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Abstract

Several simplified uncertainty models are derived from a given proba-
bility P0 of which they are a perturbation. Among these, we introduced
in previous work Nearly-Linear (NL) models. They perform a linear
affine transformation of P0 with barriers, obtaining a couple of conjugate
lower/upper probabilities, and generalise several well known neighbour-
hood models. We classified NL models, partitioning them into three
subfamilies, and established their basic consistency properties in [5]. In
this paper we investigate how to extend NL models that avoid sure loss
by means of their natural extension, a basic, although operationally not
always simple, inferential procedure in Imprecise Probability Theory. We
obtain formulae for computing directly the natural extension in a number
of cases, supplying a risk measurement interpretation for one of them.
The results in the paper also broaden our knowledge of NL models: we
characterise when they avoid sure loss, express some of them as linear (or
even convex) combinations of simpler models, and explore relationships
with interval probabilities.
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1 Introduction

Uncertainty models that are not (precise) probabilities may sometimes be derived
from a reference probability P0. A classical example is the Pari-Mutuel Model
(PMM), that obtains an upper probability

PPMM = min{(1 + δ)P0, 1} (1)

given P0 and a parameter δ > 0 [14, 22, 25]. A common motivation for introducing
these models, called neighbourhood models [2, Section 4.7], is that P0 might be
not accurate enough, due to a number of causes (poor or conflicting information,
low-quality data, etc.). Yet, the models may be useful even when P0 is fully
reliable. Suppose for instance that a bookie, or the organiser of a game (in a
loose sense, might be, say, an insurer) must fix the unit selling price P (A) for an
event A, meaning that s/he returns 1 monetary unit if A is true, 0 otherwise, to
a counterpart who paid P (A). The bookie will not choose P (A) = P0(A), not
even when P0 is perfectly known, like in symmetric games (Lotto, roulette, etc.),
because this would not reasonably guarantee a positive gain perspective in the
long run. Rather, P = PPMM in (1) could be a more convincing choice, since
PPMM ≥ P0, and has been in fact employed, for instance, in betting systems on
horse races.

Next to these considerations, neighbourhood models can be more easily
explained to non-experts than other, more complex imprecise probability models,
and allow for nimbler computations, inferences, etc.

In previous work [4, 5], we investigated a family of neighbourhood models
that we termed Nearly-Linear (NL), since they are obtained by a linear affine
transformation of P0, with barriers to ensure that the result is within the [0, 1]
interval. Thus, a NL model returns an uncertainty measure µ(A), that can be 0,
1 or bP0(A) + a, with a, b fixed real parameters. This is what is done also by
neo-additive capacities [3, 10], although with remarkable differences (discussed
in [5, Section 7.2]). For instance, the sets of µ-measure 0 or 1 are settled a priori
and with some constraints with neo-additive capacities, unlike NL models, where
they are determined by the model itself. NL models generalise the PMM, as well
as the ε-contamination or linear-vacuous model [25], the Total Variation model
[12], and other neighbourhood models.

In [5] we studied basic properties of NL models. In particular:
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• NL models are partitioned into 3 families, depending on the values of
parameters a, b: the Vertical Barrier Model (VBM), the Horizontal Barrier
Model (HBM), the Restricted Range Model (RRM). Each model consists
of a couple of conjugate upper and lower probabilities.

• The VBM is coherent, while the remaining models satisfy the weaker
condition of 2-coherence. The HBM may be coherent (in special cases),
the RRM only in a trivial instance.

• NL models can express a certain variety of an assessor’s attitudes towards
the given P0, ranging from more prudential evaluations than the PMM to
conflicting beliefs towards tail P0-probability events (see also [5, Sections
5.1 and 6.1] ). The latter do not necessarily imply lack of coherence.

In this paper, we explore how NL models perform in inferential matters, with
the primary aim of introducing manageable formulae for inference. In Imprecise
Probability theory, the natural extension is the fundamental inferential proce-
dure [2, 24, 25]. It both corrects incoherent evaluations and extends them or
coherent ones to larger domains in a least-committal way (see also Section 2.2).
Unfortunately, finding the natural extension may be operationally hard, if the
model is generic or not simple, and may require using algorithmic procedures [2,
Section 16.2] [16, 26]. In the present paper we introduce formulae that simplify
this task in most subcases of NL models. In general, let P be a partition of the
sure event, A(P) the set of events logically dependent on P (the powerset of P)
and L(P) the set of all gambles (bounded random variables) defined on P. Then
the generic NL model is defined on A(P). We determine its natural extension:

i) on A(P), when the model is not already coherent there. Here the natural
extension is a (least-committal) coherent correction to the model;

ii) on L(P), performing thus a real extension.

Next to the main task, we tackle other problems, whose solution contributes to
a better knowledge of NL models:

• The natural extension procedure requires starting from an evaluation that
avoids sure loss. The VBM always avoids sure loss being coherent, but
it was not established in [4, 5] when a HBM or a RRM does so. In this
paper, we characterise the condition of avoiding sure loss for these models
(Propositions 5.1 (b), 5.5, Lemma 6.1 and Proposition 6.2).

• We prove that the VBM and the RRM can be thought of as linear (some-
times also convex) combinations of simpler models (Section 3 and Equation
(60)). The VBM is also itself the natural extension of a more naive model
(Section 4.1).

• If P is a finite partition, NL models can be interval probabilities in some
special cases (characterised in [5]). Generally, they are not, yet we show
that HBMs and RRMs that avoid sure loss are inferentially equivalent to
special probability intervals (Proposition 5.3, Remark 6.1).
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The paper is organised as follows: Section 2 recalls the basic notions useful in
the sequel, regarding especially the consistency concepts employed (Section 2.1),
the natural extension and known procedures to determine it (Section 2.2), NL
models (Section 2.3). In Section 3, the VBM is shown to include several known
neighbourhood models as special cases while being also either a linear or a convex
linear combination of some of them, the vacuous model and either the Total
Variation or the Pari-Mutuel Model. This suggests also a new interpretation
of the VBM, akin to that of the ε-contamination model. Section 4 discusses
both the VBM as a natural extension (Section 4.1) and the natural extension
of a VBM onto L(P) (Section 4.2), which may be given also an interpretation
in terms of risk measures (Section 4.3). The interpretation is based on that
of risk measures as imprecise previsions [2, Section 12.3.1], and introduces a
coherent risk measure more general than Tail Value at Risk. We recall that Tail
Value at Risk is a known coherent risk measure [9] that can be viewed as the
natural extension of a PMM [22]. Section 5 determines when a HBM avoids
sure loss and establishes explicit formulae for its natural extension on A(P) and
on L(P) when P is finite, or on L(P), whatever P is, when the HBM is coherent
on A(P). Section 6 illustrates a similar work with the RRM, which is shown
to avoid sure loss only when P is finite, and under an additional condition. It
also investigates further features of the RRM: among these, it is a convex linear
combination of P0 and a degenerate NL model, and the condition of avoiding
sure loss is equivalent to C-convexity for it, but not for a HBM. Our conclusions
are summarised in Section 7. This paper extends, with proofs and additional
material, a preliminary paper [20] presented at ISIPTA 2019 - International
Symposium on Imprecise Probabilities: Theory and Applications.

2 Preliminaries

Let S be a set of gambles (bounded random variables). A map P : S → R
is a lower prevision on S if (behaviourally) ∀X ∈ S, P (X) is a supremum
buying price for X, while an upper prevision P : S → R represents an infimum
selling price for any X ∈ S [25]. When S is made of (indicators of) events
only, we preferably speak of lower and upper probabilities of events, instead of
previsions of their indicators. Thus, for instance, if A is an event, P (A) is its
lower probability and is equal to the lower prevision P (IA) of its indicator IA.

It is possible to refer to lower or alternatively upper previsions only, by the
conjugacy relation P (X) = −P (−X), if X ∈ S ⇒ −X ∈ S. In the case of
probabilities, conjugacy is written as

P (A) = 1− P (¬A),

assuming that A ∈ S ⇒ ¬A ∈ S.
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2.1 Consistent Lower/Upper Previsions

Lower (and upper) previsions may satisfy different consistency requirements. In
the next definition we recall the ones relevant to this paper, stated for lower
previsions.

Definition 2.1. [17, 18, 25] Let P : S → R be a given lower prevision and
denote with N the set of natural numbers (including 0), N+ = N \ {0}.

(a) P is a coherent lower prevision on S iff, ∀n ∈ N, ∀si ≥ 0, ∀Xi ∈ S,
i = 0, 1, . . . , n, defining

G =

n∑
i=1

si
(
Xi − P (Xi)

)
− s0

(
X0 − P (X0)

)
,

it holds that supG ≥ 0.

(b) P is a convex lower prevision on S iff (a) holds with the additional convexity
constraint

∑n
i=1 si = s0 = 1.

P is centered convex or C-convex iff it is convex, ∅ ∈ S and P (∅) = 0.

(c) P avoids sure loss on S iff ∀n ∈ N+, ∀si ≥ 0, ∀Xi ∈ S, i = 1, . . . , n,
defining GASL =

∑n
i=1 si (Xi − P (Xi)), it holds that supGASL ≥ 0.

(d) P is 2-coherent on S iff, ∀s1 ≥ 0, ∀s0 ∈ R, ∀X0, X1 ∈ S, defining
G2 = s1

(
X1 − P (X1)

)
− s0

(
X0 − P (X0)

)
, it holds that supG2 ≥ 0.

Historically, these notions are derived from de Finetti’s coherence for previ-
sions [8]:

Definition 2.2. P : S → R is a coherent prevision on S iff, ∀n ∈ N+, ∀si ∈ R,
∀Xi ∈ S, i = 1, . . . , n, defining G =

∑n
i=1 si(Xi − P (Xi)), it holds that supG ≥

0.

When S is a set of (indicators of) events, the coherent prevision P is a
dF-coherent probability as we shall often say to better distinguish coherence for
precise and imprecise measures. DF-coherent probabilities are both lower and
upper coherent probabilities. If S is an algebra, P is a dF-coherent probability
iff it is a finitely additive probability.

