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ABSTRACT
Uncertainty in mass–observable scaling relations is currently the limiting factor for galaxy-
cluster-based cosmology. Weak gravitational lensing can provide direct mass calibration and
reduce the mass uncertainty. We present new ground-based weak lensing observations of
19 South Pole Telescope (SPT) selected clusters at redshifts 0.29 ≤ z ≤ 0.61 and combine
them with previously reported space-based observations of 13 galaxy clusters at redshifts
0.576 ≤ z ≤ 1.132 to constrain the cluster mass scaling relations with the Sunyaev–Zel’dovich
effect (SZE), the cluster gas mass Mgas and YX, the product of Mgas and X-ray temperature.
We extend a previously used framework for the analysis of scaling relations and cosmological
constraints obtained from SPT-selected clusters to make use of weak lensing information. We
introduce a new approach to estimate the effective average redshift distribution of background
galaxies and quantify a number of systematic errors affecting the weak lensing modelling.
These errors include a calibration of the bias incurred by fitting a Navarro–Frenk–White profile
to the reduced shear using N-body simulations. We blind the analysis to avoid confirmation
bias. We are able to limit the systematic uncertainties to 5.6% in cluster mass (68% confidence).
Our constraints on the mass–X-ray observable scaling relation parameters are consistent with
those obtained by earlier studies and our constraints for the mass–SZE scaling relation are
consistent with the simulation-based prior used in the most recent SPT–SZ cosmology analysis.
We can now replace the external mass calibration priors used in previous SPT–SZ cosmology
studies with a direct, internal calibration obtained for the same clusters.

Key words: gravitational lensing: weak – galaxies: clusters: general – cosmology: observa-
tions.

1 I N T RO D U C T I O N

The cluster mass function, i.e. the abundance of clusters of galaxies
as a function of redshift and mass, is a sensitive cosmological probe
(see Allen, Evrard & Mantz 2011 for a review). Because the cluster
mass function is sensitive to both the expansion history and the his-
tory of structure formation in the Universe, cluster cosmology is in
principle able to break degeneracies between cosmological param-
eters arising in purely geometric probes such as the primary cosmic

microwave background (CMB), baryonic acoustic oscillations and
Type Ia supernovae. Observable properties of galaxy clusters like X-
ray luminosity and temperature, optical richness and the strength of
the Sunyaev–Zel’dovich effect (SZE: Sunyaev & Zel’dovich 1970,
1972) have been shown to scale with galaxy cluster mass following
mass–observable scaling relations (MOR). These scaling relations
have intrinsic scatter around the mean relationship between the
observable, which is used as a proxy for cluster mass, and the clus-
ter mass, which has been used to parametrize the theoretical cluster
mass function. Cosmological constraints from cluster mass function
studies are currently limited by uncertainties in the mass–scaling
relation parameters.� E-mail: dietrich@usm.lmu.de
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2 DATA

2.1 Cluster sample

The South Pole Telescope (SPT: Carlstrom et al. 2011) is a 10-m
telescope located at the Amundsen–Scott South Pole Station. From
2007–2011, SPT observed a contiguous 2500 deg2 region in three
bands (95, 150 and 220 GHz) to a fiducial depth of 18 μK arcmin in
the 150-GHz band. Details of the survey strategy and data process-
ing are provided elsewhere (Staniszewski et al. 2009; Vanderlinde
et al. 2010; Williamson et al. 2011). Galaxy clusters in the survey
were detected via their thermal SZE. The full cluster catalogue of
the SPT–SZ survey was published in Bleem et al. (2015). In the
SPT–SZ survey, 677 galaxy clusters were detected above signal-
to-noise ratio ξ > 4.5 and 516 were confirmed by optical and
near-infrared imaging (Bleem et al. 2015). Of these, 415 were first
identified by SPT and 109 have been confirmed spectroscopically
(Ruel et al. 2014; Bayliss et al. 2016). The median mass of this
sample is M500 ≈ 3 × 1014 M�, with a median redshift of 0.55 and
a maximum above 1.4 (Bleem et al. 2015). The selection function
of the survey is well understood and almost flat in mass at z > 0.25,
with a slightly higher sensitivity to lower mass systems at higher
redshifts.

Cosmological constraints have been presented in de Haan et al.
(2016) based on the ‘cosmology subset’ of the entire SPT–SZ cluster
sample with redshift z > 0.25 and detection significance ξ > 5.
This ξ > 5 threshold corresponds to a sample with 95 per cent
purity from SZE selection alone. The mass calibration employed in
that analysis adopted information from the cluster mass function,
together with information from X-ray observable YX = MgasTX

available for 82 systems. The YX–mass relation calibration was
informed from earlier weak lensing analyses of different cluster
samples (Vikhlinin et al. 2009; Hoekstra et al. 2015; Applegate
et al. 2014). We limit the analysis in this article to this cosmology
subset.

We obtained pointed follow-up observations of 19 clusters in the
redshift range 0.29 ≤ z ≤ 0.61 with the Megacam imager (McLeod
et al. 2006) at the Magellan Clay telescope. In the following, we
first describe these data and their analysis, before combining them
with space-based HST weak lensing follow-up data of 13 SPT–SZ
clusters in the redshift range 0.576 ≤ z ≤ 1.132 (Schrabback et al.
2018). Table 1 provides an overview of our cluster sample.

2.2 Optical data

Our sample of 19 SPT clusters was observed with Megacam at the
6.5-m Magellan Clay telescope. This sample includes five galaxy
cluster observations previously presented by High et al. (2012). This
previous work also describes the observing strategy, data reduction
and photometric and astrometric calibration in detail. We briefly
summarize the observing strategy for the remaining 14 clusters.
These were observed in 2011 November through g′, r′ and i′ filters,
for total exposure times of 1200, 1800 and 2400 s, respectively.
In g′ and r′ bands, a three-point diagonal dither pattern, which
covers the chip gaps, was used, while a five-point linear dither
pattern was utilized for the i′-band exposures. As an exception from
this strategy, SPT-CL J0240–5946 was observed in four r′-band
exposures.

Care was taken to observe the r′-band images, which are used
to generate the shear catalogues, in the most stable and best see-
ing conditions. Seeing values for all r′-band images are given in
Table 2.The median seeing of our exposures is 0.79 arcsec, while

Weak gravitational lensing offers the best opportunity to de-
termine the normalization of the MOR, as it can estimate pro-
jected cluster masses with near-zero bias on average (Corless & 
King 2009; Becker & Kravtsov 2011; Bahé, McCarthy & King 
2012). The scatter between lensing-inferred cluster masses and 
true halo mass, however, is large and typically exceeds the in-
trinsic scatter of the mass–observable relations employed for cos-
mological purposes. Sources of this scatter include the shape noise 
of lensed background galaxies, correlated and uncorrelated large-
scale structure (LSS: Hoekstra 2001; Dodelson 2004; Becker &
Kravtsov 2011) along the line of sight and halo triaxiality (Clowe, 
De Lucia & King 2004; Corless & King 2007; Meneghetti et al. 
2010), the latter being the dominant source of scatter for mas-
sive galaxy clusters. Therefore, large numbers of clusters are re-
quired to achieve a competitive calibration of the normalization 
of mass–observable scaling relations. Several programmes making 
use of gravitational lensing to this end have published results (e.g. 
Bardeau et al. 2007; Okabe et al. 2010; Hoekstra et al. 2012, 2015; 
Marrone et al. 2012; Applegate et al. 2014, 2016; Gruen et al. 2014; 
Umetsu et al. 2014; Battaglia et al. 2016; Okabe & Smith 2016; 
Hilton et al. 2018), or are under way, employing data from cur-
rent wide-field imaging surveys such as the Dark Energy Survey 
(Melchior et al. 2017) or the HyperSuprimeCam survey (Murata 
et al. 2017). Future surveys and missions such as the Large Synop-
tic Survey Telescope1 (LSST Dark Energy Science Collaboration 
2012), Euclid2 (Laureijs et al. 2011) or CMB-S43 (Abazajian et al. 
2016) will lead to much tighter constraints, while at the same time 
imposing much stricter requirements for the control of systematic 
errors.

Here we describe the weak lensing analysis of 19 intermediate-
redshift clusters selected from the 2500 deg2 SPT–SZ survey (Bleem 
et al. 2015), five of which have already been presented in an 
earlier weak lensing study (High et al. 2012). After discussing 
these data in Section 2, we present our weak lensing methods in 
Sections 3 and 4, paying particular attention to controlling sys-
tematic effects. In Section 5, we then combine our 19 clusters 
with 13 high-redshift clusters from the SPT–SZ survey, exist-
ing weak lensing data from the Hubble Space Telescope (HST: 
Schrabback et al. 2018, hereinafter S18) and X-ray data from 
the Chandra X-ray satellite for 89 clusters to perform a joint 
mass–observable scaling relations analysis using a newly developed 
framework that accounts self-consistently for selection effects and 
biases.

For quantities evaluated for a fixed cosmology, we assume 
a flat �CDM cosmology with �m = 0.3, �� = 0.7, H0 = 
70 h70 km s−1 Mpc−1, h70 = 1 throughout this article. When re-
porting cluster masses, denoted as M�, we follow the convention 
of defining masses in terms of spherical overdensities that are a 
factor � above the critical density ρc(z) of the Universe at redshift 
z. Likewise, r� corresponds to the radius of the sphere containing
the mass M� = (4/3)πr3

�ρc(z). We use standard notation for sta-
tistical distributions, i.e. the normal distribution with mean μ and
covariance matrix � is written as N(μ, �) and  U(a, b) denotes the
uniform distribution on the interval [a, b].

1https://www.lsst.org/
2https://www.euclid-ec.org/
3https://www.cmb-s4.org/
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Table 1. SPT clusters with lensing data used in this article. Clusters observed with HST are imported from Schrabback
et al. (2018) and are used in the scaling relation analysis (see Sections 5 and 6) only in combination with the Megacam
cluster sample.

Cluster α (J2000.0) δ (J2000.0) z ξ Telescope Chandra data

SPT-CL J0000–5748 00:00:59.98 −57:48:23.0 0.702 8.49 HST �

SPT-CL J0102–4915 01:02:55.06 −49:15:39.6 0.870 39.91 HST �

SPT-CL J0234–5831 02:34:42.87 −58:31:17.1 0.415 14.66 Megacam �

SPT-CL J0240–5946 02:40:38.54 −59:46:10.9 0.400 8.84 Megacam
SPT-CL J0254–5857 02:54:17.50 −58:57:09.3 0.438 14.13 Megacam
SPT-CL J0307–6225 03:07:20.08 −62:25:57.8 0.579 8.46 Megacam �

SPT-CL J0317–5935 03:17:17.18 −59:35:06.5 0.469 6.26 Megacam
SPT-CL J0346–5439 03:46:53.93 −54:39:01.9 0.530 9.25 Megacam �

SPT-CL J0348–4515 03:48:17.70 −45:15:03.5 0.358 10.12 Megacam �

SPT-CL J0426–5455 04:26:04.78 −54:55:10.8 0.642 8.85 Megacam �

SPT-CL J0509–5342 05:09:20.97 −53:42:19.2 0.461 8.50 Megacam �

SPT-CL J0516–5430 05:16:36.31 −54:30:39.0 0.295 12.41 Megacam �

SPT-CL J0533–5005 05:33:36.22 −50:05:24.4 0.881 7.08 HST �

SPT-CL J0546–5345 05:46:36.60 −53:45:45.0 1.066 10.76 HST �

SPT-CL J0551–5709 05:51:36.99 −57:09:20.4 0.423 8.21 Megacam �1

SPT-CL J0559–5249 05:59:42.02 −52:49:33.6 0.609 10.64 HST �

SPT-CL J0615–5746 06:15:51.60 −57:46:34.7 0.972 26.42 HST �

SPT-CL J2022–6323 20:22:06.25 −63:23:56.1 0.383 6.51 Megacam
SPT-CL J2030–5638 20:30:48.87 −56:38:10.2 0.394 5.50 Megacam
SPT-CL J2032–5627 20:32:19.37 −56:27:28.9 0.284 8.61 Megacam
SPT-CL J2040–5725 20:40:13.75 −57:25:46.2 0.930 6.24 HST �

SPT-CL J2106–5844 21:06:04.94 −58:44:42.4 1.132 22.22 HST �

SPT-CL J2135–5726 21:35:39.92 −57:24:32.7 0.427 10.51 Megacam �

SPT-CL J2138–6008 21:38:01.26 −60:08:00.0 0.319 12.64 Megacam
SPT-CL J2145–5644 21:45:52.37 −56:44:51.2 0.480 12.60 Megacam �

SPT-CL J2331–5051 23:31:50.59 −50:51:50.0 0.576 10.47 HST �

SPT-CL J2332–5358 23:32:25.37 −53:58:03.1 0.402 9.12 Megacam
SPT-CL J2337–5942 23:37:24.55 −59:42:17.6 0.775 20.35 HST �

SPT-CL J2341–5119 23:41:11.78 −51:19:41.2 1.003 12.49 HST �

SPT-CL J2342–5411 23:42:45:41 −54:11:08.2 1.075 8.18 HST �

SPT-CL J2355–5055 23:55:47.95 −50:55:19.1 0.320 6.60 Megacam �

SPT-CL J2359–5009 23:59:41.52 −50:09:53.6 0.775 6.68 HST �

Note. 1 Chandra data excluded from the analysis. See Section 2.3.

the minimum and maximum values are 0.54 and 1.11 arcsec, re-
spectively. The clusters observed with Megacam were generally the
most significant SPT cluster detections that were known and visible
at the time of the observing runs. An attempt was made to observe
higher redshift clusters during better seeing conditions.

