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1 Introduction

Since the time of Carl Friedrich Gauss and the foundational papers by Richard Dedekind and
FelixKlein the classicalmodular group P SL(2,Z) and its action on the hyperbolic (complex)
upper half plane H1

C
= {z ∈ C : �(z) > 0} have played a central role in different branches

ofmathematics and physics like number theory, Riemann surfaces, elliptic curves, hyperbolic
geometry, theory of modular forms and automorphic forms, crystallography, string theory
and others. Similarly, discrete subgroups of P SL(2,C) are very important in the construction
of lattices to study of arithmetic hyperbolic 3-orbifolds (see, for instance, [20]) and many
other fields of mathematics.

We consider the action defined by isometries of the modular group P SL(2,Z) on the
hyperbolic plane H1

C
. A fundamental domain is a triangle with one ideal point an two other

vertices were the sides have an angle of π/3. This is the triangle with Coxeter notation
�(3, 3, ∞). See the Fig. 1. The modular group P SL(2,Z) is a subgroup of the group of
symmetries of the regular tessellation of H1

C
whose tiles are congruent copies of the triangle

�(3, 3, ∞). We can describe the Cayley graph and a presentation of the group P SL(2,Z)

in terms of 2 generators and 2 relations to obtain:

P SL(2,Z) = 〈a, b|a2 = (ab)3 = 1〉 = Z/2Z ∗ Z/3Z.

The quotient O2 := H1
C
/P SL(2,Z) has underlying topological space the plane R2 (or

C) and �O2 consists of two distinguished conical points. The local groups of the singular
points are Z/2Z and Z/3Z modeled on groups of two and three elements which consist
of hyperbolic rotations of angles π and 2π/3, respectively. The Euler characteristic of the
orbifold O2 is −1/6. Thus a minimal surface Selberg cover is of order 6.

Now we consider the action defined by isometries of the modular group P SL(2,Z[i])
which is the Picard group related to the Gauss integers on the hyperbolic real 3-space H3

R
.

The quotient O3 := H3
R
/P SL(2,Z[i]) has underlying space the 3-space R

3. Its singular
locus �O3 is the 1-skeleton of a squared pyramid without the apex. The Euler characteristic
of the orbifold O3 is 0.

In this paper, we introduce two generalizations of the modular group in the four-
dimensional setting of the quaternions and the rings of Lipschitz and Hurwitz integers (see
[14,15],[19]) and then focus our attention to their actions on hyperbolic (quaternionic) half

space H1
H

:= {q ∈ H : 	(q) > 0} with metric d|q|2
(	q)2

. We then explore new results which

give a very detailed description of the orbifolds related to the corresponding quaternionic
modular groups. Secondly we define the group generated by translations by the imaginary

Fig. 1 A fundamental domain for the action of the modular group P SL(2,Z) on the hyperbolic plane H1
C
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parts of Lipschitz integers, the inversion T and a finite group related to the Hurwitz units.
We give a thorough description of its properties and the corresponding orbifolds.

Furthermore, we also give a geometric description of the fundamental domains for the
actions of the quaternionic modular groups and a detailed analysis of the topology and of the
isotropy groups of the singularities of the orbifolds introduced. We study the corresponding
modular Lipschitz and Hurwitz groups in the Lorentz–Minkowski model.

2 The quaternionic hyperbolic 4-space H1
H

and its isometries

2.1 Isometries in the half-space model of the hyperbolic 4-space H1
H

Consider the quaternions

H := {x0 + x1i + x2j + x3k : xn ∈ R, n = 0, 1, 2, 3, i2 = j2 = k2 = −1, ij = −ji = k}.
If q = x0 + x1i + x2j + x3k ∈ H then 	(q) := x0 ∈ R, q := x0 − x1i − x2j − x3k ∈ H and
|q|2 := qq ∈ R

+.
Let H1

H
:= {q ∈ H : 	(q) > 0} be the half-space model of the one-dimensional

quaternionic hyperbolic space. This set is isometric to the hyperbolic real space in four
dimensions, namely H1

H
∼= H4

R
= {(x0, x1, x2, x3) ∈ R

4 : x0 > 0} with the element

of hyperbolic metric given by (ds)2 = (dx0)2+(dx1)2+(dx2)2+(dx3)2

x20
where s measures length

along a parametrized curve. Even though the (natural) algebraic structures carried by the two
sets are deeply different.

Let GL(2,H) denote the general linear group of 2 × 2 invertible1 matrices with entries
in the quaternions H. The next definitions can be found in [3,10,16] and [26].

Definition 2.1 For any A =
(

a b
c d

)
∈ GL(2,H), the associated real analytic function

FA : H∪ {∞} → H∪ {∞} defined by FA(q) = (aq + b) · (cq + d)−1 is called the Möbius
transformation associated with A.

We set FA(∞) = ∞ if c = 0, FA(∞) = ac−1 if c 
= 0 and FA(−c−1d) = ∞.
Let F := {FA : A ∈ GL(2,H)} the group of Möbius transformations.

Definition 2.2 Let SL(2,H) be the special linear group which consists of matrices in
GL(2,H) with Dieudonnè determinant 1.

Then� : GL(2,H) → F defined as�(A) = FA is a surjective group antihomomorphism
with ker(�) = {tI : t ∈ R \ {0}}. Furthermore, the restriction of � to the special linear
group SL(2,H) is still surjective and whose kernel is {±I}.

LetMH1
H

be the set ofMöbius transformations that leave invariantH1
H
. Any transformation

FA ∈ MH1
H

is conformal and preserves orientation, moreover is an isometry of H1
H
. We

conclude thatMH1
H

is isomorphic to the groups Con f+(H1
H
) and I som+(H1

H
) of conformal

diffeomorphisms and isometries orientation–preserving of the half-space model H1
H
(see [2]

and [1]).Moreover, the groupMH1
H

acts by orientation-preserving conformal transformations

on the sphere at infinity of the hyperbolic 4-space defined as ∂H1
H

:= {q ∈ H : 	(q) =
0} ∪ {∞}. In other words MH1

H

∼= Con f+(S3) ∼= Con f+(H1
H
) ∼= I som+(H1

H
).

1 By this we mean that a 2 × 2 quaternionic matrix A has a right and left inverse; in [4] it is shown that this
is equivalent for A to have non zero Dieudonné determinant (see [3]).
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Finally we recall the conditions found by Ahlfors (see [2]) and then applied by Bisi and
Gentili in the next form (see [4]):

Proposition 2.3 [Ahlfors conditions] The subgroup MH1
H

of P SL(2,H) can be charac-
terized as the group induced by matrices which satisfy one of the following (equivalent)
conditions:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
A =

(
a b
c d

)
a, b, c, d ∈ H : A

t
K A = K

}
with K =

(
0 1
1 0

)
,

{
A =

(
a b
c d

)
a, b, c, d ∈ H : 	(ac) = 0, 	(bd) = 0, bc + da = 1

}
,

{
A =

(
a b
c d

)
a, b, c, d ∈ H : 	(cd) = 0, 	(ab) = 0, ad + bc = 1

}
.

2.2 The affine subgroup A(H) of the isometries of H1
H

Consider now the affine subgroup A(H) of MH1
H

consisting of transformations which are

induced by matrices of the form

(
λa b
0 λ−1a

)
with |a| = 1, λ > 0 and	(ba) = 0. The group

A(H) is the maximal subgroup of MH1
H

which fixes the point at infinity and its a Lie group
of real dimension 7.

Each matrix in A(H) acts as a conformal transformation on the hyperplane at infinity
∂H1

H
. Moreover A(H) is the group of conformal and orientation preserving transformations

acting on the space of pure imaginary quaternions at infinity which can be identified withR3

so that A(H) is isomorphic to the conformal group Con f+(R3).

2.3 Isotropy subgroup of the isometries of H1
H

which fixed one point

LetK :=
{(

α β

β α

)
∈ MH1

H

}
be the subgroup of symmetric matrices inMH1

H

. For the matrix(
α β

β α

)
the conditions |α|2+|β|2 = 1 and	(αβ) = 0 are equivalent to Ahlfors conditions in

Proposition 2.3. The groupK is the isotropy subgroup at 1 ∈ H1
H
of the action of P SL(2,H)

by orientation preserving isometries on H1
H
. Moreover the group K is a maximal compact

Lie subgroup of MH1
H

which is isomorphic to the special orthogonal group SO(4).

LetD :=
{(

α 0
0 α

)
∈ MH1

H

}
be the subgroup ofK whose elements are diagonal matrices

in M1
HH

. Then the Ahlfors conditions imply that |α| = 1. The action at infinity is given
by q �→ αqᾱ, which is the usual action of SO(3) on the purely imaginary quaternions.
Therefore D is isomorphic to SO(3).

2.4 Iwasawa decomposition of the isometries of H1
H

In analogy with the complex and real case, we can state a generalization of Iwasawa decom-
position for any element of MH1

H

as follows
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Proposition 2.4 Every element of MH1
H

which is represented by the matrix M =
(

a b
c d

)

can be written in an unique way as follows

M =
(

λ 0
0 λ−1

) (
1 ω

0 1

) (
α β

β α

)
, (1)

with λ > 0, 	(ω) = 0, |α|2 + |β|2 = 1 and 	(αβ) = 0.

Proof We’ll give explicit expressions for α, β, λ and ω in terms of a, b, c, and d. Indeed,
from direct computations, one easily obtains that λd = α and λc = β; therefore, from the
equations a = λ2(d + ωc) b = λ2(c + ωd) it is a matter of calculations to conclude that

λ = 1√|c|2 + |d|2 and ω = ac + bd.

Therefore, fromAhlfors conditions of Proposition 2.3, it follows that	(ω) = 0 and	(αβ) =
0. ��

3 The quaternionic modular groups

In this section we investigate a class of hyperbolic isometries of H1
H
which will play a crucial

role in the definition of the quaternionic modular groups.

3.1 Quaternionic Translations

A translation fixing ∞ is the isometry τb : H1
H

→ H1
H
defined as q �→ q + b associated with

the matrix

(
1 b
0 1

)
∈ MH1

H

, the Ahlfors conditions implies that 	(b) = 0.

Hence if the entries are integers then b is an integer linear combination of i, j and k.
Therefore the group of such translations is isomorphic to Z3.

We recall the definitions of quaternionic integers and refer to [7]. The ring of Lip-
schitz integers H(Z) is the subset of quaternions with integer coefficients, i.e. H(Z) :=
{a + bi + cj + dk ∈ H : a, b, c, d ∈ Z}.