The definitions above are axiomatic. Yet, it is customary to give them a
behavioural interpretation: they all require that certain gambles termed gains
(G, GASL, G2 and G) are uniformly not negative. In each subcase in Definition
2.1, the admissible gains are different as for the restrictions on the sign and
number of the coefficients si, but each gain is a linear combination of elementary
gains Xi − P (Xi). Xi − P (Xi) is what a subject gains buying a gamble Xi at
the price P (Xi). Thus the various definitions ensure that a subject exchanging
gambles in S according to the rules of the consistency concept s/he adopts avoids
being a sure loser (i.e., avoids suffering losses bounded away from 0, whatever
happens).
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The same consistency definitions with upper previsions can be obtained by
conjugacy and a generic elementary gain is now of the type P (Xi)−Xi. It is
the random outcome from selling the gamble Xi for P (Xi). We recall here just
the definition of avoiding sure loss:

Definition 2.3. P : S → R is an upper prevision that avoids sure loss on S iff,
∀n ∈ N+, ∀si ≥ 0, ∀Xi ∈ S, i = 1, . . . , n, defining GASL =

∑n
i=1 si(P (Xi)−Xi),

it holds that supGASL ≥ 0.

In Definition 2.1, coherence for lower/upper previsions (and probabilities)
is the strongest requirement, and implies the other ones. Coherence also has
a statistical robustness interpretation, which we state for probabilities: if we
are unsure about which is the ‘true’ probability in a set M, P (P ) is the lower
(upper) envelope of this set:

Theorem 2.1. (Envelope theorem) [25] P : S → R (P : S → R) is a coherent
lower (upper) probability on S iff

P (A) = min
P∈M

P (A), ∀A ∈ S (2)(
P (A) = max

P∈M
P (A), ∀A ∈ S

)
,

where M is a (non-empty) set of dF-coherent probabilities on S.

The following result, to be compared with Theorem 2.1, highlights different
properties of the conditions of convexity and avoiding sure loss.

Theorem 2.2. Given P : S → R (P : S → R),

(a) [17] P (P ) is a convex lower probability (convex upper probability) on S
iff there exist a non-empty set M of dF-coherent probabilities on S and a
function α :M→ R such that

P (A) = inf
P∈M

{
P (A) + α(P )

}
, ∀A ∈ S. (3)

(P (A) = sup
P∈M

{
P (A) + α(P )

}
, ∀A ∈ S.) (4)

Moreover, for any A ∈ S, the infimum in (3) (the supremum in (4)) is
attained.

(b) [25] P (P ) avoids sure loss iff there exists a dF-coherent probability P such
that P ≥ P (P ≤ P ) on S.

Thus, we see that convexity allows modifying each probability in M before
taking the minimum. This could be the case of a correction of some P given
by an expert, believed to be somewhat biased. Convex probabilities (actually
previsions) are also in one-to-one correspondence with convex risk measures [17].
In general, if P is a convex lower probability, it does not necessarily avoid sure
loss: when ∅ ∈ S, it does iff P (∅) ≤ 0 [17, Proposition 3.5 (e)]. Hence, P avoids
sure loss when it is C-convex.
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As for avoiding sure loss, this condition guarantees by Theorem 2.2 (b) that
the set M in Theorem 2.1 is non-empty, but not that P (A) can be obtained for
each A ∈ S by (2).

2-coherence is a rather minimal consistency notion, which does not imply
(nor is implied by) avoiding sure loss. 2-coherence of P ensures that

P is monotone: A⇒ B → P (A) ≤ P (B),

P is normalised: P (∅) = 0, P (Ω) = 1,

and similarly with P . Thus, the properties of 2-coherence are comparable to
those of capacities. If A ∈ S ⇒ ¬A ∈ S and P , P are conjugate, which is a
common assumption in the sequel, 2-coherence implies further that P ≤ P [21].

2.2 Inference with natural extensions

It is well-known [25] that coherent lower/upper probabilities or previsions defined
on a set S allow coherent, and generally not unique, extensions on any superset
S ′ ⊃ S. There is anyway a special such extension, termed natural extension,
which is least-committal, in the sense that it infers the value of P (or P ) on
additional gambles exploiting only the information given by P on S. Formally,
and following [24, Section 3], the natural extension E of a lower prevision P is
defined as follows:

Given P : S → R, ∀S ′ ⊃ S, ∀X ∈ S ′, the natural extension E(X) of P on X
is

E(X) = sup
{
α ∈ R : X − α ≥

n∑
j=1

sj
(
Xj − P (Xj)

)
,

for some n ≥ 0, Xj ∈ S, sj ≥ 0, j = 1, . . . , n
}
.

The natural extension is well-defined (i.e., it is always finite) iff P avoids sure
loss on S, in which case it also ‘corrects’ P to a coherent lower prevision on
S (whenever P is not already coherent there). It has the following properties,
relevant for the sequel [24, 25]:

Theorem 2.3. Let P : S → R avoid sure loss on S. Then, ∀S ′ ⊃ S, there
exists its natural extension E : S ′ → R, which is coherent and such that:

(a) E ≥ P and E = P iff P is coherent on S;

(b) ∀Q, coherent lower prevision on S ′ such that Q ≥ P on S, we have that
Q ≥ E on S ′.

Similarly, let P : S → R avoid sure loss on S. Then, ∀S ′ ⊃ S, there exists its
natural extension E : S ′ → R, which is coherent and such that:

(a′) E ≤ P and E = P iff P is coherent on S;
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(b′) ∀Q, coherent upper prevision on S ′ such that Q ≤ P on S, we have that
Q ≤ E on S ′.

Finally, if P , P are conjugate, so are their natural extensions E,E.

Remark 2.1. It can be easily proven that the natural extension is also charac-
terised as follows. If E : S ′ → R is a coherent lower prevision such that E ≥ P
on S and Theorem 2.3 (b) holds, then E is the natural extension of P on S ′.

We can not apply the natural extension procedure when P does not avoid
sure loss, which may be the case if P is 2-coherent. Interestingly, even in such a
situation there exists an analogue of the natural extension, termed 2-coherent
natural extension. It guarantees that the assessment P can be extended on any
S ′ preserving 2-coherence and is least-committal within the set of 2-coherent
extensions [19]. Although some of the models we consider in this paper may be
only 2-coherent, we shall not focus on 2-coherent natural extensions but rather
on the (usual) natural extensions, that ensure the more desirable property of
coherence. This requires establishing when the 2-coherent models also avoid sure
loss, a problem that will be solved in the next sections.

In a general situation, when P (or P ) is defined on an arbitrary set of gambles
S, finding its natural extension may be operationally not easy at all. However,
in the sequel we shall be concerned with some special situations that make this
task simpler by supplying explicit formulae.

Precisely, let P be a partition of the sure event, A(P) the set of events logically
dependent on P (the powerset of P), L(P) the set of all gambles defined on P.
We shall consider lower probabilities P defined on A(P) that are coherent and
2-monotone, i.e. such that

P (A ∨B) + P (A ∧B) ≥ P (A) + P (B), ∀A,B ∈ A(P) (5)

(correspondingly, P is 2-alternating if P (A ∨ B) + P (A ∧ B) ≤ P (A) + P (B),
∀A,B ∈ A(P)).

The natural extension of a lower probability P : A(P)→ R to the gambles in
L(P) is related with the Choquet integral as follows:

Proposition 2.1. [24, Theorem 8.14] Given a lower probability P : A(P)→ R
which avoids sure loss, is monotone and such that P (∅) = 0, P (Ω) = 1, it holds
that

E(X) ≥ (C)

∫
XdP, ∀X ∈ L(P). (6)

where (C)
∫
XdP is the Choquet integral of X with respect to P .

There is equality in (6) for all X ∈ L(P) iff P is 2-monotone. A symmetric
statement applies to upper probabilities.

The Choquet integral (C)
∫
Xdµ of a gamble X ∈ L(P) with respect to a

monotone measure µ on A(P), with µ(∅) = 0, always exists and is defined in
terms of improper Riemann integrals (see e.g. [24, Appendix C.2]). In the
Choquet integrals in this paper, µ is a lower or upper probability, and µ(Ω) = 1.
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Then, known formulae are available for computing (C)
∫
XdP , and therefore also,

by Proposition 2.1, the natural extension of a 2-monotone P (of a 2-alternating
P ) [11, 24]:

(C)

∫
Xdµ = inf X +

∫ supX

inf X

µ(X > x)dx (7)

and, if X is a simple gamble with distinct values x1 < x2 < . . . < xm,

(C)

∫
Xdµ =

m∑
h=1

xh(µ(X ≥ xh)− µ(X ≥ xh+1)), (8)

where by definition (X ≥ xm+1) = ∅.
A further instance where 2-monotonicity may simplify the computation of

the natural extension is the following:

Proposition 2.2. Let P 1, P 2, . . . , Pn be 2-monotone coherent lower probabilities
on A(P) with natural extensions (on L(P)) E1, E2, . . . , En, respectively. Let P
be a monotone and 2-monotone linear combination of P 1, P 2, . . . , Pn, P =∑n

i=1 βiP i, such that
∑n
i=1 βi = 1. The natural extension E of P on L(P) is

given by

E(X) =

n∑
i=1

βiEi(X), ∀X ∈ L(P). (9)

Analogously, let P 1, P 2, . . . , Pn be 2-alternating and coherent upper probabilities
on A(P) with natural extensions (on L(P)) E1, E2, . . . , En, respectively. Let
P be a monotone and 2-alternating linear combination of P 1, P 2, . . . , Pn, P =∑n
i=1 βiP i, with

∑n
i=1 βi = 1. The natural extension E of P on L(P) is

E(X) =

n∑
i=1

βiEi(X), ∀X ∈ L(P).

Proof. It suffices to prove the lower probability part of the thesis, the remaining
one being analogous.

If P is monotone and 2-monotone, P is also coherent since P (∅) = 0, P (Ω) = 1,
by [24, Corollary 6.16]. Then, the natural extension of P on X ∈ L(P) is given
by (7). Applying to (7) the linearity property of the Riemann integral and then
(7) itself we obtain Equation (9):

E(X) = inf X +

∫ supX

inf X

P (X > x) dx

=

n∑
i=1

βi inf X +

∫ supX

inf X

n∑
i=1

βiP i(X > x) dx

=

n∑
i=1

βi

(
inf X +

∫ supX

inf X

P i(X > x) dx

)
=

n∑
i=1

βiEi(X).
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Remark 2.2. In a less general version, Proposition 2.2 holds replacing the
hypothesis

(a) P is a monotone and 2-monotone linear combination of P 1, P 2, . . . , Pn,
P =

∑n
i=1 βiP i, such that

∑n
i=1 βi = 1

with

(b) P is a convex linear combination of P 1, P 2, . . . , Pn, P =
∑n
i=1 βiP i, such

that βi ≥ 0, i = 1, . . . , n, and
∑n
i=1 βi = 1.

while keeping the other assumptions (and similarly with P ).
In fact, (b) implies (a): if (b) is true, then P is coherent, hence monotone,

being a convex linear combination of coherent lower probabilities [24, Proposition
4.19 (ii)]. Also, it follows trivially from (5) that a convex linear combination of
2-monotone lower probabilities (coherent or not) is 2-monotone.

