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Abstract: Vieta’s classical formulae explicitly determine the coefficients of a polynomial p ∈ 𝔽[x] in terms of
the roots of p, where 𝔽 is any commutative ring. In this paper, Vieta’s formulae are obtained for slice-regular
polynomials over the noncommutative algebra of quaternions, by an argument which essentially relies on
induction, without invoking quasideterminants or noncommutative symmetric functions.
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Vieta’s well-known formulae (named after Francois Viéte, a French mathematician of the sixteenth century,
often referred to by his latinised name Franciscus Vieta) relate the coefficients of a polynomial and its roots
and havemany applications in algebra. In symbols, if p(x) = xnan+xn−1an−1+ ⋅ ⋅ ⋅+xa1+a0 is a polynomial of
degree n whose coefficients are real or complex numbers (hence an ̸= 0), then, by the Fundamental Theorem
of Algebra, p has n complex roots, say x1, x2, . . . , xn (which are not necessarily distinct). Vieta’s formulae
state that an−k is related to the roots of p in the following way

(−1)kan−k/an = ∑
1≤i1<i2<⋅⋅⋅<ik≤n

xi1xi2 ⋅ ⋅ ⋅ xik

where the right-hand sides are the elementary symmetric functions of the roots of p. We observe that, given
x1, x2, . . . , xn (not necessarily distinct), Vieta’s formulae provide a family of polynomials of degree n whose
roots are precisely x1, x2, . . . , xn; actually, if b0, b1, . . . , bn are the coefficients of such a polynomial, so are
λb0, λb1, . . . , λbn with λ ̸= 0. In particular, since bn ̸= 0, we can consider in this family themonic polynomial
whose coefficients are b0b−1n , b1b−1n , . . . , 1, or, in other words, we can take [b0b−1n : b1b−1n : . . . : 1] as
homogeneous coordinates for the coefficients of the family of polynomials we are interested in.

For a version of Vieta’s formulae for polynomials with coefficients from a noncommutative ring (or from
a skew field) and for an introduction to noncommutative symmetric functions see [5; 8; 24]. This approach
requires the introduction of quasideterminants, see e.g. [1; 6; 4; 24], and the (abstract) algebra of symmetric
functions together with the plactic action of Lascoux and Schützenberger, now known to be a particular case
of Kashiwara’s action of Weyl groups on crystal graphs (see also [19]).

1 Recent results on regular polynomials of a quaternionic variable
Letℍ denote the skew field of real quaternions. Its elements are of the form q = x0 + ix1 + jx2 + kx3 where the
xl are real, and i, j, k, are imaginary units (i.e. their square equals −1) such that ij = −ji = k, jk = −kj = i, and
ki = −ik = j. We denote by 𝕊 the 2-dimensional sphere of imaginary units ofℍ, i.e. 𝕊 = {q ∈ ℍ : q2 = −1}.
Every nonreal quaternion q can be written in a unique way as q = x + yI, with I ∈ 𝕊 and x, y ∈ ℝ, y > 0. We
refer to x = Re(q) as the real part of q and to y = Im(q) as the imaginary part of q.
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In [12; 13] a new theory of regularity for functions of a quaternionic variable has been introduced, inspired
by an idea of Cullen [2]. Regular polynomials in the sense of Gentili and Struppa are polynomials of the form

p(q) =
n
∑
k=0

qkak with ak ∈ ℍ for k = 0, . . . , n.

In general, it can be proven that a function f of quaternionic variable q is (Cullen) regular or slice regular in a
ball B centered at 0 if and only if f admits a (converging) power series expansion

f(q) =∑
n
qnan

in B with an ∈ ℍ for any n. Therefore it is very natural to expect that Cullen regular functions have many
properties in common with holomorphic functions of a complex variable. In particular, it is easy to prove
that every (Cullen) regular function f(q) = ∑n qnan is C∞, with (Cullen) derivative f  still (Cullen) regular,
namely f (q) = ∑n≥1 qnnan−1.

Below we simply say polynomials when referring to (Cullen) regular polynomials. The papers [10; 14; 15;
25; 26] deepened our understanding of the structure of such polynomials but in general it requires a certain
effort to extend some notions from the complex (holomorphic) case to the quaternionic case. To begin with,
we observe that the product of two regular polynomials (functions) is not regular in general. For example,
even the simple product (q − α)(q − β) = q2 − αq − qβ + αβ is not regular when α is not real. Thus, as for
polynomials over skew-fields, one defines a different product ∗which guarantees that the product of regular
functions is regular. For polynomials, this product is defined as follows.

Definition 1.1. Let p(q) = ∑ni=0 qiai and s(q) = ∑
m
j=0 qjbj be two polynomials. We define the regular product of

p and s as the polynomial p ∗ s(q) = ∑mn
k=0 qkck, where ck = ∑

k
l=0 albk−l for all k.

