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6

A B S T R A C T
7

In order to analyze incompressible and laminar fluid flows in presence of ge-
ometric uncertainties on the boundaries, the Non-Intrusive Polynomial Chaos
method is employed, which allows the use of a deterministic fluid dynamic
solver. The quantification of the fluid flow uncertainties is based on a set
of deterministic response evaluations, which are obtained through a Radial
Basis Function-generated Finite Differences meshless method. The use of
such deterministic solver represents the key point of the analysis, thanks to
the computational efficiency and similar accuracy over the traditional mesh-
based numerical methods. The validation of the proposed approach is carried
out through the solution of the flow past a 2D spinning cylinder near a mov-
ing wall and the flow over a backward-facing step, in presence of stochastic
geometries. The applicability to practical problems is demonstrated through
the investigation of geometric uncertainty effects on the forced convection of
Al2O3-water nanofluid laminar flow in a grooved microchannel.

c© 2020 Elsevier Inc. All rights reserved.
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1. Introduction10

In engineering applications, where manufacturing tolerances can significantly influence the performances, a spe-11

cific attention must be paid to the analysis of geometric uncertainty effect during the components’ design phase.12

Hence, the need of a methodology to deal with differential problems where the geometrical domain is treated as13

stochastic phenomenon.14

There is a large literature on numerical methods to face problems with uncertain input parameters. We may find15

engineering applications of these methodologies exploring random material properties, random boundary conditions16

and/or random domain topology: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] just to mention some.17
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When non-intrusive techniques, such as the Non-Intrusive Polynomial Chaos (PC) method [15], are employed,18

the calculation of the random response is based on a set of deterministic response evaluations. So that, any available19

deterministic numerical solver can be used as a black box to quantify the effect of uncertainty. The only requirement20

is the solver to be sensitive to small variations of the stochastic parameters, because the response has to be computed21

at different, in general very close, values of these parameters.22

When geometric uncertainty analysis is carried out, care should be taken using traditional mesh-based numerical23

methods to solve the deterministic problem, because it is well known that the numerical simulation can be mesh-24

dependent and the results are sensitive to the quality of the remeshing operation. Examples of CFD problems with25

geometric uncertainties, solved by non-intrusive techniques with remeshing of geometry (body-fitted approach) can26

be found in [6, 7, 14].27

To override these problems, i.e. the mesh-dependency and the remeshing of geometries, in [9, 10, 11] a Polynomial28

Chaos methodology coupled to a Fictitious Domain solver has been presented. In the Fictitious Domain method,29

problems formulated on a complex domain can be solved on a simple-shaped Fictitious Domain containing the original30

one. In this way the computational domain of state problem, i.e. the Fictitious Domain, is independent by small31

variations of the stochastic physical domain boundaries, which are now immersed into the computational domain.32

Being the computational domain independent from random geometric parameters, the remeshing is not needed when33

the domain geometry changes.34

With similar intent, in this paper the capabilities of the approach based on the coupling of Polynomial Chaos35

methodology and Radial Basis Function-generated Finite Differences (RBF-FD) meshless method are investigated.36

The main advantages of the RBF-FD meshless method over mesh-based methods are the geometric flexibility and the37

ability to easily deal with general and complex-shaped domains, since a simple distribution of nodes over the domain38

is required only, and no mesh/grid/tessellation is needed [16, 17]. Furthermore, the order of accuracy of RBF-FD39

methods can be easily increased by using larger stencils, i.e., more nodes in the local RBF expansion [18, 19, 20]. For40

these reasons the use of RBF-FD methods for the solution of partial differential equations (PDEs) is becoming more41

and more popular [21, 22], including the solution of fluid-flow problems [23, 24, 25, 26, 27, 28].42

The validation of the proposed approach for the uncertainty quantification, Non-Intrusive PC and RBF-FD mesh-43

less method, is carried out through the solution of the Wannier flow in presence of random geometric parameters.44

Further analysis has been conducted on a representative model for which benchmark solutions exist, i.e the flow45

over a backward-facing step. In particular the effects of the presence of perpendicularity tolerances on the step have46

been examined. To better describe the advantages of the proposed approach, based one the use of RBF-FD meshless47

method, the obtained results are compared to those accomplished by a body-fitted approach, using the open source48

OpenFOAM code, based on finite volume method.49

The applicability to practical problems is demonstrated through the investigation of geometric uncertainty effects50

on the forced convection of Al2O3-water nanofluid laminar flow in a grooved microchannel, showing the possibility51

to extend the methodology to industrial scale applications.52

This paper is organized as follows: in the next section the governing equations of the thermo-fluid dynamic53
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problems under analysis are given, in particular the details of the solution procedure are illustrated. In Section 354

the proposed methodology based on the Non-intrusive Polynomial Chaos and the RBF-FD meshless solver used to55

compute the deterministic flow field solutions is introduced. In Section 4 there are the validation and application of56

the proposed approach and in 5 a discussion on the achieved results is presented.57

2. Governing equations and solution procedure58

2.1. Governing equations59

Let us consider a domain Ω filled with a fluid characterized by the following constant thermophysical properties:60

density ρ, kinematic viscosity ν, thermal diffusivity α and thermal conductivity k. The flow is considered incompress-61

ible, the viscous dissipation term in the energy equation is neglected and buoyancy effects are not considered. Under62

these hypotheses the conservation equations of mass, momentum and energy, in nondimensional form, are63

∇ · u = 0, (1)
∂u
∂t

+ (u · ∇)u = −∇p +
1

Re
∇2u, (2)

∂T
∂t

+ u · ∇T =
1

Re Pr
∇2T. (3)

In the above equations, length, velocity u = (u, v), time t, pressure p and temperature T are made nondimensional64

by taking H, U0, H/U0, ρU2
0 and ∆T as reference quantities, respectively. Re = U0H/ν is the flow Reynolds number65

and Pr = ν/α is the Prandtl number. The unsteady formulation of Eqs. (2)-(3) has been preferred over the steady66

formulation, i.e., without the time derivative terms, in order to enhance the convergence to the steady-state solutions,67

especially for high Re numbers involving slow decaying oscillations of the flow. These oscillations are more effec-68

tively dampened using the unsteady formulation because of the numerical diffusion due to the use of large time step69

sizes without sub-iterations within the time step. Furthermore, the unsteady term also enhances the convergence of70

the employed iterative method (see Subsection 3.3.5 because of the increased diagonal contribution to the coefficient71

matrix.72

Eqs. (1)-(3) are completed by appropriate boundary conditions (BCs) that can be written for a generic scalar field73

φ in a generic form as74

B(φ) = γ on Γ, (4)

where B is a linear differential operator, γ is a known function and Γ = ∂Ω is the boundary.75

2.2. Solution procedure76

At each time step n, the computation of velocity, pressure and temperature through Eqs. (1)-(3) is decoupled77

using a projection method for the pressure-velocity coupling [29]. A three-level Gear scheme is employed for the78

time discretization because of its improved stability properties over two-level schemes. A tentative velocity u∗ is79

computed from the linearized momentum Eq. (2)80
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3u∗ − 4u(n) + u(n−1)

2∆t
+ u(n)∇u∗ = −∇p(n) +

1
Re
∇2u∗, (5)

where ∆t = 1.0 is the chosen nondimensional time step size, which corresponds to a dimensional time step size81

∆t∗ = H/U0 of the original, i.e., nondimensionalized, problem setting. u∗ is then forced to satisfy the continuity82

equation (1) by means of an irrotational correction83

u(n+1) = u∗ − ∇Φ, (6)

leading to the following Poisson equation in the auxiliary variable Φ84

∇2Φ = ∇ · u∗. (7)

Homogeneous Neumann BCs for Φ are employed where Dirichlet BCs are imposed on u, i.e., on Γu ⊆ Γ85

B(Φ) =
∂Φ

∂n
= ∇Φ · n = 0 on Γu, (8)

where n is the exterior normal to the boundary. Similarly, homogeneous Dirichlet BCs for Φ are employed where86

Neumann BCs are imposed on u, i.e., on Γp = Γ \ Γu87

B(Φ) = Φ = 0 on Γp. (9)