As in High et al. (2012), a stellar locus regression code (High
et al. 2009) and cross-matching with the 2MASS catalogue (Skrut-
skie et al. 2006) are employed in the photometric calibration of
our data. The resulting uncertainties in the absolute photometric
calibration and colour measurements are ∼0.05 mag and 0.03 mag,
respectively.

2.3 X-ray data

The X-ray data in this work consist of 89 galaxy clusters observed
with the Chandra satellite and are mostly identical to the data de-
scribed in de Haan et al. (2016). The reduction and analysis of
these data is described in detail in McDonald et al. (2013). Changes
in the data since this earlier SPT publication include the addition
of eight new clusters at z > 1 (McDonald et al. 2017), none of
which currently has weak lensing data, and the omission of SPT-
CL J0551–5709. The latter cluster is part of our Megacam sample.
However, after the observations were obtained it was realized that
this cluster is indeed a projection of two clusters at different red-
shifts (Andersson et al. 2011), the SPT-selected cluster at z = 0.423

and the local cluster Abell S0552 with a redshift of z = 0.09 inferred
from the cluster red sequence (High et al. 2012). We thus exclude
this cluster from the X-ray analysis but not the weak lensing anal-
ysis, where the inclusion of such projections is correctly accounted
for (see Sections 4.4 and 5.2.2).

Fig. 1 gives an overview of the different subsamples in this study
and their (partial) overlap. All 13 clusters with HST weak lensing
data (S18) have X-ray data, while this is the case for only 10 out of
the 19 clusters observed with Megacam after the exclusion of SPT-
CL J0551–5709. See also Table 1, where all clusters with lensing
data are listed.

3 WEAK LENSI NG ANALYSI S

Weak gravitational lensing by massive foreground structures such
as galaxy clusters (see Hoekstra et al. 2013 for a review of cluster
lensing studies) changes the observed ellipticities of background
galaxies and imprints a coherent shear pattern around the cluster
centre. The azimuthally averaged tangential shear at a distance r
from the cluster centre,

γt(r) = 〈�(< r)〉 − �(r)

�crit
, (1)

depends on the mean surface mass density 〈�(< r)〉 inside and the
surface mass density at this radius. This differential surface mass
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Figure 1. Overview of the SPT cosmology cluster sample, its coverage by
X-ray data employed in this study and the two weak lensing subsamples
used in the scaling relation analysis in Section 5. The axes show detection
significance ξ plotted against cluster redshift z.

density profile is scaled by the critical surface mass density,

�crit = c2

4πG

1

βDl
, (2)

where c is the speed of light, G is the gravitational constant, β =
Dls/Ds is the lensing efficiency and the Di are angular diameter
distances, where ‘l’ denotes the lens and ‘s’ the source galaxy.

The observable quantity is not the shear but the reduced shear,

g = γ

1 − κ
, (3)

where κ = �/�crit is the dimensionless surface mass density. A
galaxy of intrinsic complex ellipticity ε(s) is sheared by the reduced
gravitational shear g to have an observed (image) ellipticity (Seitz &
Schneider 1997)

ε = ε(s) + g

1 + g∗ε(s)
≈ ε(s) + g, g � 1 , (4)

so that, because 〈εs〉 = 0, the expectation value of ε is g.
We average the reduced shear over an ensemble of galaxies at

different redshifts. Strictly speaking, redshifts for all background
galaxies would be required for the correct weighting with the ge-
ometric lensing efficiency β. In the absence of such information,
however, the average reduced shear can be corrected to first order
using (Seitz & Schneider 1997)

〈gcor〉
〈gtrue〉 = 1 +

( 〈β2〉
〈β〉2

− 1

)
κ . (5)

ies appear rounder, whereas PSF anisotropy will lead to co-
herent alignments in the observed shapes. Noise in the images
leads to additional biases (e.g. Viola, Kitching & Joachimi 2014).
To obtain accurate cluster masses, it is essential that the shape
measurement algorithm is able to correct for these sources of
bias.

The shape measurement algorithm we use is based on the one
introduced by Kaiser, Squires & Broadhurst (1995) and Luppino &
Kaiser (1997), with modifications described in Hoekstra et al.
(1998) and Hoekstra, Franx & Kuijken (2000). It uses the observed
moments of the surface brightness distribution to correct for the PSF.
However, as shown in Hoekstra et al. (2015), the measurements are
still biased, predominantly because of noise. These biases can be
calibrated using image simulations. Because our data cover a similar
range in signal-to-noise ratio and seeing, we adopted the correction
parameters found by Hoekstra et al. (2015).

Similarly to Hoekstra et al. (2012), we analyse each of the Mega-
cam exposures and combine the measurements in the catalogue
stage, to avoid the complex PSF pattern that would otherwise arise.
We use SEXTRACTOR (Bertin & Arnouts 1996) to detect objects in
the images and select objects with no flags raised. We use the ob-
served half-light radius to define the width of the Gaussian weight
function to measure the quadrupole (and higher) moments of the
surface brightness distribution of an object.

The next step is to find an adequate model to describe the spatial
variation of the PSF (both size and shape) as a function of the width
of the weight function used to analyse the galaxies (see Hoekstra
et al. 1998 for details). To quantify the properties of the PSF, we
select a sample of bright, but unsaturated, stars based on their half-
light radius and shape. The number of available stars varies from
field to field and chip to chip, with a median of 16 stars per chip
and 519 stars per field. As shown in Fig. 2, the PSF is anisotropic
and in many cases shows a coherent tangential pattern around the
central parts of the field of view. Such a pattern mimics the expected
cluster lensing signal (although that should decline with radius,
rather than increase as is the case for the PSF anisotropy). Therefore
we have to take special care to model the PSF (also see High et al.
2012).

To capture the dominant PSF pattern, we fit a tangential pattern
around the centre of the focal plane, with a radial dependence that is
a polynomial in radius r up to order 4, where the order was chosen
based on a visual inspection of the residuals. We also fit for the slope
as a function of x and y. This model is fitted to the full field of view.
Inspection of the residuals showed coherent variations on more or
less the chip scale. We therefore also fit a first-order polynomial
chip-by-chip in x and y to the residuals. The resulting model is used
to correct for the PSF. Tests of the performance of the PSF model,
described in more detail in Section 3.1.1, show that the model is
adequate. We select galaxies to be objects with sizes larger than the
PSF. Specifically, we require that the half-light radius rh exceeds the
half-light radius of the largest star selected from the stellar locus in
a magnitude–rh plot by a factor of 1.05. Following Hoekstra et al.
(2015), we also remove galaxies with half-light radii larger than
1 arcsec, because many of these are blended objects, biasing the
shape measurements.

This procedure is carried out for each exposure and bad regions
are masked. The resulting catalogues (typically three per cluster) are
then combined, with the shape measurements for objects that appear
more than once averaged accordingly. The averaging takes into
account the measurement uncertainties, thus naturally giving more
weight to the better seeing data. This results in a single catalogue
of galaxy shapes that is used to determine the cluster masses.

The averages 〈β〉 and 〈β2〉 of the distribution of lensing efficiencies 
can be computed from the redshift distribution of lensed galaxies 
(see Section 3.2).

3.1 Shear catalogue creation

Our shear analysis is based on the pipeline developed for the Cana-
dian Cluster Comparison Project (CCCP: Hoekstra et al. 2012). In 
this section we briefly review the main steps, but we refer the inter-
ested reader to the more detailed discussion in Hoekstra (2007) and  
in particular the updates discussed in Hoekstra et al. (2015), which 
used image simulations to calibrate the bias in the algorithm to an 
accuracy of 1–2 per cent.

The observed galaxy shapes are biased, because of smearing 
by the point-spread function (PSF): the seeing makes the galax-
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Figure 2. PSF correction diagnostic plots for the second exposure of SPT-CL J2030–5638. Red diamonds in panels (a)–(e) indicate the SZE-derived cluster
centre. (a) Measured stellar ellipticity pattern; (b) model of the PSF pattern in panel (a); (c) residual between panels (a) and (b); (d) same as panel (a), with the
mean ellipticity subtracted; (e) same as panel (b) with the mean ellipticity subtracted; (f) histogram of the stellar ellipticity residuals from panel (c) in the two
Cartesian ellipticity components e1/2 and the tangential ellipticity around the cluster centre et; (g) ellipticity correlation functions ξ± of the stellar ellipticity
residuals; (h) ellipticity correlation functions ξ

sys
t/× between measured stellar and corrected galaxy ellipticity; (i) ellipticity–position correlation function between

stellar residual tangential and cross-component ellipticity, and the cluster centre. The dashed line shows a comparison with the expected tangential shear signal
based on the SZE mass estimate of the cluster. The grey shaded regions are radii that are omitted in the NFW fitting procedure.

3.1.1 Shear catalogue systematic tests

We tested the PSF correction of the shear catalogues for a range of
systematic residuals to ascertain that these have negligible influence
on our cluster mass estimates. These are illustrated for the extreme
case of the second exposure of the cluster SPT-CL J2032–5627 in
Fig. 2. This exposure shows a strong tangential alignment of the
stellar ellipticity pattern almost perfectly centred on the cluster

location. Left uncorrected, this PSF would lead to a spurious cluster
lensing signal and thus provides a good illustration of the quality
of our PSF correction. A randomly chosen, more representative
example of the Megacam PSF pattern and our diagnostic plots is
shown in Fig. A1 in Appendix A. Because a constant shear will
average out in an azimuthal average around the cluster position, we
show the PSF without its mean value across the field of view (FOV)
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in panel (d) and the corresponding PSF model components in panel 
(e).

As a first diagnostic, we examined the distribution of the residuals 
of stellar ellipticity between the observed stellar ellipticity and the 
smooth model describing the spatial variation of the PSF across the 
focal plane. We verified that the means of both Cartesian ellipticity 
components, as well as the tangential ellipticity residuals with re-
spect to the cluster centre, are statistically compatible with zero. A 
histogram showing the binned distribution of these three ellipticity 
components is shown in Fig. 2(f). All exposures of all fields pass 
this basic test.

Next we computed the correlation functions,

ξ± = 〈etet〉 ± 〈e×e×〉, (6)

for the residuals of stellar ellipticity, where the tangential and cross-
components are defined with respect to the line connecting the stars.
We used the tree code ATHENA4 to compute this and all other corre-
lation functions. If the PSF model represents the spatial variations
of the actual PSF faithfully, no correlation should remain (Hoekstra
2004). We find that this is generally the case for almost all fields,
except for the smallest bin of ξ+, which is often slightly negative,
as seen in Fig. 2(g). This indicates some overfitting of the PSF on
these scales, but the values of these bins are 2–3 orders of mag-
nitude below those of the cluster-induced gravitational shears on
the angular scales of interest (cf. Fig. 2i). Moreover, this overfitting
happens for individual exposures and may not be coherent across
all three exposures, in which case it should approximately average
out, so that its real impact is decreased even further.

A common diagnostic in cosmic shear analyses for the absence of
leakage from PSF ellipticity to the shear catalogue is the star–galaxy
correlation function (Bacon et al. 2003):

ξ
sys
t/× = 〈e∗

i γi〉2

〈e∗
i e

∗
i 〉

, (7)

polarizability artificially by 4 per cent for each object to correct
for this bias. We find that the cluster masses estimated from the
boosted catalogues, which are used in our analysis, are on average
1.1 per cent higher than those in the uncorrected catalogues, but
not significantly so, because the mass scatter between boosted and
unboosted catalogues is 2.5 per cent.

3.1.2 Blind analysis

Attempting to measure cluster masses with gravitational lensing
when other estimates of the cluster mass – such as SZE measure-
ments – are already known presents the danger of the experimenter
being influenced by confirmation bias. A number of procedures de-
scribed in the following sections required careful checking of their
behaviour with respect to varying input parameters. Any experi-
menter is faced with the challenge of deciding when the results of
such tests are of sufficient quality. It is imperative that the metric
of this decision does not make use of the actual mass measurement.
If it did, we would be more likely to stop testing our procedures
when the cluster masses seem to agree with our expectations from
SZE measurements than when there is a discrepancy. To avoid
such experimenter bias, the practice of ‘blind analyses’ has found
widespread acceptance in particle and nuclear physics (Klein &
Roodman 2005) and is being adopted in cosmology as well (e.g.
von der Linden et al. 2014; Hildebrandt et al. 2017; DES Collabo-
ration et al. 2018).

The analysis presented herein has been blinded so that no com-
parisons between the weak lensing and SZE-derived masses were
made, which otherwise would have allowed premature inference of
the weak lensing–X-ray observable scaling relation parameters. At
the same time, we aimed to retain shear profiles that resemble those
of massive clusters to test our analysis pipeline with the actual but
blinded data. To ensure this, we adopt the following procedure to
blind the normalization and scatter of the scaling relation. First, a
random number 0.80 ≤ xl < 0.95 is drawn from a uniform probabil-
ity distribution. Then for each cluster i a second random number fi is
drawn from the interval [xl, 1). The shear values of each cluster are
multiplied by fi. We enforce fi < 1 to avoid unphysical shears; at the
same time, fi cannot be very small, so as not to wipe out the lensing
signal. The intrinsic ellipticity dispersion used in the calculation of
the lensing weights (see Section 4.2) is not rescaled, i.e. the relative
weighting of galaxies in any given cluster field is not changed by
the blinding procedure.

