,15]—
moreover, we highlight that 2D-VSR-Sim has already been used
in [17]. Our intent was not to exactly reproduce the experimental
results of the cited studies (also because they were obtained with
3-D VSRs and 2D-VSR-Sim work with 2-D VSRs), but instead to
show how 2D-VSR-Sim can be used in a variety of scenarios
for a variety of purposes. To this end, we performed our exper-
iments in similar, but not identical, settings. In particular, we

used here one single evolutionary algorithms (EA) for the two
cases and adapted the representation of the solution, and hence
the search space, to the specific case. We opted for a classic EA
with random population initialization, fixed population size of
250 individuals, mutation and crossover for numerical vectors as
genetic operators, tournament and truncation for reproduction
and survival selection, respectively. We made the code of the
experimental machinery using this EA together with 2D-VSR-Sim
publicly available at https://github.com/ericmedvet/hmsrevo. We
set ∆t =

1
30 s and used the same HPC machines of Section 2.7.

For brevity, we here report only the results that we obtained
while repeating the experiments of [15]. In the cited paper, Ta-
lamini et al. proposed to design a VSR controller that can exploit
the feedback from the environment – that is, sense it – in contrast
with existing approaches (as, e.g., [10,14]) where the control val-
ues were simple functions of the current time. In order to verify

https://github.com/ericmedvet/hmsrevo
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Fig. 5. Results of the sensing vs. non-sensing controller experiment inspired by [15]: fitness, i.e., average velocity, of the best individual during the evolution, one
plot for each VSR shape. The shown value is the median across the 10 repetitions. The shaded area represents the interval defined by ±σ , σ being the standard
eviation across the repetitions.

f the ability of sensing actually allows to obtain more effective
SRs, the authors of [15] considered the locomotion problem,
hree VSR shapes, and optimized the controller parameters using
n EA. They adopted the stateless, non-sensing controller of [14]
nd its representation as a comparison baseline.
We here considered three shapes similar to the ones used

n [15]: (a) a worm of 4 × 1 voxels; (b) a biped with 4 × 1
oxels as trunk and two single-voxel legs at the extremes; and
c) a tripod with a 5 × 1 voxels as trunk and three single-
oxel legs, two at the extremes and one in the middle. For the
aseline controller, the representation is the same of the previous
xperiment and the search spaces are R4, R6, and R8, respectively
or the worm, biped, and tripod. For the sensing controller, we
sed the MLP-based controller described in Section 2.3 with no
nner layer and the 6 inputs corresponding to voxel area and
elocity sensors. We set the driving function to sin(2π t); this
esulted in the MLP being defined by (6n+ 1+ 1) × n weights, n
eing the number of voxels. The corresponding search spaces are
ence R104, R228, and R400 for the three shapes.
We used the average velocity as the fitness of the individuals

nd we performed 10 executions of the EA for each pair com-
osed of a controller type (sensing or non-sensing) and a shape
worm, biped, or tripod).

Fig. 5 shows the results as the median value (across the 10
epetitions) of the fitness of the best individual during the evo-
ution, one line for each of the two controller cases, one plot for
ach shape. It can be seen that the sensing controller is always
ore effective, after some optimization effort, in accordance with

he findings of [15]. There are some differences in the amount of
mprovement that sensing delivers among the three shapes which
ould be explained, at least in part, by the different increases of
he size of the search space.

We visually inspected the behaviors of some of the opti-
ized VSRs and verified that, as found in the cited paper by
ystematically analyze the behaviors, sensing apparently pro-
uces more interesting behaviors. For example, we discovered
hat for the worm shape some sensing controllers resulted in a
ort of jumping behavior.

4. Conclusions

We presented 2D-VSR-Sim, a software for simulating a partic-
ular kind of soft robots, called VSRs, composed of many simple
voxels. 2D-VSR-Sim allows researchers to focus more on what to
optimize rather than on how to model a VSR. In particular, 2D-
VSR-Sim may boost research concerning how VSRs can exploit
perception and modularity to improve their effectiveness. We
highlight how the goal of this work is to provide software to make
VSRs optimization easy for researchers and practitioners, and not
to simulate a real robot.

We showed that 2D-VSR-Sim is highly versatile and can be
easily tailored to a variety of experimental scenarios. To this end,
we used 2D-VSR-Sim for repeating the experiments of some sig-
nificant studies on VSRs. We think that many interesting research
questions still exist that can be tackled by experimenting with
VSRs and optimization. We think that, by reducing the burden
for the experiments needed to validate answers to those ques-
tions, 2D-VSR-Sim may become a valuable tool for researchers in
different disciplines.
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