This is a subring of the ring of Hurwitz integers:

Hur(Z) :=
{

a + bi + cj + dk ∈ H : a, b, c, d ∈ Z or a, b, c, d ∈ Z + 1

2

}
.

As a group, Hur(Z) is free abelian with generators 1/2(1 + i + j + k), i, j, k. Therefore
Hur(Z) forms a lattice in R4 which is the root lattice of the semisimple Lie algebra F4. The
Lipschitz quaternions H(Z) form an index 2 sublattice of Hur(Z).

In what follows we consider translations where b is the imaginary part of a Lipschitz or
Hurwitz integer in order to satisfy the Ahlfors conditions. We remark that the imaginary part
of a Lipschitz integer is still a Lipschitz integer but the imaginary part of a Hurwitz integer
is not necessarily a Hurwitz integer.

We denote by T�H(Z) the abelian group of translations by imaginary parts of all Lipschitz
integers �H(Z). The group T�H(Z) acts freely on H1

H
since its representation is the abelian

group Z3.
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3.2 Inversion

Let us consider now the isometry T : H1
H

→ H1
H
defined as

T (q) = q−1 = q
|q|2 .

The representative matrix of T is

(
0 1
1 0

)
. The only fixed point of T in H1

H
is 1. We also

notice here that in the topological closure of H1
H
(denoted by H1

H
) the points 0 and ∞ are

periodic (of period 2) for T . Furthermore T is an isometric involution2 of H1
H
. In particular

T is an inversion on S
3 which becomes the antipodal map on any copy of S2 obtained as

intersection ofS3 with a perpendicular 3-plane to the line passing through 0 and 1. Finally, this
isometry T leaves invariant the hemisphere (which is a hyperbolic 3-dimensional hyperplane)
� := {q ∈ H1

H
: |q| = 1}. Each point of � different from 1 (which is fixed by T ) is a

periodic point of T of period 2.

3.3 Composition of translations and inversion

We observe that if τb(q) := q + b, b ∈ H, then Lb := τbT has as corresponding matrix(
b 1
1 0

)
. Similarly Rb := T τb has as corresponding matrix

(
0 1
1 b

)
.

Therefore Rb is represented by interchanging the elements on the diagonal of the matrix
which represents Lb.

The order of the matrix Lb depends on b; in particular Lb has order 6 if b is ±i,±j,±k
or ±i ± j ± k and Lb has order 4 if b is ±i ± j,±j ± k or ±i ± k.

Each of the six transformations Lb with b = ±i,±j,±k, has order 6 but when restricted
to the plane Sb := {q = x1 + xii + xjj + xkk ∈ H1

H
: xα = 0 if α 
= b, 0}, with b = i, j, k

has order 3. Furthermore q0 is a fixed point for Lb = τbT with b = 0,±i,±j,±k, if and
only if q0 is a root of q2 −bq −1 = 0. If b = 0 there is only one root in H1

H
(and so only one

fixed point for T ), namely q0 = 1. If b = ±i,±j,±k, then it is easily verified that if α and
β are two roots of q2 − bq − 1 = 0, it follows that 	(α + β) = 0 or 	(α) = −	(β). Since

a root of q2 − ωq − 1 = 0 is α =
√
3
2 + b

2 (α =
√
3
2 − b

2 ) any other possible root β of the
above given equation would not sit in H1

H
. In the same way q0 is a fixed point for Rb = T τb

with b = 0,±i,±j,±k, if and only if q0 is a root of q2 + qb − 1 = 0. If b = 0 there is
only one root in H1

H
(and so only one fixed point for T ), namely q0 = 1. If b = ±i,±j,±k,

then it is easily verified that if α and β are two roots of q2 + qb − 1 = 0, it follows that

	(α) = −	(β). Since a root of q2 + qb − 1 = 0 is α =
√
3
2 − b

2 any other possible root β
of the above given equation would not sit in H1

H
.

In short, the only fixed point of Lb in H1
H
is

√
3
2 + b

2 and the only fixed point of Rb is√
3
2 − b

2 .

3.4 The Lipschitz and Hurwitz quaternionic modular group PSL(2,L)

We are now in the position of introducing the following:

2 In the following sense; T sends every point of a hyperbolic geodesic parametrized by arc length γ (s), 
passing through 1 at time 0 (i.e. such that γ (0) = 1), to its opposite γ (−s).
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Definition 3.1 The Lipschitz and Hurwitz quaternionic modular groups are the groups of
quaternionic Möbius transformations whose entries are Lipschitz and Hurwitz integers,
respectively, and which also satisfy Ahlfors conditions. They will be denoted by P SL(2,L)

and P SL(2,H), respectively.

A diagonal matrix satisfying the Ahlfors conditions has ad = 1. If |a| = 1 then a = d is
a unit. There are 8 units in the Lipschitz integers and 24 in the Hurwitz integers.

Definition 3.2 Let Lu be the group (of order 8) of Lipschitz units Lu := {±1, ±i, ±j,±k}
and let Hu be the group (of order 24) of Hurwitz units Hu := {±1, ±i, ±j,±k, 1

2 (±1 ±
i ± j ± k) : i2 = j2 = k2 = −1, ij = k}, where in 1

2 (±1 ± i ± j ± k) all 16 possible
combinations of signs are allowed.

The Lipschitz units are the elements of the non-abelian quaternion group. Moreover, its
elements are the 8 vertices of a 16-cell in the 3-sphere S3 and the 8 barycentres of the faces
of its dual polytope which is a hypercube also called 8-cell.

The Hurwitz units are the elements of a group known as the binary tetrahedral group.
Its elements can be seen as the vertices of the 24-cell. We recall that the 24-cell is a convex
regular 4-polytope, whose boundary is composed of 24 octahedral cells with six meeting
at each vertex, and three at each edge. Together they have 96 triangular faces, 96 edges,
and 24 vertices. It is possible to give an (ideal) model of the 24-cell by considering the
convex hull (of the images) of the 24 unitary Hurwitz numbers via the Cayley transformation

(q) = (1 + q)(1 − q)−1.

Definition 3.3 The subgroups U(L) and U(H) of P SL(2,H) whose elements are the diago-

nal matrices Du :=
(

u 0
0 u

)
with u a Lipschitz unit or Hurwitz unit is called Lipschitz unitary

group or Hurwitz unitary group, respectively.

The Lipschitz unitary group is isomorphic to the so called Klein-4 group which is isomorphic
to Z/2Z ⊕ Z/2Z, since ij = k. The epimorphism from units to unitary groups Hu → U(H)

given by u �→ Du has kernel {1,−1} so it is of order two. Any matrix in U(H) satisfies
the Ahlfors conditions and is an isometry which represents a rotation in H1

H
. Moreover, we

observe that the action on H1
H
of the transformation Du defines the conjugation and sends a

quaternion q ∈ H1
H
to uqu−1. If u = i, j, k it acts as a rotation of angle π fixing opposite

faces of a cube as in Fig. 3, and if u = 1
2 (±i ± j ± k) it acts as a rotation of angle 2π

3 fixing
each of its main diagonals as in Fig. 4. The axis of rotation of the transformation Du is the
vertical hyperbolic 2-plane Su = {x + yu : x, y ∈ R, x > 0}.

The group U(H) is of order 12 and in fact it is isomorphic to the group of orientation
preserving isometries of the regular tetrahedron. It clearly contains U(L) as a subgroup but
is not contained in the Lipschitz modular group P SL(2,L).

Definition 3.4 The Lipschitz affine subgroup A(L) is the group generated by the unitary
Lipschitz group U(L) and the group of translations T�H(Z). The Hurwitz affine subgroup
A(H) is the group generated by the unitary Hurwitz group U(H) and the group of translations
T�H(Z). Equivalently, for K = L or K = H,

A(K) =
{(

u ub
0 u

)
: u ∈ Ku, b ∈ �H(Z), 	(b) = 0

}

=
{(

u bu
0 u

)
: u ∈ Ku, b ∈ �H(Z), 	(b) = 0

}
.
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The Lipschitz affine subgroup A(L) is the maximal Lipschitz parabolic subgroup of
P SL(2,L).MoreoverA(L) ⊂ P SL(2,L)∩A(H). Furthermore, this subgroup leaves invari-
ant the horizontal horospheres 	(q) = x0 > 0 and also the horoball 	(q) > x0 > 0.

EvidentlyA(L) is a subgroup of P SL(2,L) and, since ij = k, it is generated by hyperbolic

isometries associated with the matrices

(
i 0
0 i

)
,

(
j 0
0 j

)
and

(
1 u
0 1

)
. In particular, since the

transformation represented by the matrix

(
u 0
0 u

)
is a rotation of angle π which keeps fixed

each point of the plane Su (the “axis of rotation”), the combination of such a rotation and the

inversion leads to a transformation represented by the matrix

(
0 u
u 0

)
with u = i, j, k. For

these trasformations the plane Su, with u = i, j, k is invariant. Both rotations and inversion
composed with a rotation of the plane leave invariant the sphere � and have 1 as a fixed
point.

We have the following properties:

(1) The inverse of a matrix

(
a b
0 d

)
∈ A(H) is the matrix

(
a−1 −a−1bd−1

0 d−1

)
∈ A(H).

(2) If we consider the group Ku of Lipschitz or Hurwitz units, then the map

A(K) → Ku ,

(
u ub
0 u

)
�→ u

is an epimorphism whose kernel is T�H(Z) =
{(

1 ω

0 1

)
: ω ∈ �H(Z)

}
.

(3) Thus we have the exact sequence

0 −→ T�H(Z) −→ A(K) −→ U(K) −→ 0

This sequence splits and the groupA(K) is the semi-direct product of T�H(Z) with U(K).
(4) The group U(L) ⊂ U(H) is a normal subgroup and we have the exact sequence

0 −→ U(L) −→ U(H) −→ Z/3Z −→ 0

Definition 3.5 Let Û(L) and Û(H) be the maximal subgroups of P SL(2, L) and P SL(2, H) 
respectively which fix 1.

We have the following proposition since T 2 = I and T commutes with all of the elements 
of U(L) and U(L).

Proposition 3.6 The groups Û(L) and Û(H) are the subgroups generated by T and U(L) 
and T and U(H), respectively. Moreover, Û(L) = Z/2Z⊕U(L) and Û(H) = Z/2Z⊕U(H).

The following fundamental theorem gives the description of the quaternionic modular groups 
with generators and relations.

Proposition 3.7 The Lipschitz modular group is generated by the inversion T and the trans-
lations T�H(Z). The Hurwitz modular group is the group generated by the inversion T , by the 
translations T�H(Z) and by U(H).