The pressure is then updated as88

p(n+1) = p(n) +
Φ

∆t
(10)

and the temperature is computed from Eq. (3)89

3T (n+1) − 4T (n) + T (n−1)

2∆t
+ u(n+1)∇T (n+1) =

1
Re Pr

∇2T (n+1). (11)

The previous solution procedure represented by Eqs. (5)-(11) is performed once each time step, i.e., it is not90

iterated to convergence within each time step since only the steady-state solution is sought and there is no interest in91

the accurate solution of the time-dependent behaviour.92

2.3. Auxiliary computations93

In the case of non-isothermal flows the local Nusselt number Nu, in terms of nondimensional variables, is94

Nu =
∂T
∂n

∣∣∣∣∣
Γ

(12)

and the mean Nusselt number Nu is defined as95

Nu =
1
Lh

∫
Γh

Nu dΓh, (13)

where Γh is the portion of the boundary where the heat transfer takes place and Lh is its total length.96
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3. Methodology97

3.1. Non-intrusive Polynomial Chaos98

The existing methods for uncertainty quantification can roughly be divided into two main categories: non-99

intrusive, or statistical, and intrusive, or non-statistical. Examples of non-intrusive approaches are Monte Carlo100

[30, 31], Stochastic Collocation [32, 33, 34], Chaos Collocation [6, 35, 36], metamodel-based methods [37, 14].101

Stochastic Galerkin Finite Element Method [38] and Stochastic Spectral Method [2, 39, 40] are examples of intrusive102

approaches. The advantage of non-intrusive methods is to allow the use of existing deterministic solvers, whereas103

intrusive approaches need to modify the solver obtaining an efficient tool but limited to solve just a set of problems.104

So that non-intrusive methodologies have a simpler computational management.105

Here a very brief description of the Non-intrusive Polynomial Chaos (PC) methodology used for the uncertainty106

quantification analysis is given in a steady-state formulation. More details can be found in [9, 15, 41].107

Let (Θ,F ,P) be a probability space. Here Θ is the sample space, F ⊂ 2Θ its σ-algebra of events and P the108

associated probability measure. Given that the probability space can be described by a finite number n of independent109

random variables ξ1(θ), ξ2(θ), . . . , ξn(θ) : Θ→< where θ represents an element of the sample space Θ, let us consider110

the following stochastic differential problem111

L(x, θ; φ) = f (x, θ) in Ω(θ), (14)

B(x, θ; φ) = γ(x, θ) on ∂Ω(θ), (15)

where x denotes the position, L is a differential operator which contains space differentiation and can be nonlinear,112

f (x, θ) is the source term, Eq. (15) represents a stochastic boundary condition and φ := φ(x; θ) : Ω × Θ → < is the113

solution. The randomness θ can enter the problem through L or f , through the boundary condition, i.e., through B, γ114

or ∂Ω(θ), or some combination.115

The random solution φ can be expanded by the following Polynomial Chaos (PC) expansion116

φ(x, θ) =

NP∑
i=1

φi(x)ψi (ξ(θ)) , (16)

where ψi are multivariate polynomials and ξ(θ) = (ξ1(θ), ξ2(θ), . . . , ξn(θ)) is the n-dimensional vector of random117

variables. The optimal set of expansion polynomials forms a complete orthogonal basis in L2(Θ,F ,P) with orthog-118

onality relation
〈
ψi, ψ j

〉
=

〈
ψ2

i

〉
δi j where δi j is the Kronecker delta and 〈·, ·〉 is the ensemble average

〈
ψi, ψ j

〉
=119 ∫

Θ
ψi (ξ(θ))ψ j (ξ(θ)) dP(θ), i.e., ψi are orthogonal relative to the joint probability density function of ξ.120

A linear regression approach, also known as point collocation or chaos collocation, is employed to compute the121

coefficients (or modes) of the PC expansion, i.e., the functions φi(x), that is122

NP∑
i=1

φi (x)ψi

(
ξ(θ j)

)
= φ

(
x, θ j

)
, j = 1, . . . ,M, (17)
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is solved for the NP modes φi (x) that match the set of response values φ
(
x, θ j

)
at M distinct samples θ j. The set of123

response values is typically obtained by performing a random over-sampling of Θ. If a selected subset of Gaussian124

quadrature points is employed rather than a random over-sampling, the linear regression approach is referred as the125

Probabilistic Collocation Method, which provides more optimal collocation locations and preserves interpolation126

properties.127

Known the coefficients of the PC expansion (16), the moments of the solution φ can be computed, so that the128

expected value and the variance are given by, respectively129

µ (x; φ) = φ1(x), (18)

σ2 (x; φ) =

NP∑
i=2

φ2
i (x)

〈
ψ2

i

〉
, (19)

where φ1(x) denotes the mode associated to the constant polynomial ψ1.130

In this work normal distributions are considered only, therefore Hermite polynomials are employed in the PC131

expansion. In particular a tensor-product expansion is used, where the polynomial degrees are considered equal to P132

along each of the n dimensions of the probability space, leading to NP = (P + 1)n modes. The collocation points, i.e.,133

the values ξk(θ j), for k = 1, . . . , n and j = 1, . . . ,M = NP, are the Gauss-Hermite quadrature points, that is the roots134

of the Hermite polynomial with degree P + 1 along each of the n dimensions.135

More efficient choices of collocation points have been proposed in literature [42, 43, 44, 45], for problems with136

high numbers of uncertain parameters. But the use of this particular methodology allows to compare the results with137

previous works [11, 46]. Moreover, in this paper we will consider problems with low dimensionality of uncertainty138

space, therefore no excessive computational effort is needed using the described method.139

3.2. RBF-FD Meshless Method140

The evaluation of the random process φ at the sample points θ j can be calculated with a suitable deterministic141

solver. Most fluid dynamics solvers, both commercial and open-source, need a mesh/grid/tessellation of the compu-142

tational domain in order to properly discretize the governing PDEs. It easy to understand that a solver which does not143

need such a mesh/grid/tessellation is a major advantage if we intend to analyze the effects of geometric uncertainties144

of the boundaries on the flow field. In this perspective the RBF-FD meshless method is employed and its basis are145

described as follows.146

3.3. RBF-FD discretization147

3.3.1. 2D node distributions148

The 2D node distributions required by the RBF-FD meshless discretization have been obtained through the node149

generation algorithm proposed in [47, 20] which is composed by two distinct phases:150

1. Quadtree node placing. Nodes are placed inside the domain Ω according to a prescribed spacing function s(x)151

by using a quadtree space partitioning technique [48]. The quadtree technique is improved by using a dithering152
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correction [49] in order to reduce the nodal quantization error between the integer number of nodes that can153

be placed in any portion P ⊆ Ω and the prescribed number
∫
P

2s(x)−2 dP/
√

3 which is non-integer in general.154

Without the dithering correction, the nodal quantization error can accumulate over the domain resulting in large155

portions with constant nodal spacing even if the prescribed spacing function s(x) varies smoothly.156

2. Node-repel refinement. The initial node distribution is then refined by means of an iterative tecnhique based on157

the mutual repulsion of nodes: each node xi moves according to the radial repulsion forces of the n = 12 closest158

neighbouring nodes. The magnitude F of the nondimensional force exerted by node x j on node xi is chosen to159

be160

F(r ji) = (r2
ji + β2)−2, (20)

where r ji = ‖xi − x j‖/s(x j) is the normalized distance between the nodes and β = 1/2 is a limiting parameter.161

Note that the unsymmetrical formulation of r ji is required in order to satisfy the prescribed spacing function162

s(x) in the asymptotic limit of the iterative process. The dimensional displacement of node xi at iteration k is163

then164

x(k+1)
i − x(k)

i = αs(xi)
∑

j∈J(x(k)
i )

F(r ji) ê
(
x(k)

i − x(k)
j

)
, (21)

where α = 0.05 is a nondimensional displacement factor, ê(y) = y/‖y‖ is the vector normalization operator for165

the radial direction and J(xi) is the index set of the n nodes x j closest to xi according to the Euclidean norm166