Remark 1.2. This definition, see e.g. [18], has the effect that multiplication of polynomials is performed as
if the coefficients were chosen in a commutative field; as a consequence, the resulting polynomial is still a
regular polynomial with all the coefficients on the right. In [11] the regular product is extended to regular
functions and a Leibniz-rule for the regular product of regular functions is proven true.

In general the Fundamental Theorem of Algebra fails to be valid for quaternionic polynomials, as shown
in the following example:

Example 1.3. For any n ∈ ℕ and for any quaternion q, the polynomial aqn − qna + 1 (with coefficient the
quaternion a) has real part identically equal to 1.

However, for regular polynomials this is not the case, since in [15] one can find a “universal” proof of the
Fundamental TheoremofAlgebra for regular polynomials overHamilton andCayley numbers. To find explicit
roots of quaternionic algebraic equations remains a difficult problem in general; see [20; 21]. We begin by
analyzing three simple examples which, however, contain all the features which distinguish the theory of
polynomials inℍ from the standard theory of complex polynomials.

Remark 1.4. Consider the polynomial p1(q) = (q− α) ∗ (q− β) = q2 − q(α+ β)+ αβ, where α and β are nonreal
quaternions with | Im(α)| ̸= | Im(β)|. It is immediate to verify, by direct substitution, that α is a solution of
p1(q) = 0, while β is not a root of the polynomial. In fact, one can prove (see Theorem 1.7 below) that p1 has
a second root given by (β − α)−1β(β − α). Thus, as one would expect, the polynomial has two roots (and in
fact only two roots), though they are not what one would expect from a first look at the polynomial (this is a
consequence of the fact that the valuation is not a homomorphism of rings).

Remark 1.5. Consider the polynomial p2(q) = (q − α) ∗ (q − α) = q2 − q(2Re(α))+ |α|2. In this case α is called
a spherical root, see [10; 13], and it is easy to verify that every point on the 2-sphere Sα = Re(α) + Im(α)𝕊 is a
root for p2. More precisely we say that α is a generator of the spherical root Sα.

Remark 1.6. Let p3(q) = (q − α) ∗ (q − β) = q2 − q(α + β) + αβ, where α and β are nonreal quaternions with
β ∈ Sα and β ̸= α. In this case, as shown in [10], the only root of the polynomial p3 is α.
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These three examples exhibit a behavior that is very different from the one we are used to in the complex
case. First we observed that, as already clarified in [13], some polynomials of a quaternionic variable admit
spherical zeroes, i.e. entire 2-spheres of the form x + y𝕊 for some real values x, y. Secondly, even when the
polynomial is factored as a ∗ product of monomials, we cannot guarantee that each monomial contributes a
zero. Indeed, in the case of p1, when bothmonomials contribute a zero, the contribution of the secondmono-
mial depends explicitly on the first monomial. This is a direct consequence of Theorem 3.3 in [10], which we
repeat here for the sake of completeness (but see also [18] for the same statement in the case of polynomials).

Theorem 1.7 (Zeros of a regular product). Let f, g be given quaternionic power series with radii greater than R
and let p ∈ B(0, R). Then f ∗ g(p) = 0 if and only if f(p) = 0 or f(p) ̸= 0 and g(f(p)−1pf(p)) = 0.

Remark 1.8. We observe here that f(p)−1pf(p) has the same real part as p but a different imaginary part, even
though they have the samemodule. In short, we usually say that p and f(p)−1pf(p) “lie on the same sphere”;
for a detailed investigation on this phenomenon, also known as camshaft effect, see [17].

Furthermore, see again [10], the following result holds true.

Theorem 1.9. Let f(q) = ∑+∞n=0 qnan be a given quaternionic power series with radius of convergence R and let
α ∈ B(0, R). Then f(α) = 0 if and only if there exists a quaternionic power series g with radius of convergence R
such that

f(q) = (q − α) ∗ g(q). (1)

Remark 1.10. For a similar result in the case of noncommutative polynomials see also [22].