We shall apply Proposition 2.2 in the proofs of Propositions 4.4, 4.5, 6.4
(b), 6.5. In most cases, these propositions satisfy condition (b). However,
Proposition 4.5 does not: its proof involves Equation (22), where P is a linear
combination, with coefficients b and 1− b, of coherent and 2-alternating upper
probabilities. Yet, coefficient 1− b there may be negative, since b can be greater
than 1.

In our commitment to determine simple ways of computing the natural
extension of Nearly-Linear models, we shall also be concerned with probability
intervals [7], which are lower and upper probability assignments on a finite
partition P. Denoting a probability interval with I = [P (ω), P (ω)]ω∈P, 0 ≤
P (ω) ≤ P (ω) ≤ 1, ∀ω ∈ P, it is well-known, see e.g. [24, Section 7.1], that

I avoids sure loss (on P) iff
∑
ω∈P

P (ω) ≤ 1 ≤
∑
ω∈P

P (ω). (10)

Further, and importantly for us, if I avoids sure loss its natural extensions on
A(P), E and its conjugate E, are well-known. They are, respectively, 2-monotone
and 2-alternating, and given by

E(A) = max
{ ∑
ω⇒A

P (ω), 1−
∑
ω⇒¬A

P (ω)
}

(11)

E(A) = min
{ ∑
ω⇒A

P (ω), 1−
∑
ω⇒¬A

P (ω)
}
. (12)

2.3 Nearly-Linear Models

Denoting with µ : A(P)→ R either a lower or an upper probability, we have

Definition 2.4. µ : A(P) → R is a Nearly-Linear imprecise probability iff
µ(∅) = 0, µ(Ω) = 1, and given a probability P0 on A(P), a ∈ R, b > 0, it holds
that ∀A ∈ A(P) \ {∅,Ω},

µ(A) = min{max{bP0(A) + a, 0}, 1}.
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In short, we write that µ is NL(a, b). NL models are closed with respect
to conjugacy [5, Proposition 3.1]: if µ is NL(a, b), then its conjugate µc(A) =
1− µ(¬A) is NL(c, b), with

c = 1− (a+ b). (13)

Thus, every NL submodel is made up of a couple of conjugate imprecise proba-
bilities. By convention we identify the lower probability P with the parameters
(a, b), the upper probability P with (c, b). It has been shown in [5, Section 3.1]
that NL models whose lower/upper probabilities are at least 2-coherent can be
partitioned into 3 submodels, described in the next subsections.

2.3.1 The Vertical Barrier Model

Definition 2.5. A Vertical Barrier Model (VBM) is a NL model where a, b
satisfy

0 ≤ a+ b ≤ 1, a ≤ 0 (14)

and c is given by (13), hence P and its conjugate P are given by:

P (A) =

{
max{bP0(A) + a, 0} if A ∈ A(P) \ {Ω}
1 if A = Ω

(15)

P (A) =

{
min{bP0(A) + c, 1}, if A ∈ A(P) \ {∅}
0 if A = ∅

.

In a VBM, P is coherent and 2-monotone, P is coherent and 2-alternating.
If b = 1 + δ > 1, a = −δ < 0, we obtain

PPMM(A) = max{(1 + δ)P0(A)− δ, 0},
PPMM(A) = min{(1 + δ)P0(A), 1}

which is the Pari-Mutuel Model, a special VBM. It is easy to see that P (A) ↓ c ≥ 0
as P0(A) ↓ 0, and that c = 0 in the PMM. Thus, P (A) does generally not tend to
0 with P0, meaning that a VBM with c > 0 ensures a minimum positive selling
price c for any event A 6= ∅, even those very unlikely (according to P0). This is
reasonable in realistic situations, since the seller may stand some fixed costs for
any event, irrespective of its uncertainty evaluation. In the (P0, P )-plane, this
difference between VBM and PMM is visualised by the vertical barrier given by
the segment with endpoints (0, 0), (0, c) on the P -axis, after which is named the
model, see Fig. 1, 1).

2.3.2 The Horizontal Barrier Model

Definition 2.6. A Horizontal Barrier Model (HBM) is a NL model where
a, b satisfy the constraints a + b > 1, b + 2a ≤ 1 and c is given by (13):

11



Figure 1: Plots of P NL(c, b) (continuous bold line) and PPMM NL(0, b′)
(dashed bold line), with b′ = b

1−c , against P0 (P , PPMM overlap on the line

P = PPMM = 1): 1) in the VBM 2) in the HBM.

∀A ∈ A(P) \ {∅,Ω}, it holds that

P (A) = min{max{bP0(A) + a, 0}, 1}, (16)

P (A) = max{min{bP0(A) + c, 1}, 0}. (17)

It is easy to see that a < 0, c < 0, b > 1 in a HBM. Further, in this model
an agent acting as a seller obtains her/his selling prices from P0 in conflicting
ways. This is especially patent with tail P0-probability events: the agent’s P (A)
is 1 iff P0(A) ≥ 1−c

b , is 0 iff P0(A) ≤ − cb . As a selling price evaluation, P0 is
reputed too low, with high P0-probability events (regarded as practically sure
by the agent), too high, with low P0-probability ones (considered practically
impossible). An analogous, conflicting behaviour is implied by P as a buying
price evaluation. See also Fig. 1, 2), where a comparison between the HBM
and the PMM upper probabilities shows that the HBM introduces a horizontal
barrier, the segment connecting (0, 0), (− cb , 0) on the P0-axis, that names the
model.

Despite its conveying an agent’s somewhat contradictory uncertainty eval-
uation, the HBM is not always incoherent. Although P and P in a HBM are
generally only 2-coherent, it can be shown [5] that

Proposition 2.3. P in a HBM is a coherent upper probability iff it is subadditive
(i.e. iff P (A) + P (B) ≥ P (A ∨ B),∀A,B ∈ A(P)). When P is coherent, it is
2-alternating too.

There are also instances of HBMs where P = P = P , and P may or not be a
dF-coherent probability [5, Example 5.1 and Section 5.3].
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2.3.3 The Restricted Range Model

Definition 2.7. A Restricted Range Model (RRM) is a NL model where a, b
satisfy

a > 0, b+ 2a ≤ 1

and c is given by (13), hence ∀A ∈ A(P) \ {∅,Ω}

P (A) = bP0(A) + a, (18)

P (A) = bP0(A) + c. (19)

The name of this model arises from its property P (A) ∈ [a, a + b] ⊂ [0, 1],
∀A ∈ A(P)\{∅,Ω}. It can be seen that an agent using it has conflicting attitudes
towards high and low P0-probability events. This feature is shared with the
HBM, but a RRM is less prudential, in the sense that, unlike the HBM, a subject
adopting a RRM is committed to buy or to sell any non-trivial event. P and P
are almost never coherent in the RRM: they are iff P is a partition of cardinality
two, i.e. never in significant problems.

3 Vertical Barrier and Other Models

The VBM includes various well-known neighbourhood models as special cases.
We point out the following:

• If a = 0, 0 < b < 1 (hence c = 1 − b > 0), the ε-contamination model
(termed linear-vacuous mixture model in [25] - here ε = b):

P ε(A) = bP0(A), ∀A 6= Ω, P ε(Ω) = 1,

P ε(A) = bP0(A) + 1− b, ∀A 6= ∅, P ε(∅) = 0.

• If a+ b = 0 (hence c = 1), the vacuous lower/upper probability model [25]:

PV (A) = 0, ∀A 6= Ω, PV (Ω) = 1,

PV (A) = 1, ∀A 6= ∅, PV (∅) = 0.

Note that we would obtain the same model also for a + b < 0. Because
of this, we may require, without losing generality, VBMs to satisfy the
condition a+ b ≥ 0.

• If b = 1 + δ > 1, a = −δ < 0, the Pari-Mutuel Model [13, 14, 22, 25], as
already seen in Section 2.3.1.

• If b = 1, −1 < a < 0 (hence c = −a), the Total Variation Model [12, 22]:

PTVM(A) = max{P0(A)− c, 0}, ∀A 6= Ω,

PTVM(A) = min{P0(A) + c, 1}, ∀A 6= ∅,
PTVM(Ω) = 1, PTVM(∅) = 0.

13



In this model, PTVM (PTVM) is the lower (upper) envelope of the proba-
bilities whose total variation distance from P0 does not exceed c (∈ ]0, 1[).1

• If a ≥ −1, a model introduced by Rieder [23] in 1977, in the realm of
statistical robustness.

It is also interesting to note that the VBM can be written as a linear combi-
nation of some of its special cases. Specifically, it can be expressed as a linear
combination of a suitable TVM and the vacuous model or as a convex combina-
tion of a suitable PMM and the vacuous model. In the rest of this section we
prove these relationships.

For this, starting from Equation (15), we get, ∀A ∈ A(P) \ {Ω},

P (A) = bmax
{
P0(A) +

a

b
, 0
}

= bmax
{
P0(A) +

a

b
, 0
}

+ (1− b)PV (A). (20)

Since, by (14), a′ = a
b ∈ ]−1, 0[,2 (20) gives P in the VBM as a linear combination

of a PTVM which is NL(a′, 1) and of PV . We may also write

P (A) = bPTVM (A) + (1− b)PV (A), ∀A ∈ A(P),

which applies to A = Ω, too. Analogously, with the VBM upper probability P
we get, ∀A ∈ A(P) \ {∅} and using (13) at the last equality,

P (A) = min{bP0(A) + c, 1} = bmin

{
P0(A) +

c

b
,

1

b

}
= b

(
min

{
P0(A) +

c

b
+ 1− 1

b
,

1

b
+ 1− 1

b

}
−
(

1− 1

b

))
= bmin

{
P0(A)− a

b
, 1
}

+ (1− b). (21)

Hence, P in the VBM is a linear combination of a PTVM which is NL(c′, 1),
with c′ = −a′ = −ab , and of PV . We may write

P (A) = bPTVM (A) + (1− b)PV (A), ∀A ∈ A(P). (22)

As for the relationship between a VBM and a suitable PMM, we start again
from (15), assuming a+ b > 0:3 ∀A ∈ A(P) \ {Ω},

P (A) = (a+ b) max

{
b

a+ b
P0(A) +

a

a+ b
, 0

}
= (a+ b) max

{
b

a+ b
P0(A) +

a

a+ b
, 0

}
+
(
1− (a+ b)

)
PV (A). (23)

Since, again by (14),4 we have that a′′ = a
a+b < 0, b′′ = b

a+b > 1, Equation (23)

1 We can neglect the cases c = 0, c = 1 which return, respectively, P0 and the vacuous
model.

2We skip the cases a′ = 0, a′ = −1 which return, respectively, the ε-contamination and the
vacuous model.