Proof Let A ∈ P SL(2, H(Z)) satisfy Ahlfors conditions. Let q = A(1) and S ∈ P SL(2, L) 
be such that p := S(q) ∈ P . Then (S A)(1) = p and by 4.6 it follows that S A  ∈ A(L). 
Hence A ∈ A(L) ⊂ P S L (2, L). ��
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Proposition 3.8 The group P SL(2,L) is a subgroup of index three of the group P SL(2,H).

Proof This is so since the order of the group of transformations induced by the diagonal
matrices with entries in the Lipschitz units is of index three in the group of transformations
induced by diagonal matrices with entries in the Hurwitz units. ��
Remark 3.9 The groups P SL(2,L) and P SL(2,H) are discrete isometric groups of H1

H

so they are 4-dimensional hyperbolic Kleinian groups in the sense of Henri Poincaré (see
[16,17] and [21]).

4 Fundamental domains

Given a group �� acting continuously on a metric space �, we say that a subset D of � is
a fundamental domain for �� if it contains exactly one point from each of the images of a
single point under the action of �� (the so called orbits of ��). Typically, a fundamental
domain is required to be a convex subset with some restrictions on its boundary, for example,
smooth or polyhedral. The images of a chosen fundamental domain under the group action
then tessellate the space �.

In this paper we’ll mainly deal with groups of matrices whose entries are quaternions and
therefore acting on quaternionic hyperbolic spaces; we then investigate their fundamental
domains and the corresponding quotient spaces.

4.1 A quaternionic kaleidoscope

We begin with the ideal convex hyperbolic polytopeP with one vertex at infinity which is the
intersection of the half-spaces which contain 2 and which are determined by the hyperbolic
hyperplanes � := {q ∈ H1

H
: |q| = 1} and �±n/2 := {q = x0 + x1i + x2j + x3k : xn =

±1/2}. The only ideal vertex ofP is the point at infinity. The (non ideal) vertices ofP are the
eight points 1

2 (1± i± j±k)which are the vertices of a cube C = {q = x0+x1i+x2j+x3k ∈
H1

H
: |q| = 1, |xn | ≤ 1/2, n = 1, . . . , 3} (Fig. 2).

The polytope P has seven 3-dimensional faces: one compact cube C and six pyramids
with one ideal vertex at ∞ as their common apex and the six squares of the cube C as
their bases. Moreover P has 20 2-dimensional faces (6 compact squares and 12 triangles
with one ideal vertex) and 20 edges (12 compact and 8 with one ideal vertex). The convex
polytopeP satisfies the conditions of the Poincaré’s polyhedron theorem, therefore the group
generated by reflections on the faces of P is a discrete subgroup of hyperbolic isometries of
H1

H
. We denote this subgroup by G(3). The index-two subgroup generated by composition

of an even number of reflections has as fundamental domain the convex polytope P ∪ T (P).
This subgroup of P SL(2,H(Z)) which consists of orientation-preserving isometries will be
denoted byG(3)+.Wewill see below thatP can be tessellated by four copies of a fundamental
domain of the action of P SL(2,L) and by twelve copies of a fundamental domain of the
action of P SL(2,H) on H1

H
. The quotient space H1

H
/G(3) is a quaternionic kaleidoscope

which is a good non-orientable orbifold. Since the polytope P is of finite volume the non-
orientable orbifold obtained is finite and has the same volume. If we imagine we are inside
H1

H
/G(3) for a moment and open our eyes we see 4-dimensional images very similar to the

3-dimensional honeycombs of Roice Nelson of the Fig. 6.
The orientable orbifold H1

H
/G(3)+ is obtained from the double pyramid P ∪ T (P) by

identifying in pairs the faces with an ideal vertex at infinity with corresponding faces with
an ideal vertex at zero. These 3-dimensional faces meet at the square faces of the cube C in

9
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Fig. 2 Schematic picture of the chimney which is the fundamental domain of the parabolic group T�H(Z)

(generated by the translations τi, τj and τk), the polytope P and the polytope P and its inversion T (P). The  
horizontal plane represents the purely imaginary quaternions that forms the ideal boundary ∂H1

H and above it 
the open half-space of quaternions with positive real part H1

H

� and they are identifying in pairs by a rotation of angle 2π/3 around the hyperbolic plane 
that contains the square faces. The underlying space is R4 and the singular locus of OG(3)+ 
is a cube. This group is generated by the six rotations of angle 2π/3 around the hyperbolic 
planes that contain the square faces of the cube C (Fig. 2).

4.2 Fundamental domains and orbifolds for translations and for the inversion

We recall that a fundamental domain of the parabolic group T�H(Z) (generated by the trans-
lations τi, τj and τk) is the infinite-volume convex hyperbolic chimney with one vertex at 
infinity which is the intersection of the half-spaces which contain 2 and which are determined 
by the set of six hyperbolic hyperplanes �n , where n = ± i , ± j , ± .

The hyperbolic 4-dimensional orbifold MT�H(Z) is a 2-cusped manifold which is an infinite 
volume cylinder on the 3-torus T3 with one cusp (an end of finite volume) and one tube (an 
end of infinite volume). We can write MT�H(Z) = T3 × R.

The fundamental domain of the inversion T is closed half-space whose boundary is the 
hyperbolic hyperplane �.

The hyperbolic 4-dimensional orbifold MT has a unique singular point and it is homeo-
morphic to the cone over the real projective space P3

R
.

4.3 Fundamental domain of PSL(2, L)

Since the quaternionic modular group P SL(2, L) is generated by T�H(Z) and the inversion 
T , we can choose a fundamental domain which is totally contained in P .

The finite Lipschitz unitary group U(L) acts by rotations of angle π around the three 
hyperbolic 2-planes generated by 1 and u where u = i, j or k. We divide the cube C in 
eight congruent cubes by cutting it along the coordinate planes. Then P is divided in eight 
congruent cubic pyramids. We label the cubes with two colors as a chessboard (see [9]).

An element of the finite unitary Lipschitz group identifies four cubes (two white cubes 
and two black ones) with other four cubes (two white and two black) preserving the colors.

A fundamental domain for P SL(2, L) can be taken to be the union of two cubic pyramids 
with bases two of the cubes described in the previous paragraph, one white and one black 
and with a common vertex at the point at infinity. We can choose adjacent cubes to obtain a 
convex fundamental domain but this is not necessary to have a fundamental domain.

The inversion T acts by identifying each white cube with a diametrally opposite black one 
in �. Then a fundamental domain for P S L (2, L) is the union of two cubic pyramids in P .

10



Fig. 3 Left: The action of U (L)

on the cube C. Right: The two
hyperbolic cubes C1 and C2 in C
which are the bases of a
fundamental domain PL of
P SL(2,L)

See Fig. 3. Below we describe other fundamental domains which are more suitable to study
the isotropy groups and the tessellation in H1

H
around singular points.

Definition 4.1 Let C1 and C2 be the two hyperbolic cubes in C which contain the vertices
1
2 (1 + i + j + k) and 1

2 (1 − i − j − k), respectively.
LetPL be the union of the two hyperbolic cubic pyramids with vertex at infinity and bases

the two cubes C1 and C2.

Remark 4.2 The elements in PL are the points q = x0 + x1i + x2j + x3k in P such that the
real numbers xn have the same sign for all n = 1, 2, 3.

4.4 Fundamental domain of PSL(2,H)

We recall that P SL(2,H) is generated by the parabolic group of translations T�H(Z), the
inversion T and the unitary Hurwitz group U(H). From our previous descriptions of the
fundamental domains of the group of translations and the group of order 2 generated by T
we know that the fundamental domain of P SL(2,H) is commensurable with P , the pyramid
over the cube C. More precisely, P is invariant under U(H) and therefore the fundamental
domain of P SL(2,H) is the fundamental domain inP of the action of U(H) onP . Moreover,
as U(L) ⊂ U(H) we have that the fundamental domain of P SL(2,H) is a subset of the
fundamental domain PL of the action of P SL(2,L). Furthermore, since U(L) is a subgroup
of U(H) of index three then we have that PH is a third part of PL.

Let u ∈ Hu, then Du ∈ U(H) is induced by a diagonal matrix and acts as follows: q �→
uqu−1 = uqu. If u is a Hurwitz unit which is not a Lipschitz unit (i,e. u = 1/2(1± i±j±k))

then the matrix Du is of order three and geometrically is a rotation of angle 2π/3 around the
diagonal of C which contains u or −u, but only one has a positive real part and then is in
H1

H
. As Du = D−u we can suppose that 	(u) = 1/2. One has D2

u = Du2 = D1−u (since
	(u) = 1/2 > 0, 1 − u is Hurwitz unit and 	(u) = 	(1 − u) > 0).

The group of Hurwitz units U(H) acts transitively on the edges of C. Therefore a funda-
mental domain can be determined by the choice of one edge of C. Hence a convex fundamental
domain is the pyramid with vertex at infinity with base the hyperbolic convex polyhedron
with vertices the two end points of the edge, the two barycenters of the square faces that
have the edge in common and 1. However we choose as a fundamental domain a non-convex
polyhedron (Fig. 4).

Definition 4.3 LetP1 andP2 be the twohyperbolic 3-dimensional square pyramids inC1 ⊂ C
and C2 ⊂ C, respectively, with apex 1 and which have as bases the squares in the boundary
of C with sets of vertices

11



Fig. 4 Left: The action of U (H)

in the cube C. Right: the bases of
the fundamental domain of
P SL(2,H). The two hyperbolic
pyramids P1 and P2 in C which
are the bases of a fundamental
domain PH of P SL(2,H)

S :=
{
v1 = 1

2
(1 + i + j + k) , v2 = 1

2

(√
2 + i + k

)
, v3 = 1

2

(√
2 + j + k

)
,

v4 = 1

2

(√
3 + k

)}

and T ({S}) := (T (v1), T (v2), T (v3).T (v4)), respectively.
Let PH be the union of the two hyperbolic 4-dimensional pyramids with vertex at infinity

and bases the two hyperbolic 3-dimensional pyramids P1 and P2.

4.5 Proof that PL and PH are fundamental domains

We start from the following important lemma:

Lemma 4.4 Let γ ∈ P SL(2,H) satisfy Ahlfors conditions. If q ∈ H1
H

, then

	(γ (q)) = 	(q)

|qc + d|2 (2)

Proof We recall that if q ∈ H1
H
the action of γ in H1

H
is given by the rule

γ (q) = (aq + b)(cq + d)−1 = (aq + b)(qc + d)

(
1

|qc + d|2
)

.