Now we come to the peculiarity described in Example 1.6. Here the polynomial p3 has degree two, hence
onewould expect either two solutions, or one solutionwith “multiplicity” two.Aspointed out in [23], to define
a good notion of multiplicity for zeros of quaternionic polynomials is rather complicated and has required
some efforts, but it was finally successfully established in [14] after obtaining this important result:

Theorem 1.11. Let p be a regular polynomial of degreem. Then there exist r,m1, . . . ,mr ∈ ℕ andw1, . . . , wp ∈
ℍ, generators of the spherical roots of p, such that

P(q) = (q2 − 2q Re(w1) + |w1|2)m1 ⋅ ⋅ ⋅ (q2 − 2q Re(wr) + |wr|2)mrQ(q), (2)

where Re(wi) denotes the real part of wi and Q is a regular polynomial with coefficients inℍ having only non-
spherical zeroes. Moreover, if n = m − 2(m1 + ⋅ ⋅ ⋅ + mr), then there exists a constant c ∈ ℍ such that

Q(q) = [
t
∏∗
i=1

ni
∏∗
j=1
(q − αij)]c, (3)

where∏∗ is the analog of ∏with respect to the ∗-product, n1, . . . , nt are integers with n1 + ⋅ ⋅ ⋅+ nt = n, and the
quaternions αij ∈ Si with i = 1, . . . , t and j = 1, . . . , ni belong to t distinct 2-spheres S1 = x1 + y1𝕊, . . . , St =
xt + yt𝕊.

From the results in [10; 14; 25; 26], we recall the following.

Definition 1.12. Let p : U → ℍ be a regular polynomial. If x+Iy is a spherical zero of p, its sphericalmultiplic-
ity is defined as two times the largest integerm forwhich it is possible towrite p(q) = (q2−2qx+(x2+y2))ms(q)
with s : U → ℍ a regular polynomial. Furthermore, we say that a zero α1 ∈ ℍ\ℝ of p has isolatedmultiplicity
k if s can be written as

s(q) = (q − α1) ∗ (q − α2) ∗ ⋅ ⋅ ⋅ ∗ (q − αk) ∗ h(q)

with all αj on the sphere Sα1 and such that αj ̸= αj+1 for j = 1, . . . k−1 and h : U → ℍ is a regular polynomial
that does not vanish at any point of the sphere Sα1 . Finally, if x ∈ ℝ is a zero of p, we say that it has isolated
multiplicity n if we can write s(q) = (q − x)nh(q) with h : U → ℍ some regular polynomial which does not
vanish at x.
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2 Vieta’s formulae for regular polynomials over the quaternions
In [3] a version of Vieta’s formulae in a noncommutative skew-field is obtained without invoking quasideter-
minants or noncommutative symmetric functions, essentially by using induction. We follow this approach
as far as it applies to our case, namely Vieta’s formulae for slice-regular quaternionic polynomials.

Proposition 2.1. The coefficients of monic slice-regular polynomial p can be inductively expressed in terms of
(the real and imaginary parts of ) the roots of p.

First part of the proof of Proposition 2.1. First we obtain the coefficients of a monic slice-regular polynomial
pn which has n distinct simple isolated roots α1, . . . , αn, i.e. each αj is a nonspherical root of multiplicity 1
of pn. For n = 2 we define

p2(q) := (q − α1) ∗ (q − α̃2) where α̃2 := (α2 − α1)−1α2(α2 − α1).

In other words, p2(q) := q2 − q(α1 + α̃2) + α1α̃2 is a monic regular polynomial of degree 2, and by the result
of the previous section one can easily check that α1 and α2 are its only roots. (The trivial case p1(q) = q − α1
has some importance for the next considerations; actually, we shall see that it makes sense to consider also
the case p0 = 1.) Note that

α̃2 := (p1(α2))−1α2(p1(α2)).

Therefore we define α̃1 := α1, and by induction on k with k > 1 we introduce

pk(q) := pk−1(q) ∗ (q − α̃k) where α̃k := (pk−1(αk))−1αkpk−1(αk))

(recall that pk−1(αk) ̸= 0; one can consider the previous definition also for k = 1 if p0 = 1). It turns out that
pk(q) is a monic polynomial of degree k which vanishes at α1, . . . αk. Conversely if one considers

p̃k(q) := pk−1(q) ∗ (q − α)

then it follows that p̃k(q) = qpk−1(q) − pk−1(q)α. In particular, from the request p̃k(αk) = 0, one obtains
equivalently αkpk−1(αk) − pk−1(αk)α = 0, and finally concludes that

α = (pk−1(αk))−1αk(pk−1(αk)) = α̃k .

So the coefficients a0, a1, . . . , an−1 of the (monic) polynomial

pn(q) = (q − α̃1) ∗ (q − α̃2) ∗ ⋅ ⋅ ⋅ ∗ (q − α̃n) = qn +
n−1
∑
k=0

qkak

are uniquely determined in terms of the “shifted” roots α̃j and so of α1, α2, . . . , αn. 2

With a different approach, the same result has been obtained already in [14]. In order to complete our task
we need to prove that the coefficients aj are independent of the ordering of α1, α2, . . . , αn, but the adapted
argument given in [3] (which presumably should consist of the inductive application of the correct formula
a(a−b)−1b = b(a−b)−1a, for a ̸= b, even though the author gives a direct proof only for the case n = 3) cannot
be applied for our case; we provide a different approach. We recall that the entire theory of slice functions
over quaternions can be reinterpreted by considering the induced functions ofℍ-stem functions on an open
set D ⊂ ℂ; see [16], where the construction ismore generally carried out for any finite-dimensional alternative
real algebra A with unit. In particular, if F and G are two holomorphicℍ-stem functions, it turns out that the
induced functions I(F) and I(G) are slice-regular functions and, moreover,

I(F ⋅ G) = I(F) ∗ I(G).