3We neglect here the case a+ b = 0, since it implies P = PV .
4We assume here a < 0. If a = 0, the VBM reduces to an ε-contamination model.
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gives P in the VBM as a convex combination of a PPMM which is NL(a′′, b′′)
and of PV . We may also write

P (A) = (a+ b)PPMM (A) +
(
1− (a+ b)

)
PV (A), ∀A ∈ A(P). (24)

Analogously, for P in a VBM, we get, ∀A ∈ A(P) \ {∅}.

P (A) = min{bP0(A) + c, 1}

= (a+ b) min

{
b

a+ b
P0(A) +

c

a+ b
,

1

a+ b

}
= (a+ b)

(
min

{
b

a+ b
P0(A),

1− c
a+ b

}
+

c

a+ b

)
= (a+ b) min

{
b

a+ b
P0(A), 1

}
+
(
1− (a+ b)

)
. (25)

We conclude that

P (A) = (a+ b)PPMM (A) +
(
1− (a+ b)

)
PV (A), ∀A ∈ A(P), (26)

where PPMM is NL(0, b′′). By equating (20) and (23) we easily obtain a
relationship between PTVM and PPMM :

PTVM (A) =
a+ b

b
PPMM (A) =

1

b′′
PPMM (A), ∀A ∈ A(P) \ {Ω}.

Analogously, by equating (21) and (25), we get

PTVM (A) =
a+ b

b
PPMM (A)− a

b
=

1

b′′
PPMM (A)− a′′

1− a′′
, ∀A ∈ A(P) \ {∅}

(cf. also [22, Section 3.2]).
To interpret the relations we derived, recall that of the ε-contamination model,

adopted by a subject who believes that P0 is the ‘true’ model with probability
(ε =)b, while having no information about alternative models and therefore opting
for the vacuous one with probability 1− b. In the VBM interpretation, suggested
by the equalities (24), (26), the role of P0 is played by a PMM (replacing b with
a+ b). The same interpretation applies also to the representation of a VBM in
terms of a TVM (this time with b instead of a+ b), but only when b < 1. Note
also that, for given parameters a, b (b < 1), the assessor is less sure that the
appropriate model may be a PMM rather than a TVM, since a+ b < b.

Later on (see Equation (60) and Comment, (iv) in Section 6) we shall find a
different decomposition as a convex linear combination also for the RRM.

4 Vertical Barrier Models and Natural Exten-
sions

Since Vertical Barrier Models are coherent, we can discuss natural extensions
under two different perspectives: next to considering the natural extension of a
VBM to L(P), we may wonder whether the VBM itself is, or plays a role in, the
natural extension of something else.
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4.1 Vertical Barrier Models as Natural Extensions

We begin with this latter aspect, and consider the lower probability Q(A) =
bP0(A) + a which is the first term of the maximum defining P in Definition 2.5.
It is proven in [20, Proposition 3.1] that

Proposition 4.1. The lower probability

Q(A) = bP0(A) + a, ∀A ∈ A(P) (27)

in Equation (15) (where a, b satisfy (14)) avoids sure loss; Q is convex iff b = 1.
Its natural extension on A(P) is precisely the lower probability P of the VBM it
originates from.

Thus, a VBM corrects the naive evaluation Q via natural extension, by
introducing barriers to its values.

More generally, it can be shown that a generalisation of the VBM is the
natural extension of a class of non-centered convex probabilities. The next result
is useful for this.

Proposition 4.2. Let I be a set of indexes and, for any α ∈ I, let Pα : A(P)→ R
be a dF-coherent probability, aα ≤ 0, such that infα∈I aα ∈ R. Define

Pα = Pα + aα, P = inf
α∈I

Pα.

Then, P is convex and avoids sure loss. Letting Eα be the natural extension of
Pα, EP the natural extension of P , it holds that

EP = inf
α∈I

Eα. (28)

Proof. By Theorem 2.2 (a), the lower probabilities Pα and P are convex, ∀α ∈ I;
since Pα(∅) = aα ≤ 0, P (∅) = infα∈I aα ≤ 0, they also avoid sure loss [17]. Thus
the natural extensions Eα, EP exist and are finite. Their properties (Theorem
2.3 (a)) imply that

P ≤ EP , Pα ≤ Eα, ∀α ∈ I. (29)

Since any Eα is coherent, also infα∈I Eα is coherent [24, Proposition 4.20 (ii)].
From this, the inequality P = infα∈I Pα ≤ infα∈I Eα (implied by (29)), and
property (b), Theorem 2.3, we obtain

EP (A) ≤ inf
α∈I

Eα(A), ∀A ∈ A(P). (30)

Clearly, the equality holds in (30) for A = Ω: EP (Ω) = infα∈I Eα(Ω) = 1.
Now take any A ∈ A(P), A 6= Ω. If there exists ᾱ ∈ I such that Eᾱ(A) = 0,

then 0 ≤ EP (A) ≤ infα∈I Eα(A) = 0, hence EP (A) = infα∈I Eα(A) = 0.
Otherwise, if Eα(A) > 0, ∀α ∈ I, then Eα(A) = Pα(A) + aα, by Proposition

4.1 (with b = 1). Using this, and (30) at the last inequality, we have

inf
α∈I

Eα(A) = inf
α∈I

(
Pα(A) + aα

)
= P (A) ≤ EP (A) ≤ inf

α∈I
Eα(A),

implying again the equality EP (A) = infα∈I Eα(A).
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ω1 ω2 ω3 ω1 ∨ ω2

P1 0.3 0.25 0.45 0.55
P1 + a1 0.25 0.2 0.4 0.5
P2 0.15 0.05 0.8 0.2

P2 + a2 0.25 0.15 0.9 0.3

P 0.25 0.15 0.4 0.3

Table 1: Values of P1, P2, P in Remark 4.1.

By Proposition 4.2, P is a convex lower probability; since P (∅) = infα∈I aα
≤ 0, P is also non-centered, outside the limiting situation aα = 0, ∀α ∈ I. We
may apply Proposition 4.1 to write explicitly Eα in (28), since any Pα is a
lower probability of the type (27), with b = 1. We obtain that EP (Ω) = 1, and,
∀A ∈ A(P) \ {Ω},

EP (A) = inf
α∈I

max{Pα(A) + aα, 0}. (31)

From (31) (and the coherence condition EP (A) ≥ 0), EP (A) = 0 if ∃ᾱ ∈ I :
Pᾱ(A) + aᾱ < 0, while EP (A) = infα∈I(Pα(A) + aα) otherwise. Thus, we may
rewrite (31) as follows:

EP (A) =

{
1 if A = Ω

max{infα∈I(Pα(A) + aα), 0} otherwise.
(32)

From (32), the natural extension of the lower envelope P of a given set of
lower probabilities Pα = Pα + aα that ensure the condition aα ≤ 0, ∀α ∈ I
(with infα∈I aα > −∞), is formally analogue to a VBM. It differs from it
because it replaces the lower probability that avoids sure loss bP0(A) + a with
infα∈I(Pα(A) + aα), a convex lower probability still avoiding sure loss.

Remark 4.1. The conclusion above does not apply to those convex lower prob-
abilities P = infα∈I Pα such that, for some ᾱ ∈ I, aᾱ is positive, while still
being 0 ≥ infα∈I aα > −∞. One might wonder whether in such cases P could be
also obtained as a lower envelope of a different set {P ′α}α∈I′ such that aα ≤ 0,
∀α ∈ I ′. An affirmative answer would imply that Equation (32) characterises
the natural extensions of all convex lower probabilities that avoid sure loss on
A(P), but unfortunately this is not the case. To illustrate, let P = {ω1, ω2, ω3}
and define P = min{P1 − 0.05, P2 + 0.1}, see Table 1. Whatever is the set
M′ = {P ′α}α∈I′ of which P is the lower envelope, by Theorem 2.2 there is at
least one P ′ᾱ ∈M′ such that

P ′ᾱ(ω1∨ω2) = P ′ᾱ(ω1∨ω2)+aᾱ = P ′ᾱ(ω1)+P ′ᾱ(ω2)+aᾱ = P (ω1∨ω2) = 0.3. (33)

However, P ′ᾱ must also satisfy the inequalities

P ′ᾱ(ω1) = P ′ᾱ(ω1) + aᾱ ≥ 0.25 = P (ω1),

P ′ᾱ(ω2) = P ′ᾱ(ω2) + aᾱ ≥ 0.15 = P (ω2).
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Thus, P ′ᾱ(ω1) + P ′ᾱ(ω2) + 2aᾱ ≥ 0.4. Using (33), this implies aᾱ ≥ 0.1 > 0.

4.2 The Natural Extension of a Vertical Barrier Model

Let us consider now the problem of extending a VBM (that is, extending its
lower probability P or the conjugate upper probability P ) from A(P) to L(P).
Take for instance P : since it is coherent and 2-monotone, its natural extension
E(X) on a gamble X ∈ L(P) is a Choquet integral by Proposition 2.1 and may
be written in general in the form (7), with µ = P .

In the case of a VBM, Equation (7) may be further specialised, by the
following proposition, proven in [20, Proposition 3.3].

Proposition 4.3. Let P : A(P) → R be the lower probability of a VBM. If
a < 0, for any X ∈ L(P) define

x̃ = sup
{
x ∈ R : P0(X ≤ x) ≤ 1 +

a

b

}
,

(x̃−X)+ = max{x̃−X, 0}. Then

E(X) = (a+ b)x̃+
(
1− (a+ b)

)
inf X − bEP0

(
(x̃−X)+

)
, (34)

where EP0
(
(x̃−X)+

)
is the (precise) natural extension of P0 to (x̃−X)+.

If a = 0, we get instead

E(X) = (1− b) inf X + bEP0(X), (35)

with EP0(X) (precise) natural extension of P0 to X.

If a = −δ < 0, b = 1 + δ, the VBM is a Pari-Mutuel Model, and E(X) in
(34) boils down to

E(X) = x̃− (1 + δ)EP0
(
(x̃−X)+

)
which is in fact an expression for the natural extension of a PMM P that may
be found in [25, p. 131].