‖·‖ = ‖·‖2. A fixed boundary distribution of nodes matching s(x) is employed during this phase. 100 refinement167

iterations are employed, which are typically enough to obtain very high quality node distributions.168

The resulting distribution is a set of N ≈
∫

Ω
2s(x)−2 dΩ/

√
3 nodes xi which are isotropically displaced over the169

domain Ω and over its boundary Γ = ∂Ω according to the prescribed spacing function s(x).170

3.3.2. Local RBF interpolation171

A scalar field φ(x) is approximated near x ∈ Ω by a local RBF interpolant φ̃(x), which is composed by a RBF172

expansion augmented with a polynomial [50]173

φ(x) ≈ φ̃(x) =

n∑
j=1

a jϕ
(
‖x − x j‖

)
︸                ︷︷                ︸

RBF expansion

+

m∑
k=1

ckgk (x − x̄)︸             ︷︷             ︸
polynomial

, (22)

where the supporting nodes x j are the n neighbouring nodes closest to x, x̄ is their mean position, ϕ(‖ · ‖) are Radial174

Basis Functions and a j are the corresponding expansion coefficients. The functions gk form a complete 2D polynomial175

basis of degree q with m = (q+2
q ) terms and ck are the corresponding coefficients. From another point of view, the176

expansion (22) can be viewed as a classic polynomial expansion, which accounts for the accuracy and the smoothness177

of the interpolant, augmented with a RBF expansion which alleviates the ill-posed problem of polynomial scattered178
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data interpolation in more than one dimension, allowing well-conditioned interpolants over arbitrarily scattered nodes179

if certain conditions are met [50, 18, 19].180

The multiquadric RBF [51, 52, 17] has been chosen since it is strictly conditionally positive definite of order one,181

allowing a well-posed interpolation when a polynomial augmentation of degree q ≥ 0 is employed (this holds also182

without polynomial augmentation [50]), and it is proven to be one of the best choices for scattered data interpolation183

[53, 54]184

ϕ(r) =
√

1 + (εr)2, (23)

where the shape factor ε has been rescaled with the local spacing s as ε = 0.35/s(x̄), i.e., stationary interpolation [50].185

Despite the fact that increasingly flat RBFs (i.e., ε → 0) allow better accuracy [55], the previous choice of stationary186

interpolation is due to stability requirements in the solution of the discretized equations/time integration.187

The interpolant (22) must match the unknown field φ at the nI ≤ n supporting nodes xi which do not lie on the188

boundary Γ189

φ (xi) = φi =

n∑
j=1

a jϕ
(
‖xi − x j‖

)
+

m∑
k=1

ckgk (xi − x̄) , i = 1, . . . , nI . (24)

If any of the supporting nodes lie on the boundary Γ, the interpolant (22) is enforced to satisfy the corresponding190

boundary condition on these nB = n − nI boundary nodes x̂b191

B
(
φ̃
) ∣∣∣

x̂b
=

n∑
j=1

a jΨ (x̂b) +

m∑
k=1

ckGk (x̂b) = γ (x̂b) = γb, b = 1, . . . , nB, (25)

where Ψ j(x) = B
(
ϕ(‖x − x j‖)

)
and Gk(x) = B (gk(x − x̄)).192

In order to guarantee the polynomial reproduction, i.e., the exactness of interpolant (22) for polynomials up to193

degree q, the following conditions are required194

n∑
j=1

a jgk

(
x j − x̄

)
= 0, k = 1, . . . ,m. (26)

By collecting the nI + nB + m = n + m conditions expressed by Eqs. (24)-(26), the following local linear system195

is obtained196



ϕ(‖x1 − x1‖) · · · ϕ(‖x1 − xn‖) g1(x1 − x̄) · · · gm(x1 − x̄)
...

. . .
...

...
. . .

...
ϕ(‖xnI − x1‖) · · · ϕ(‖xnI − xn‖) g1(xnI − x̄) · · · gm(xnI − x̄)

Ψ1(x̂1) · · · Ψn(x̂1) G1(x̂1) · · · Gm(x̂1)
...

. . .
...

...
. . .

...
Ψ1(x̂nB ) · · · Ψn(x̂nB ) G1(x̂nB ) · · · Gm(x̂nB )
g1(x1) · · · g1(xn) 0 · · · 0
...

. . .
...

...
. . .

...
gm(x1) · · · gm(xn) 0 · · · 0





a1
...

an

c1
...

cm


=



φ1
...
φnI

γ1
...
γnB

0
...
0



. (27)
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The compact notation for linear system (27) is197

B
(
a
c

)
=

φγ0
 , (28)

where B ∈ <(n+m)×(n+m) is the nonsingular interpolation matrix, a = (a j) ∈ <n is the column vector of RBF expansion198

coefficients, c = (ck) ∈ <m is the column vector of polynomial coefficients, φ = (φi) ∈ <nI is the column vector199

of nodal values of φ at the nI internal nodes, γ = (γb) ∈ <nB is the column vector of BCs known term γ at the nB200

boundary nodes and 0 ∈ <m is a column vector of zeros.201

By using this notation and by solving Eq. (28) for the expansion coefficients a and c, the RBF interpolant (22) can202

be written as203

φ̃(x) =

(
ϕ(x)
g(x)

)T(a
c

)
=

(
ϕ(x)
g(x)

)T

B−1

φγ0
 , (29)

where ϕ(x) =
(
ϕ(‖x − x j‖)

)
∈ <n is the column vector of RBFs for the n supporting nodes and g(x) = (gk(x − x̄)) ∈204

<m is the column vector of polynomial basis functions.205

3.3.3. RBF-FD collocation206

Let us consider a linear PDE in the unknown field φ(x)207

L (φ(x)) = f (x), (30)

where L is a linear differential operator and f is a known function, and let us define the residual of PDE (30) as208

R (φ(x)) := L (φ(x)) − f (x). A collocation approach is then employed to obtain the required set of discrete RBF-FD209

equations by setting the residual of the RBF interpolant φ̃(x) equal to zero at each of the NI nodes xi which do not lie210

on the boundary Γ211

R
(
φ̃(x)

)
= 0, x = xi, i = 1, . . . ,NI . (31)

212

By taking the RBF interpolant in the form of Eq. (29), Eq. (31) becomes213

R
(
φ̃(x)

)
= L

(
φ̃(x)

)
− f (x) =

(
L (ϕ(x))
L (g(x))

)T

B−1︸            ︷︷            ︸
wT(x)

φγ0
 − f (x) = 0, x = xi, i = 1, . . . ,NI , (32)

where the operator L is applied to the RBFs vector ϕ(x) and to the polynomial basis vector g(x) because of the214

linearity of L. Eq. (32) shows that the stencil coefficients, i.e., the first nI components of vector w(xi), can be215

computed by solving the following linear system216



10 R. Zamolo, L. Parussini / Journal of Computational Physics (2020)

BT w (xi) =

(
L (ϕ(x))
L (g(x))

)
x=xi

, (33)

which is accurately solved by means of a LDLT factorization of the symmetric part of BT with a Schur complement217

[56] accounting for the nonsymmetric part of BT due to possible boundary nodes where non-Dirichlet BCs are im-218

posed, i.e., where B(φ) , αφ. A sparse NI × NI linear system representing the RBF-FD discretization of the linear219

PDE (30) over the domain Ω is then obtained from the NI equations (32), each of which requires the solution of the220

local system (33).221

3.3.4. Stabilization222

Eqs. (5), (7) and (11) are discretized with the same RBF-FD scheme previously presented in Section 3.3. It is223

known that a naive discretization of these equations can lead to spurious solutions/instabilities due to two causes: the224

pressure-velocity coupling, i.e., the pressure gradient ∇p in Eq. (2), and the advective term u · ∇ in Eqs. (2)-(3), both225

involving first order space derivatives. The former comes in the form of spurious pressure modes and can be overcome226

by using well-known remedies, e.g., staggered grids in the FDM and FVM [57], unequal order discretization schemes227

for pressure and velocity in the FEM [58, 59], Rhie-Chow interpolation on co-located grids [60]. The latter comes in228

the form of spurious velocity modes and is commonly overcome by means of upwinding techniques [61].229