Since any factor fj(q) = (q − α̃j) of Pn is a slice-regular function obtained by a corresponding holomorphic
ℍ-stem function Fj(z), we can also write I(F1 ⋅ F2 ⋅ ⋅ ⋅ Fn); in particular, the polynomial f := F1 ⋅ F2 ⋅ ⋅ ⋅ Fn is



Fabio Vlacci, Vieta’s formulae | 439

monic and has coefficients in a division algebra (not necessarily commutative) whereas the formal variable
of f commutes with the coefficients of f . As proven in [8; 9], under these assumptions the coefficients of f do
not depend on the ordering of α1, . . . , αn, therefore also the coefficients of p := I(f) are independent of the
ordering of α1, . . . , αn.

Remark 2.2. We point out that this is in accordance with the results proved in [14], where it is shown that the
regular factorization of a monic regular polynomial in terms of linear factors is not unique. Indeed, in [14] it
is shown that if a, b lie on different spheres, then

(q − a) ∗ (q − b) = (q − a) ∗ (q − b)

if and only if a = (b − a)−1b(b − a) and b = (b − a)−1a(b − a).

We make a short remark on nonsimple roots. From the results proved in [14] it is clear that any analog
of a Vieta formulae requires more efforts for quaternionic regular polynomials with nonsimple roots; indeed
the polynomial

p(q) = (q − α1) ∗ (q − α2) ∗ ⋅ ⋅ ⋅ ∗ (q − αn),
where each αj belongs to the same sphere of α1 and αj+1 ̸= αj for j = 1, . . . , n−1, has aunique root, namely α1.

Viceversa, if a monic slice-regular polynomial

P(q) = qn + qn−1an−1 + ⋅ ⋅ ⋅ + qa1 + a0

such that P(α1) = 0 is given, there is a quick test to check if α1 = x+I1y hasmultiplicity n. In fact, if (an−1−nx)2

is not real, then α1 cannot have multiplicity n, but if (an−1 − nx)2 is real, then α1 may have multiplicity n.
This depends on the fact that α1 = x + I1y is a root of multiplicity n for p if and only if

ps(q) = [(q − x)2 + y2]n ,

where ps is the symmetrized of p, or ps = p ∗ pc = pc ∗ p with pc(q) = qn + qn−1an−1 + ⋅ ⋅ ⋅ + qa1 + a0. It turns
out that

ps(q) =
n
∑
k=0
[
2k
∑
s=0

qs(−x)2k−s(2ks )](
n
k)

y2(n−k),

therefore the coefficient cm of the monomial of degree m of ps with 0 ≤ m ≤ 2n is given by

cm =
n
∑

k=0 or 2k≥m
(−x)2k−m(2km)(

n
k)

y2(n−k). (4)

Condition (4) may be checked (possibly with the help of a computer).
Furthermore, the factorization of p is unique, since for any two distinct quaternions α, β belonging to the

same sphere it turns out that (β − α)−1β(β − α) = α; see [14].
Finally, if the polynomial p hasmultiple roots, we can try to obtain a certain generalized version of Vieta’s

formulae from the previous results.

Second part of the proof of Proposition 2.1. If α1 is the only root of the polynomial p, then the polynomial

p(q) ∗ (q − [p(α1)]−1α1p(α1))

has two roots, namely α1 and α1. From the uniqueness of the factorization of p we then conclude that

αm = [p(α1)]−1α1p(α1) or αn = [p(α1)]−1α1p(α1) = [p(α1)]
−1
α1p(α1).

Therefore if α1 is a multiple root of p of multiplicity n and if we know the value p(α1) ̸= 0we obtain αn. If we
apply the same procedure to the polynomial

p1(q) := p(q) ∗
(q − [p(α1)]−1α1p(α1))
q2 − 2q Re(α1) + |α1|2

= (q − α1) ∗ (q − α2) ∗ ⋅ ⋅ ⋅ ∗ (q − αn−1)

we obtain αn−1 from
αn−1 = [p1(α1)]−1α1p1(α1)

and so eventually all αj for j = 2, . . . , n. Then, as in the case of nonmultiple roots, from the αj’s (and more
specifically the shifted α̃j’s) we are able to reconstruct the coefficients ak of the polynomial p. 2
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