In the special case a = 0 the VBM is instead an ε-contamination model
(defined on A(P)). Here (35) states that its natural extension is again an ε-
contamination model (defined on L(P)). Putting 1 − b = δ, E(X) in (35) is
rewritten in fact in the form E(X) = δ inf X + (1− δ)EP0(X), appeared in [25].

Lastly, let us see how the natural extension of a VBM P , which is NL(a, b),
varies when modifying its parameters into a′ = ka, b′ = kb, k ∈]0, 1[, getting a
VBM P ′, which is NL(a′, b′). This analysis is interesting because such a choice
of a′, b′ does not affect x̃, which remains the same in Proposition 4.3 for both P
and P ′.

Proposition 4.4. Let P , P ′ be VBM lower probabilities, with P NL(a, b) given
by (15), P ′ NL(a′, b′) identified by a′ = ka, b′ = kb, k ∈]0, 1[. Terming E, E′

the natural extensions of P , P ′ on L(P), we have

E′(X) = kE(X) + (1− k) inf X. (36)
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Proof. Since, ∀A ∈ A(P) \ {Ω}, we have that P ′(A) = min{kbP0(A) + ka, 0} =
kP (A), it holds that

P ′(A) = kP (A) + (1− k)PV (A) ∀A ∈ A(P). (37)

By Proposition 2.2 (Equation (9)) and since the natural extension of PV is, for
all X ∈ L(P), E(X) = inf X [25], we obtain (36).

Note that the more k is closer to 0, the more E′ tends to be vacuous, as
appears from Equation (36).

It is also possible to derive a formula for the natural extension of the upper
probability P of a VBM:

Proposition 4.5. Let P : A(P) → R be the upper probability of a VBM. If
c < 1, for any X ∈ L(P) define

x̃ = sup
{
x ∈ R : P0(X > x) ≥ 1 +

a

b

}
, (38)

(X − x̃)+ = max{X − x̃, 0}.
Then, if c < 1,

E(X) = (1− c)x̃+ c supX + bP0

(
(X − x̃)+

)
, (39)

where EP0((X − x̃)+) is the (precise) natural extension of P0 to (X − x̃)+.
If c = 1, we get instead

E(X) = supX.

Proof. In the case that c = 1, we have that P = PV , whose natural extension
on L(P) is well-known: EV (X) = supX, ∀X ∈ L(P) [25].

If c < 1, we recall (22) and apply Proposition 2.2, since also the natural
extension ETVM of PTVM (with c = −ab ) is known [22, Equation (14)]:

ETVM = x̃+ P0

(
(X − x̃)+

)
− a

b
(supX − x̃).

Thus, we obtain using also (13):

E(X) = bx̃+ bP0

(
(X − x̃)+

)
− a(supX − x̃) + (1− b) supX

= (1− (a+ b)) supX + (a+ b)x̃+ bP0

(
(X − x̃)+

)
= c supX + (1− c)x̃+ bP0

(
(X − x̃)+

)
,

which is Equation (39).

4.3 An Interpretation in Terms of Risk Measures

Any upper prevision P defined on a set of gambles D induces a risk measure [2,
Section 12.3.1]. Indeed, given a gamble Y , P (−Y ) measures the riskiness of Y ,
that is, it represents the amount to be provided in order to manage possible losses
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from Y . Here, we shall refer the risk measures to X = −Y ; this corresponds,
when Y ≤ 0, to thinking in terms of losses, a common practice for instance in
insurance.

Thus, since a risk measure is an upper prevision, we may apply to risk mea-
sures the consistency notions developed in the theory of Imprecise Probabilities.
In particular, we say that P is a coherent risk measure on −D = {Y : X = −Y ∈
D} iff P is a coherent upper prevision on D. If D is a linear space of gambles,
this is equivalent to the definition given in [1] through a set of axioms.

Within NL models, VBMs are the most interesting ones from the perspective
of coherent risk measures. This is because they are always coherent, and because
they generalise the PMM, whose natural extension EPMM to L(P) was shown in
[22] to originate a well-known coherent risk measure termed Tail Value at Risk,
see below.

Let us now discuss the natural extension E of P in the VBM, given by (39),
from a risk measurement viewpoint.

For this, we remark that x̃, given by (38), coincides with sup{x ∈ R : P0(X ≤
x) ≤ −ab }, which is a well-known risk measure [9], the Value at Risk of X at
level −ab , V aR− ab (X).

As for P0((X − x̃)+), it is the Expected Shortfall of X at level −ab , denoted
by ES− ab (X). As a consequence, Equation (39) can be equivalently written as
follows:

E(X) = (1− c)V aR− ab (X) + c supX + bES− ab (X). (40)

In the case of the PMM, where a = −δ < 0, b = 1 + δ, hence c = 1− (a+ b) = 0
and −ab = δ

1+δ , (40) boils down to

EPMM(X) = V aR δ
1+δ

(X) + (1 + δ)ES δ
1+δ

(X). (41)

As already hinted, EPMM(X) is a known risk measure, termed Tail Value at
Risk, TailV aR or TV aR δ

1+δ
. It corrects V aR adding to it a term proportional

to the Expected Shortfall, i.e. proportional to how insufficient we expect V aR
to be in covering losses from X (the losses not covered by V aR are given by
(X − x̃)+).

Passing from the PMM to a generic VBM, we see from (40) and (41) that
the role of V aR gets weaker. In fact, V aR is replaced by a convex combination
of V aR itself and of supX, (1 − c)V aR− ab (X) + c supX > V aR− ab (X), while

the shortfall correction term is unchanged. Hence, E(X) corresponds to a more
prudential risk measure than EPMM(X), since it requires a higher amount than
EPMM(X) to cover risks arising from X. Recall also that supX is the most
prudential choice for a risk measure of X, that covering all losses that may
arise from X. It is also remarkable that, replacing V aR with (1− c)V aR and
adding c supX when passing from (41) to (40), we still obtain a coherent upper
prevision, or equivalently a coherent risk measure, that may be viewed as a
generalisation of TailV aR.
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5 Natural Extensions of Horizontal Barrier Mod-
els

Unlike the VBM, a HBM may be coherent (in rather special cases, as recalled in
Section 2.3.2) or not. In general, it is only guaranteed to be 2-coherent. Thus,
in order to apply the usual natural extension procedure to a HBM, we need to
know when it (i.e., its P or P ) avoids sure loss, since this condition is necessary
and sufficient for the natural extension E(X) to be finite, ∀X ∈ L(P) [25]. In the
case that partition P is finite, the following proposition answers this question and
determines the natural extension E of P on A(P). Results are stated for upper
probabilities, since most formulae with HBMs are more manageable for them.
Since P is already defined on A(P), we stress that E is actually a least-committal
correction of P rather than a real extension, in the case that P avoids sure loss
but is not coherent on A(P).

Proposition 5.1. Let P : A(P)→ R be the upper probability of a HBM, with P
finite.

(a) Define, ∀A ∈ A(P)

E(A) = min

{∑
ω⇒A

P (ω), 1

}
. (42)

If
∑
ω∈P P (ω) ≥ 1, then E is a coherent and 2-alternating upper probability.

(b) P avoids sure loss on A(P) iff∑
ω∈P

P (ω) ≥ 1. (43)

(c) If P avoids sure loss, E in (42) is its natural extension on A(P).

Proof. (a) If
∑
ω∈P P (ω) ≥ 1, then the probability interval [0, P (ω)]ω∈P avoids

sure loss by (10) (while being not necessarily coherent). Then, by Equation
(12) its natural extension coincides with E in (42), and as such, E is
coherent and 2-alternating.

(b) If P avoids sure loss, by Theorem 2.2 (b) there is a probability P such that
P (A) ≤ P (A), ∀A ∈ A(P). Hence, 1 =

∑
ω∈P P (ω) ≤

∑
ω∈P P (ω).

Conversely, assume
∑
ω∈P P (ω) ≥ 1 holds. Then we may deduce that P

avoids sure loss provided that we can show that

(i) E is coherent

(ii) E(A) ≤ P (A),∀A ∈ A(P),
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because then there is a probability P such that P ≤ E ≤ P , so P avoids
sure loss, again by Theorem 2.2 (b). Statement (i) is implied by (a). As
for (ii), it is obvious if P (A) = 1. If P (A) = 0, by monotonicity of P also
P (ω) = 0, ∀ω : ω ⇒ A. It follows applying (42) that

E(A) = min{0, 1} = 0 = P (A).

If 0 < P (A) < 1, let S+(A) = {ω ∈ P : ω ⇒ A,P (ω) > 0}, and let mA be
the cardinality of S+(A). Then∑

ω⇒A
P (ω) =

∑
ω∈S+(A)

P (ω) =
∑

ω∈S+(A)

(
bP0(ω) + c

)
= bP0

( ∨
ω∈S+(A)

ω
)

+mA c ≤ bP0(A) +mAc.

At this point, if mA = 0 then
∑
ω⇒A P (ω) = 0 and by (42) E(A) = 0 ≤

P (A); if mA > 0, recalling that c < 0 in the HBM, we get
∑
ω⇒A P (ω) ≤

bP0(A) + mA c ≤ bP0(A) + c = P (A) < 1. Therefore by (42) E(A) =∑
ω⇒A P (ω) ≤ P (A).

(c) Let E
∗

be the natural extension of P on A(P). By the upper probability

version of Theorem 2.3, we have that E
∗
(ω) ≤ P (ω), ∀ω ∈ P. Consequently,

since E
∗

is coherent, applying its subadditivity property [25, Section 2.7.4
(e)] it holds that, ∀A ∈ A(P),

E
∗
(A) = E

∗( ∨
ω⇒A

ω
)
≤
∑
ω⇒A

E
∗
(ω) ≤

∑
ω⇒A

P (ω).

Since also E
∗
(A) ≤ 1, we have that E

∗ ≤ E by (42). But from (b) E is

coherent, and E ≤ P . Thus by Theorem 2.3 (b′) E ≤ E∗. It follows that

E = E
∗
.

Thus, condition (43) characterises a HBM that avoids sure loss, with P finite.
To see what (43) means in terms of the HBM parameters b, c, note preliminarily
that if there exists ω ∈ P such that P (ω) = 1, then trivially P avoids sure loss.
Otherwise, we have that

Proposition 5.2. Under the assumptions of Proposition 5.1, suppose further
that P (ω) < 1, ∀ω ∈ P. Let also M = {ω ∈ P : 0 < bP0(ω) + c (< 1)} and denote
its cardinality by m. Then, it is necessary for P to avoid sure loss on A(P) that
m > 1 and

b+mc ≥ 1. (44)

Proof. When m = 0 then
∑
ω∈P P (ω) = 0 < 1, so P incurs sure loss by (43).