Suppose c 
= 0, then:

c−1γ (q)c = c(aq + b)(cq + d)−1c/|c|2
= (caq + cb) (cq + d)−1 c/|c|2
= (−acq + 1 − ad) (cq + d)−1 c/|c|2
= (1 − a(cq + d)) (cq + d)−1 c/|c|2
= (cq + d)−1 c/|c|2 − ac/|c|2

=
(
qc + d

)
c

|cq + d|2|c|2 − ac

|c|2

= q
|cq + d|2 + dc

|cq + d|2|c|2 − ac

|c|2 .

Since 	(q) = 	(wqw−1) for any invertible quaternion, and 	(dc) = 	(ac) = 0, we have

	(γ (q)) = 	 (
c−1γ (q)c

) = 	(q)

|cq + d|2 .
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We notice that if one restricts the entries of the matrices to the set H(Z) or Hur , then there
are only a finite number of possibilities for c and d in such a way that |qc + d| is less than a
given number; therefore we obtain the following important

Corollary 4.5 For every q ∈ H one has

sup
γ∈P SL(2,L)

	(γ (q)) < ∞ and sup
γ∈P SL(2,H)

	(γ (q)) < ∞.

With the geometric tools so far introduced we can establish the following:

Theorem 4.6 The fundamental domainsPL andPH for the actions of the groups P SL(2,L)

and P SL(2,H), respectively, have the following properties:

(1) for every q ∈ H1
H

there exists γ ∈ P SL(2,L) (resp. P SL(2,H)) such that γ (q) ∈ PL

(resp. PH).
(2) If two distinct points q, q′ of PL (resp. PH) are congruent modulo P SL(2,L) (resp.

P SL(2,H)); i.e. if there exists γ ∈ P SL(2,L) (resp. P SL(2,H)) such that γ (q) = q′,
then q, q′ ∈ ∂PL (resp. PH). If |q| > 1 then γ ∈ A(L) (resp. A(H)). If |q| = 1 then
γ ∈ A(L) (resp. A(H)) or γ = AT where T is the usual inversion and A ∈ A(L) (resp.
A(H)).

(3) Let q ∈ PL (resp. PH) and let Gq = {g ∈ P SL(2,L)} (resp. P SL(2,H)) be the
stabilizer of q in P SL(2,L)} (resp. P SL(2,H)) then Gq = {1} if q 
= ∂PL (resp.
∂PH).

Proof This is essentially a construction of a fundamental domain from the Ford domain.
The Ford domain is the exterior of all isometric spheres. In other words, it consists of all
points which maximize the real part within an orbit. Of course this maximum is attained
for infinitely many points, all related by the stabilizer of 1. So intersecting the Ford domain
with a fundamental domain for the stabilizer of 1 gives a fundamental domain. Indeed, one
can use a quaternionic version of the continued fraction algorithm to bring any quaternion
with positive real part into this domain by successively applying inversions and translation
maps (see [12] and [24]). Let q ∈ H1

H
. By corollary 4.6 there exists γ ∈ P SL(2,L) (resp.

P SL(2,H)) such that 	(γ (q)) is maximum. There exists (n1, n2, n3) ∈ Z
3 such that the

element q′ = τ
n1
i τ

n2
j τ

n3
k γ (q) is of the form q′ = x0 + x1i + x2j + x3k where |xn | ≤ 1

2 , n =
1, 2, 3. Then q′ is an element of the fundamental domain of the parabolic group T�H(Z).

If |q′| < 1, then the element T q′ = (q′)−1 has real part strictly larger than 	(q′) =
	(γ (q)), which is impossible. Then we must have |q′| ≥ 1, and q′ ∈ P . This shows that
given any q ∈ H1

H
there exists γ ∈ P SL(2,L) (resp. P SL(2,H)) such that γ (q) ∈ P . We

remember that the elements in PL are the points q = x0 + x1i + x2j + x3k in P such that the
real numbers xn have the same sign for all n = 1, 2, 3. The action of an element Du, with
u = i, j, k, in the unitary Lipschitz group U(L) has the property of leaving invariant x1 and
xn and changing the signs of the other two coefficients. The action of an element Du, with
u = 1

2 (±1 ± i ± j ± k), in the unitary Hurwitz group U(H) has the property that it rotates
multiples of 2π/3 the cells of YH around the diagonal passing through u and −u of the cube
C. Then we can use one element in U(L) to have a point q′′ of the orbit of q ∈ PL. In the
Hurwitz case we can use one element in U(H) to have a point q′′ of the orbit of q ∈ PH.
This proves (1). In others words, the orbit of any point q ∈ H1

H
under the action of the group

P SL(2,L) (resp. P SL(2,H)) has a representative in PL (resp. PH).

Let q ∈ PL (resp. PH) and let γ =
(

a b
c d

)
∈ P SL(2,L) (resp. P SL(2,H)) such that

γ 
= I, where I is the identity matrix in P SL(2,H) and γ (q) ∈ PL (resp. PH). We can

13



suppose that	(γ (q)) ≥ 	(q), i.e. |cq+d| ≤ 1. This is clearly impossible if |c| ≥ 1, leaving
then the cases c = 0 or |c| = 1.

(I) If c = 0, we have |d| = 1 and Ahlfors conditions imply that ad=1 and bd + db = 0.
There are two cases:

(I.1) If d = 1, then a = 1 and 	(b) = 0. Then

γ =
(
1 b
0 1

)

where b = bi i + bj j + bk k. If q = x1 + xi i + xj j + xk k ∈ PL then

γ (q) = q′ = x1 + (xi + bi)i + (xj + bj)j + (xk + bk )k ∈ PL, and

(I.1.1) If |b| = 1 then b = ±i,±j,±k; and q = r − b
2 , where r ≥

√
3
2 . Then q is on

the vertical geodesic that joins a barycenter of a square face of the cube C in the
base of P with the point at infinity ∞ and so q, q′ ∈ ∂PL.

(I.1.2) If |b| = 2 then b = ±i ± j,±i ± k,±j ± k; and q = r − b
2 , where r ≥ 1√

2
.

Then q is on the vertical geodesic that joins the middle point of an edge of the
cube C with the point at infinity ∞ and so q, q′ ∈ ∂PL.

(I.1.2) If |b| = 3 then b = ±i ± j ± k; and q = r − b
2 , where r ≥ 1

2 . Then q is on the
vertical geodesic that joins a vertex of the cube C with the point at infinity and
so q, q′ ∈ ∂PL.

(I.2) If d 
= 1 then d = a, |a| = 1 and there are two subcases:
(I.2.1) If b = 0 then

γ =
(

a 0
0 a

)
.

Then q is on the hyperbolic plane generated by 1 and a and so q ∈ ∂PL.
(I.2.2) If b 
= 0, then 	(b) = 0, |b| = 1 hence b = ±i,±j,±k, but b 
= a. Then

γ =
(

a b
0 a

)
.

Then q is on the hyperbolic plane generated by 1 and a and so q ∈ ∂PL.

(II) If c 
= 0, as |q| ≥ 1 then d = 0. As |cq| ≤ 1 then |c| = |q| = 1. Then q ∈ ∂PL.
Ahlfors conditions imply that bc = 1 and ac + ac = 0.

(II.1) If c = 1, then b = 1 and 	(a) = 0. Then

γ =
(

a 1
1 0

)
.

(II.2) If c 
= 1, then c = ±i,±j,±k and b = c. Moreover a = 0 or |a| = 1 and	(ac) = 0.
Then

γ =
(

a c
c 0

)
.

To prove (3) suppose that q ∈ Interior(PL). Let γ be such that γ (q) = q. Then there exist 
ε > 0 such that q + ε and γ (q + ε) ∈ Interior(PL). But then by (2) q + ε and γ (q + ε) are 
in ∂PL that is a contradiction. The same proof applies to show that points in Interior(PH) 
have trivial isotropy group. ��
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Fig. 5 The Coxeter
decomposition into 48 tetrahedra
of a cube in the Euclidean 3-space

If we use the group P SL(2,L) to propagatePL we obtain a tessellation ofH1
H
that we denote

by YL. The intersection of PL and YL with each of the totally geodesic planes Si, Sj, Sk,
where Su := {q = x1 + xi i + xj j + xk k ∈ H1

H
: xs = 0 if s 
= u, 0}, with u = i, j, k,

gives a copy of the closure of a (non-convex) fundamental domain of P SL(2,Z) and the
associated tessellation in the half-space model of H2

R
. Indeed, it is worth noticing here that

Su is an invariant set for Ru, Lu and τu (u = i, j, k); therefore the intersection of PL and
YL with each of the 3-dimensional totally geodesic hyperbolic 3-spaces Sij, Sjk, Sik, where
Slm := {q = x1 + xi i + xj j + xk k ∈ H1

H
: xs = 0 if s 
= l, m, 0}, with l, m = i, j, k, gives a

copy of the closure of the classical fundamental domain (and the tessellation generated by it)
of the Picard group P SL(2,Z[i]) for the Gaussian integers acting on the half-space model
of H3

R
(see [21]).

4.6 Coxeter decomposition

Let A, B, C, D be the barycenters of the k−faces of a flag in the hyperbolic cube C. For
example, A = 1, B = 1

2 (
√
3 + i), C = 1√

2
+ 1

2 (i + j) y D = 1
2 (1 + i + j + k), as in the

Fig. 5. Let � be the non-compact hyperbolic 4-simplex whose five vertices are A, B, C, D
and ∞. The orthogonal projection of � on the ideal boundary of H1

H
is the 3-dimensional

Euclidean tetrahedron �(4, 3, 4). Therefore we can identify � with the Coxeter 4-simplex
�(3, 4, 3, 4) (see [8]).

Let [3, 4, 3, 4] be the hyperbolic Coxeter group generated by reflections on the sides of
�. In [16] we found that P SL(2,L) is isomorphic to the Coxeter group [3, 4, 3∗, 4]+ and
P SL(2,H) is isomorphic to the Coxeter group [3, 4, 3+, 4]+ which is a semidirect product of
[3, 4, 3∗, 4]+ and the automorphism group C3. We have the following indices:

[[3, 4, 3, 4] :
P SL(2,H)

] = 4,
[[3, 4, 3, 4] : P SL(2,L)

] = 12 and [P SL(2,H) : P SL(2,L)] = 3.
Moreover they give presentations for these groups (see [16] and [21]).

The union of the 48 simplexes asymptotic at ∞ and isometric to � with bases in the
cube C is P . The Lipschitz fundamental domain PL is obtained as the union of 12 simplexes
asymptotic at ∞ and isometric to � with bases in the two cubes C1 and C2. The Hurwitz
modular domain PH is obtained as the union of 4 simplexes asymptotic at ∞ and isometric
to � since P SL(2,L) is a subgroup of index 3 of P SL(2,H).