3.1.3 Changes after unblinding

Although great care was taken to unblind the shear profiles only
after the analysis was finalized, we realized that, inadvertently, we
did not apply the multiplicative shear bias correction. This biased
our masses low by much more than the average blinding factor
turned out to be. The analysis we present in this article has the
multiplicative shear bias correction applied. We stress that these
correction factors were already computed at the time of unblinding
and they remained unchanged by all further analysis changes.

We took the opportunity of this one very large shift in the analysis
after unblinding, corresponding to a ∼20 per cent shift in mass, to
make two small adjustments at the same time.

(i) We transitioned from the unboosted PSF correction catalogues
to the boosted smear polarizability (see Section 3.1.1).

(ii) At the time of unblinding, the 2500 deg2 SPT–SZ catalogue
(Bleem et al. 2015) was not finalized and we used centroids, red-

which can be computed for the tangential (i = t) and cross-
components (i = ×) of the uncorrected stellar ellipticities e∗ and the 
observed shears of the galaxies γ . For random fields, there should 
not be any correlation between the stellar ellipticity and the mea-
sured shear. However, observations centred on galaxy clusters are 
not random fields. The cluster centre is a special location around 
which we expect a tangential alignment of galaxies. The absence 
of a significant star–galaxy correlation thus indicates that no PSF 
leakage into the shear catalogue occurred; its presence, however, 
would not be a cause for concern. Taking the covariance between 
spatial correlation function bins into account, we find no significant
deviations of ξt/

sys
× from zero.

Finally, in Fig. 2(i) we show the tangential and cross-components 
of the residual stellar ellipticity around the cluster centre in radial 
bins. A non-zero tangential component would immediately bias 
our cluster mass measurements, while a non-zero cross-component 
would render the diagnostic power of radially binned cross-shear 
used later worthless. We find that these ellipticity profiles are all 
consistent with zero mass for all exposures and fields. The occa-
sional outlier bin is more than one order of magnitude below the 
expected shear signal.

The bias correction parameters derived in Hoekstra et al. (2015) 
and discussed in the previous section are for a circular PSF and, as 
shown in their appendix, in the presence of PSF anisotropy the smear 
polarizability is somewhat biased. We therefore boosted the smear

4http://www.cosmostat.org/software/athena/
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shifts and estimated MSZ
500 from the catalogue of Andersson et al.

(2011). We afterwards updated our analysis to use the quantities
from the final SPT–SZ catalogue.

Both of these changes lead to shifts at the ∼1 per cent level in the
absolute mass scale.

We also made changes to the scaling relation analysis scheme for
our X-ray data. Theoretical considerations, as well as tests against
mocks, revealed that the analysis scheme used in previous SPT
cluster analyses led to a bias of the X-ray slope toward steeper
values. The updated analysis method is described in Section 5.3 and
was shown to produce unbiased results. We note that our constraints
on the slope are dominated by the informative prior applied (see
Section 5.5) and that we choose a pivot point in the scaling relation
that essentially decouples the slope from the amplitude. Therefore,
our final results are not much affected by this change.

Finally, while this manuscript was edited for submission, one
of us realized that the blinding scheme described in the previous
section only has a ∼2 per cent scatter in the mean blinding fac-
tor, while during the creation of this work we assumed it to be
in the 10–15 per cent range. The mean blinding factor determines
how well the true MOR normalization is hidden from us and is
more important than the cluster-to-cluster blinding, which is indeed
large in our method. Our erroneous assumption kept us effectively
blind during the analysis. However, now that this flaw has been re-
vealed, we strongly advocate against using this scheme and advise
researchers to use a blinding scheme that first determines the mean
blinding factor from a random variable with a large variance.

3.2 Background galaxy selection and critical surface mass
density

The reduced shear g measured in weak lensing data is a dimen-
sionless quantity. To connect it to the physical mass scales of our
galaxy clusters, we need to determine the redshift distribution of
the background galaxies, which enters in the critical surface mass
density (equation 2). The three Megacam passbands in which we
have data are not sufficient to estimate photometric redshifts for
galaxies in our catalogues.

We used redshift-dependent colour cuts to reject likely fore-
ground and cluster galaxies. Rather than optimising these colour
cuts for every cluster, we divided the sample into four redshift
slices. The polygons that define our colour cuts are illustrated in
Fig. 3. These are based on the colour cuts defined in an earlier SPT
weak lensing study (High et al. 2012) and were constructed in the
same way. The density distribution of galaxies in the CFHTLS Deep
Field 3 (Coupon et al. 2009) with i < 25 mag was plotted in (g − r,
r − i) –colour–colour space for (1) galaxies with photometric red-
shifts |zphot − zl| < 0.05 (‘non-sources”) and (2) all other galaxies
(‘sources’). Polygons were drawn by hand to reject the majority of
non-source galaxies. More sophisticated approaches to select only
background galaxies have been proposed, e.g. by Okabe & Smith
(2016) and Medezinski et al. (2018), but the present scheme is
sufficient for our purposes and its efficacy is demonstrated by the
background map in Fig. 3. Additionally, we rejected all galaxies
with i < 20.5 mag from the lensing catalogue, because such bright
galaxies are very unlikely to be background galaxies.

We use an external catalogue with well-calibrated photometric
redshifts to estimate the redshift distributions of the lensing cata-
logues. By applying the same cuts we use for the shear catalogues
to the reference catalogue and by matching galaxy properties such
as magnitude and size, we can draw photometric samples from the

Figure 3. Colour cuts applied to the lensing catalogues to reject cluster and
foreground galaxies and redshift distribution properties of the COSMOS
reference catalogue (Ilbert et al. 2013). Only galaxies to the top, right and
bottom of the indicated regions are kept for the lensing analysis. Different
colours and line styles indicate the colour cuts applied to clusters at dif-
ferent redshifts. The colour-coded map indicates the fifth percentile of the
photometric redshift distribution of galaxies in the COSMOS catalogue at
this particular point in colour–colour space.

reference catalogue. Their photometric redshifts can then be used
to determine the effective redshift distribution of our lensing cata-
logues.

We used a version of the COSMOS30 photometric redshift cat-
alogue (Ilbert et al. 2013), which makes use of additional near-
infrared photometry provided by the UltraVISTA survey (Mc-
Cracken et al. 2012). We transformed the magnitudes in the cat-
alogue to the CFHT system, to which our Megacam data was cali-
brated by using the colour terms from Capak et al. (2007):

g = g+ − 0.084(g+ − r+) − 0.007,

r = r+ + 0.019(g+ − r+) − 0.001,

i = i+ + 0.018(g+ − r+) − 0.005. (8)

This catalogue is complete to i � 24.5 mag. Consequently, this is
the limit we must adopt when performing a faint magnitude cut on
the shear catalogues. Further, we impose the following constraints
on galaxies in the reference catalogue:

(i) no flags set in i band;
(ii) full width at half-maximum (FWHM) > 2 pixels, to reject

the stellar locus;
(iii) unsaturated in g, r and i bands;
(iv) Above 5σ detection in g, r and i bands, to reject spurious

objects;
(v) same colour cuts as for the lensing catalogue;
(vi) z < 5, to reject objects with unrealistic photo-z estimates.

We emphasize that cuts (iii) and (iv) only remove objects from the
COSMOS catalogue that cannot be present in our lensing catalogues
because they are either rejected by the bright magnitude cut of the
lensing catalogue or too faint to be detected in our Megacam data,
where we require detection in all three passbands.

Galaxies in the shear catalogue have weights assigned to them
(see Section 4.2). These are taken into account in all lensing-derived
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quantities. Simply sampling from the reference catalogue, such that 
the samples reproduce the photometric properties of the shear cata-
logue without taking the lensing weights into account, could bias the 
computation of 〈β〉 and 〈β2〉. The lensing weight depends chiefly on 
signal-to-noise ratio (SNR) and to a lesser degree on object size. We 
thus have to map lensing weights to the β distribution of COSMOS 
galaxies with the same magnitude–size distribution as in the shear 
catalogue.

Our version of the COSMOS catalogue (P. Capak, private com-
munication) has a column with the object FWHM for the i-band 
detection image, which has not been convolved to homogenize the 
PSF across passbands. Assuming that atmospheric seeing causes 
a simple Gaussian convolution, we added the size of convolution 
kernels in quadrature to achieve the same seeing in the reference 
catalogue as the field seeings in Table 2. This is almost always possi-
ble, because the average seeing in the COSMOS field is 0.57 arcsec 
and thus less than the seeing in our fields, with the one exception 
of SPT-CL J0348–4514, which has a seeing of 0.54 arcsec. In this 
case, the COSMOS detection FWHM column was left unaltered.5

We developed an algorithm to infer (from the COSMOS cat-
alogue) the expected β distribution for galaxies with the magni-
tude and size distribution of objects in the cluster-field shear cata-
logues, applying the lensing weights correctly. This algorithm first 
constructs a joint probability distribution in i′–size–lensing-weight 
space from the observed shear catalogue for each cluster field. Then 
a random deviate from this distribution is drawn and the closest 
match in i′ ′ magnitude and size in the COSMOS catalogue is found 
and the redshift of the matched COSMOS object is assigned to the 
random deviate. In this respect, the algorithm is similar to photo-z 
methods based on nearest-neighbour identification in multi-colour 
space (e.g. Lima et al. 2008; Cunha et al. 2009), except that we 
require that galaxies in the reference catalogue to follow the same 
magnitude and size distribution, whereas those other methods only 
used colour information. With a redshift (from COSMOS) and a 
lensing weight (from the random deviate), we can now compute 
weighted 〈β〉 and 〈β2〉. In detail, the algorithm works as follows.

We construct a Gaussian kernel density estimator (KDE) of the 
density distribution in i−FWHM−weight space from the shear cat-
alogue. The number of lensing galaxies with weights below a char-
acteristic value drops sharply. This discrete feature of the density 
distribution and also the sharp magnitude cut at i = 24.5 mag are not 
well represented by a smooth KDE. To avoid biases at the edges of 
the probability density distribution, we mirror the size and magni-
tude distributions at their extreme values. This ensures that we have 
smooth distributions, which can be well described by a Gaussian 
KDE.

We then draw random samples from this KDE. Samples in the 
mirrored quadrants are flipped back into the original quadrant. For 
each random sample, we identify the COSMOS galaxy that mini-
mizes the quantity

d =
[(

isample − iCOSMOS

σi

)2

+
(

FWHMsample − FWHMCOSMOS

σFWHM

)2
]1/2

, (9)

where the σ x with x ∈ {i, FWHM} are the standard deviations of the
i-band and FWHM distributions in the shear catalogue. This sample
galaxy is assigned the weight drawn from the KDE and β and β2 for
this galaxy are computed. We verify that the samples drawn in this
way from the reference catalogue are distributed consistently with
the lensing catalogues by computing the Kolmogorov–Smirnov test
for the marginal distributions in size and i-band magnitude.

The first two moments of the β distribution are then computed
as weighted averages of β and β2 using the lensing weights. These
values are reported in Table 3.

We tested the ability of this procedure to reproduce correctly input
distributions that are very different from the intrinsic COSMOS30
galaxy properties. We divided the COSMOS30 reference into two
halves and created mock catalogues from one of the halves. To
create the mock catalogues, we subsampled from the first half such
that the magnitude distribution P(i) follows the linear distribution

P (i) = 2(i − 20.5)

(25.0 − 20.5)2
, 20.5 ≤ i ≤ 25.0 , (10)

the size distribution is log-normal, ln P (FWHM) ∼ N(1, 0.0625),
and the lensing weights are distributed according to P(w) ∼ 20 −
exp (− w). Just like the actual shear catalogues, these magnitude
and weight distributions have sharp cut-offs to test the unbiasedness
of our mirroring approach.

Following the construction of the KDE as described above, we
resampled from the second half of the reference catalogues and
compared the estimated values of 〈β〉 and 〈β2〉 with the known
values of the mock catalogues. We find that our resampling under-
estimates the true values of 〈β〉slightly between 0.3 per cent and
0.9 per cent as a function of redshift. At the median redshift of
the cluster sample, the bias is 0.5 per cent. The values of 〈β2〉 are
biased low between 0.3 per cent and 0.6 per cent, with a bias of
0.5 per cent at z = 0.42. This level of bias is negligible for our
analysis. It is caused by a slight oversampling of bright galaxies
with redshifts z < zl.

We consider a number of effects contributing to uncertainties
in our estimates of 〈β〉 and 〈β2〉. First, COSMOS is a small field
and variations between the LSS in COSMOS and the lines of sight
to our galaxy clusters (‘cosmic variance’) can lead to biases. We
computed 〈β〉 separately from all four CFHTLS fields and took the
variance between these fields as our estimate for the impact of cos-
mic variance.6 We find σ 〈β〉, CV = 0.0082. The CFHTLS photometric
catalogues do not come with object size information. Computing
the variance among CFHTLS fields only, rather than with the COS-
MOS fields also, allows us to isolate the impact of cosmic variance
from the influence of object size.