Analogously, when m = 1, M = {ω} and
∑
ω∈P P (ω) = P (ω) < 1, so P incurs

sure loss by (43) again.
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Let then m > 1. Applying (17),∑
ω∈P

P (ω) =
∑
ω∈M

(bP0(ω) + c) ≤ b+mc.

From (43), the thesis follows.

For given b, c, we may deduce from Proposition 5.2 that:

• P incurs sure loss if b+mc < 1, and b+mc → −∞ as m → +∞ (c < 0
in a HBM). Thus, a HBM incurs sure loss if there are enough ω ∈ P such
that 0 < P (ω) < 1 (and no one with P (ω) = 1).

• Even when m is low, condition (44) is not sufficient. In fact, (44) always
obtains when m = 2 since, by (13), it is then equivalent to the true
condition b+ 2a ≤ 1. Yet, taking P = {ω1, ω2, ω3}, P0(ω1) = P0(ω2) = 0.4,
P0(ω3) = 0.2, a = −0.6, b = 2 (hence c = −0.4), we obtain the HBM
upper probability P (ω1) = P (ω2) = 0.4, P (ω3) = 0. Here m = 2, but∑3
i=1 P (ωi) = 0.8 < 1, and P does not avoid sure loss.

If, following [24, Section 4.5.2], we say that two upper (alternatively lower)
probabilities that avoid sure loss are equivalent if they have the same natural
extension, an interesting follow-up of Proposition 5.1 is

Proposition 5.3. Under the assumptions of Proposition 5.1, P and the proba-
bility interval [0, P (ω)]ω∈P are equivalent.

Proof. Follows from the proof of Proposition 5.1.

Thus, we may say that from an inferential viewpoint a HBM that avoids
sure loss is equivalent to a probability interval. In general, however, NL models
and (natural extensions of) probability intervals do not overlap. As proven in
[5, Section 7.3], a NL model is the natural extension on A(P) of a coherent
probability interval in special instances only (including the PMM - which was
already shown in [14] - and the ε-contamination model).

Remark 5.1. The upper probability P of a HBM avoiding sure loss has further
properties on A(P), with P finite. Recall firstly that, as is easily proven, a
generic upper probability P is coherent on a finite partition P iff (43) holds and
P (ω) ∈ [0, 1], ∀ω ∈ P (this latter condition is satisfied by any HBM by Definition
2.6).

Thus, within upper probabilities P such that P (ω) ∈ [0, 1], ∀ω ∈ P, condition
(43) is also sufficient for P to avoid sure loss on P. In the case of a HBM, (43)
has a much wider extension: it is sufficient for P to avoid sure loss on the whole
A(P).

Next to justifying the simple formula (42) for computing E on A(P), Proposi-
tion 5.1 is useful also in a second natural extension problem, that of determining
E(X) for any X ∈ L(P).
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In fact, by the transitivity property of the natural extension [24, Section
4.5.4], E(X) may be thought of as the natural extension of E from A(P) to
A(P) ∪ {X}, which is given by a Choquet integral, since E is 2-alternating on
A(P) by Proposition 5.1. The next proposition states the final result.

Proposition 5.4. Let (P , P ) be a HBM that avoids sure loss on A(P), P =
{ω1, ω2, . . . , ωn}. Consider X ∈ L(P), taking m ≤ n distinct values x1 < x2 <
. . . < xm.

Define, for j = 1, . . . ,m,

ej =
∨

X(ω)=xj

ω

and let k ∈ {1, . . . ,m} be such that

m∑
j=k

E(ej) ≤ 1,

m∑
j=k−1

E(ej) ≥ 1, (45)

with the convention x0 = 0, e0 = ∅ and where E is the natural extension of P .
Then, we have

E(X) = xk−1

(
1−

m∑
j=k

E(ej)
)

+

m∑
j=k

xjE(ej). (46)

Proof. Since by Proposition 5.1 (a) the natural extension E of P on A(P) is
2-alternating and coherent, the further natural extension (of E) on X is the
Choquet integral (C)

∫
X dE (Proposition 2.1).

To compute it applying (8), we detail, by means of (45) and (42), the terms
of its summation xh

(
µ
(
X ≥ xh

)
− µ

(
X ≥ xh+1

))
= xh

(
E
(
X ≥ xh

)
− E

(
X ≥

xh+1

))
as h varies.

For h ≥ k, we get

xh

(
E
(
X ≥ xh

)
− E

(
X ≥ xh+1

))
= xh

( m∑
j=h

E(ej)−
m∑

j=h+1

E(ej)
)

= xhE(eh).

If h = k − 1, then xk−1

(
E
(
X ≥ xk−1

)
−E

(
X ≥ xk

))
= xk−1

(
1−

∑m
j=k E(ej)

)
;

if h < k − 1, we have that xh
(
E
(
X ≥ xh

)
− E

(
X ≥ xh+1

))
= xh(1− 1) = 0.

Substituting the non-null terms above in the summation (8) we obtain
(46).

By Proposition 5.4, in order to compute E we first have to group the atoms
of P where X(ω) takes the same value (xj on ej) and to determine k (cf. [15,
Theorem 7] for a similar technique). For this, we need to know every E(ej),
which is achieved easily by (42) of Proposition 5.1. If m = n, then obviously
ej = ωj ∈ P, E(ej) = P (ωj), j = 1, . . . , n.
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For some peculiar HBMs, there may be more than one integer number playing
the role of k in Equation (45). This does not affect the computation of E(X),
as shown in detail in [20, Remark 4.2]: Equation (46) returns a unique E for all
choices.

The final formula (46) shows that the natural extension E is very similar to
a classical expectation with the probability of ej , i.e. that X takes the value xj ,
replaced by its upper probability, and this for the highest m− k+ 1 values of X.
The remaining values of X do not appear in the computation (46), but for xk−1.
This structure of formula (46) is not quite surprising: it is derived from (8), and
it is easily seen that when µ is linear (8) returns an expectation, which is what
partly happens with E.

A special situation arises when it is possible that k = 1: by (45) it holds
then that

∑m
j=1E(ej) = 1. Thus, E is a precise probability on the partition

P′ = {e1, e2, . . . , em} and E(X) =
∑m
j=1 xjE(ej) is an expectation. However,

this does not imply that the starting P in the HBM is a precise probability also
outside P′. For this, see [20, Example 4.1].

A natural question that arises at this point is whether results similar to the
previous ones can be obtained when the partition P is infinite. In general, we
lean to think that the answer is negative. In fact, while some results can be
generalised to an infinite framework, other ones are tailored for the finite case.
We discuss a case for both.

On the one hand, Proposition 5.1 (b) can be generalised as follows.

Proposition 5.5. In a HBM, P (hence P ) avoids sure loss on A(P) if and only
if for every finite partition P′ coarser than P it holds that∑

e∈P′

P (e) ≥ 1.

Proof. (⇒) If P avoids sure loss on A(P), by Theorem 2.2 (b) there is a dF-
coherent probability P less than or equal to P for any event in A(P), hence also
on the atoms of any finite partition P′ = {e1, . . . , em} ⊂ A(P). This implies
1 =

∑m
i=1 P (ei) ≤

∑m
i=1 P (ei).

(⇐) Take a generic gain GASL in Definition 2.3 (where P now is an upper
probability on A(P)), obtained selecting a finite number of events E1, . . . , En ∈
A(P), and s1, . . . , sn ≥ 0:

GASL =

n∑
i=1

si
(
P (Ei)− IEi

)
.

Let P′ = {
∧n
i=1E

′
i : E′i = Ei or E′i = ¬Ei, i = 1, . . . , n} be the partition

generated by E1, . . . , En. Note that GASL is a gamble defined on P′, that

{E1, . . . , En} ⊂ A(P′) ⊂ A(P), and that putting P ′ = P |A(P′), P
′

= P |A(P′),

(P ′, P
′
) is a HBM on A(P′). Further, P′ is a finite partition coarser than P,

thus by assumption
∑
e∈P′ P

′
(e) ≥ 1. By Proposition 5.1 (b), P

′
avoids sure loss

on A(P′), hence maxGASL ≥ 0. Since GASL is arbitrary among the admissible
gains in Definition 2.3, we conclude that P avoids sure loss on A(P).
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On the other hand, consider Remark 5.1: when P is infinite, no analogue of
(43) is necessary for P to be coherent on P. In fact

Lemma 5.1. Any upper probability P : P→ [0, 1], P infinite, is coherent on P.

Proof. Apply Theorem 2.1: P is the upper envelope of the probabilities Pi (one
for each ωi ∈ P) given by Pi(ωi) = P (ωi), Pi(ωj) = 0,∀j 6= i. In general, Pi is
not countably additive, however each Pi is a dF-coherent probability on P, as
is easy to check applying Definition 2.2 (the result is also a special case of [6,
Section 10.4.1]).

The statement in Lemma 5.1 applies to any P , not necessarily those in HBMs,
and is independent of whether any summation of the upper probabilities of events
of the infinite partition P is greater than 1 or not, see also the next example.

Example 5.1. Given the dF-coherent probability P0 on the infinite partition P
defined by P0(ω1) = 0.5, P0(ωj) = 0, ∀j 6= 1, define a HBM using P0 and the
parameters b = 1.1, c = −0.05. Then, its upper probability is P = P0 and is
coherent (even dF-coherent) on P, but

∑
ω∈P P (ω) = 0.5.

Let us turn now to the case that P (and P ) in the HBM is coherent. We can
still apply (46) to compute E(X) if P is finite, or more generally if, even when P
is infinite, X is a simple gamble, so that X may be defined on a finite partition
P′ = {e1, . . . , em}, P′ coarser than P. In this latter situation, we consider in
fact the restrictions of P , P on A(P′). They still constitute a HBM that is
coherent, hence also avoids sure loss, on A(P′), and to which Proposition 5.1
applies. Thus Proposition 5.4 may be used, as well as (46) with E(ej) = P (ej).
In the same assumptions (P finite or X simple gamble) E(X) can be computed
as E(X) = −E(−X), obtaining E(−X) as just described.

More generally, with P and X arbitrary, since a coherent HBM is formed
by P , P that are, respectively, 2-alternating and 2-monotone [5, Proposition
5.9], we can also derive E(X) or E(X) by means of (7). Unlike (46), the result
applies no matter whether P is finite or not, and is stated in the next proposition
for P .