In the context of the RBF-FD method it is desirable to have a common discretization scheme defined on a common230

node distribution for the entire set of variables, e.g., u, p and T , while upwind techniques, although employed [62, 63,231

64], tend to be avoided in favour of other techniques [65], expecially when dealing with high-order, accurate RBF-FD232

discretizations.233

A powerful and yet accurate technique which can be employed to overcome both types of instabilities is hyper-234

viscosity [66, 16], which consists of adding enough amount δ of artificial diffusivity to the transport Eqs. (2)-(3), in235

the form of an iterated laplacian ∆k with k > 1, in order to stabilize the discretization, i.e., avoiding the presence of236

eigenmodes with unstable eigenvalues. The advantage of hyperviscosity over traditional stabilization methods is the237

possibility to select the exponent k in order to ensure the artificial diffusivity to vanish faster than the discretization238

error of the RBF-FD method itself under node refining, i.e., reducing the nodal spacing s.239

Consider a harmonic component f with spatial frequency ω240

f = e jωωω·x/s−λt, (34)

the resulting temporal decay rate λ due to the hyperviscosity smoothing δ∆k is [20]241

λ = δ
‖ω‖2k

2

s2k (−1)k+1, (35)

which shows that spurious components with wave-length comparable to the nodal spacing s, i.e., ‖ω‖2 ≈ 1, sustain242

large damping while physical informations, i.e., ‖ω‖2 � 1, sustain small damping. Since the decay rate λ must be243

positive and independent upon the spacing s for a given ω, we obtain244
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δ = δ̄s2k(−1)k+1, (36)

where δ̄ > 0 is the specific amount of hyperviscosity. Eq. (36) shows that the amount δ of artificial hyperviscosity245

introduced in the equations vanishes with order 2k under node refining. Therefore the exponent k should be chosen246

to satisfy 2k ≥ l in order to obtain a consistent discretization, where l is the order of accuracy of the RBF-FD247

discretization. Since the order of accuracy of the RBF-FD discretizations employed in this work never exceeds l = 6,248

an hyperviscosity exponent k = 3 is always employed.249

The pressure, which is governed by Poisson Eq. (7) which is not a transport equation, can anyway be stabilized250

through an explicit hyperviscosity stabilization: at each time step the pressure p(n+1), obtained from Eq. (10), is251

corrected to obtain p̃(n+1) as follows252

p̃(n+1) =
(
I + δ̄ps2k(−1)k+1∆k

)
p(n+1), (37)

where δ̄p > 0 is the specific amount of explicit hyperviscosity for the pressure. In Eq. (37) the BCs for the explicit253

hyperviscosity operator ∆k are the same for the Poisson Eq. (7), i.e., Eqs. (8)-(9).254

The specific amounts of hyperviscosity δ̄, which can differ for momentum and energy Eqs. (2)-(3), and δ̄p have255

been found by trial and error on the base of very short test runs, as suggested in [66].256

3.3.5. Solution of the discretized equations257

The discretized equations resulting from the RBF-FD discretization consist of two sparse linear systems for the258

two-dimensional components of the velocity u = (u, v), Eq. (5), one sparse linear system for the auxiliary variable259

Φ, Eq. (7), and one sparse linear system for the temperature, Eq. (11); each of the previous linear systems need260

to be solved at each time step. A BiCGSTAB iterative solver [67] with an incomplete LU factorization (ILU) as261

preconditioner [68] are employed for the solution of the discretized transport equations of velocity and temperature,262

Eq. (5) and Eq. (11), using a relative tolerance tol = 10−9 on residuals. The threshold value for ILU is set to263

thr = 0.005 and the factorization is performed when the required number of BiCGSTAB iterations exceeds 75% of264

the number of iterations required immediately after the previous factorization. The discretized Poisson Eq. (7) is265

solved through a LU decomposition which can be performed once at the beginning of each simulation.266

The steady-state convergence is declared when267

NRMSE
(
u(n+1),u(n)

)
< 10−8Re∆t, NRMSE

(
T (n+1),T (n)

)
< 10−8RePr∆t. (38)

NRMSE is the normalized root mean square error268

NRMSE(q, q̂) =

√√
1

A(Ω̂)

∫
Ω̂

‖q − q̂‖22
maxΩ̂

(
‖q̂‖22

) dΩ̂ ≈

√√√√∑
i∈Î

s2(xi)

−1 ∑
i∈Î

‖q(xi) − q̂(xi)‖22
maxΩ̂

(
‖q̂(xi)‖22

) s2(xi), (39)

where A(Ω̂) is the area of Ω̂, q̂ is a reference field, Ω̂ is a reference domain and Î is the index set of nodes xi belonging269

to Ω̂. The reference domain coincides with the actual domain, i.e., Ω̂ = Ω, unless otherwise specified.270
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Fig. 1: Sketch of the flow past a spinning cylinder near a moving wall (a). Particular of the node distribution with N = 54, 327 nodes (b).

4. Numerical results271

4.1. Wannier Flow272

4.1.1. Geometry and boundary conditions273

A Wannier flow, i.e., a two-dimensional, isothermal Stokes flow past a rotating circular cylinder near a moving274

wall, is considered. The governing equations for Stokes flow are obtained from Eqs. (1)-(2) by neglecting the unsteady275

and the advective terms in the momentum equation which becomes276

Re∇p = ∇2u, (40)

where Re = 1 is considered for simplicity since it acts as a multiplicative factor for the pressure. Dirichlet BCs are277

employed for the velocity along the entire boundary.278

The Wannier flow is a particularly meaningful test case since an explicit analytical solution for the velocity u =279

(u, v) is available in terms of d, R, U0 and ω, where the distance from the cylinder center to the wall, d, and the280

cylinder radius, R, are geometrical quantities (see Fig. 1(a)), as reported in Appendix A.281

The numerical domain is282

Ω =
{
x ∈ <2 | x ∈ [−d, d]2, ‖x‖2 ≥ R

}
. (41)

In order to avoid spurious pressure gradients at the boundary due to the employed projection scheme [69], the initial283

pressure field at t = 0 is computed numerically by considering the divergence of Eq. (40)284

∇2 p = 0, (42)
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where the continuity Eq. (1) is invoked. Neumann BCs are imposed by taking the normal component of Eq. (40)285

∂p
∂n

= n · ∇2u, (43)

where the RHS is explicitly computed from the analytical solution reported in Appendix A.286

4.1.2. Spacing function287

The employed spacing function for node generation is288

s(x) = smin + (smax − smin)
arctan(aWzW )

arctan(aW )
, (44)

where smin and smax = 3smin are the minimum and maximum spacing, respectively, aW = 5 and zW =
( √

x2 + y2 − R
)
/d289

is the nondimensional distance from the cylinder wall. An example of node distribution with N = 54, 327 nodes for a290

geometry with d/R = 3 is depicted in Fig. 1(b), where it can be observed an increasing node density, i.e., number of291

nodes per unit area, towards the cylinder wall according to the prescribed spacing function.292

4.1.3. Validation of the deterministic model293

In order to validate the deterministic RBF-FD solver, different convergence tests are carried out by increasing the294

total number of nodes from N ≈ 4, 000 to N ≈ 200, 000 to assess the convergence properties of the numerical model.295

The chosen parameters for the Wannier flow are d = 0.75, R = 0.25, U0 = 1.0. By considering the analytical solution296

reported in Appendix A as reference, the resulting convergence curves for the NRMSE of the velocity are depicted297

in Fig. 2(a) for four different RBF-FD schemes with polynomial order q = 2, 3, 4 and 5 for which the corresponding298

number of supporting nodes is chosen to be n = 20, 25, 30 and 40 [20], respectively. The resulting order of accuracy299

varies from l = 1.6 for a polynomial degree q = 2 to l = 4.8 for a polynomial degree q = 5, with an unexpectedly high300

order l = 4.8 for a polynomial degree q = 4. Based on the previous observations, a RBF-FD scheme with polynomial301

degree q = 4 and n = 30 supporting nodes is chosen for the following calculations.302

4.1.4. Results of the stochastic model303

The uncertain parameters are chosen to be the distance d from the cylinder center to the wall, and the cylinder304

radius R, both having a normal distribution with a standard deviation equal to 5% of the corresponding mean value,305

i.e.,306

d ∼ N
(
d0, (0.05d0)2

)
, R ∼ N

(
R0, (0.05R0)2

)
, (45)

where d0 = 0.25 and R0 = 0.75. For each sample of the uncertain parameters required by the PC procedure, a different307

node distribution for the RBF-FD discretization is actually generated over the corresponding geometry.308

Different convergence tests for the statistical moments, i.e., mean µ and standard deviation σ of the cartesian309

components (u, v) of the velocity, are carried out by increasing the polynomial order of the PC expansion from P = 1310

to P = 6, while the reference statistical moments for the NRMSE are obtained for P = 8 and using the analytical311

solution reported in Appendix A for the NP = (P + 1)2 deterministic response evaluations. The domain of integration312
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Fig. 2: Deterministic Wannier flow solved by RBF-FD: normalized RMS errors vs. number of nodes N (a). Stochastic Wannier flow solved by PC,
normalized RMS errors vs. PC order P: analytical solution (b), RBF-FD solution with N = 25, 636 nodes (c), RBF-FD solution with N = 54, 327
nodes (d).