Finally, applying 24 × 48 = 1152 elements of the group [3, 4, 3, 4] to � we obtain an
union of isometric copies of P that forms a 24-cell which is a cell of the regular hyperbolic
honeycomb {3, 4, 3, 4}. See Fig. 6.

The group of symmetries of the 24-cell is of order 24 × 48 = 1152. One knows from
[23] that the volume of the hyperbolic right-angled 24-cell is 4π2/3, therefore the volume
of �L is (π2/864). Then, the volume of PL is 12(π2/864) = π2/72 and the volume of PH

is 4(π2/864) = π2/216.
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Fig. 6 The 24-cell {3, 4, 3} and the hyperbolic honeycomb {3, 4, 4}. This figure is courtesy of Roice Nelson
[13]

5 The Lipschitz and Hurwitz quaternionic modular orbifolds

In this section we study the geometry of the quaternionic modular orbifolds related to the
action of the quaternionic modular groups P SL(2,L) and P SL(2,H). We describe the ends,
the underlying spaces and the singular loci of the quaternionic modular orbifolds. Moreover
we give the local models of these singularities and the local isotropy groups. Finally we
compute their orbifold Euler characteristic.

Definition 5.1 Let O4
L := H1

H
/P SL(2,L) and O4

H := H1
H
/P SL(2,H) be the Lipschitz

quaternionic modular orbifold and the Hurwitz quaternionic modular orbifold, respectively.

These quaternionic modular orbifolds are hyperbolic non-compact real 4-dimensional
orbifolds of finite hyperbolic volume. Both have only one end and their singular loci has one
connected component that accumulates to the cusp at infinity.

Moreover, these orbifolds are diffeomorphic to the quotient spaces of their fundamental
domainsPL andPH by the action of the modular groups P SL(2,L) and P SL(2,H) on their
boundaries ∂PL and ∂PL, respectively. Then they have the same volume as PL and PH,
respectively. These volumes are π2/72 and π2/216, respectively.

Each of the quaternionic modular orbifolds O4
L and O4

H has only one end because PL

and PH have each one end. We study the structure of the ends and we start by describing
the sections of their ends and the thin and thick regions in the sense of Margulis thin-thick
decomposition, see [22] pp. 654–665.

5.1 The sections of the ends and the thin regions of O4
L and O4

H

For r > 1wedenote byE3
r thehorosphere centered at the point at infinity inH1

H
which consists

of the set of points in H1
H
which have real part equal to r . Then E3

r with the induced metric of
H1

H
is isometric to the Euclidean 3-space. The affine modular groupsA(L) andA(H) are the

maximal subgroups of P SL(2,L) and P SL(2,H) that leave invariant each horospheres E3
r

for any r > 0. Moreover A(L) and A(H) are isomorphic to discrete subgroups of Euclidean 
orientation-preserving isometries of Er

3.
The fact that P SL(2, L) is a subgroup of index 3 of P SL(2, H) implies the existence of 

an epimorphism π : A(H) → A(L) with kernel Z/3Z.
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We call E3
r,L and E3

r,H the intersections of the fundamental domains of the quaternionic

modular groups P SL(2,L) and P SL(2,H) with E3
r , respectively. Then E3

r,L and E3
r,H are

hyperbolic subsets of H1
H
with finite volume which are isometric to Euclidean 3-dimensional

polyhedra. In the Lipschitz case it consists of a pair of cubes which are symmetric with
respect to the point r , where r ∈ R∩ ∂E3

r,L. In the Hurwitz case it consists of a pair of square

pyramids in E3
r,H symmetric with respect to the point r ∈ R ⊂ H. The orthogonal projections

into the ideal boundary of H1
H
of E3

r,L and E3
r,H are the same as the orthogonal projections of

PL and PH. There is covering map πE : E3
r,L → E3

r,H which is three to one.

LetS3
r,L := E3

r /A(L) andS3
r,H := E3

r /A(H). These areEuclidean3-dimensional orbifolds
of finite hyperbolic volume (see [7]). A pair of fundamental domains for the actions of the
corresponding affine groups on E3

r are the polyhedra E3
r,L and E3

r,H, respectively.

The actions of the restrictions of P SL(2,L) and P SL(2,H) on the boundaries ∂E3
r,L and

∂E3
r,H, respectively give side-pairings of E3

r,L and E3
r,H. The quotients of the side-pairing in

E3
r,L and E3

r,H are diffeomorphic to S3
r,L and S3

r,H, respectively.

There is an orbifold covering map πS : S3
r,L → S3

r,H which is three to one.

A convenient description of these Euclidean orbifolds is as follows: let T3 =
{(z1, z2, z3) ∈ C

3 : |z1| = |z2| = |z3| = 1} = S
1 × S

1 × S
1 be the 3-torus with

its standard flat metric. The group of orientation–preserving isometries of T3 generated by
the transformations FT , Fω, Fi, Fj, Fk given by the formulas: FT (z1, z2, z3) = (z1, z2, z3),
Fω(z1, z2, z3) = (z2, z3, z1), Fi(z1, z2, z3) = (z1, z2, z3), Fj(z1, z2, z3) = (z1, z2, z3) and
Fk := Fj Fi, is isomorphic to the group Û(H) generated by T and U(H). The group Û(H) has
as subgroups Û(L), U(H) and U(L). These subgroups are generated by the sets of transfor-
mations {FT , Fi, Fj, Fk}, {Fω, Fi, Fj, Fk}, {Fω, Fi, Fj, Fk} and {Fi, Fj, Fk}, respectively.

For r > 0, T3 × {r}/〈Fi, Fj, Fk〉 is homeomorphic to the Euclidean 3-orbifold S3
r,L.

As a topological space it is homeomorphic to the 3-sphere S
3. On the other hand T3 ×

{0}/〈FT , Fi, Fj, Fk〉 is homeomorphic to the closed 3-ball B3.
Let [(z1, z2, z3)] denote the equivalence class of orbits under the transformations

FT , Fω, Fi, Fj, Fk.
There exists a strong deformation retract ofO4

L andO4
H to the Euclidean 3-orbifolds S3

2,L

andS3
2,H, repectively. In fact, as a topological spaceO

4
L := H1

H
/P SL(2,L) is homeomorphic

to T3 × [0,∞)/ ∼, where T3 = {(z1, z2, z3) ∈ C
3 : |z1| = |z2| = |z3| = 1} and ∼ is

the equivalence relation given by the orbits of the action of some groups of diffeomorphisms
of T3 generated by the set and subsets of elements FT , Fi, Fj, Fk. Moreover T3 × {r}/� is
homeomorphic to S3 for r > 0 and T3 × {0}/� is homeomorphic to B3.

The underlying spaces of the 3-dimensional Euclidean orbifolds S3
r,L and S3

r,H are home-

omorphic to the 3-sphere S3 because they are obtained by pasting two 3-dimensional balls
along their boundaries which are 2-dimensional spheres.

The singular loci of the 3-dimensional Euclidean orbifolds S3
r,L and S3

r,H are the 1-
skeletons of their fundamental domains divided by the actions of the corresponding groups.
Thus, their singular loci are the two graphs which are the 1-skeleton of a cube and the graph
in the Fig. 7, respectively. All edges of the singular locus of S3

r,L are labeled by 2. The labels

of the edges of the singular locus of S3
r,H are showed in the Fig. 7.
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Fig. 7 The singular locus of the
Hurwitz cusp section S3

r,H

5.1.1 The singular locus of the Lipschitz cusp section

All the isotropy groups of the vertices in the fundamental domain of S3
r,L are isomorphic to

U(L). All the isotropy groups of points in the edges of the fundamental domain of S3
r,L are

isomorphic to Z/2Z. The isotropy groups of the 6 open 2-dimensional faces and two open
3-dimensional faces are trivial. The orbifold S3

r,L has 8 vertices, 12 edges, 6 square faces and
two cubic 3-dimensional faces.

The orbifold Euler characteristic of S3
r,L is 8( 14 ) − 12( 12 ) + 6− 2 = 0. For the definition

of orbifold Euler characteristic we refer to [11].

5.1.2 The singular locus of the Hurwitz cusp section

For S3
r,H there are vertices in the fundamental domain E3

r,H of S3
r,H with different isotropy

groups : U(L) of order four and U(H) of order 12. Also the edges have three types of isotropy
groups: the trivial group, the group Z/2Z and Z/3Z. The center r and the vertices r + i+j+k

2

and r + −i−j−k
2 of the cubes E3

r,H have isotropy groups isomorphic to U(H). The points r + k
2 ,

r − k
2 and r + i+k

2 , r + −i−k
2 and r + j+k

2 and r + −j−k
2 have isotropy groups isomorphic to

U(L).
The points in the edges of E3

r,H with have r as a vertex and the points r + i+j+k
2 and

r + −i−j−k
2 as second vertex have isotropy groups isomorphic to Z/3Z. The points in the

edges of E3
r,H with have r as a vertex and the points r + j−k

2 , r + i−k
2 , r + −j+k

2 , r + −i+k
2

as second vertex have trivial isotropy groups. All the points in the other edges of E3
r,H have

isotropy groups isomorphic to Z/2Z. The isotropy groups of the 5 open 2-dimensional faces
and of the two open 3-dimensional faces are trivial. The orbifold S3

r,L has 4 vertices, 7 edges,
4 triangular faces and one square face and two 3-dimensional faces.

The orbifold Euler characteristic of S3
r,H is 2( 1

12 ) + 2( 14 ) − 1− 2( 13 ) − 4( 12 ) + 5− 2 = 0.

Remark 5.2 As it is expected, the orbifoldEuler characteristics of bothS3
r,L andS3

r,H vanishes
since both orbifolds are compact and Euclidean.

5.1.3 The structure of the ends

The family of Euclidean orbifolds S3
r,H consists of orbifolds which are homothetic for all

r > 1. The Euclidean volume VH(r) decreases exponentially to 0 as r → ∞. The same is
true for the family S3

r,L, r > 1 and the corresponding volume VL(r), since VL(r) = 3VH(r).

The thin parts are open cylinders on the sections S3
r,L and S3

r,H, respectively. More pre-

cisely, S3
r,L and S3

r,H separateO4
L andO4

H, respectively, into two connected components with
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boundaries S3
r,L and S3

r,H, respectively. One of the components is compact and the other is
non-compact but with finite hyperbolic volume. Using Margulis notation the compact part
is the thick region and the non-compact part is the thin region of the corresponding orb-
ifolds. The thin regions are the non-compact orbifolds diffeomorphic to half-open cylinders
Z4

r,L := S3
r,L × [0, 1) and Z4

r,H := S3
r,H × [0, 1), respectively. There is an orbifold cover

πZ : Z4
r,L → Z4

r,H which is three to one.