Proposition 5.6. Let (P , P ) be a HBM that is coherent. Let X ∈ L(P). Define

Iu = {x ∈ R : bP0(X > x) + a ≥ 0} , x̃u = sup Iu (47)

Il = {x ∈ R : bP0(X > x) + a ≤ 1} , x̃l = inf Il (48)

Z(ω) = max {min {X(ω)− x̃l, x̃u − x̃l} , 0} (ω ∈ P). (49)

Then,
E(X) = ax̃u + (1− a)x̃l + bEP0(Z), (50)

where EP0(Z) is the (precise) natural extension of P0 to the gamble Z.

Proof. The proof consists of four major steps.
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First step. Since P is coherent and 2-monotone, write E(X) by means of (7),
(16) as

E(X) = inf X +

∫ supX

inf X

min {max {bP0(X > x) + a, 0} , 1} dx. (51)

Second step. Split the Riemann integral in (51) into terms, separating those
where P is equal to 0, to 1, or to bP0(X > x) + a.

For this, the following facts are relevant:

(a) The set Iu in (47) is a lower unbounded interval in the real line: if x < x̃u,
there is x∗ ∈ Iu such that x < x∗ ≤ x̃u, and bP0(X > x) + a ≥ bP0(X >
x∗) + a ≥ 0, hence x ∈ Iu.

Further, if x > x̃u, then bP0(X > x) + a < 0. Recalling (16), we conclude
that

if x > x̃u, then P (X > x) = 0.

(b) Similarly, the set Il in (48) is an upper unbounded interval (just adapt the
argument in (a)), and if x < x̃l, then bP0(X > x) + a > 1. It follows by
(16) that

if x < x̃l, then P (X > x) = 1.

(c) It holds that
inf X ≤ x̃l ≤ x̃u ≤ supX. (52)

In fact, take x = supX. Then, bP0(X > supX) + a = bP0(∅) + a = a < 0,
which implies, recalling (47) and (a), that x̃u ≤ supX.

Now take, for any ε > 0, x = inf X − ε. Since bP0(X > inf X − ε) + a =
b+a > 1 (using Definition 2.6 at the inequality), we deduce, taking account
of (48) and (b), that x̃l ≥ inf X − ε ∀ε > 0, hence x̃l ≥ inf X.

Finally, we have x̃l ≤ x̃u: otherwise, there would exist x ∈ R, x̃u < x < x̃l.
For such x, by (a) and (b), it should be both P (X > x) = 0 and P (X >
x) = 1, a contradiction.

From the conclusions of (a) and (b) and (52), we write E(X) in (51) as

E(X) = inf X +

∫ x̃l

inf X

1dx+

∫ x̃u

x̃l

(bP0(X > x) + a)dx+

∫ supX

x̃u

0 dx

= x̃l +

∫ x̃u

x̃l

(bP0(X > x) + a)dx

= ax̃u + (1− a)x̃l + b

∫ x̃u

x̃l

P0(X > x)dx. (53)

Third step. Manipulate the integral in (53) in order to apply (7) to get the
natural extension of the dF-coherent probability P0, i.e. its expectation.
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To begin with, take x such that

x̃l < x < x̃u. (54)

Then, using (54) twice (so that x− x̃l > 0, x̃u − x > 0) and recalling (49),

Z = max {min {X − x̃l, x̃u − x̃l} , 0} > x− x̃l iff

min {X − x̃l, x̃u − x̃l} > x− x̃l iff

min {X − x̃l − x+ x̃l, x̃u − x̃l − x+ x̃l} > 0 iff

min {X − x, x̃u − x} > 0 iff

X − x > 0.

Thus, the events (Z > x− x̃l) and (X > x) are equivalent. Using this fact, and
performing the substitution z = x− x̃l in the integral in (53), we obtain:

J =

∫ x̃u

x̃l

P0(X > x)dx =

∫ x̃u

x̃l

P0(Z > x− x̃l)dx =

∫ x̃u−x̃l

0

P0(Z > z)dz. (55)

Fourth step. Apply (7) to J in (55) to get (50).
Before applying (7) to J , we have to make sure that this is feasible. In detail,

we must prove that:

(a) inf Z = 0

(b) supZ = x̃u − x̃l.

For this, recall that the values Z ∈ L(P) may take at the varying of ω in P are,
at most:

Z(ω) =


0 if X(ω) ≤ x̃l
X(ω)− x̃l if X(ω) ∈ ]x̃l, x̃u[

x̃u − x̃l if X(ω) ≥ x̃u
(56)

We may suppose x̃u > x̃l (or else the integral in (55) is 0). Define the events

B = (X ∈ ]x̃l, x̃u[) , Bl = (X ≤ x̃l) , Bu = (X ≥ x̃u) (57)

Since x̃u > x̃l, by (52) we get x̃u > inf X, hence Bl ∨ B 6= ∅. Then, if Bl 6= ∅,
inf Z = 0. Otherwise, 0 ≤ inf Z = inf X − x̃l ≤ 0, hence inf Z = 0, by applying
(56) and (52) at the first and the second inequality, respectively. Analogously
for item (b): by (52) we get B ∨ Bu 6= ∅. Then, if Bu 6= ∅, supZ = x̃u − x̃l.
Otherwise, x̃u − x̃l ≥ supZ = supX − x̃l ≥ x̃u − x̃l, hence supZ = x̃u − x̃l, by
applying (56) and (52) again.

Finally, substituting the integral (55) into (53) and applying (7) to it, we
obtain

E(X) = ax̃u + (1− a)x̃l + b(EP0(Z)− inf Z),

from which (50) follows.
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The natural extension E(X) can be written in alternative ways. We present
now two such formulae.

Corollary 5.1. In the assumptions of Proposition 5.6, it holds that:

E(X) = (a+ b)x̃u + (1− (a+ b))x̃l + bEP0(Z ′), (58)

with Z ′ = Z + x̃l − x̃u;

E(X) = (a+ bP0(Bu))x̃u + (1− a− b(1−P0(Bl)))x̃l + bP0(B)EP0(X|B), (59)

where B,Bl, Bu are defined by (57) and whenever these events are non-impossible.5

Proof. Equation (58) is obtained from (50) substituting EP0(Z) = EP0(Z ′) −
x̃l + x̃u.

To get Equation (59), disintegrate EP0(Z), apply (57) and then (56):

EP0(Z) = EP0(Z|Bl)P0(Bl) + EP0(Z|B)P0(B) + EP0(Z|Bu)P0(Bu)

= 0 + EP0(X − x̃l|B)P0(B) + EP0(x̃u − x̃l|Bu)P0(Bu)

= EP0(X|B)P0(B)− x̃lP0(B) + x̃uP0(Bu)− x̃lP0(Bu)

= EP0(X|B)P0(B) + x̃uP0(Bu)− xl(1− P0(Bl)).

Substituting EP0(Z) with the expression above in (50) gives (59).

Equation (58) rather then (50) may be appropriate for a comparison with the
natural extension (34) of P in a VBM; we see that the latter is anyway simpler.
Equation (59), unlike (50) and (58), does not involve the auxiliary gambles Z or
Z ′.

6 Natural Extensions of Restricted Range Mod-
els

Analogously to HBMs, with RRMs we have the preliminary problem, before
looking for their natural extensions, of establishing when they avoid sure loss. It
is easy to see that

Lemma 6.1. A RRM on A(P) does not avoid sure loss, nor is C-convex, if P
is infinite.

Proof. Take for instance P . We apply Theorem 2.2 (b) to prove that P does not
avoid sure loss. In fact, since P (ω) = bP0(ω) + a ≥ a > 0, ∀ω ∈ P, the set of
dF-coherent probabilities P ≥ P is empty: any such P should by additivity take
values greater than 1 on events of A(P) formed by sufficiently many ω ∈ P.

Further, P cannot be C-convex, since any C-convex probability avoids sure
loss [17, Proposition 3.5 (e)].

5If some of these events are impossible, E(X) is still given by (59) with the corresponding
terms set to 0.
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While Lemma 6.1 highlights a difference with HBMs, which do not require
finiteness of P to avoid sure loss, it does not clarify what happens when P is
finite. The question is solved by the subsequent Proposition 6.2, which exploits
and extends an analogous result, recalled here as Proposition 6.1 and proven in
[5, Proposition 6.4 (c)] for degenerate NL models.

Definition 6.1. [5] A degenerate NL model is a couple (P d, P d), with P d
NL(a, 0), P d NL(1− a, 0), a ∈ ]0, 1

2 ].6

Proposition 6.1. Let (P d, P d) be a degenerate NL model on A(P). If P is finite
and |P| = n, the following are equivalent:

(a) P d is C-convex on A(P)

(b) P d avoids sure loss on A(P)

(c) a ≤ 1

n
.

Proposition 6.2. Let (P , P ) be a RRM on A(P), P finite partition with |P| = n.
The following are equivalent:

(a) P is C-convex on A(P)

(b) P avoids sure loss on A(P)

(c) b+ na ≤ 1 (equivalent to
∑n
i=1 P (ωi) ≤ 1).

Proof. We prove that (a)⇒ (b)⇒ (c)⇒ (a).
(a)⇒ (b) This is a general property of C-convex previsions [17].
(b) ⇒ (c) Suppose that P avoids sure loss. Then, by Definition 2.1 (c)

maxGASL ≥ 0, for any admissible GASL, including the following, formed by n
elementary gains, one for every atom of P: G∗ASL =

∑n
i=1(Iωi − P (ωi)). For any

ωj ∈ P, G∗ASL(ωj) is constant:

G∗ASL(ωj) = (1− bP0(ωj)− a)−
n∑
i 6=j

(bP0(ωi) + a) = 1− b− na.

Therefore, maxG∗ASL ≥ 0 iff b+na ≤ 1. Then clearly b+na ≤ 1 iff
∑n
i=1 P (ωi) ≤

1, from (18).
(c)⇒ (a) Let b+ na ≤ 1. To prove that P is C-convex, define P 1 as:

P 1(A) =
a

1− b
, ∀A ∈ A(P) \ {∅,Ω}, P 1(∅) = 0, P 1(Ω) = 1.

Then, we recognise that P is a convex linear combination of P0 and P 1:

P (A) = bP0(A) + (1− b)P 1(A), ∀A ∈ A(P). (60)

6We could admit the value a = 0 as in [5], but we prefer not to do so to rule out the vacuous
model, already included in the VBM.
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In (60), P0 is obviously (also) C-convex. As for P 1, it is the lower probability
of a degenerate NL model (with a

1−b playing the role of a in Definition 6.1),

because 0 ≤ a
1−b since a > 0 and b < 1 in a RRM, and a

1−b ≤
1
2 iff 2a+ b ≤ 1,

which is assumed true in RRMs. Moreover, P 1 is also C-convex: this ensues from
Proposition 6.1, since a

1−b ≤
1
n iff b+na ≤ 1, true by assumption. Therefore, P is

convex, being a linear combination of convex lower probabilities [17, Proposition
3.2 (b)], and is obviously centered.