Ω̂ for the calculation of NRMSE in Eq. (39) is given by the intersection of each of the different deterministic domains313

required by the PC procedure, i.e., the points where the required deterministic solutions are simultaneously available.314

The convergence curves for the NRMSE of the statistical moments are depicted in Fig. 2(b) when using the315

analytical solution for the evaluation of the deterministic responses. The observation of these curves reveal a clear316

exponential convergence for both moments of both u and v when increasing P, confirming the spectral accuracy of317

the PC method.318

The NRMSE convergence curves depicted in Fig. 2(c) and 2(d) are obtained by using a RBF-FD discretization319
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Fig. 3: Stochastic Wannier flow: velocity mean contours (a) and velocity standard deviation contours (b).

with N ≈ 25, 000 and N ≈ 50, 000 nodes, respectively, for the evaluation of the deterministic responses. The chosen320

RBF-FD scheme employs polynomial degree q = 4 and n = 30 supporting nodes, while a new node distribution321

is generated for each required deterministic response, i.e., for each couple of geometrical parameters (d,R). The322

observation of the convergence curves for both cases suggests that the exponential convergence holds as long as the323

RBF-FD discretization error is lower than the PC error, as expected. Indeed, the exponential convergence for the case324

with N ≈ 25, 000 nodes, Fig. 2(c), holds up to P = 3 for µ and up to P = 4 for σ, namely where the NRMSE of the325

considered moment is within the same order of magnitude of the NRMSE of the deterministic solver, Fig. 2(a), i.e.,326

NRMSE ≈ 10−7. Similarly, the exponential convergence for the case with N ≈ 50, 000 nodes, Fig. 2(d), holds up to327

P = 4 for µ and up to P = 5 for σ, again where the NRMSE of the considered moment falls within the same order328

of magnitude of the NRMSE of the deterministic solver, i.e., NRMSE ≈ 10−8. Contour plots of mean and standard329

deviation of velocity magnitude ‖u‖2, obtained with PC order P = 6 and using the analytical solution, are depicted in330

Fig. 3.331

4.2. Backward-facing step332

4.2.1. Geometry and boundary conditions333

A two-dimensional, isothermal steady flow over a backward facing step at Re = 600 and Re = 800 is considered.334

It is a standard test case problem being addressed by numerous authors using a variety of numerical and experimental335

methods [70, 71, 72, 73, 11]. The geometry of the problem and a schematic illustration of the flow are shown in336

Fig. 4. The fluid enters the channel at the left inlet with a prescribed parabolic profile with average velocity U0 and337

flows past a step of height h, with downstream channel height H = 2h. After the flow separates at the step, the flow338

reattaches to the lower wall at x = x1. At the upper wall the flow separates at x = x2 and reattaches at x = x3.339
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Fig. 4: Flow over a backward-facing step: schematic illustration of geometry and flow field.

Completely developed flow BCs are employed at the channel outlet, i.e., ∂u/∂x = 0 and p = 0 are imposed. The340

length of the upstream section of the channel is Lin = 10h/3 while the downstream section length is L = 60h, which341

are the dimensions employed in [11]342

4.2.2. Spacing function343

The spacing function for node generation is obtained by combining three contributions for the required node344

density: an increase at the walls for a better resolution of the wall gradients, a localized increase at the step corner for345

a better resolution of the corner singularity, and a gradual decrease towards the channel outlet to reduce the number346

of nodes where the flow is almost completely developed. The first contribution, i.e., the increased node density at the347

walls, is expressed by factor s1348

s1(x) = smin + (smax − smin)
arctan(aWzW )

arctan(aW )
, (46)

where smin and smax = 4smin are the minimum and maximum reference spacing, respectively, aW = 3 and zW = dw/h349

where zW and dW are the nondimensional and dimensional distances from the nearest wall, respectively. The second350

contribution, i.e., the increased node density at the step corner, is expressed by factor s2351

s2(x) = kS + (1 − kS )
2
π

arctan(aS zS ), (47)

where kS = 40, aS = 5 and zS = dS /h where zS and dS = ‖x− xS ‖2 are the nondimensional and dimensional distances352

from the step corner, respectively. The thirs contribution, i.e., the reduced node density towards the outlet, is expressed353

by factor s3354

s3(x) = 1 + kO
x
L
, (48)

where kO = 0.75. The spacing function is then obtained by the product of the previous factors355

s(x) = s1(x)s2(x)s3(x). (49)
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Fig. 5: Flow over a backward-facing step: particular of the node distribution with N = 45, 800 nodes (top), particular of the OpenFOAM mesh
with approximatively 40, 000 cells.

An example of node distribution with N = 53, 961 nodes is depicted in Fig. 5, where it can be observed the356

prescribed increase in node density at the walls and at the step corner, according to the prescribed spacing function.357

Similarly to the previous test case, polynomial degree q = 4 and n = 30 supporting nodes are always employed358

for the RBF-FD discretization.359

4.2.3. Validation of the deterministic model360

The RBF-FD solver is validated by considering the case Re = 800. A convergence test is carried out by increasing361

the total number of nodes from N ≈ 20, 000 to N ≈ 200, 000. By considering a computed solution with N ≈ 350, 000362

as reference, the resulting convergence curves for the NRMSE of the velocity components (u, v) and pressure p are363

depicted in Fig. 6(a), where it can be observed that the resulting order of accuracy is l = 3.2 for each of the considered364
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Fig. 6: Deterministic flow over a backward-facing step at Re=800 solved by RBF-FD: normalized RMS errors vs. number of nodes N (left),
comparison of u-velocity profiles (right).

Table 1: Normalized locations of detachment and reattachment of the deterministic flow over a backward-facing step at Re=800.

N x1/h x2/h x3/h
20,186 11.614 9.471 20.263
23,773 11.671 9.488 20.319
28,051 11.674 9.457 20.320
33,002 11.726 9.496 20.358
38,854 11.747 9.496 20.418
45,800 11.734 9.454 20.455
53,961 11.760 9.486 20.427
63,600 11.760 9.447 20.447
74,815 11.767 9.448 20.472
88,058 11.770 9.454 20.460
103,443 11.772 9.442 20.473
121,271 11.782 9.428 20.483
142,596 11.785 9.430 20.493
167,559 11.786 9.428 20.505
196,903 11.792 9.418 20.507
231,754 11.796 9.412 20.511
272,751 11.795 9.412 20.517
∞ (extrap.) 11.799 9.405 20.523
Erturk [71] 11.834 9.476 20.553

flow variables.365

The convergence of the normalized locations of detachment and reattachment of the flow is reported in Table 1,366

where the extrapolations are obtained by least squares fitting of the curve c1 + c2N−l/2, l = 3.2. Reference results of367

Erturk [71] are also reported in Table 1, highlighting an excellent agreement for the computed values of x1, x2 and x3368

with less than 1% differences.369
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A comparison between the u-velocity profiles for two computed solutions with N = 53, 961 and N = 272, 751370

nodes is depicted in Fig. 6(b), where the profiles computed in [71] are also shown. An excellent agreement with the371

reference results is again found, while the computed profiles for N = 53, 961 and N = 272, 751 nodes are almost372

identical to graphical accuracy. Indeed, the NRMSE of each flow variable is below 10−3 for N = 53, 961 nodes,373