Secondly, even with the high quality of the photometric redshifts
of the COSMOS30 catalogue, some biases may exist, particularly
at the faint, high-redshift end. To evaluate this, we matched our
COSMOS catalogue with the 3D-HST catalogue (Momcheva et al.
2016). This catalogue contains redshifts based on spectroscopic,
grism and photometric redshift estimates. We limited our compar-
ison to objects for which the 3D-HST catalogue lists either spec-
troscopic or grism redshifts, with which the COSMOS redshifts
may be compared reliably. We have 1980 objects of this type in
common with their catalogue. We first computed the additional
uncertainty stemming from only randomly sampling 1980 objects

6Although we include the effect of 〈β2〉 in our mass calibration, it is gener-
ally completely negligible for the radial ranges employed in this work. We
therefore do not separately quote the small uncertainties in 〈β2〉.

5We ignore the wavelength mismatch between our seeing values measured 
in the r band and the FWHM of the COSMOS objects detected in the i band. 
In standard seeing theory, the difference in FWHM is only ∼4 per cent.
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Table 2. PSF FWHM of individual cluster r-band exposures and 5σ limiting magnitude in a 2-arcsec diameter aperture
of the r-band coadded image.

Cluster Exp. 1 Exp. 2 Exp. 3 Exp. 4 Avg. Lim. mag.

SPT-CL J0234–5831 0.′′70 0.′′81 0.′′74 – 0.′′75 25.0
SPT-CL J0240–5946 0.′′66 0.′′74 0.′′66 0.′′73 0.′′78 25.0
SPT-CL J0254–5857 0.′′90 0.′′87 0.′′89 – 0.′′89 25.0
SPT-CL J0307–6225 0.′′55 0.′′59 0.′′65 – 0.′′60 24.9
SPT-CL J0317–5935 0.′′75 0.′′73 0.′′79 – 0.′′76 25.0
SPT-CL J0346–5439 0.′′71 0.′′73 0.′′72 – 0.′′72 25.1
SPT-CL J0348–4515 0.′′54 0.′′54 0.′′54 – 0.′′54 25.2
SPT-CL J0426–5455 0.′′67 0.′′59 0.′′58 – 0.′′61 25.0
SPT-CL J0509–5342 0.′′84 0.′′79 0.′′80 – 0.′′81 25.0
SPT-CL J0516–5430 0.′′69 0.′′69 – – 0.′′69 24.8
SPT-CL J0551–5709 0.′′79 0.′′90 0.′′85 – 0.′′85 25.0
SPT-CL J2022–6323 0.′′88 0.′′89 0.′′97 – 0.′′91 25.1
SPT-CL J2030–5638 0.′′87 0.′′84 0.′′80 – 0.′′83 25.1
SPT-CL J2032–5627 0.′′92 0.′′89 0.′′79 – 0.′′86 24.8
SPT-CL J2135–5726 0.′′88 0.′′81 1.′′00 – 0.′′90 24.7
SPT-CL J2138–6008 0.′′90 1.′′11 1.′′02 – 1.′′01 24.5
SPT-CL J2145–5644 0.′′80 0.′′81 0.′′82 – 0.′′82 25.0
SPT-CL J2332–5358 0.′′80 0.′′73 0.′′73 – 0.′′75 25.1
SPT-CL J2355–5055 0.′′66 0.′′75 0.′′76 – 0.′′73 25.0

Table 3. Cluster redshift, source galaxy lensing efficiency and density after
colour cuts.

Cluster Name zl 〈β〉 〈β2〉 ngal

(arcmin−2)

SPT-CL J0234–5831 0.41 0.48 0.25 12.1
SPT-CL J0240–5946 0.40 0.50 0.27 12.3
SPT-CL J0254–5857 0.44 0.46 0.23 11.1
SPT-CL J0307–6225 0.58 0.40 0.18 7.9
SPT-CL J0317–5935 0.47 0.46 0.23 9.2
SPT-CL J0346–5439 0.53 0.40 0.18 13.1
SPT-CL J0348–4515 0.36 0.56 0.32 12.1
SPT-CL J0426–5455 0.63 0.35 0.14 8.9
SPT-CL J0509–5342 0.46 0.46 0.23 11.7
SPT-CL J0516–5430 0.29 0.60 0.37 9.3
SPT-CL J0551–5709 0.42 0.48 0.24 8.4
SPT-CL J2022–6323 0.38 0.51 0.28 7.4
SPT-CL J2030–5638 0.39 0.50 0.27 9.0
SPT-CL J2032–5627 0.28 0.60 0.37 8.4
SPT-CL J2135–5726 0.43 0.47 0.24 9.7
SPT-CL J2138–6008 0.32 0.54 0.31 4.0
SPT-CL J2145–5644 0.48 0.44 0.21 9.9
SPT-CL J2332–5358 0.40 0.51 0.27 11.5
SPT-CL J2355–5055 0.32 0.57 0.34 10.1

from the COSMOS photo-z catalogue. This is σ 〈β〉, sample = 0.0013.
We then recomputed 〈β〉 for all clusters using only the 1980 3D-
HST redshifts and find 〈(〈β〉COSMOS − 〈β〉3D-HST)/〈β〉COSMOS〉〉 =
0.6 per cent, which is fully consistent with no redshift bias, up to
the sampling uncertainty, where the outer average runs over all
clusters. This test is reliable as long as any possible redshift bias in
the COSMOS catalogue is not different for objects with or without
spectroscopic or grism redshifts. At present, we have no indication
of such a type-dependent bias, but also cannot confidently rule out
that hitherto undiscovered biases in the COSMOS catalogue exist
for faint objects.

Thirdly, we also investigate the impact of the uncertainties of the
photometric calibration on our estimation of the lensing efficiency
by shifting the relative and absolute photometry within the system-

atic calibration uncertainties. We find an additional uncertainty of
σ 〈β〉, pc = 0.0018.

Finally, a more recent version of the COSMOS photo-z catalogue
(Laigle et al. 2016) was published after we finalized our data vectors.
We verified that this catalogue gives consistent results for 〈β〉 and
〈β2〉, with �〈β〉 = 0.2 per cent and �〈β2〉 = −0.2 per cent, and
treat the difference between these catalogues as an additional source
of uncertainty, σ 〈β〉, NC = 0.002.

We add all four σ 〈β〉, i in quadrature and arrive at a final uncertainty
of σ 〈β〉 = 0.0087. Cluster mass scales with M ∝ γ 1/� , where the
exponent � depends on the clustercentric radius. For a wide range
of radial fitting ranges, � = 0.75 (Melchior et al. 2017), and hence
the systematic uncertainty in cluster mass due to uncertainty in
the redshift distribution of background galaxies is 1.2 per cent. We
confirmed this value by rescaling the tangential shear by a factor
of 1.0087, fitting Navarro, Frenk & White (NFW) profiles (see
Section 4.2) to the unscaled and scaled shear profiles and comparing
the mass estimates.

Our sampling from the reference catalogue also enables us to
estimate the fraction of foreground galaxies surviving our colour
cuts and diluting the shear signal without biasing it. This is shown
in Fig. 4. The fraction of low-redshift interlopers is below 2 per cent
for clusters at redshift z < 0.45. At higher redshifts it jumps to
∼5 per cent. It is possible to optimize the colour cuts to keep the
low-z contamination at ∼2 per cent for the 0.45 < z < 0.55 redshift
bin also, but this optimization happens at the cost of an increased
contamination of the shear catalogue by cluster galaxies, as we
discuss in detail in the next section.

3.3 Cluster contamination correction

Sampling from the reference catalogue – as in the preceding section
– allows us to estimate the background properties and foreground
contamination of the shear catalogues. However, it does not allow
us to estimate the contamination by cluster galaxies remaining after
the colour cuts in the shear catalogues, because cluster galaxies
are a very significant overdensity in redshift space not present in
the reference catalogue. Contamination of the shear catalogues by
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Figure 4. Fraction of low-redshift galaxies surviving our colour cuts as a
function of redshift estimated by sampling from the reference catalogue. The
error bars are the standard deviation of the mean number of low-z interloper
galaxies. The vertical dotted lines indicate the transitions from one colour
cut to another, as illustrated in Fig. 3.

cluster galaxies dilutes the shear signal, as these galaxies are not
lensed and show no specific alignment (e.g. Sifón et al. 2015). Thus,
they should be counted as contributing β = 0 in the estimation of
the lensing efficiency.

We implement and test two different methods to estimate the
contamination fraction in our cluster sample. All methods looking
at radial variations of a population must carefully keep track of
areas not available for observations of that population (Simet &
Mandelbaum 2015; Hoekstra et al. 2015). We therefore use the mask
files created for the magnification study of Chiu et al. (2016a), where
details on their generation are provided. Briefly, regions covered by
extended bright objects are automatically masked by SEXTRACTOR,
while satellite trails and diffraction spikes are manually masked.
We determine the cluster contamination fraction in radial bins and
correct the bin area for masked pixels in both methods, keeping
track of the area covered by bright galaxies not already included
in the pixel masks. An increased incidence of blending could in
principle also lead to a depletion of object detections in higher
density environments. The simulations of Chiu et al. (2016b) show
that this is not a problem for the choice of radial range (0.75–
2.5 Mpc) considered in the present study.

3.3.1 Number density profile

As in Applegate et al. (2014) – based on an approach by Hoekstra
(2007) – the radial profile of contaminating galaxies is modelled
as

fcl(r) = ncl(r)

ncl(r) + ngal
= f500 exp

(
1 − r

rSZ,500

)
, (11)

Table 4. Cluster contamination fractions at r500 show no dependence on
inner radial cuts, indicating that the fits are not affected by decreasing
catalogue completeness towards the cluster centre.

Method Bin rejection f500

<2 arcmin (4.8 ± 2.5)%
Applegate et al. (2014) <3 arcmin (5.5 ± 3.1)%

<rSZ, 500 (4.9 ± 3.2)%

Gruen et al. (2014) – (2.3 ± 1.7)%

sity of galaxies far away from the cluster centres, but treats it as a
free parameter. The virial radius of most clusters in our sample is
only slightly smaller than the FOV of Megacam, affording us no
area completely free from cluster galaxies.

Like Applegate et al. (2014), we see an upturn in the number
density in most cluster fields towards the centre. Per field measure-
ments of cluster contamination fractions are nevertheless too noisy
to be meaningful and we adopt their strategy of fitting all clusters
simultaneously with a single contamination fraction f500 and per
field ngal values. We bin the shear catalogue radially in angular
bins of width 1 arcmin from the cluster centre out to a maximum
radius of 12 arcmin. We assume Poisson errors on the binned num-
ber counts. After binning, we rescale the bin locations to units of
the SZE-derived r500 of each cluster. We emphasize that this is the
only step in our analysis that depends on an SZE-derived cluster
mass. Its only purpose is to correct for the range in cluster mass
and any systematic covariances between the weak lensing-derived
cluster masses and their SZE-based estimates introduced by this
scaling are subdominant to the relatively large statistical errors in
the contamination fraction.

We reject some inner bins in the fitting procedure because we
do not fit the shear profiles all the way to the centre. Among other
reasons, we try to minimize the impact of cluster miscentring, which
would also affect the number density profiles. Another effect that
could potentially be important in the inner bins but was verified to be
of negligible influence in our analysis is the impact of magnification
(Chiu et al. 2016b).

Table 4shows the result of performing the fit in this way and re-
moving a varying number of bins close to the cluster centre.7 We find
no dependence of f500 on the inner fit radius, indicating that, over the
radial ranges considered here, the catalogue completeness does not
change strongly. The error bars are estimated by bootstrap resam-
pling from the cluster sample. The estimated background galaxy
number densities are reported in Table 3.

To test a possible redshift dependence of the cluster contam-
ination, we split the sample at z = 0.45, where the foreground
contamination shows a strong jump when we transition to a dif-
ferent colour cut regime. We find f z>0.45

500 = (4.1 ± 4.82) per cent
and f z<0.45

500 = (5.0 ± 2.9) per cent when the fit is restricted to r >

2 arcmin. Both numbers are consistent with each other and the value
reported in Table 4 if r > 2 arcmin is imposed.

Additionally, we test whether we can reduce the foreground con-
tamination by adjusting the colour cuts without adversely affecting
the cluster contamination fraction. We remove the colour cut tran-
sition at z = 0.45 and apply the colour cuts used for objects in the
redshift range 0.35 ≤ z < 0.45 over the range 0.35 ≤ z < 0.55
instead. Indeed, this reduces the foreground contamination for the
four clusters in this bin to �2–3 per cent. At the same time, we

7For most clusters in our sample, rSZ, 500 > 3 arcmin.

where f500 is the contamination fraction at rSZ, 500, the SZE-
determined radius r500, and  ngal is the number density of back-
ground galaxies. An important consideration in our case is that this 
approach does not rely on measuring the background number den-
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notice a significant steepening of the number density profiles of
these four clusters, indicating an increased contamination by clus-
ter galaxies. On the one hand, the dilution of the shear signal by
foreground galaxies is taken care of reliably by setting their β = 0 in
the estimation of 〈β〉 and 〈β2〉. On the other hand, we know that the
reference field cannot be a faithful representation of the galaxy den-
sity in redshift space in the presence of a massive cluster. Given the
low SNR of our f500 measurement and the relative straightforward-
ness of the redshift sampling in Section 3.2, we prefer to optimize
our colour cuts for rejection of cluster galaxies.