Comment The above results highlight a number of interesting features of
RRMs:

(i) While in general C-convexity implies the condition of avoiding sure loss
but the converse is not true, these two concepts are equivalent for RRMs,
by Lemma 6.1 and Proposition 6.2.

(ii) NL degenerate models have the same property. Actually, although we kept
them distinguished from non-degenerate NL models (those with b > 0),
they could be included into RRM models allowing b = 0 there. In this way
they would appear as a limiting situation for RRMs.

(iii) The condition for a RRM to avoid sure loss is, in the form
∑n
i=1 P (ωi) ≤ 1,

seemingly symmetric to that for HBMs (Equation (43)). However, it is
more restrictive: in fact, it is equivalent to a ≤ 1−b

n . This means that for
n getting larger and b constant, a must tend to 0, which makes the RRM
approach the ε-contamination model.

(iv) Equation (60) shows that any RRM can be viewed as the convex linear
combination of the given P0 and a degenerate NL model.

Let us determine the natural extension on A(P) of P d in a degenerate NL model.

Proposition 6.3. Let (P d, P d) be a degenerate NL model that avoids sure loss.
The natural extension Ed of P d on A(P) is

Ed(A) = mA · a, ∀A ∈ A(P) \ {Ω}, Ed(Ω) = 1, (61)

where mA is the number of atoms of P implying A. Ed is 2-monotone.

Proof. Because of the superadditivity of coherent lower probabilities [25, Section
2.7.4 (e)], any coherent Q ≥ P d must satisfy

Q(A) ≥ ma · a = Ed(A), ∀A ∈ A(P) \ {Ω}

(and Q(Ω) = Ed(Ω) = 1). Thus, by Theorem 2.3 it is sufficient to prove that Ed
is a coherent lower probability to conclude that Ed is the natural extension of
P d. But Ed is coherent, and also 2-monotone, because by (11) it is the natural
extension of the probability interval [a, 1]ω∈P, which avoids sure loss by (10)
because na ≤ 1.
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We can now determine the natural extension of P in a RRM, both on A(P)
and on L(P).

Proposition 6.4. Let P : A(P) → R be the lower probability of a RRM that
avoids sure loss, and E its natural extension.

(a) On A(P), E(Ω) = 1 and, for any A =
∨mA
i=1 ωji ∈ A(P) \ {Ω}, it is

E(A) = bP0(A) +mAa. (62)

Further, E is 2-monotone.

(b) For any X ∈ L(P) we have that

E(X) = (1− na− b) minX + bEP0(X) + naEPu(X), (63)

where EP0(X), EPu(X) are the (usual) expectations of X referring to,
respectively, P0 and the probability Pu uniform on P (Pu(ω) = 1

n , ∀ω).

Proof. (a) E is coherent and 2-monotone because by (11) it is the natural
extension on A(P) of the probability interval J = [bP0(ω) + a, 1]ω∈P. Note
that J avoids sure loss by (10), since

∑
ω∈P(bP0(ω) + a) = b+ na ≤ 1 by

Proposition 6.2.

It also holds that

(a1) E ≥ P .

Trivial for A = ∅, A = Ω. Otherwise, we get from (62) E(A) =
bP0(A) +mAa ≥ bP0(A) + a ≥ P (A).

(a2) If Q is a coherent lower probability on A(P) and Q ≥ P , then Q ≥ E
on A(P).

To prove this statement, let MQ be the credal set of Q, i.e. the set

of all dF-coherent probabilities P such that P ≥ Q on A(P). It holds
that

P ∈MQ ⇒ P (A) ≥ E(A),∀A ∈ A(P). (64)

In fact, this holds trivially for A = ∅, A = Ω. Otherwise, we get
P (A) =

∑
ω⇒A P (ω) ≥

∑
ω⇒AQ(ω) ≥

∑
ω⇒A P (ω) =

∑
ω⇒A(bP0(ω)

+a) = bP0(A) +mAa = E(A).

In terms of credal sets, (64) ensures that MQ ⊆ME . This justifies
the inequality in the next development, while the equalities are due
to Theorem 2.1:

Q(A) = inf
P∈MQ

P (A) ≥ inf
P∈ME

P (A) = E(A), ∀A ∈ A(P).

Coherence of E, (a1) and (a2) (note that (a2) is a special case of Theorem
2.3 (b), with S = S ′ = A(P)) imply by Remark 2.1 that E is the natural
extension of P , and we have already seen that it is 2-monotone.
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(b) From (62), let us rewrite E as

E(A) = (1− b− na)PV (A) + bP0(A) + naPu(A).

Thus, since 1− b− na ≥ 0 by Proposition 6.2, b > 0 and na ≥ 0, E is a
convex linear combination of the 2-monotone coherent lower probabilities
PV , P0, Pu. Applying Proposition 2.2 gives (63).

Remark 6.1. It ensues from the proof of Proposition 6.4 (a) that P in a RRM
avoiding sure loss and the probability interval [bP0(ω) + a, 1]ω∈P are equivalent,
i.e. they induce the same natural extension. This property is similar to that of
HBMs that avoid sure loss on finite partitions, see Proposition 5.3.

A result analogous to Proposition 4.4 holds for RRMs;

Proposition 6.5. Let P , P ′ be RRM lower probabilities, with P NL(a, b) given
by (18) and avoiding sure loss, P ′ NL(a′, b′) with a′ = ka, b′ = kb, k ∈]0, 1[.
Terming E, E′ the natural extensions of P , P ′ on L(P), we have

E′(X) = kE(X) + (1− k) minX. (65)

Proof. Since P avoids sure loss, b+na ≤ 1 by Proposition 6.2. Hence, b′+na′ ≤ 1,
thus P , that is still a RRM, avoids sure loss and E′ is well-defined. From here,
the proof is analogous to that of Proposition 4.4 and is omitted.

Like the VBM, also with the RRM E′ tends to be vacuous as k → 0+.
The results in this section confirm that RRMs ensure weaker consistency

properties than the other NL models, also as for the condition of avoiding sure
loss. In particular, unlike HBMs (and of course VBMs) they cannot avoid sure
loss if P is infinite.

Further, by Lemma 6.1 and Proposition 6.2, the condition of avoiding sure loss
and C-convexity are equivalent with RRMs. We point out that the equivalence
does not extend to HBMs, as the next example illustrates.

Example 6.1. Let P = {ω1, ω2, ω3}. Given the probability P0 : A(P)→ R such
that:

P0(ω1) =
7

24
, P0(ω2) =

1

3
, P0(ω3) =

3

8
,

take b = 9
2 , a = − 5

2 .
Parameters a, b satisfy the constraints in Definition 2.6, thus applying (16)

and (17) we can compute P and P for the corresponding HBM. In particular,
we obtain

P (ω1) = P (ω2) = P (ω3) = 0,

P (ω1 ∨ ω2) =
5

16
, P (ω1 ∨ ω3) =

1

2
, P (ω2 ∨ ω3) =

11

16
.
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Using the values above to compute the conjugate P of P on P, it ensues that P
avoids sure loss, because (43) holds:

3∑
i=1

P (ωi) =

(
1− 11

16

)
+

(
1− 1

2

)
+

(
1− 5

16

)
=

3

2
> 1.

On the other hand, P is not C-convex: it suffices for this to find a gain G,
complying with Definition 2.1 (b) and such that supG < 0. For instance, take

G =
1

2
(Iω2∨ω3

− P (ω2 ∨ ω3)) +
1

2
(Iω1∨ω3

− P (ω1 ∨ ω3))− (Iω3
− P (ω3))

=
1

2
(Iω2

+ Iω3
)− 1

2
· 11

16
+

1

2
(Iω1

+ Iω3
)− 1

2
· 1

2
− Iω3

= −1

2
Iω3 −

3

32
≤ − 3

32
< 0.

When a RRM avoids sure loss, its natural extensions on A(P) and on L(P)
can be easily computed by means of, respectively, equations (62) and (63).

Note that, from Equation (61), E(ω) = P (ω), so P is coherent on P. Instead,
P is coherent on P iff n = 2: this follows, recalling (62) at the second equality,
(13) and (19) at the fourth, from E(ω) = 1−E(¬ω) = 1− bP0(¬ω)− (n− 1)a =
1−b(1−P0(ω))− (n−1)a = P (ω)− (n−2)a = P (ω) iff n = 2. In [5, Proposition
6.1], we proved that P is coherent on A(P) iff n = 2; here we learn that not even
the restriction of P on P is coherent for n > 2.

7 Conclusions

In this paper, we primarily introduced formulae for computing the natural
extension of those NL models that (at least) avoid sure loss. Our results allow
computing easily the natural extension in most cases, either E or its conjugate
E (the other one may be obtained by conjugacy). When the NL model does not
avoid sure loss, it is nevertheless 2-coherent. Thus, it is possible to extend it to
L(P) with the 2-coherent natural extension E2c, using the formulae introduced
in [19]. However, these formulae do not significantly simplify with NL models,
and for this reason we do not recall them explicitly here.

The paper also contains results that broaden our knowledge of NL models,
in particular concerning their consistency properties, summarised in Table 2.
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Type of
consistency VBM HBM RRM

Coherent YES [5]
Characterised

(Prop. 2.3 and [5])
Iff |P| = 2 [5]

Avoids sure
loss (ASL)

YES
Characterised

(Prop.s 5.1 (b), 5.5)
Characterised

(Lemma 6.1, Prop. 6.2)

C-convex YES
More restrictive than
ASL (Example 6.1)

Equivalent to ASL
(Lemma 6.1, Prop. 6.2)

2-coherent YES YES [5] YES [5]

Table 2: Consistency of NL models.

Further results concern the relationships between NL models and interval
probabilities, and the representation of VBMs and RRMs as linear combinations
of simpler models.

Among the topics that remain to be investigated, we mention conditioning
and dilation with NL models. In particular, it could be interesting to explore
how the results on this for the PMM in [22] can be extended. Other interesting
questions, strictly related to recent work on neighbourhood models in a finite
framework [13, 14], regard an analysis of the vertexes of the credal set of a
coherent NL model, and interpretations of NL models in terms of distances.
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