Fig. 6(a), and for this reason a meshless distribution with N = 53, 961 nodes is chosen for each of the following374

computations over the backward-facing step.375

4.2.4. Results of the stochastic model376

Geometric tolerances of perpendicularity on the step are considered for Re=600. The position of the step corner377

xS = (xS , yS ) spans the uncertainty space, while the step walls remain straight but no longer aligned to the cartesian378

axes, with θH angular deviation of the horizontal step wall from the horizontal direction, i.e., x axis, and θV angular379

deviation of the vertical step wall from the vertical direction, i.e., y axis. By considering these deviations as uncertain380

parameters, the position of the step corner can be approximated by381

xS = (xS , yS ) = (h sin θV , Lin sin θH). (50)

An initial node distribution X0 = {x0
i } = {x0

i = (x0
i , y

0
i )} with N = 53, 961 nodes is generated only once for the382

original geometry, i.e., without geometrical uncertainties, while the required node distributions X = {xi = (xi, yi)} for383

the perturbed domains are obtained by the following deformation of the initial node distribution384

xi = x0
i + xS

1 − |x0
i |

Lin

 1 − |y0
i |

h

 if |x0
i | < Lin (51)

which shifts the step corner position of the initial node distribution X0 to the prescribed location xS while maintaining385

the straightness of the step walls. We note that in this particular case, where the geometry can be mapped to the original386

geometry by a linear transformation with 2 random parameters, the randomness of the position of the step corner can387

be lifted back into the Navier-Stokes equations, allowing the construction of an accurate benchmark without the need388

of solving the flow problem over different geometries [74].389

In order to get deeper insights on the coupling of the PC method to the RBF-FD method for the current problem,390

two cases will be considered: a first case with small standard deviation of the angular deviations (θH , θV ) and a second391

case with larger standard deviation.392

Case A. Both angular deviations (θH , θV ) have a normal distribution with a standard deviation of 0.08 degrees, as393

employed in [11, 46]394

θH ∼ N

(
0,

(
0.08

π

180

)2
)
, θV ∼ N

(
0,

(
0.08

π

180

)2
)
. (52)

A convergence test for mean µ and standard deviationσ of the flow variables u, v, and p is carried out by increasing395

the polynomial order of the PC expansion from P = 0, requiring 12 deterministic solutions, to P = 3, requiring 42
396

deterministic solutions, while the reference statistical moments for the NRMSE are obtained for P = 4. The domain397
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Table 2: Stochastic flow over a backward-facing step at Re=600: mean and standard deviation normalized RMS errors (NRMSE) for flow variables
u, v, p.

P µ(u) µ(v) µ(p) σ(u) σ(v) σ(p)
[×10−4] [×10−4] [×10−4] [×10−4] [×10−4] [×10−4]

0 0.185 0.281 1.206 - - -
1 0.087 0.151 0.980 3.165 3.948 8.977
2 0.031 0.047 0.277 2.747 3.389 2.919
3 0.143 0.234 0.932 2.298 3.012 6.814
4 Ref. Ref. Ref. Ref. Ref. Ref.

Table 3: Stochastic flow over a backward-facing step at Re=600: mean and standard deviation of normalized locations of detachment and reattach-
ment of the flow.

P µ(x1/h) µ(x2/h) µ(x3/h) σ(x1/h) σ(x2/h) σ(x3/h)
0 10.286 8.500 15.714 - - -
1 10.287 8.501 15.722 1.65·10−3 2.19·10−2 0.113
2 10.286 8.501 15.714 1.78·10−3 2.20·10−2 0.117
3 10.287 8.501 15.724 1.86·10−3 2.19·10−2 0.111
4 10.286 8.501 15.714 1.72·10−3 2.19·10−2 0.118

of integration Ω̂ for the calculation of NRMSE in Eq. (39) is given by the intersection of each of the different398

deterministic domains required by the PC procedure.399

The results of the convergence test are summarized in Table 2. Although the considered range for P is quite400

limited, from the analysis of the previous table it could be inferred that the statistical moments of each flow variable401

are convergent, i.e., the NRMSEs are always decreasing with P except for the case P = 3 which is anyway immediately402

below the reference case P = 4. We point out that this behaviour is due to the fact that the reference solution is not403

the exact solution, therefore the computed errors in the statistical moments are accurate only for P � Pre f = 4, where404

Pre f is the polynomial order P chosen for the reference solution. For this reason the computed errors in the statistical405

moments in the case P = 3 should not be considered meaningful.406

Table 3 shows the convergence of mean and standard deviation of the detachment and reattachment locations,407

highlighting a very good estimate of the mean values already for P = 0, i.e., evaluating a single solution on the unde-408

formed domain. Consistent results are also obtained for the standard deviation values, although a strong convergence409

is not equally evident for each of the detachment/reattachment locations.410

Graphical comparisons of mean and standard deviation of the velocity magnitude ‖u‖2 and pressure p are depicted411

in Figs. 7-10. The reference solutions are taken from [46] where the PC method is coupled with the OpenFOAM finite412

volume solver for the evaluation of the required deterministic responses. In both cases with RBF-FD and OpenFOAM413

solver, the employed PC degree is P = 3. The employed OpenFOAM structured mesh consists in approximately414

40, 000 hexahedral elements, and it is depicted in Fig. 5 where a meshless node distribution with a similar number of415

nodes is also depicted for comparison. Each of the contour plots of the statistical moments computed using the RBF-416

FD discretization, shown in Figs. 7-10, coincides, to graphical accuracy, with the corresponding reference contour417

plots obtained using the OpenFOAM solver.418

As expected, the standard deviation of the velocity magnitude, Fig. 8, is higher in correspondence of the step419
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Fig. 7: Stochastic flow over a backward-facing step at Re=600, velocity mean contours: RBF-FD (top), OpenFOAM (bottom).
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Fig. 8: Stochastic flow over a backward-facing step at Re=600, velocity standard deviation contours: RBF-FD (top), OpenFOAM (bottom).

corner and also where the flow exhibits large gradients and large velocity magnitudes at the same time. This occurs420

halfway between the streamline starting at the inlet at y/h = 1/2 (median streamline) and the limit streamlines starting421

at the inlet at y→ 0+ and at y/h→ 1−. The standard deviation of the pressure, Fig. 10, is lower near the reattachment422

point of the lower recirculation bubble and higher at the inlet in the neighbourhood of the horizontal step wall, as423

expected.424

Case B. Both angular deviations (θH , θV ) have a normal distribution with a standard deviation of 1.0 degree, therefore425

one order of magnitude larger than case A426

θH ∼ N

(
0,

(
π

180

)2
)
, θV ∼ N

(
0,

(
π

180

)2
)
. (53)

A convergence test for mean µ and standard deviationσ of the flow variables u, v, and p is carried out by increasing427

the polynomial order of the PC expansion from P = 0, requiring 12 deterministic solutions, to P = 4, requiring 52
428

deterministic solutions, while the reference statistical moments for the NRMSE are obtained for P = 5. The domain429
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Fig. 9: Stochastic flow over a backward-facing step at Re=600, pressure mean contours: RBF-FD (top), OpenFOAM (bottom).
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Fig. 10: Stochastic flow over a backward-facing step at Re=600, pressure standard deviation contours: RBF-FD (top), OpenFOAM (bottom).

Table 4: Stochastic flow over a backward-facing step at Re=600: mean and standard deviation normalized RMS errors (NRMSE) for flow variables
u, v, p.