3.3.2 Redshift-space decomposition

An alternative method to fitting an analytical number density profile
was proposed by Gruen et al. (2014). Briefly, they looked at the
probability distribution of the lensing efficiency β and decomposed
the observed probability distribution at a given clustercentric radius
r into the cluster and field galaxy probability distribution,

p(β, r) = fcl(r)pcl(β, r) + (1 − fcl(r)) pf (β) , (12)

where fcl(r) is the radially dependent cluster contamination fraction.
Once p(β, r), pcl(β, r) and pf(β) are known, the contamination
fraction can be found by simple χ2 minimization. We additionally
imposed the constraint that fcl ∈ [0, 1]. This method works if its two
underlying assumptions are fulfilled:

(i) the redshift distribution of galaxies is constant over the image;
(ii) the cluster and field probability distributions pcl and pf are

sufficiently independent that the full distribution function p(β) can
be written as a linear combination of the two.

It is reasonable to assume that the first condition is met in our
case, because our images have a homogeneous depth per field and
cover only a small solid angle. We experimentally verified that
the second condition is also fulfilled by plotting pcl(β) and pf. We
estimated these distributions from the reference catalogue in the
manner described by Gruen et al. (2014), which we summarize
here.

The distributions p(β, r) and pcl(β, r) are estimated in annuli
around the cluster centre. We chose nine bins of width 1 arcmin
starting at the cluster centre. In each bin, for every object in the
shear catalogue with magnitudes {g, r, i} we take galaxies with√

(�g)2 + (�r)2 + (�i)2 < 0.1 mag from the reference catalogue.
For each such sample, we compute the probability Pcl that the
respective object is a cluster galaxy by assigning it the fraction of
sample galaxies that have |z − zl| ≤ 0.06(1 + zl). Also, for every
sampled galaxy, we compute 〈β〉 from the COSMOS sample. The
unweighted histogram of these 〈β〉 values is p(β). The histogram
weighted by the Pcl values is pcl(β).

The probability distribution of β for field galaxies is estimated in
a similar fashion. For each object in the shear catalogue at a large
distance from the cluster – we choose r > 10 arcmin – samples
are drawn in the same way. The probability Pf that a galaxy is
a field galaxy is assigned the fraction of sample objects with z

< zl − 0.06(1 + zl). Again, the value of 〈β〉 of the samples for
each shear catalogue object is computed. A histogram weighted
by the probabilities Pf is the distribution pf(β). Following Gruen
et al. (2014), the choice of 0.06(1 + zl) as separation here and for
computing the probability that a galaxy is a cluster galaxy is based
on the 2σ uncertainty of the photometric redshifts in our reference
catalogue. Varying this parameter does not influence our estimates
of the contamination fraction systematically.

Figure 5. Contamination correction derived by the method of Gruen et al.
(2014). The thick red line is a robust estimation of the mean of all clusters
with its error range indicated by the shaded region. The solid black line is
the exponential model derived in Section 3.3.1 for comparison.

Table 5. Impact of the cluster contamination correction on the mean cluster
mass relative to no correction for various choices of inner radial fitting range.
r500 is derived from the SZE-based mass estimate in Bleem et al. (2015).

inner radius Applegate et al. (2014) Gruen et al. (2014)

0.5 r500 3.8% 3.6%
0.7 r500 2.0% 0.1%
500 kpc 3.7% 3.1%
750 kpc 2.5% 1.6%

Fig. 5shows the radial contamination profile fraction derived in
this way for the ensemble of all clusters. As in the case of the
exponential contamination model, we found that individual clus-
ter estimates are very noisy and there is no obvious redshift trend.
Instead of correcting each cluster profile with its own noisy contam-
ination profile fcl(r), we estimate an average contamination profile
and its error using the robust location and scale estimator of Beers,
Flynn & Gebhardt (1990).

We compare the impact both methods have when they are applied
over different radial ranges in the process of fitting NFW profiles
(see section 4.2 of Navarro, Frenk & White 1997) to the tangential
shear. We measure the relative change of mass compared with a
profile fit ignoring the contamination correction. In all cases, the
outer radial range considered is 2.5 Mpc and the inner radius takes
the values listed in Table 5. We conclude that both methods agree
to better than 2 per cent outside 0.65 r500. As one would expect,
larger corrections are necessary if one decreases the inner radius
of the shear profile analysis. Nevertheless, we find that the purely
empirical decomposition method is significantly steeper than the
exponential model at smaller radii, indicating that the latter is not
a good model and the actual contamination profile is more similar
to the cored 1/r profile employed in Hoekstra et al. (2015). We take
the difference of 0.9 per cent in mass (see the last line of Table 5,
which uses the inner radius later employed in this work) between
both methods considered here as an upper limit on the impact of the
systematic uncertainty of the contamination correction.

We also tested for the existence of a mass-dependent trend in
the mean f500 by splitting the cluster sample into two equal-sized
bins along the detection significance ξ . The contamination fractions
measured in both bins are statistically indistinguishable and fully
consistent with the one determined for the whole cluster sample,
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excluding any significant mass trend at the current level of uncer-
tainty.

4  W E A K - L E N S I N G  M A S S  M E A S U R E M E N T S

We present reconstructions of the projected mass density in Sec-
tion 4.1 and constrain the mass of our galaxy clusters with fits to 
analytical shear profiles in Section 4.2. As we will discuss, these 
fits represent biased mass estimators, which can be calibrated with 
simulations. First, however, the uncorrected fits can be compared 
with mass estimates obtained for a subset of our clusters from the 
same data by High et al. (2012).

4.1 Mass reconstruction maps

Cluster mass maps are often instructive to assess the weak lens-
ing detection of a galaxy cluster and to compare light and mass 
distributions. We used the finite field inversion method of Seitz & 
Schneider (2001) to obtain reconstructed κ-maps from the observed 
shear fields with a smoothing of 2 arcmin, which was selected based 
on the visual impression of the reconstructed maps. To compute the 
noise levels of the surface mass density reconstruction, we cre-
ate 800 realizations of the shear catalogues with randomly rotated 
galaxy ellipticities while keeping the absolute value of the ellipticity 
and the galaxy positions fixed. The variance of these random maps 
is used as a noise estimator for each pixel, although pixels within 
the smoothing scale are of course highly correlated. Dividing the 
κ-map by noise maps created in this way gives SNR maps with the 
contours shown in the left panels of Figs B1–B19 in Appendix B.

In these figures, we compare the weak lensing significance con-
tours with significance contours of filtered SPT–SZ maps and sig-
nificance contours of the density of colour-selected red-sequence 
cluster galaxies. Although the SNR of the WL reconstruction is 
low, in most cases we find good agreement between the SPT and 
the WL centroid. Sizeable offsets between those are expected, due 
to shape noise and smoothing of an asymmetric mass distribution 
with a symmetric kernel (Dietrich et al. 2012), even in the ab-
sence of collisional processes separating the dark matter and gas 
components of a galaxy cluster (e.g. Clowe et al. 2006). The only 
noteworthy case in this gallery is SPT-CL J2355–5055 (Fig. B19), 
the field of which shows another cluster west of the SPT detection 
in the galaxy density contour with almost identical colours and an 
elongated structure extending north-east from this second cluster. 
These are not detected by SPT, but seem to be broadly traced, albeit 
at very low significance, by the mass reconstruction.

4.2 NFW profile fits

Average density profiles of galaxy clusters in cosmological simula-
tions are known to follow a universal density profile,

ρ(r) = δcρcrit

(c r/r200)(1 + cr/r200)2
, (13)

first described by Navarro et al. (1997) to a very good approxima-
tion. Here, r is the three-dimensional radius from the cluster centre,
ρcrit is the critical density of the Universe at the cluster redshift, r200

is the radius at which the enclosed mean density is 200ρcrit, c is
the concentration parameter, which determines how fast the density
profile turns over from ∝ r−1 to ∝ r−3, and δc is a characteristic
overdensity,

δc = 200

3

c2

ln(1 + c) − c/(1 + c)
. (14)

Although the NFW profile is a very good approximation of the
average density profile of galaxy clusters (e.g. Johnston et al. 2007),
better fitting descriptions exist. The Einasto (1965) profile is a better
description of the density profile close to the centre. At large radii
(>r200), correlated large-scale structure leads to systematic devia-
tions from the NFW profile (Johnston et al. 2007). For the radial
ranges of interest in this work, however, the original NFW profile
with its well-known lensing properties (Bartelmann 1996; Wright &
Brainerd 2000) is a sufficiently good description of isolated haloes.
We will calibrate the impact of deviations from spherical NFW
profiles using simulations (cf. Section 4.4).

We fit spherical NFW profiles to the binned tangential shear over
the range 750 kpc–2.5 Mpc. Going further inwards would increase
our sensitivity to miscentring (e.g. Johnston et al. 2007; Mandel-
baum et al. 2010), the cluster contamination correction (see Table 5)
and the mass–concentration relation, which is difficult to measure
using weak lensing data alone. Going further outwards, deviations
from an NFW profile become more pronounced (Becker & Kravtsov
2011), due to correlated (Johnston et al. 2007) and uncorrelated
(Hoekstra 2003; Dodelson 2004) LSS. We choose the SZE peak
position as cluster centre for the Megacam cluster sample and the
X-ray centroid as cluster centre for the HST sample. We use eight
linearly spaced bins over this radial range and compute weighted
averages of the reduced shear in each bin:

〈gi〉 =
∑

n wngi,n∑
n wn

, i ∈ {t,×} , (15)

using the lensing weights

w = P γ 2

σ 2
ε P γ 2 + (�e)2

, (16)

where Pγ is the shear polarizability (Hoekstra et al. 1998), σ ε is
the intrinsic ellipticity dispersion, which we fixed to 0.25, and �e
is the error estimate for the polarization (Hoekstra et al. 2000). The
errors of the mean shear in each bin are computed as

1

σ 2
〈gi 〉

=
∑

n

wn . (17)

We use the weighted average of the radial galaxy positions in a bin
as the effective bin location. We verified that the number of radial
bins and their location has no systematic influence on the recovered
cluster masses for a wide range of binning schemes, if we restrict
the fitting procedure to the chosen radial range of 0.75 Mpc < r <

2.5 Mpc.
We correct the binned tangential shear for the remaining contam-

ination with cluster galaxies via

〈gt,cor〉(r) = 〈gt〉(r)

(1 − fcl(r))
, (18)

where we use the mean contamination fraction of all clusters de-
rived from the method of Gruen et al. (2014) in Section 3.3.2. We
propagate the uncertainties of this fcl(r) profile to the reduced shear
error estimates, equation (17).

When fitting the model to the observed reduced shear profile,
we treat the NFW model as a one-parameter family, with M200

being the only free parameter, and fix the concentration parameter
c to follow a mass–concentration scaling relation exactly with no
intrinsic scatter. Specifically, we adopt the M–c relation of Diemer &
Kravtsov (2015). This choice is justified by recent observational
constraints on the M–c relation for the mass and redshift range of
the Megacam cluster sample (Merten et al. 2015; Cibirka et al.
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Figure 6. A comparison of the spherical NFW masses evaluated at R500, WL

between High et al. (2012) and this work. The black horizontal line show
the one-to-one relation and is not a fit to the data points.

2017) and by measurements of the concentration in the HST sample
itself (S18).

Observed shear profiles with best-fitting NFW models are pre-
sented in Appendix B. For all clusters, the cross-shear is consistent
with zero, as expected for shear catalogues that are not significantly
affected by systematics.

4.3 Comparison with earlier mass measurements

Our weak lensing analysis of Megacam data is a significant expan-
sion of an earlier analysis of a subset of five clusters (High et al.
2012). A comparison of the mass estimates obtained is a natural part
of our analysis. Although we use the same data as High et al. (2012),
our analysis differs in a few key features, as described in the previous
sections. Most importantly, these are (i) new shear catalogues with
new PSF model and multiplicative shear bias correction, (ii) updated
estimates for 〈β〉 and 〈β2〉, (iii) improved estimation of the clus-
ter contamination correction and (iv) different mass–concentration
scaling relation.

Nevertheless, the mass estimates from this previous work and
our analysis are in agreement. Fig. 6 shows a comparison of the
M500 masses obtained from NFW fits of High et al. (2012) and
our mass estimates. The weighted difference is 〈M500 − MH12

500 〉 =
(0.0 ± 1.3) × 1014 M�. Given the changes in the analysis mentioned
above, we consider this agreement to be coincidental. We also em-
phasize that these changes were made to make our mass estimates
more robust and obtain better limits on the systematic uncertainties
of our analysis procedures.

One example where our new methods lead to significantly differ-
ent results from the one described in High et al. (2012) is the 〈β〉 esti-
mation for shallow fields, the completeness of which drops sharply
before our limiting magnitude of i = 24.5 mag. SPT-CL J2138–
6008 is one such field not present in High et al. (2012), in which
the cluster mass would have been overestimated by ∼14 per cent in
the original analysis, leaving everything else the analysis pipeline
unchanged.

4.4 Calibration of the NFW fits with simulations

As mentioned in the previous section, systematic deviations from the
NFW profile and miscentring lead to biased mass estimates when
fitting an NFW profile to the tangential shear. Furthermore, halo
triaxiality (Clowe et al. 2004; Corless & King 2007) and projected
LSS lead to additional scatter. We characterize the relation between
measured weak lensing mass and true mass with a bias parameter
bWL,

MWL = bWLM500 , (19)

and scatter σ WL. This scatter consists of two components: (i) a
local component caused by the aforementioned deviations from a
spherical NFW profile and correlated LSS, σ WL, local, assumed to
be log-normal in weak lensing mass at fixed true mass; (ii) scatter
caused by the projection of uncorrelated LSS, σ WL, LSS.