5.2 The thick regions and underlying spaces of O4
L and O4

H

Each of the underlying spaces of the 4-dimensional orbifolds O4
L and O4

H has only one end.
The sections of the ends are 3-dimensional Euclidean orbifolds S3

r,L and S3
r,H which each of

their underlying spaces is homeomorphic to the 3-sphere S3. Then the thin regions ofO4
L and

O4
H are homeomorphic to the 4-ball D4 minus one point for example in its center. Moreover

each of the thick regions of O4
L and O4

H is homeomorphic to the 4-ball D4.
Then each of the underlying spaces of O4

L and O4
H is homeomorphic to the 4-sphere S4

minus one point thus each of the underlying spaces is homeomorphic to R4.

5.3 The singular locus of O4
L and O4

H

The 3-dimensional faces of PL and PH are identified in pairs by the action of the generators
of the Lipschitz and Hurwitz modular groups, respectively. We denote by �L and �H the
singular loci ofO4

L andO4
H, respectively. They are the 2-dimensional skeletons of their fun-

damental domains PL and PH. Then each singular locus is non-compact with one connected
component.

The Lipschitz singular locus�2
L is the union of a 2-dimensional cube C� which is obtained

by identifying the boundaries of the cubes C1 and C2 in C ⊂ � by the action of the group
Û(L) and the non-compact cone over its 1-skeleton of the 2-dimensional sides of PL which
are asymptotic to the point at infinity.

The Hurwitz singular locus �2
H is the union of the 2-dimensional pyramid P� which

is obtained by identifying the boundaries of the union of the two pyramids P1 and P2 in
C1, C2 ⊂ C ⊂ � by the action of the group Û(H) and the non-compact cone over its 1-
skeleton of the 2-dimensional sides of PH that are asymptotic to the point at infinity.

5.4 Local models of the modular orbifolds singularities

In this section we study the local models of the isolated singularities of O4
L and O4

H.
The local models of the isolated singularities of O4

L and O4
H are obtained as quotients

of a hyperbolic 4-ball B4 by the action of a discrete subgroup of hyperbolic isometries
which fix its center and its boundary which is a 3-sphere. Let F0 ⊂ FB be the subgroup of
hyperbolic isometries of the hyperbolic ball which fix the center of B. Then F0 is the group of
orientation-preserving isometries of the 3-sphere S3. The group F0 is isomorphic to SO(4).

Let B4 ⊂ H denote, as before, the disk model of H1
H
.

The ideal boundary of B4 is the unitary 3-sphere S3 = {
q = α + βj ∈ H1

H
: α, β ∈ C,

|α|2 + |β|2 = 1
}
.
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Let SU(2) =
{(

α −β

β α

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
be the unitary special group. The

3-sphere is a Lie group isomorphic to SU(2). An element q = α + βj ∈ S
3 corresponds to

the element

(
α −β

β α

)
in SU(2).

We define

f(u,v) : B4 → B4;
f(u,v)(q) �→ uqv

where |u| = |v| = 1.We observe that f(u,v) ∈SO(4) and (u, v) ∈ S
3×S

3 = SU(2)×SU(2).
We introduce

ε

φ : SU(2) × SU(2) → SO(4);
(u, v)  �→ f(u,v).

Since SU(2) × SU(2) is simply connected but the fundamental group of SO(4) is Z/2Z 
then the kernel of φ is the group with two elements consisting of (1, 1) and ( 1, 1).

There is an orthogonal action of S3 × S3 on S3 given by q �→ q1
−1qq2, f

−
or  a fi

−
xed pair  (q1, q2) ∈ S3×S

3. This defines a homomorphism of Lie groups S3×S
3 → SO(4) with kernel 

Z/2Z generated by (−1, −1). Then SO(4) is isomorphic to the central product S3 ×Z/2Z S
3. 

The finite subgroups of SO(4) are, up to conjugation, exactly the finite subgroups of the 
central products of two binary polyhedral groups G1 and G2

G1 ×Z/2Z G2 ⊂ S3 ×Z/2Z S
3.

The finite subgroups of SU (2) have been classified by Felix Klein in [18] and they  are  
the cyclic groups of order n (n > 1)), the binary dihedral groups 〈2, 2, n〉 of order 4n, the  
binary tetrahedral group 〈2, 3, 3〉 of order 24, the binary octahedral group 〈2, 3, 4〉 of order 
48 and the binary icosahedral group 〈2, 3, 5〉 of order 120. These are the binary polyhedral 
groups. Let  � be a finite subgroup of F0. Let r > 0 and Br

4 be the hyperbolic ball centered at 
the origin of radius r . The ball Br

4 is invariant under the action of �. Let O4(�, r) = B4
r /�. 

For every r > 0 the orbifold O4(�, r) = B4
r /� is equivalent, up to rescaling the orbifold 

metric, to a fixed B4
ε/� for ε sufficiently small. Let O4(�) = B4

ε/�.

Definition 5.3 Let p and q be two integers. Let �( p, q) ⊂ SU (2) be the abelian subgroup 
generated by the map Tp,q (z1, z2) = (e2π i/ pz1, e2π i/q z2). The group �( p, q) is isomorphic 
to Z/ pZ ⊕ Z/qZ. Let us denote by O( p, q) the orbifold O4(�( p, q), ε) = B4

ε/�( p, q). If  
�(G1, G2) ⊂ SO(4) is a finite subgroup isomorphic to G1 ×Z/2Z G2, where  G1 and G2 are 
the binary polyhedral groups then we denote by O(G1, G2) the orbifold B4/ �(G1, G2). If  
Gk = Z/ pZ, where k = 1, 2, then we write p in the place of Gk in the notation O(G1, G2). 
If Gk = Z/ pZ ⊕ Z/qZ, where  k = 1, 2, then we write ( p, q) in the place of Gk in the 
notation O(G1, G2).

5.5 Singular locus of the Lipschitz and Hurwitz modular orbifolds

We give the local groups and the local models of the singular points in the locus of the Lipschitz
and Hurwitz modular orbifolds O4

L and O4
H, respectively. We also give a presentation, a 

fundamental domain, a Cayley graph and a thorough study of its spherical 3-orbifold link for
each group related to singular points in the singular loci of O4

L and O4
H, respectively.

We can describe orbifold stratifications of the set of singular points of O4
L and O4

H accord-ing to their isotropy groups. The lists of types of singular points and their corresponding
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isotropy groups can be divided into two types of strata: the compact and the non compact.
Also in these twogroupswecandivide the strata according to the dimensionof the correspond-
ing stratum in the stratification. We give a list of points in 11 strata in the Lipschitz singular
locus�2

L ofO4
L and 15 strata in the Hurwitz singular locus�2

H ofO4
H which have isomorphic

isotropy groups and denote these groups by�k and�m , where k = 1, . . . , 11; m = 1, . . . , 15.
The isotropy group of a point in a non-compact stratum in the singular loci �2

L or �2
H

is the isotropy group of the action of A(L) and A(H), respectively. The singular points of
the orbifold O4

L which are in compact strata are in the boundary of the cubes C1 and C2.
The singular points of the orbifold O4

H which are in compact strata are in the boundary of
the squared pyramids P1 and P2. The strata can be characterized by the dimension of the
corresponding stratum in the stratification and whether the stratum contains the point 1 or
not.

The point q = 1
3 (

√
3+i+j+k) ∈ PH ⊂ PL is a regular point for the orbits of P SL(2,L)

and P SL(2,H). We had considered previously PL and PH as unions of the non-compact
cones over the cubes C1 and C2 and the pyramids P1 and P2 with apices the point at infinity,
respectively. However, to obtain the isotropy groups it is better to define new fundamental
regions P̃L and P̃H as follows:

(1) Let P̃L be the non-compact bicone over C1 with apices the ideal vertices at 0 and the
point at infinity.

(2) Let P̃H be the non-compact bicone over P1 with apices the ideal vertices at 0 and the
point at infinity.

These are convex bicones over the cube C1 and the pyramid P1, each with two ends and they
are fundamental domains for P SL(2,L) and P SL(2,H), respectively.

Remark 5.4 The action of the groups P SL(2,L) and P SL(2,H) on their new fundamental
regions P̃L and P̃H is equivalent to the action of G(3) on P described before in Sect. 4.1.
The groups P SL(2,L) and P SL(2,H) act on P̃L and P̃H by rotations around the 2-faces of
the cube C1 and the pyramid P1, respectively.

For the strata in �2
L or �2

H that contain 1 it is easy to calculate the isotropy group as a

subgroup of Û(L) or Û(H). For the strata �2
L or �2

H which do not contain 1 we consider the
orbit of 1 by the action of points in their isotropy groups. For each point p in one of these
strata 1 is a regular point for the action of its isotropy group on a 3-sphere S3r0(p), where r0
is the distance from p to 1. Then the orbit of 1 is in correspondence 1–1 with fundamental
regions of the correspondent isotropy group acting in a 3-sphere S3.

The fundamental regions on S
3 of the isotropy groups of each stratum in the singular

loci �L and �H are formed by two 4-simplices. Each 4-simplex has 5 3-dimensional faces.
Therefore the isotropy groups have presentations with at most 4 generators.

5.6 The stratification of the Lipschitz singular locus

We give the list of 11 strata in the Lipschitz singular locus �2
L. For each stratum we enlist its

isotropy group�k , k = 1, . . . 11, determine a fundamental domain of the action of its isotropy
group on S3, and give a geometrical description of its spherical 3-orbifold (or spherical link).

In the following list we consider the canonical projection p : C → C� . It is important to
see Fig. 3 in each case.

Non compact strata

�1 Eight 1-cells The 1-skeleton of the non-compact cone over the cubes C1 and C2 ⊂ PL

is a set of eight open lines in �L which are represented in PL as
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(a) the half-line {q : q = r, r ∈ R, r > 1},
(b) the three lines q = r1 ± i/2, r1 ± j/2, r1 ± k/2, where r1 >

√
3
2 ,

(c) the three lines q = r2 ± (i/2 + j/2), r2 ± (i/2 + k/2), r2 ± (j/2 + k/2), where

r2 >
√
2
2 , and finally

(d) the line q = r3 ± (i/2 + j/2 + k/2), where r3 > 1
2 .