P µ(u) µ(v) µ(p) σ(u) σ(v) σ(p)
[×10−2] [×10−2] [×10−2] [×10−2] [×10−2] [×10−2]

0 0.759 2.888 3.198 - - -
1 0.173 0.299 0.062 2.201 1.422 3.609
2 0.244 0.178 0.102 1.273 0.356 0.250
3 0.040 0.165 0.024 0.897 0.194 0.077
4 0.183 0.179 0.078 1.510 0.252 0.127
5 Ref. Ref. Ref. Ref. Ref. Ref.

of integration Ω̂ for the calculation of NRMSE in Eq. (39) is again given by the intersection of each of the different430

deterministic domains required by the PC procedure.431

The results of the convergence test are summarized in Table 4: the convergence of the statistical moments of the432

flow variables is still present since all NRMSEs decrease when compaing P = 1 and P = 3, but it is not monotone,433

i.e., the NRMSEs are not always decreasing with P. Similarly to Case A, NRMSEs increase for the case P = 4 which434
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Table 5: Stochastic flow over a backward-facing step at Re=600: mean and standard deviation of normalized locations of detachment and reattach-
ment of the flow.

P µ(x1/h) µ(x2/h) µ(x3/h) σ(x1/h) σ(x2/h) σ(x3/h)
0 10.286 8.499 15.715 - - -
1 10.263 8.548 15.700 1.10·10−1 1.66·10−1 1.429
2 10.264 8.558 15.690 1.33·10−1 1.98·10−1 1.459
3 10.265 8.555 15.692 1.32·10−1 2.05·10−1 1.466
4 10.265 - - 1.27·10−1 - -
5 10.266 - - 1.31·10−1 - -
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Fig. 11: Stochastic flow over a backward-facing step at Re=600, standard deviation contours: velocity (top), pressure (bottom).

is immediately below the reference case P = 5.435

Table 5 shows the convergence of mean and standard deviation of the detachment and reattachment locations.436

Contrary to Case A, a PC degree P > 0 is needed to obtain an accurate estimate of the mean values, as expected, since437

the standard deviation of the uncertain parameters (θH , θV ) is higher than Case A. The statistical moments of x2 and x3438

are not available for P = 4 and P = 5 because some of the required deterministic solutions did not exhibit the upper439

recirculation bubble. This is expectable since for P ≥ 3 the horizontal step wall sustains a significant deviation from440

the horizontal direction for some of the required configurations, preventing the formation of the upper recirculation441

bubble. Analogously to Case A, consistent results are obtained for the standard deviation values, although a strong442

convergence is not equally evident for each of the detachment/reattachment locations.443

The contour plots of standard deviation of the velocity magnitude ‖u‖2 and pressure p are depicted in Fig. 11: by444

a graphical comparison they appear qualitatively similar to the contour plots of Case A, Figs. 8 and 10, although the445

scales are different, with an exception for the standard deviation of the pressure which is higher along the whole inlet446

and not only near the horizontal step wall.447
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4.3. Nanofluid laminar flow in a microchannel448

Nanofluids are regarded as an effective cooling medium with tremendous potential in heat transfer enhancement.449

In reality, nanofluids in microchannels are at the mercy of uncertainties unavoidably due to manufacturing error,450

dispersion of physical properties, and inconstant operating conditions. To obtain a deeper understanding of forced451

convection of nanofluids in microchannels, uncertainties are suggested to be considered. The uncertain forced con-452

vection of Al2O3-water nanofluid laminar flow in a grooved microchannel is numerically investigated in this section.453

4.3.1. Geometry and boundary conditions454

The geometry of the problem is taken from [75] and is shown in Fig. 12: the fluid enters a channel of height H455

at the left inlet with a prescribed parabolic profile with average velocity U0 and temperature Tc. Adiabatic BCs are456

imposed at the entrance section, x < L1, and at the exit section, x > L1 +L2, while a fixed temperature Th is imposed at457

the boundary of the middle section, L1 ≤ x ≤ L1 + L2. The reference temperature scale is chosen to be ∆T = Th − Tc.458

Completely developed flow BCs are imposed at the outlet, i.e., ∂u/∂x = 0, ∂T/∂x = 0 and p = 0 are imposed. The459

geometrical parameters of the microchannel are listed in Table 6.460

4.3.2. Physical properties461

The physical properties of the Al2O3-water nanofluid can be expressed as functions of the solid volume fraction462

χ, i.e., the volume fraction of Al2O3. The density of the nanofluid ρn is therefore463

ρn = (1 − χ)ρw + χρp, (54)

where the subscripts n, w and p denote the properties of nanofluid, water and Al2O3, respectively. The specific heat464

capacity of the nanofluid cn is465

cn =
(1 − χ)ρwcw + χρpcp

ρn
. (55)

The employed model for the viscosity µn is [76]466

µn = µw

(
123χ2 + 7.3χ + 1

)
(56)

and the employed model for the thermal conductivity kn is [77]467

kn =
∆ +

√
∆2 + 8kwkp

4
, (57)

where ∆ = (2 − 3χ)kw + (3χ − 1)kp. Ultimately, the solid volume fraction χ enters into the governing equations468

uniquely by means of the constant Prandtl number Pr = Pr(χ) in Eq. 3. The employed physical properties of water469

and Al2O3 nanoparticle are reported in Table 7 and are the same used in [75].470
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Fig. 12: Scheme of the microchannel (top) and particular of the node distribution with N = 53, 524 nodes (bottom).

4.3.3. Spacing function471

Similarly to the case of the backward-facing step, the spacing function for node generation is obtained by com-472

bining two contributions: the increase of the node density at the walls and a localized increase of the node density473

at the groove corners, i.e., at the intersection of the grooves with the horizontal walls, and at the boundary interface474

between the entrance, middle and exit sections, i.e., x = L1 and x = L1 + L2, for a better resolution of the velocity and475

temperature gradients, respectively. The former contribution is expressed by Eq. (46), while the latter is expressed by476

factor s2477

s2(x) =

10∏
i=1

[
kS + (1 − kS )

2
π

arctan(aS zi)
]
, (58)

where kS = 40, aS = 5 and zi = di/H where zi and di = ‖x − x̂i‖2 are the nondimensional and dimensional distances478

from the i-th reference point x̂i, which can be one of the 6 groove corners or one of the 4 interface points. The spacing479

function is then obtained by the product of the previous factors480

s(x) = s1(x)s2(x). (59)
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Table 6: Geometrical parameters of the grooved microchannel.

H L1 L2 L3 δ D W
[µm] [µm] [µm] [µm] [µm] [µm] [µm]
25 75 350 75 10 50 75

Table 7: Physical properties of water and Al2O3 nanoparticle.

k c ρ µ
Component [W/(m · K)] [J/(kg · K)] [kg/m3] [Pa · s]

Water 36 773 3880 -
Al2O3 0.597 4182 998.2 9.93 × 10−4
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Fig. 13: Deterministic flow in a microchannel at Re=100 solved by RBF-FD: normalized RMS errors vs. number of nodes N (left), comparison of
u-velocity profiles (right).

An example of node distribution with N = 53, 524 nodes is depicted in Fig. 12, where it can be observed481

the prescribed increase in node density at the walls and at the groove corners, according to the prescribed spacing482

function.483

Similarly to the previous cases, polynomial degree q = 4 and n = 30 supporting nodes are always employed for484

the RBF-FD discretization.485

4.3.4. Validation of the deterministic model486

The RBF-FD solver is validated by considering the case Re = 100 and χ = 0.05, i.e., 5% Al2O3-water nanofluid.487

A convergence test is carried out by increasing the total number of nodes from N ≈ 20, 000 to N ≈ 200, 000. By488

considering a computed solution with N ≈ 350, 000 as reference, the resulting convergence curves for the NRMSE of489

the velocity components (u, v), pressure p and temperature T are depicted in Fig. 13(a), where it can be observed that490

the resulting order of accuracy is l = 3.2 for each of the considered flow variables.491
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Table 8: Mean Nusselt number Nu for the deterministic flow in a microchannel at Re=100.