Our approach to calibrate bWL and σ WL, local is to create an ensem-
ble of simulated observations that match the observational proper-
ties of a random subset of cluster fields and then apply the same
measurement technique as we do to the real data. In general, we
are aiming to reconstruct the probability distribution P(MWL|Mtrue),
which can then be included in forward probabilistic modelling of the
cluster sample. However, we simplify the relation as stated above
to one log-normal distribution that is the same for all observed clus-
ter fields. Any residuals from such an oversimplification are still
insignificant compared with the statistical precision of our data set.

To build our simulated observations for one observed clus-
ter field, we start with the N-body simulations from Becker &
Kravtsov (2011). These are 1-Gpc boxes with 10243 dark mat-
ter particles with a mass of 6.98 × 1010 M� each. We cut out
400 h−1 Mpc long boxes centred on the most massive 788 haloes
with M500,c > 1.5 × 1014 h−1M� from the z = 0.5 snapshot. Parti-
cles are projected to form 2D mass maps that are then used to create
shear maps via fast Fourier transforms. The observed 〈β〉 from a
cluster observation is used to scale the shear and κ maps appropri-
ately. Random Gaussian noise is added to the shear map to match
the observed shape noise in the observations. Because in our real
observations we fit a one-dimensional (1-D) profile, we select an
‘observed’ cluster centre for each simulation map. We assume that
the displacement between the true projected centre of the simulated
cluster and the ‘observed’ centre is randomly oriented with respect
to the underlying structure, a reasonable assumption given the noise
sources of SPT observations and the statistical power of this sample.
Centre offsets are randomly chosen following the form specified by
Song et al. (2012), a Gaussian distribution with a width dependent
on the SPT beam size and the core radius of the matched filter used
to detect the observed cluster. The simulated 1-D profiles are then
fitted with an NFW model as in the data analysis.

We assume that P(MWL|Mtrue) follows a log-normal distribution
with location and scale parameters μ = ln bWL and σ = σ WL, local,
respectively. For the set of simulated fields, we find the maximum
a posteriori location for the probability distribution:

P (bWL, σWL,local|mocks)

∝
∏

i

∫
P (bWL, σWL,local|MWL)P (MWL|mocki)dMWL . (20)

Uninformative priors were used for the parameters of interest.
Simulated observations were also created and analysed using the
z = 0.25 snapshot from Becker & Kravtsov (2011) as well as the
Millennium-XXL simulations (Angulo et al. 2012). No significant
trends were seen between snapshots or simulations. We also did
not see any significant trend with the observational properties of
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σM

Mtrue
= 1

bWL
2

dbWL

dc

each observed field, including the amount of shape noise or dif-
ferent filter core size. Our final bias (bWL = 0.938 ± 0.028) and 
scatter (σ WL, local = 0.214 ± 0.040) are then the average across 
the random subset of cluster fields targeted for mock-up when 
the mass–concentration relation of Diemer & Kravtsov (2015) is  
used.

4.5 Impact of the mass–concentration relation

Weak lensing data often provide poor constraints on the concen-
tration parameter of the NFW profile. The shear signal is deter-
mined by the enclosed mass at each radius and the NFW scale 
radius is typically interior to the innermost radius at which the 
shear is measured reliably. Without observing the mass profile 
shape around the scale radius, via the shear profile, our analy-
sis can only provide very weak lower bounds on the concentra-
tions. Because most mass–concentration relations in the literature 
seem to agree that there is a lower bound on concentrations at 
c ∼ 2–3, we only fit for the NFW mass of our clusters and en-
force that they follow a mass–concentration scaling relation. Any 
mismatch between this relation and true galaxy clusters then intro-
duces another source of systematic error that we need to take into 
account.

We can estimate the sensitivity of our analysis to uncertainty in 
the published mass–concentration relation by carrying out the NFW 
fit bias analysis of the previous section for different fixed concen-
trations. We find that the average mass bias at concentrations c = 
5 and  c = 3 is bWL = 0.978 and bWL = 0.907, respectively, imply-
ing dbWL/dc|c = 4 = −0.0355. Using Gaussian error propagation on 
equation (19), we obtain( )2 ( )2

σ 2
c . (21)

Table 6. Overview of all known systematic error sources and their contri-
butions to the overall systematic error budget. The different error sources
are added in quadrature to obtain the total systematic error estimate (68%
confidence).

Error Source Impact on Mass Reference

Multiplicative shear bias 2% § 3
PSF boost correction 2.5% § 3
〈β〉 and 〈β2〉 estimation 1.2% § 3
Contamination correction 0.9% § 3
NFW mass bias 2.8% § 4
M–c relation 1.5% § 4
Miscentring distribution 3% § 4

Total 5.6%

a β profile with β = 1 is used as cluster template, with 12 dif-
ferent core radii θ core, the same as used by SPT (Bleem et al.
2015). The highest signal-to-noise peaks within the larger of θ core

or 1 arcmin are picked as individual cluster candidates, with the
peak position as the centre. The SZE peaks identified in this way
are matched to the projected halo centre, which is the most bound
particle.

For this miscentring distribution and the Diemer & Kravtsov
(2015) M–c relation, we find a weak lensing bias bWL =
0.960 ± 0.027. Based on the difference from the bWL value in
our baseline analysis, we conservatively assume an uncertainty of
3 per cent in the weak lensing bias parameter.

4.7 Summary of systematic uncertainties

We now briefly summarize all contributions to our systematic uncer-
tainty budget. An overview is presented in Table 6. Broadly, these
fall into two categories: observational uncertainties and modelling
uncertainties. We considered observational biases in Section 3. The
first two of these four pertain to how well we can measure shear.
Based on Hoekstra et al. (2015), the impact on mass of the multi-
plicative shear bias was estimated to be < 2 per cent. Additionally,
the shear calibration of Hoekstra et al. (2015) was derived for a cir-
cular PSF. For the strongly anisotropic PSF in our data, an additional
boost to the smear polarizability was suggested by Hoekstra et al.
(2015) to avoid biases. Applying this correction led to an additional
scatter of 2.5 per cent in mass.

The second set of observational systematics is due to uncertain-
ties in the redshift estimates of galaxies. First, uncertainties in 〈β〉
and 〈β2〉 come from cosmic variance of the reference field, un-
certainties in the photometric redshifts of the reference field itself
and uncertainties in our photometric calibration. This contributes
1.2 per cent to our systematic errors. Second, cluster galaxies evad-
ing our colour–colour cuts dilute the shear signal. We model this
small signal in Section 3.3 using two approaches. We propagate the
uncertainties of the model we judged to be more reliable to the sta-
tistical error budget and treat the difference between the two models
as a source of systematic uncertainty. This difference amounts to
0.9 per cent in mass.

We considered the second category of modelling errors in Sec-
tions 4.4–4.6. We discussed three sources of modelling errors. First,
a bias incurred by fitting an NFW profile following a fixed mass–
concentration relation to shear profiles that could deviate from an
NFW profile, e.g. from correlated LSS, miscentring and obey-
ing a different M–c relation. We calibrate this bias factor bWL,
equation (19), on N-body simulations and use its uncertainty of

Because we calibrated the bias resulting from NFW fits in Sec-
tion 4.4 using our chosen M–c relation, namely the one of Diemer & 
Kravtsov (2015), the systematic uncertainty is not given by how well 
this relation describes the actual cluster sample, but by how faith-
fully the simulated clusters represent true clusters in the Universe. 
The simulations used in the previous section are dark matter only 
and thus the question is how much the concentrations for clusters 
of the mass and redshift in our sample would be impacted by bary-
onic effects. Duffy et al. (2010) constrain this to an upper limit 
of 10 per cent. Evaluating equation (21), we set σ c|c = 4 = 0.4 and 
obtain a mass uncertainty due to the mass–concentration relation of 
1.5 per cent.

4.6 Impact of the miscentring model

Our baseline model for the distribution of offsets between the SZE 
peak position, which we use as the cluster centre in our analysis 
of the Megacam data, and the true cluster centre is the analytical 
form of Song et al. (2012) described in Section 4.4. We estimate 
limits on the impact on the mass calibration of this miscentring 
uncertainty by running the NFW bias analysis of Section 4.4 with 
a different miscentring model. We use a miscentring distribution 
adopted from the analysis of Saro et al. (2014), but based on cos-
mological hydrodynamical simulations with both large volume and 
high resolution (see e.g. Bocquet et al. 2016; Gupta et al. 2017). 
This includes a mock SZE signal and a simulation of the SPT 
cluster detection procedure, which uses the multi-frequency adap-
tive filter method (Melin, Bartlett & Delabrouille 2006). Briefly,
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2.8 per cent as the systematic error number in Table 6. Second, we
used previous estimates (Duffy et al. 2010) of how much the con-
centration of simulated dark-matter only haloes may depart from the
true cluster concentration to estimate the impact of baryonic effects
on mass. This amounts to 1.5 per cent in our error budget. Finally,
we studied how much uncertainties in our miscentring model af-
fect the mass estimates. The 2.8 per cent error in bWL quoted above
is only the uncertainty of the NFW mass bias calibration for our
chosen miscentring baseline model. Replacing this model with an-
other leads to a different estimate of bWL. We take this difference
of 3 per cent as the uncertainty caused by the choice of miscentring
model.

Because the various sources of systematic uncertainties are not
expected to be correlated, we sum them in quadrature to obtain the
final systematic error budget of 5.6 per cent.

5 MASS–OBSERVABLE SCALING RELATIONS
A N D L I K E L I H O O D F U N C T I O N

We use our cluster data set, containing SZE, X-ray and weak lensing
measurements, to constrain the mass–observable relations for all ob-
servables. We consider two different observables for the X-ray scal-
ing relations, the gas mass Mgas and YX. Because both observables
share the same gas mass measurements, they are not independent
and we do not run any fits for both X-ray relations simultaneously;
rather, we fit for either one or the other relation. In the following,
we discuss all mass–observable relations, the likelihood function
and our choice of priors.

5.1 SZE and X-ray scaling relations

Galaxy clusters in the SPT–SZ survey were detected via their ther-
mal SZE in the 95- and 150-GHz maps via a multi-scale matched
filter technique (Melin et al. 2006). The observable used to quantify
the cluster SZE signal is ξ , the detection significance maximized
over all filter scales. These filter scales are a set of 12 linearly
spaced values from 0.5–2.5 arcmin and the filter scale that maxi-
mizes the detection significance is associated with the cluster core
radius θ c. Due to noise bias, ξ is a biased estimator of SNR. There-
fore, an unbiased SZE significance ζ is introduced, corresponding
to the signal-to-noise ratio at the true cluster position and filter scale
(Vanderlinde et al. 2010). For ξ > 2,

ζ =
√

〈ξ〉2 − 3 (22)

describes the relation between ξ and ζ , with scatter described by a
Gaussian of unit width, where the average is taken over many noise
realizations.

The unbiased SNR ζ can be related to cluster mass by the mass–
observable scaling relation

ζ = ASZ

(
0.7M500

3 × 1014 M�h−1
70

)BSZ
(

E(z)

E(0.6)

)CSZ

, (23)

where ASZ is the normalization, BSZ the mass slope, CSZ the redshift
evolution and E(z) = H(z)/H0. An additional parameter σ ln ζ de-
scribes the intrinsic scatter in ζ , which is assumed to be log-normal
and constant as a function of mass and redshift.

We also relate the X-ray observables to cluster mass via mass–
observable scaling relations,

YX

1014 M� keV
= AYX

(
M500

5 × 1014 M�
√

0.7h70

)BYX

(24)

×
(

E(z)

E(0.6)

)CYX

and

Mgas

5 × 1014 M�
= AMg

(
M500

5 × 1014 M�

)BMg
(

E(z)

E(0.6)

)CMg

, (25)

and assume a corresponding log-normal scatter σln YX (σln Mg ) in YX

(Mgas) at fixed mass. Note that we use the same redshift pivots as
for the SZE scaling relation, but apply a slightly larger pivot point
in mass, corresponding approximately to the median mass of the
subsample with available X-ray observations. Also note that the
parametrization of the YX–mass relation we use here departs from
the one used in previous work by the SPT collaboration (e.g. de
Haan et al. 2016). We write YX as a function of mass, so that all
mass–observable-relations (23)– (25) have the observable on the
left-hand side.

5.2 Weak lensing modelling systematics

As discussed in Section 4.4, we assume a relation between the
weak lensing mass obtained from fitting an NFW profile to our
shear data and the unobservable, true mass MWL = bWLM500. The
normalization bWL and the scatter about this mean relation are cal-
ibrated by taking modelling and measurement uncertainties into
account; we use numerical simulations for the modelling part. As
our weak lensing data set consists of two subsamples – Mega-
cam and HST – with slightly different measurement and analy-
sis schemes, we expect some systematics to be shared among the
entire sample, while we expect others to affect each subsample
independently.

All simulation-calibrated quantities x come with an estimate x̂

and at least one source of uncertainty �x on this estimate. Instead of
applying a priorN(x̂, (�x)2) on x, we write x = x̂ + δ�x and leave
δ as a free parameter in our MCMC chain with a prior ∼N(0, 1).
We describe this in detail below for the weak lensing bias and local
sources of scatter.