These eight half-lines orthogonally project, under the natural projection PL → C by
geodesics asymptotic to the point at infinity, to the barycenter of the cube C ⊂ PL,
the barycenters of the square faces of C, the half of its edges, and two of its vertices,
respectively. These 8 open half-lines inPL project to 8 open half-lines inO4

L. Their local
isotropy groups are isomorphic to the group of order 4 isomorphic to U(L). We define
�1 = U(L) = Z/2Z × Z/2Z as the local isotropy group of the quaternions in these 8
open half-lines. The local model for the singular points in this stratum is isometric to the
orbifold O(2, 2).
�2 Twelve 2-cells The 2-skeleton of the non-compact cone over the cubes C1 and C2 is a
set of twelve triangles with one vertex at the point at infinity which are the quaternions
in PL that orthogonally projects over the quaternions which are the edges of C1 and C2.
Their isotropy groups are isomorphic to the cyclic group of order 2 isomorphic to Z/2Z
and we define �2 = Z/2Z. The local model for the singular points in this stratum is
isometric to the orbifold O(2).

Compact strata

• 0-dimensional

�3 One 0-cell The common vertex v1 = 1 of C1 and C2 which is the barycenter of
the cube C. Its isotropy group is the abelian group �3 = Z/2Z × U(L) ∼= Û(L) ∼=
(Z/2Z)3 of order 8 generated by the involution T and the elements in the Lipschitz
unitary group. If we take a round hyperbolic ballBr (1)with center at q = 1 and small
radius r we obtain that its boundaryS3r (1) intersects the tessellationYL of P SL(2,L)

in a spherical tessellation by sixteenCoxeter spherical right-angled regular tetrahedra.
These tetrahedra are the faces of a 4-dimensional regular convex polytope which is
known as the 16-cell, it is the dual polytope of the hypercube known as the 8-cell.
These polytopes are two of the six Platonic polytopes of dimension 4. The Cayley
graph of �3 is the 1-skeleton of a truncated octahedron in S3r (1). The local model for
the singular points in this stratum is isometric to the orbifold O(2, (2, 2)).
�4 Three 0-cells The vertices v2, v3, v4 of C� which are the images under p of the 6
barycenters of the square faces of the cube C. The isotropy group of these vertices is
isomorphic to the group�4 = (Z/2Z×Z/3Z)×Z/2Z = Z/6Z×Z/2Z of order 12.
It is the group generated by τuT and T Dv where u, v = ±i,±j,±k and u 
= v. The
group�4 leaves invariant two orthogonal hyperbolic planes meeting at the barycenter
of the square face of the cube; one is the plane containing the face and �4 acts on it
as the group of order 4 isomorphic to Z/2Z×Z/2Z (the group generated by (τuT )3

and T Dv restricted to this plane), and the other is its orthogonal complement, and
�4 acts on it as a rotation of order 3 (the group generated by (τuT )2 restricted to
this plane). The 12 middle points of the edges are identified in groups of four points
by translations with three singular vertices of C� ⊂ O4

L. The local model for the
singular points in this stratum is isometric to the orbifold O(2, 6).
�5 Three 0-cellsThe three vertices v5, v6, v7 ofC� which are the images underpof the
12 middle points of the edges of C. The isotropy group of these vertices is isomorphic
to the group �5 = Z/4Z × (Z/3Z × Z/2Z) = Z/4Z × Z/6Z of order 24. It is the
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group generated by T Dv, τu+vT , (τvT )2 and (τuT )2 where u, v = ±i,±j,±k, and
u 
= v. The group �5 leaves invariant two orthogonal hyperbolic planes meeting at
the middle point of the edge of the cube; one is the hyperbolic plane whose ideal
boundary is the line generated by u + v and �5 acts on it as a rotation of order 4 (the
group generated by τu+vT restricted to this plane), and the other is its orthogonal
complement, and �5 acts as on it as a rotation of order 6 (the group generated by
DuvT and (τuT )2 restricted to this plane). The 12 middle points of the edges of the
cube are identified in groups of four points by translations with three singular vertices
of C� ⊂ O4

L. The local model for the singular points in this stratum is isometric to
the orbifold O(4, 6).
�6 One 0-cell The vertex v8 of C� which is the image under p of the 8 vertices
of C. The isotropy group of this vertex is isomorphic to the group �6 = (Z/2Z ×
Z/2Z) × 〈2, 3, 3〉 of order 96 where 〈2, 3, 3〉 is the binary tetrahedral group of order
24. It is the group generated by τi+j+kT , (τi+jT )2, (τi+kT )2, (τj+kT )2, (τuT )2 where
u = ±i,±j,±k. The local model for the singular points in this stratum is isometric
to the orbifold O((2, 2), 〈2, 3, 3〉).

• 1-dimensional

�7 Three 1-cells The points of the three edges of C� that are incident with the
barycenter of C have isotropy group �7 = Z/2Z × Z/2Z. If the point is contained
in the edge of C1 which contains 1 and

√
3+ u/2, then �7 is the group generated by

(τuT )3 where u = ±i,±j,±k. The group �7 leaves invariant the hyperbolic 2-plane
generated by 1 and u and the hyperbolic hyperplane �. Moreover �7 acts on it as a
rotation of order 2 in �. The points of these 6 edges in C1 and C2 are identified in
groups of two and form 3 singular edges in O4

L incident with 1. The local model for
the singular points in this stratum is isometric to the orbifold O(2, 2).
�8 Three 1-cells The points of the six edges of C� which have one vertex at the
barycenter of the square faces of C and the other vertex is the middle point of an
edge of the cube C. Its isotropy group �8 = Z/2Z × Z/3Z is the group generated
by (τuT )2 and DvT where u, v = ±i ± j ± k, u 
= v. The group �8 leaves invariant
two orthogonal hyperbolic planes meeting at the vertex of the cube. �8 acts on one
plane as a rotation of order 6 and as a rotation of order 4 on the other plane. The
points of the 6 edges of C are identified and form 3 singular edges in C� ⊂ O4

L which
are incident with 1 ∈ C� . The local model for the singular points in this stratum is
isometric to the orbifold O(2, 3).
�9 Six 1-cells The points of the three edges of C� which are incident with a vertex
of C. Its isotropy group �9 = Z/2Z×Z/6Z is the group generated by (τuT )3 where
u = ±i ± j ± k. The group �9 leaves invariant two orthogonal hyperbolic planes
meeting at the vertex of the cube. �9 acts on one plane as a rotation of order 6 and
as a rotation of order 2 in the other. The points of the 12 edges of C are identified
and form six singular edges in O4

L. The local model for the singular points in this
stratum is isometric to the orbifold O(2, 6).

• 2-dimensional

�10 Three 2-cells The points of the interior of a square face of C� that is incident
with the barycenter of C. Its isotropy group �10 = Z/2Z is the group generated by
DuT , where u = i, j, k. The group �10 acts on one plane as a rotation of order 2
around a hyperbolic 2-plane in�. The points in the 6 squares are identified in groups
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of two with 3 singular 2-cells in O4
L. The local model for the singular points in this

stratum is isometric to the orbifold O(2).
�11 Three 2-cells The points of the interior of a square face of C� that is not incident
with the barycenter of C. Its isotropy group �11 = Z/3Z is the group generated
by (τu T )2, where u = ±i,±j,±k. The group �11 leaves invariant two orthogonal
hyperbolic planes meeting at the point in the square face of the cube; one is the plane
containing the face and �11 acts on it as a rotation of order 3, and the other is its
orthogonal complement and �11 acts on it as the identity. The points in the 6 squares
are identified in groups of two with 3 singular 2-cells inO4

L. The local model for the
singular points in this stratum is isometric to the orbifold O(3).

5.7 The stratification of the Hurwitz singular locus

Nowwedescribe the orbifold stratification of the set of singular points of theHurwitzmodular
orbifold O4

H according to their isotropy groups.
We give the list of 15 strata in the Hurwitz singular locus �2

H. For each stratum we enlist
the isotropy group �k , k = 1, . . . 15, determine a fundamental domain of its action on S

3,
and study in detail the corresponding spherical 3-orbifold (or spherical link).

In the following list we consider the canonical projection p : Pd → P� where d = 1, 2.
In the same way as in the case of the Lipschitz singular locus the list of types of singular

points and their corresponding isotropy groups can be divided by the dimension and the
compactness of the corresponding stratum in the stratification. The non-compact strata have
the same isotropy groups that the respective Euclidean 3-orbifold which is the intersection
of O4

H with a horosphere. The list is the following

Non compact strata

�1, �2 Five 1-cells The 1-skeleton of the non-compact cone over the pyramids P1 and
P2 is a set of five open half-lines which are represented in PH as

(a) the half-line {q ∈ H1
H

: q = r, r ∈ R, r > 1},
(b) the line q = r1 ± k/2, where r1 >

√
3
2 ,

(c) the two lines q = r2 ± (i/2 + j/2), r2 ± (j/2 + k/2), where r2 >
√
2
2 and finally

(d) the line q = r3 ± (i/2 + j/2 + k/2), where r3 > 1
2 .

These five half-lines orthogonally project, under the natural projection PH → C by
geodesics asymptotic to the point at infinity, to the vertices of P1: the barycenter of the
cube C, the barycenters of any square face of C, the half of two of its edges, and two of its
vertices, respectively. These 5 open half-lines in PH project to 4 open lines inO4

H. Their
isotropy groups are isomorphic for (a) and (d) to the abelian group of order 8 isomorphic
to U(H) and for (b) and (c) to the dihedral group of order 4 isomorphic to U(L). We
obtain �1 := U(L) = Z/2Z × Z/2Z and �2 := U(H) = Z/2Z × Z/2Z × Z/2Z as
the isotropy groups of the quaternions in these 5 open half-lines. The local models for
the singular points in these strata are isometric to the orbifoldsO(2, 2) andO(2, (2, 2)),
respectively.
�3, �4 Eight 2-cellsThe 2-skeleton of the non-compact cone over the pyramidP1 ⊂ PH

is a set of eight triangles with one vertex at infinity which are orthogonally projected over
the quaternions which are the edges of P1 and P2. The isotropy groups of points in the
five triangles with base the edges of the square base of P1 and the edge that joins 1
with the barycenter of a squared face of C are isomorphic to the cyclic group Z/2Z. For
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points in the diagonal edge of P1 which joins 1 with a vertex of C their isotropy groups
are isomorphic to Z/3Z. For points in the two edges which joins 1 with middle points
of the edges of C their isotropy groups are isomorphic to the trivial group, then these
points are not singular. We define for these six strata �3 = Z/2Z and �4 = Z/3Z. The
local models for the singular points in these strata are isometric to the orbifoldsO(2) and
O(3), respectively.