N Nu
27443 5.2361
32326 5.1399
38518 5.1530
45469 5.1439
53524 5.1414
63404 5.1416
74772 5.1418
88054 5.1418
103562 5.1422
121918 5.1416
144179 5.1418
170232 5.1421
200742 5.1424
237491 5.1426
280556 5.1425
∞ (extrap.) 5.1427

The convergence of the mean Nusselt number Nu is reported in Table 8, where the extrapolation is obtained by a492

least squares fitting of the curve c1 + c2N−l/2, l = 3.2. Reference results of Erturk [71] are also reported in Table 1,493

highlighting an excellent agreement for the computed values of x1, x2 and x3 with less than 1% differences.494

A comparison between the u-velocity profiles for two computed solutions with N = 53, 524 and N = 280, 556495

nodes is depicted in Fig. 13(b): the computed profiles are almost identical to graphical accuracy. Such observation is496

supported by the fact that the NRMSE of each flow variable is again below 10−3 for N = 53, 524 nodes, Fig. 13(a).497

For this reason a meshless distribution with N = 53, 524 nodes is chosen for each of the following computations.498

4.3.5. Results of the stochastic model499

Two uncertainties are considered: a geometric uncertainty on the depth of the grooves δ and an uncertain solid500

volume fraction of the nanofluid χ, both having a normal distribution with a standard deviation equal to 10% of the501

corresponding mean value, i.e.,502

δ ∼ N
(
δ0, (0.1δ0)2

)
, χ ∼ N

(
χ0, (0.1χ0)2

)
, (60)

where δ0 = 10µm and χ0 = 0.05.503

An initial node distribution X0 = {x0
i } = {x0

i = (x0
i , y

0
i )} with N = 53, 524 nodes is generated only once for the504

original geometry, while the required node distributions X = {xi = (xi, yi)} for the perturbed domains are obtained by505

the following deformation of the initial node distribution506

yi = y0
i

Hδ(x0
i )

H0(x0
i )
, (61)

where H0(x) and Hδ(x) are the equations of the upper side of the boundary, i.e., where the grooves are placed, for the507

original domain and for the perturbed domain, respectively. The deformation of Eq. (61) therefore acts only on the508
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Table 9: Stochastic flow in a microchannel at Re=100: mean and standard deviation normalized RMS errors (NRMSE) for flow variables u, v, p,T .

P µ(u) µ(v) µ(p) µ(T ) σ(u) σ(v) σ(p) σ(T )
[×10−3] [×10−3] [×10−3] [×10−3] [×10−2] [×10−2] [×10−2] [×10−2]

0 0.253 0.870 0.223 1.352 - - - -
1 0.023 0.031 0.045 0.059 1.162 0.665 1.246 1.104
2 0.018 0.021 0.052 0.045 0.205 0.040 0.250 0.117
3 0.003 0.005 0.004 0.019 0.039 0.015 0.112 0.019
4 0.010 0.012 0.024 0.039 0.060 0.018 0.322 0.039
5 Ref. Ref. Ref. Ref. Ref. Ref. Ref. Ref.

Table 10: Stochastic flow in a microchannel at Re=100: mean and standard deviation of Nu.

P 0 1 2 3 4 5
µ(Nu) 5.140 5.146 5.146 5.147 5.146 5.147
σ(Nu) [×10−2] - 5.825 5.835 5.793 5.815 5.793

nodes below the grooves, i.e., 0 < x − (L1 + W) < D, −D/2 < x − (L1 + L2/2) < D/2 and 0 < x − (L1 + L2 −W) < D,509

leaving the remaining nodes unmodified.510

A convergence test for mean µ and standard deviation σ of the flow variables u, v, p and T is carried out by511

increasing the polynomial order of the PC expansion from P = 0, requiring 12 deterministic solutions, to P = 4,512

requiring 52 deterministic solutions, while the reference statistical moments for the NRMSE are obtained for P = 5.513

The domain of integration Ω̂ for the calculation of NRMSE in Eq. (39) is again given by the intersection of each of514

the different deterministic domains required by the PC procedure. The results of the convergence test are summarized515

in Table 9. Although the considered range for P is again limited, the analysis of the previous table suggests that516

the statistical moments of each flow variable are convergent, i.e., the NRMSEs are always decreasing with P except517

for the case P = 4 which is anyway immediately below the reference case P = 5: this behaviour has already been518

encountered and explained in the previous cases.519

Table 10 shows the convergence of mean and standard deviation of Nu, highlighting that a PC degree P = 1 is520

enough for a very accurate estimate of µ(Nu) which shows a convergence almost to the third decimal digit, while the521

values of σ(Nu) exhibit larger oscillations, although very consistent values are obtained for each P.522

The contour plots of the standard deviation of the velocity magnitude ‖u‖2, pressure p and temperature T are523

depicted in Fig. 14, Fig. 15 and Fig. 16, respectively. As expected, the standard deviation of the velocity magnitude524

is higher in correspondence of the downstream corners of the grooves while the upstream portion of the grooves is525

characterized by a recirculating bubble where the velocity magnitude is low. Similarly, the standard deviation of the526

pressure, Fig. 15, is higher in correspondence of the downstream corners of the grooves and also on larger zones527

starting from the center of the grooves. The standard deviation of the temperature, Fig. 16, exhibits a slightly different528

behaviour than the velocity and pressure since it is higher over an elongated zone adjacent to the boundary in the529

neighbourhood of the downstream portion of the grooves.530
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Fig. 14: Stochastic flow in a microchannel at Re=100, velocity mean (top) and standard deviation (bottom) contours.
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Fig. 15: Stochastic flow in a microchannel at Re=100, pressure mean (top) and standard deviation (bottom) contours.

5. Conclusions531

The Non-Intrusive Polynomial Chaos method is coupled to a Radial Basis Function-generated Finite Difference532

meshless solver to investigate the propagation of geometric uncertainties in incompressible and laminar fluid flows.533

The geometric flexibility of the RBF-FD meshless method represents a great advantage over mesh-based methods534

when dealing with complex-shaped domains, and this feature is proven to be even more beneficial when the RBF-535

FD method is coupled to the PC method for the prediction of the propagation of the geometric uncertainties of the536



30 R. Zamolo, L. Parussini / Journal of Computational Physics (2020)

5 6 7 8 9 10 11 12 13 14 15

x=H

0

0.5

1

1.5

y
=
H

7(T )

0.00 0.20 0.40 0.60 0.80 1.00

5 6 7 8 9 10 11 12 13 14 15

x=H

0

0.5

1

1.5

y
=
H

<(T ) [#10!1]

0.00 0.20 0.40 0.60 0.80 1.00

Fig. 16: Stochastic flow in a microchannel at Re=100, temperature mean (top) and standard deviation (bottom) contours.

boundaries. The capabilities of this novel approach are demonstrated through several test cases with both theoretical537

relevance (Wannier flow, bacward-facing step) and practical relevance (forced convection of nanofluid in a grooved538

microchannel), for which rigorous numerical validations are succesfully carried out. The coupling of the PC method to539

the RBF-FD method represents therefore an innovative, efficient and practical strategy for the accurate quantification540

of the fluid-flow uncertainties, especially when geometric uncertainties are defined on the boundaries.541

Appendix A. Wannier flow542

The Wannier flow is a two-dimensional Stokes flow past a rotating circular cylinder next to a moving wall, as543

depicted in Fig. 1(a) together with the cartesian coordinate system whose origin is at the center of the cylinder. The544

analytical solution, derived in [78] in terms of the cartesian components of the velocity u = (u, v), depends on the545

cylinder radius R, its rotational speed ω, the distance d from the center of the cylinder to the moving wall and the546

velocity of the wall U0547

u(x, y) = U0 − 2(a1 + a0Y1)
[
S + Y1

K1
+

S − Y1

K2

]
− a0 ln(K1/K1)

−
a2

K1

[
S + Y2 −

Y2(S + Y1)2

K1

]
−

a3

K2

[
S − Y2 +

Y2(S − Y1)2

K2

]
,

(A.1)

v(x, y) =
2x

K1K2
(a1 + a0Y1)(K2 − K1) −

xa2Y2(S + Y1)
K2

1

−
xa3Y2(S − Y1)

K2
2

, (A.2)
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where548

S =
√

d2 − R2, Υ =
d + S
d − S

, a0 = U0/ ln Υ,

aω = a0 +
ωR2

2S
, a1 = −aωd, a2 = 2(d + S )aω, a3 = 2(d − S )aω,

Y1(y) = y + d, Y2(y) = 2Y1, K1(x, y) = x2 + (S + Y1)2, K2(x, y) = x2 + (S − Y1)2.
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