5.2.1 Weak lensing bias

We model the weak lensing bias as two independent components:
mass model and measurement systematics. We calibrate the ampli-
tude of the bias due to mass modelling against numerical simulations
and model the measurement systematics such that we expect zero

bias. For our likelihood analysis, we parametrize the weak lensing
bias as

bWL,i = bsimi
+ δWL,bias �bmass modeli + δi �bshearcal, N(z)i , (26)

i ∈ {Megacam, HST} ,

where bsim is the mean expected bias due to the mass mod-
elling, �bmass model is the uncertainty in our calibration of bsim and
�bshearcal, N(z) is the quadrature sum of the uncertainties in shear
calibration and in the determination of the distribution of back-
ground galaxies; δWL, bias, δMegacam and δHST are free parameters in
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Table 7. Parameters and priors used in the scaling relation analysis. The weak lensing parametrization is such that the
fit parameters rescale the expected central values and uncertainties.

Parameter Prior Parameter Prior

SZE and YX

ASZ 1/ASZ AYX 1/AYX

BSZ N(1.63, 0.12) BYX const.
CSZ const. CYX N(0.702, 0.3512)
σ ln ζ N(0.13, 0.132) σln YX N(0.12, 0.082)

SZE and Mgas

SZE as above AMg 1/AMg

BMg const.
CMg N(0.0, 0.22)
σln Mg N(0.12, 0.082)

Weak lensing systematics
δWL, bias N(0, 1)
δMegacam N(0, 1)
δHST N(0, 1)
δWL, scatter N(0, 1)
σWL,LSSMegacam /M� N(9 × 1013, 1026)
σWL,LSSHST /M� N(8 × 1013, 1026)

Correlated scatter
ρSZ-X U(−1, 1)
ρSZ-WL U(−1, 1)
ρWL-X U(−1, 1)
Equation (29) det(�) > 0

Cosmology

[�m, σ 8] N
(

[0.291, 0.783],

(
0.0016 −0.0010

−0.0010 0.0013

))

H0/(km s−1 Mpc−1) N(73.8, 2.42)

our likelihood. With this parametrization, we put Gaussian priors of
unit width centred at zero N(0, 1) on the three parameters δWL, bias,
δMegacam and δHST. We investigate a possible redshift dependence of
bsimi

and �bmassmodel and find no indications for it, so we treat these
terms as redshift-independent.

Due to the different observing strategies for the Megacam and

simulations indicate that this local scatter is well described, at
least for our purposes, by a log-normal distribution, while un-
correlated LSS leads to an additional Gaussian scatter contribu-
tion to the tangential shear. We model the latter term as Gaussian
scatter on the cluster mass, although this is not entirely correct,
as the relation between cluster mass and shear is non-linear (see
also Hoekstra 2003). The combination of log-normal local scatter
and normal non-local scatter gives us enough flexibility to model
the true mass scatter, which is also neither exactly normal nor
log-normal.

We calibrate the local, log-normal scatter against simulations.
The Megacam and HST samples have different scatter properties,
but these numbers are calibrated against the same simulations and
therefore share the same systematics. We use

σlocali = σsimi
+ δWL,scatter �σsimi

, i ∈ {Megacam, HST}, (27)

where �σsimi
is the uncertainty of the simulation calibrated scatter

σsimi
and δWL, scatter is a free parameter in our likelihood, on which

we apply a Gaussian prior N(0, 1).
We estimate the uncorrelated LSS contribution to the weak lens-

ing scatter in our NFW fits of the Megacam data by calculating the
variance of the surface mass density inside our fit aperture follow-
ing the prescription presented in Hoekstra (2001). A key difference
between our work and that of Hoekstra (2001) is that Hoekstra com-
putes the variance inside an aperture for the aperture mass statistics,
while we perform NFW fits to the shear profile. The aperture mass
is the radially weighted average of the mass inside a cylinder, where
the weight is given by a fixed filter function chosen by the user. To
adapt the prescription of Hoekstra (2001) to our case, we weigh
the surface mass density power spectrum by an NFW profile rep-

HST samples, the mean expected biases bsimi are determined for each 
sample separately. The uncertainty in the mass model �bmass modeli 

is modelled as the quadrature sum of the uncertainty obtained from 
the numerical simulations, the uncertainty in the M − c relation and 
the uncertainty due to miscentring. These uncertainties are deter-
mined in identical ways for both subsamples (although the numbers 
differ) and so we adopt a common fit parameter δWL, bias. This effec-
tively correlates the uncertainties due to mass modelling between 
both samples. The shear calibration and determination of the dis-
tribution of background galaxies, however, is independent for each 
sample and we therefore adopt a fit parameter δMegacam/HST for each 
sample.

5.2.2 Weak lensing scatter

We decompose the weak lensing scatter into two components: 
uncorrelated LSS modelled by a normal distribution and scat-
ter intrinsic to the NFW modelling of the lensing halo. The lat-
ter term includes scatter due to the miscentring distribution, halo 
triaxiality and correlated LSS. Our motivation for this approach 
is twofold. First, the simulations used to calibrate the bias and 
scatter in Section 4.4 are not full light cones and do not cap-
ture the entirety of projected large-scale structure. Second, these
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resenting the average mass and redshift of the Megacam cluster
sample. For a cluster with M200 = 8 × 1014 M� at z = 0.4, we
obtain σWL,LSSMegacam = 9 × 1013 M�.

This value is close to and slightly larger than the average value
reported for the HST clusters, σWL,LSSHST = 8 × 1013 M�. This may
seem suprising at first, because the lensing catalogue of the HST is
much deeper than the Megacam data and consequently integrates
over more large-scale structure. The apertures employed in the lower
redshift Megacam sample are, however, larger than in the HST
sample. This more than compensates for our shallower redshift
distribution.

In our analysis, we only use the mean value σWL,LSSHST = 8 ×
1013 M� of the LSS scatter values reported in S18 as the mean of a
Gaussian prior rather than an individual prior for each cluster. This
reduces computational complexity and the impact on our analysis is
negligible, because the various sources of scatter are (almost) fully
degenerate, so that tiny deviations from reality in one scatter term
are easily absorbed by another. The Gaussian prior for σMegacami

is
centred on the value computed above. Both priors have a standard
deviation of �σWL,LSSi

= 1013 M�, based on the estimated scatter
of σWL,LSSHST (S18).

As mentioned in Section 4.4, the bias bWL and scatter σ WL, local

depend on the miscentring model one adopts. In general, the centroid
of the X-ray emission of the intracluster medium is expected to be
a more reliable indicator of the true cluster centre than the SZE
peak position based on observations with a relatively broad beam.
The HST sample has X-ray data for all clusters and thus we choose
the X-ray positions and their corresponding bias and scatter values
from S18 as input to our analysis. The Megacam sample is not fully
covered by Chandra data. For these data, we take the SZE peak
position as the cluster centre.

5.3 Likelihood function and analysis pipeline

We simultaneously constrain the SZE and X-ray scaling relations
(four parameters each) and the weak lensing model (six parameters)
using an extension of the framework described in Bocquet et al.
(2015). We summarize the main points of their likelihood function
and discuss our extensions. All fit parameters are also listed in
Table 7.

The translation of the weak lensing observable, i.e. the re-
duced shear gt, into a physical mass scale depends on the cos-
mological parameters in a number of ways. First, the critical den-
sity of the Universe at the cluster redshift enters the NFW pro-
file. Second, the translation of the angular shear profile into a
radial shear profile measured in physical distances depends on
the distance–redshift relation. Similarly, the distance–redshift re-
lation enters the computation of the critical surface mass den-
sity, equation (2). Finally, while many mass–concentration rela-
tions are, strictly speaking, valid only for the cosmological param-
eters for which they were derived, the M–c relation of Diemer &
Kravtsov (2015) we employ has an explicit cosmological depen-
dence.

We use the observed reduced shear with cluster contamination
correction applied, gt, cor, and redshift distribution N(z) as input to
the weak lensing portion of the likelihood code, which then com-
putes 〈β〉, 〈β2〉 and fits an NFW profile as described in Section 4.2 at
every sample point of the MCMC chain. In this way, the cosmology
dependence of the NFW shear profile due to the evolution of the
critical density with redshift and the redshift–distance relation are
taken into account.

Our cluster sample is SZE-selected. To take selection effects
properly into account, for each cluster i in our sample, we evaluate
the likelihood

P (Xi ,MWLi
|ξi, zi , p)

=
[∫ ∫

dMdζP (ξ |ζ )P (Xi , MWLi
, ζ |M, zi, p)P (M|zi, p)

] ∣∣∣
ξi

,

(28)

where, for simplicity, we denote the X-ray observable as X,
P (M|z, p) is the halo mass function at redshift z and p is the
vector of cosmological and scaling relation parameters. The multi-
plication with the halo mass function is a necessary step to account
for the Eddington bias.

The term P (X, MWL, ζ |M, z, p) contains the mass–observable
relations defined in Section 5.1 as well as the intrinsic scatter about
each relation. Extending the original analysis framework (Bocquet
et al. 2015), we allow for correlated scatter between all observables.
Namely, σ ln ζ , σln YX and σ WL are linked by correlation coefficients
ρSZ-Y, ρSZ-WL and ρWL-Y, so that the intrinsic covariance matrix is

�Y =
⎛
⎝ σ 2

ln ζ σln ζ σln YX σln ζ σWL,local

σln ζ σln YX σ 2
ln YX

σln YXσWL,local

σln ζ σWL,local σln YXσWL,local σ 2
WL,local

⎞
⎠

◦
⎛
⎝ 1 ρSZ−X ρSZ−WL

ρSZ−X 1 ρWL−Y

ρSZ−WL ρWL−Y 1

⎞
⎠ , (29)

and equivalently for σln Mg . We put flat priors allowing the full range
from −1 to 1 on all three correlation coefficients, with the addi-
tional restriction that the combination of all three coefficients must
be physically allowed. In practice, we compute equation (28) on a
three-dimensional grid in X, MWL and ζ . To make this step compu-
tationally efficient, we (i) choose an optimal range in mass for each
cluster, informed by its measured SZE, X-ray and weak lensing
signals and the current set of scaling parameters p, to avoid parts of
the observable space with effectively zero probability, (ii) only per-
form this three-dimensional computation for clusters that actually
have all three measurements, otherwise computing the (cheaper)
two-dimensional version, and (iii) employ a fast Fourier transform
convolution.

For each cluster in our sample, we compare the predicted
P (X,MWL|ξ, z, p) with the actual measurement and extract the
probability of consistency.

The X-ray measurements consist of a radial profile Mgas(r) and
a global temperature measurement TX, from which a YX(r) =
Mgas(r)TX profile is computed. To account for the radial depen-
dence of the measurement and the variation of the modelled r500

throughout the parameter space, we define a fiducial radius rfid
500 for

each cluster and evaluate the likelihood at this radius. Note that the
X-ray scaling relations equations (24) and (25) predict the X-ray
quantity at r500. To translate this model prediction to rfid

500, we use
the fact that the X-ray profile can be well approximated by a power
law in radius (see also Mantz et al. 2016). With this, the prediction
at rfid

500 becomes

YX(rfid
500) ≡

(
rfid

500

r500

)slope

YX(M500, z, p), (30)

where r500 is derived from M500. The measurement uncertainty in
YX(rfid

500) is captured by a log-normal distribution.
For the weak lensing data, we forward-model from MWL to the

observed reduced shear gt: we convolve P(MWL) with the Gaus-
sian LSS noise (Section 5.2.2) and then compute the reduced shear

17



gt(MWL, rj) for each radial bin rj following equations (1)–(3). Fi-
nally, for each radial bin, we compute the likelihood of the mea-
surement given gt(rj) and multiply the likelihoods of all bins.

Ultimately, we sum the log-likelihoods for all clusters. The total 
likelihood function (up to an additive constant) then is

lnL =
Ncl∑
i=1

ln P (Xi , gti |ξi, zi , p) , (31)

running Monte Carlo chains with different prior choices, we also
create mock realizations of the SPT + X-ray + weak lensing cata-
logues to ascertain that the real data behave as expected from these
simulations.

The weak lensing bias bWL and the overall scaling of the per clus-
ter bias factors of the S18 samples are obviously fully degenerate
with the normalizations of the scaling relations we aim to con-
strain. We therefore put Gaussian priors with widths corresponding
to the uncertainties obtained from the calibration with simulations
on them. Also, the various sources of intrinsic scatter cannot be dis-
entangled by our analysis and we fix them using Gaussian priors.

Putting non-informative priors on the mass slopes BSZ, BYX and
BMg and the redshift evolution coefficients CSZ, CYX and CMg , we
learn that our data are not able to obtain meaningful constraints
for these parameters. Our mock catalogues confirm that – given
the current data set – we should not expect to be able to con-
strain these parameters. We therefore choose a Gaussian prior
BSZ ∼ N(1.63, 0.12). The mean and central values are determined
by running a full cosmological analysis of the SPT cosmology sam-
ple plus the weak lensing data sets, similarly to what was done
in the recent SPT–SZ cosmology analysis (de Haan et al. 2016).
Using the cluster number count data, we constrain the mass slope
BSZ, obtaining the values 1.63 and 0.1 for its mean and uncertainty,
respectively. We choose to put flat priors on BYX /BMg because these
are constrained through their degeneracy with BSZ once BSZ is fixed.