Compact strata

• 0-dimensional

�5 One 0-cell The common vertex v1 = 1 of P1 and P2 which is the barycenter of
the cube C. Its isotropy group is the abelian group �5 = Û(H) of order 24 generated
by the involution T and the elements in the Hurwitz unitary group. The local model
for the singular points in this stratum is isometric to the orbifold O(2, 〈2, 3, 3〉).
�6 One 0-cell The vertex v2 ofP� which is the image under p of 2 opposite barycen-
ters of the square faces of the cube C. The isotropy group of this vertex is isomorphic
to the group �6 = (Z/2Z × Z/3Z) × Z/2Z = Z/6Z × Z/2Z of order 12. It is the
group generated by τuT and T Dv where u, v = ±i,±j,±k and u 
= v. The local
model for the singular points in this stratum is isometric to the orbifold O(2, 6).
�7 One 0-cell The vertex v3 of P� which is the images under p of the 12 middle
points of the edges of C. The isotropy group of this vertex is isomorphic to the group
�7 = Z/4Z×(Z/3Z×Z/2Z) = Z/4Z×Z/6Z of order 24. It is the group generated
by T Dv, τu+vT , (τvT )2 and (τuT )2 where u, v = ±i,±j,±k, and u 
= v. The local
model for the singular points in this stratum is isometric to the orbifold O(4, 6).
�8 One 0-cell The vertex v4 of P� which is the image under p of the 8 vertices of C.
The isotropy group of this vertex is isomorphic to the group�8 = (Z/2Z×Z/6Z)×
〈2, 3, 3〉 of order 288 where 〈2, 3, 3〉 is the binary tetrahedral group of order 24. It is
the group generated by Dω, τi+j+kT , (τi+jT )2, (τi+kT )2, (τj+kT )2, (τuT )2 where
u = ±i,±j,±k. The local model for the singular points in this stratum is isometric
to the orbifold O((2, 6), 〈2, 3, 3〉).

• 1-dimensional

�9 One 1-cell The points of the edge of P� which is incident with the barycenter
of C and the barycenter of a square face of C. Their isotropy groups are isomotphic
to �9 = Z/2Z × Z/2Z which is the group generated by Di T and D j T . The local
model for the singular points in this stratum is isometric to the orbifold O(2, 2).
�10 Two 1-cells The points of the two edges of P� which are incident with the
barycenter of C and the middle points of edges of C. Their isotropy groups are
isomorphic to �10 = Z/2Z which is the group generated by Di T . The local model
for the singular points in this stratum is isometric to the orbifold O(2).
�11 One 1-cell The points of the edge of P� which is incident with the barycenter
of C and the vertex of C. Their isotropy groups are isomorphic to �11 = Z/3Z. The
local model for the singular points in this stratum is isometric to the orbifold O(3).
�12 Two 1-cells The points of the two edges of P� which are incident with the
barycenter of a square face of C and a middle point of its edges. Their isotropy
groups are isomorphic to �12 = Z/2Z × Z/3Z. The local model for the singular
points in this stratum is isometric to the orbifold O(2, 3).
�13 One 1-cell The points of the edge of P� which are incident with a vertex of
C and a middle point of its edges. Their isotropy groups are isomorphic to �13 =
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Z/2Z×Z/6Z. The local model for the singular points in this stratum is isometric to
the orbifold O(2, 6).

• 2-dimensional

�14 One 2-cell The isotropy groups of the points of the interior of the square face of
P� are isomorphic to �14 = Z/3Z. The local model for the singular points in this
stratum is isometric to the orbifold O(3).
�15 Two 2-cell The isotropy groups of the points in the interiors of the two triangle
faces of P� which contain 1 and the barycenter of a square face of C are isomorphic
to �15 = Z/2Z. The local model for the singular points in this stratum is isometric
to the orbifold O(2).

5.8 The Euler orbifold-characteristic of the Lipschitz and Hurwitz modular
orbifolds

We use our previous computations on the order of the local groups of the strata in the singular
loci of the Lipschitz and Hurwitz modular orbifolds to obtain the following:

Theorem 5.5 The Euler orbifold–characteristic of the Lipschitz and Hurwitz modular orb-
ifolds are

χorb(O4
L) = 1

96
and χorb(O4

L) = 1

288
,

respectively.

Proof The Euler orbifold–characteristic of the Lipschitz and Hurwitz modular orbifolds can
be computed by the alternate sums of the number of strata for each dimension in �2

L and in
�2

H divided for the order of the isotropy group of a point in the stratum.
The Lipschitz modular orbifold has a stratification as CW complex with one vertex with

isotropy group of order 8, another vertex with isotropy group of order 96, three vertices of
order 12, and three vertices of order 24. It has three edges with isotropy group of order 4,
six edges with isotropy group of order 6, three edges with isotropy group of order 12, and
eight edges with isotropy group of order 4. It has three 2-cells with isotropy group of order 2,
three 2-cells with isotropy group of order 3 and twelve 2-cells with isotropy group of order
2. Finally it has six 3-cells and one 4-cell with isotropy groups of orders 1.

The Hurwitz modular orbifold has a stratification as CW complex with one vertex with 
isotropy group of order 12, one vertex with isotropy group of order 288, and two vertices of 
order 24. It has one edge with isotropy group of order 2, one edge with isotropy group of 
order 3, three edges with isotropy group of order 4, two edges with isotropy group of order 6, 
and three edges with isotropy group of order 12. It has two 2-cells with trivial isotropy group, 
six 2-cells with isotropy group of order 2 and three 2-cells with isotropy group of order 3. 
Finally it has five 3-cells and one 4-cell with isotropy groups of orders 1. ��

Remark 5.6 Since there is an orbifold cover pL,H : O4
L → O4

H of order 3 we obtain, as 
expected: χorb(O4

L) = 3χorb(O4
H).

The volumes and the orbifold Euler characteristic are related by the Gauss–Bonnet–Euler 
formula for orbifolds (see [23]).
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6 Lorentz transformations

We aremostly interested in the half-spacemodel and in the hyperboloidmodel of Lorentz and
Minkowski hyperbolic models. Thus we will study the Cayley transformations that give us
isometries of the hyperbolic models. In particular we study the representation of P SL(2,H)

as Lorentz transformations. A Lorentz–Minkowski matrix M is any 5 × 5 matrix such that
Mt J M = J where Mt is the transpose matrix of M and J is the matrix

J =

⎛
⎜⎜⎜⎜⎝

−1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

We observe that the determinant of any Lorentz–Minkowski matrix M is ±1.
We now describe two 4-hyperbolic models as subsets in R5: the hyperboloid model

Lor :=
{
(x0, x1, x2, x3, x4) ∈ R

5 : x0 > 0, x21 + x22 + x23 + x24 = −1 + x20

}
(3)

and the half-space model

H+ :=
{
(1, x1, x2, x3, x4) ∈ R

5 : x4 > 0
}

.

Each of these models has its corresponding complete metric of constant curvature -1 and
one can pass from one to the other by explicit projections called Cayley transformations (see
[6]).

Indeed, consider the function �Lor,H+ : Lor → H+

�Lor,H+ (x0, x1, x2, x3, x4) =
(
1,

x1
x0 + x4

,
x2

x0 + x4
,

x3
x0 + x4

,
1

x0 + x4

)

In fact, x0 + x4 is positive since, x24 − x20 = (x4 − x0)(x4 + x0) = −(1+ x21 + x22 + x23 ) < 0
and hence either x0 + x4 > 0 or x4 − x0 > 0, but in this second case this is equivalent to
x4 > x0 and since x0 is positive, then x0 + x4 is positive.

In order to prove that the function �Lor is an one-to-one function, we show that it is
invertible. Therefore, given (1, y) = (1, y1, y2, y3, y4) ∈ H+, if |y|2 = y21 + y22 + y23 + y24 ,
then it is readily seen that the inverse of �Lor,H+ is given by the formula:

�−1
Lor,H+((1, y1, y2, y3, y4)) =

(
1 + |y|2
2y4

,
y1
y4

,
y2
y4

,
y3
y4

,
1 − |y|2
2y4

)
∈ Lor. (4)

For a matrix M the condition Mt J M = J is equivalent to Ahlfors conditions, therefore

Proposition 6.1 Any Lorentz–Minkovski matrix is in one to one correspondence with a
matrix of P SL(2,H) which satisfies Ahlfors conditions.
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For the matrix associated with the general translation τx,y,z =
(
1 x i + yj + zk
0 1

)
we have

the following Lorentz representation

T(x, y, z) :=

⎛
⎜⎜⎜⎜⎜⎝

1 + (x2+y2+z2)
2 x y z (x2+y2+z2)

2
x 1 0 0 x
y 0 1 0 y
z 0 0 1 z

− (x2+y2+z2)
2 −x −y −z 1 − (x2+y2+z2)

2

⎞
⎟⎟⎟⎟⎟⎠

We notice that T(x, y, z)T(x ′, y′, z′) = T(x + x ′, y + y′, z + z′).

The Lorentz transformation corresponding to T =
(
0 1
1 0

)
is the matrix −J.

6.1 The Hurwitz modular group PSL(2,H) in the Lorentz model

The algebra of the quaternionsH is isomorphic to the real algebra of 4×4matrices generated
by I4, Si, Sj, Sk, where I4 is the identity 4 × 4 matrix and

Si :=

⎛
⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ , Sj :=

⎛
⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ and Sk :=

⎛
⎜⎜⎝
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

⎞
⎟⎟⎠ .

This follows from the fact that S2
i = S2

j = S2
k = −I4 and SiSj = Sk, SjSk = Si and

Sk Si = Sj. In particular the group of Hurwitz unitsU(H) consists of the 24 special orthogonal
matrices:±I4,±Si,±Sj,±Sk, 1

2 (±I4 ± Si ± Sj ± Sk) (all possible 16 combinations of signs
are allowed). We remark that this group is isomorphic to the binary tetrahedral group.

Definition 6.2 Let U(H, Lor) ⊂ SO+(4, 1) be the finite group of order 24 given by the
Lorentz matrices:

± Î4, ±Ŝi, ±Ŝj, ±Ŝk,
1
(± Î4 ± Ŝi ± Ŝj ± Ŝk).

2

We remark that the inversion T corresponds to −I4 ∈ U(H, Lor) i.e. the matrix −J .

Proposition 6.3 In the Lorentz model the group P

̂
SL(2, H) corresponds to the subgroup ofSO+(4, 1), denoted by �H generated by U(H, Lor) and the translations T(n, m, p) where 

n, m, p ∈ Z .

Since P SL(2, L) ⊂ P SL(2, H) we have a corresponding subgroup �L ⊂ �H of the Lorentz 
group.

The fundamental domain of �H is contained in the fundamental domain of �L and there-
fore as we seen before the group P SL(2, L) leaves invariant the hyperbolic honeycomb
whose cell is the 24-cell.
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