We use a prior CYX ∼ N(0.70, 0.352) to encode our belief that the
X-ray gas in clusters evolves (approximately) self-similarly. These
values correspond to the self-similar exponent −2/5 in the form of
the YX–mass relation chosen by Vikhlinin et al. (2009) and allow for
50 per cent scatter around self-similarity. We put a flat prior on CSZ

because it is degenerate with CYX . Likewise, for the Mgas scaling
relation, we assume no redshift evolution with the same uncertainty
as for CYX , i.e. we set CMg ∼ N(0, 0.22).

This leaves the normalizations ASZ, AYX and AMg to be deter-
mined. Because these are the parameters we are chiefly interested
in, we put non-informative priors on them. Specifically, because
the scaling relations are linear in log space and the non-informative
prior on the intercept of a line is flat, the non-informative prior for
the normalization of a power law is proportional to 1/Ai, i ∈ {SZ,
Y, M}.

Finally, we note that the scaling relation parameters are mildly
cosmology-dependent. This is due to the distance–redshift relation,
as well as the critical density at a given redshift being dependent
on cosmology. In our analysis, we marginalize over the uncertainty
of the parameters most affecting these two quantities: �m, σ 8 and
H0. For the first two, our prior is a bivariate Gaussian describing
the degeneracy between these parameters, based on the posterior
probability distribution of the cosmology chain of de Haan et al.
(2016). For the Hubble constant, we choose the Riess et al. (2011)
value of H0 = (73.8 ± 2.4) km s−1 Mpc−1 as our prior, which was
also utilized in de Haan et al. (2016). We list all priors in Table 7.

6 RESULTS AND DI SCUSSI ON

We show parameter constraints for the YX and Mgas analyses in Figs 7
and 8, respectively, and summarize the best-fitting scaling relation
parameters and their 68 per cent credible intervals in Table 8. Our
key results are the normalizations of the mass–SZE and mass–X-
ray scaling relations, which affect the systematic uncertainty limits
of the SPT cluster cosmology results directly (Bocquet et al., in
preparation; de Haan et al. 2016). The best-fitting ASZ values of
the YX and Mgas chain are almost identical to each other at ASZ =

where i runs over all clusters. It is important to note that the measured 
cluster abundance does not enter the likelihood function or analysis 
in this work.

We emphasize that all sample selection effects are accounted for 
in our likelihood framework. Equation (31) is only evaluated for 
clusters that pass the SZE and redshift selection functions (ξ > 5 
and z > 0.25) and the target selection of the follow-up observations 
(X-ray and weak lensing) is not based on these observables them-
selves (e.g. X-ray properties or weak lensing strength). Obviously, 
one must not reject follow-up observations that did not lead to a de-
tection of the cluster. This frequently happens in the weak lensing 
observable due to its large scatter. Our forward modelling approach 
naturally deals with clusters with radial shear profile consistent with 
zero or less.

We use the EMCEE (Foreman-Mackey et al. 2013) implementation 
of the affine-invariant ensemble sampler algorithm (Goodman & 
Weare 2010) to evaluate the likelihood function of equation (31). 
We use an ensemble of 192 walkers and discard the first five au-
tocorrelation lengths of the chain as burn-in period. We consider 
chains to be converged if no evolution of the mean and standard 
deviation is visible in trace plots and if the Gelman & Rubin (1992) 
criterion is R̂ < 1.1 for all parameters.

5.4 Test on mock catalogues

We test that our implementation of the calibration framework de-
scribed above recovers unbiased parameter estimates using mock 
galaxy cluster catalogues. These are created by Poisson-sampling 
the halo mass function over the redshift range of the SPT–SZ clus-
ter sample. The SZE detection significance ln ζ and the follow-up 
quantities YX and weak lensing mass are drawn together from a 
multivariate normal distribution according to the fiducial scaling 
relation parameters, including the full intrinsic covariance matrix 
of equation (29). NFW shear profiles are generated from the weak 
lensing mass set in this way. In the mock catalogues, we select the 
80 most significant clusters to have YX as follow-up observable. For 
the weak lensing follow-up, we either select the 19 most significant 
clusters or randomly sample from all significances. In this way, 
we also verify the independence of the recovered scaling relation 
parameters for the follow-up strategy.

We generate mock catalogues for an SPT–SZ-like 2500 deg2 sur-
vey and for a survey 10 times the size of the actual SPT–SZ survey. 
For all cases, we recover the input scaling relations within 1σ un-
certainty. Additionally, these mock catalogues allow for predictions 
about which parameters our data set will be able to constrain and 
choose appropriate priors for those parameters where the informa-
tion content is too low to give meaningful constraints.

5.5 Choices of priors

In analysing the scaling relations described above, we aim to put 
informative priors only on parameters that our data cannot con-
strain. In addition to testing the constraining power of our data by
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Figure 7. Parameter constraints for the SZE and YX scaling relation parameters. Solid black lines are the priors imposed on parameters (see Section 5.5).
We show here the correlated scatter coefficients and the cosmological parameters varied within the prior ranges (see Table 7) and omit the lensing nuisance
parameters due to space constraints. They are shown for the Mgas scaling relations analysis in Fig. 8 and are virtually identical to the ones omitted here.

5.56+0.96
−1.35 and ASZ = 5.57+0.90

−1.41, as one would expect, because these
numbers are essentially set by the weak lensing calibration. We will
discuss these results in detail below.

For the mass–SZE scaling relation, a comparison with earlier
works is best illustrated by looking at the probability distribu-
tion of the mass of a typical SPT–SZ-selected cluster (Fig. 9).
Our measurement of ASZ = 5.56+0.96

−1.35 is in agreement with both the
simulation-based prior of ASZ = 6.01 ± 1.80 used in early SPT–SZ
work (Vanderlinde et al. (2010), who used N-body simulations and
a gas model from Shaw et al. (2009)) and the updated prior ASZ =
5.38 ± 1.61 based on the COSMO–OWLS hydrodynamic simula-

tions (Le Brun et al. 2014) and used in the latest SPT–SZ cluster
cosmology analysis (de Haan et al. 2016).

We also compare our value of ASZ with normalizations obtained
from data in other works. Outside the SPT collaboration, Gruen et al.
(2014) measured weak lensing masses of SPT and Planck-selected
galaxy clusters using the Canada–France–Hawaii Telescope Legacy
Survey and pointed follow-up observations using WFI at the 2.2-m
ESO/MPG telescope. Their ASZ = 6.0+1.9

−1.8 is in excellent agreement
with ours. Gruen et al. (2014) find a slightly shallower mass slope
(BSZ = 1.25+0.36

−0.28) than we adopt from the 2500 deg2 SPT–SZ cos-
mology analysis (de Haan et al. 2016) and more in line with the
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Figure 8. Same as Fig. 7 for the SZE and Mgas scaling relations. Here we show the lensing nuisance parameters omitted from Fig. 7 and omit the correlation
coefficients of the scatter and the cosmological parameters instead.

orthogonal to the cluster SPT cosmology constraints on these pa-
rameters. As a result the normalization of the mass–SZE MOR shifts
accordingly, to account for the implied different cluster mass scale,
leading to the difference seen in Fig. 9.

For a quantitative comparison, we follow Bocquet et al. (2015)
to compute the significance of the difference of two distributions.
We randomly draw points from two distributions and compute the
difference δ between pairs of points. We use this to estimate the
probability distribution Pδ of these differences and compute the
likelihood that zero is within this distribution. Assuming a normal
distribution, this likelihood is then converted to a significance. The
lower normalization parameter ASZ, corresponding to higher cluster
masses, inferred from a joint cosmological analysis of the SPT

expectation from simulations. Our pivot points are, however, iden-
tical, so that we can compare normalizations directly, except for a 
slight mismatch in CSZ, which was also held fixed in their anal-
ysis but at a value of CSZ = 0.83, which is about 1σ below our 
value.

Our normalization of the mass–SZE scaling relation is also in 
good agreement with earlier SPT work (Bocquet et al. 2015; de  
Haan et al. 2016). Visually, the largest disagreement is with the 
SPT cluster cosmology analysis of Bocquet et al. (2015), when it 
is combined with the first release of the Planck primary CMB cos-
mology results (Planck Collaboration et al. 2014). The combination 
of the velocity-dispersion-based MOR normalization constraints of 
Bocquet et al. (2015) with CMB data leads to a shift in �m–σ 8
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Figure 9. The probability distribution of the mass M500 of a typical (median) SPT cluster with ξ = 6.5 at z = 0.5 according to different mass calibration
efforts. The vertical lines correspond to the predictions from simulations in Vanderlinde et al. (2010, dotted line) and the COSMO–OWLS simulation (dashed
line; Le Brun et al. 2014). The mass scale in this work agrees equally well with both simulation predictions.

Table 8. Marginalized scaling relation parameter constraints for the ζ–
M500 scaling relation and the YX–M500 scaling relation (top half) and the
Mgas–M500 scaling relation (bottom half). The values reported are the mean
of the posterior and the shortest 68 per cent credible interval.

Parameter Value Parameter Value

ASZ 5.56+0.96
−1.35 AYX 2.57+0.44

−0.67

BSZ 1.656+0.092
−0.101 BYX 2.11+0.14

−0.16

CSZ 0.96+0.41
−0.43 CYX 0.80+0.33

−0.35

σ ln ζ 0.155+0.084
−0.079 σln YX 0.154+0.083

−0.065

ASZ 5.57+0.90
−1.41 AMg 0.112+0.012

−0.017

BSZ 1.648+0.094
−0.103 BMg 1.310+0.080

−0.084

CSZ 0.79 ± 0.43 CMg 0.06+0.19
−0.20

σ ln ζ 0.131+0.053
−0.100 σln Mg 0.120+0.044

−0.039

cluster sample and Planck CMB data sets (Bocquet et al. 2015)
disagrees with our result at the 2.6σ level.

We emphasize that the change in normalization in Bocquet et al.
(2015, yellow to cyan line in Fig. 9) when the underlying cosmology
shifts is caused by the self-calibration of the scaling relations from
cluster number counts. In this work, we adopt a cosmology with
�m, σ 8 and H0 close to the results of Bocquet et al. (2015) without
the Planck data added. Because we use the cluster mass function
only for Eddington bias correction and not for self-calibration of the
MOR, small changes in the cosmological parameters do not have
any big impact on our recovered normalization ASZ. In particular,

changing the cosmological parameters to the ones obtained from
SPT clusters with Planck data (Bocquet et al. 2015) changes our
normalization by less than 1 per cent and does not bring it into better
agreement with their lower ASZ value.

Also used in the SPT–SZ cosmology analysis is the mass–YX

scaling relation. As for the mass–ζ relation, our marginalized pos-
terior for the normalization is in very good agreement with the prior
utilized in the cosmology analysis (de Haan et al. 2016). This is
an important result, as the prior was based on an external calibra-
tion of the normalization of the mass–YX scaling relation, namely
the Vikhlinin et al. (2009) scaling relation updated with the weak
lensing mass calibration of the Weighing the Giants (WtG) and
CCCP projects (von der Linden et al. 2014; Applegate et al. 2014;
Hoekstra et al. 2015). We are now able to confirm that these pri-
ors were appropriate for cosmology analysis based on an internal
calibration. Fig. 10shows a comparison of the marginalized and
joint posterior probability distributions for the normalizations ASZ

and AYX in comparison with the results obtained by de Haan et al.
(2016) and the priors used in this previous SPT work. Our poste-
rior distributions are a little broader than theirs and consequently
we do not yet expect that our mass calibration efforts will lead
to tighter cosmological constraints with the current data set (Boc-
quet et al., in preparation). We note, however, that the width of
the ASZ posterior distributions of de Haan et al. (2016) is narrower
than their prior range. This indicates that their constraint on the
MOR normalization benefits from self-calibration. We do not use
this self-calibration from the number counts of galaxy clusters (see
Section 5.3) and thus obtain broader posterior distributions, given
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Figure 11. YX–weak lensing mass scaling relation. Our result is shown
in red, while the YX mass relations of Vikhlinin et al. (2009), Mahdavi
et al. (2013) and Mantz et al. (2016) are shown in blue, green and yellow,
respectively, for comparison. The YX values are evaluated using the reference
cosmology and best-fitting scaling relation parameters. We extract values
for MWL and YX as described in the text. The masses on the x-axis are
debiased according to equation (19). We note that the values displayed
here are only used for illustration purposes; the analysis pipeline does not
use these values, but follows the forward modelling approach described in
Section 5.3. The horizontal error bars take only the shape noise component
into account. The vertical error bars also only show the observational error.
The 19 clusters observed with Megacam are shown as green circles, while
the 13 clusters observed with HST (Schrabback et al. 2018) are shown as
light brown triangles. Shaded regions indicate the uncertainty in our best-
fitting parameters. The dashed lines indicate the best-fitting intrinsic scatter
added in quadrature to the parameter uncertainties. We show the intrinsic
scatter only for our result; its contribution to the other scaling relations is
almost exactly the same.

quantities. In the following, we describe briefly how we extracted
the quantities displayed in the figures. The X-ray measurements con-
sist of a temperature measurement of the hot intracluster medium
(ICM) and a radial gas mass profile Mgas(r). Both quantities can be
combined to give the radial YX(r) profile. In principle, the tempera-
ture also varies radially, but this is slow enough to be approximated
accurately by a global average temperature. In the case of Mgas,
the scaling relation (25) relates the gas mass to the cluster total
mass M500, from which the radius r500 can be uniquely determined.
Assuming the best-fitting scaling relation parameters for the Mgas–
mass relation, we can now solve for Mgas by solving the implicit
equation Mdata

gas (r) = MMOR
gas (r). We can then obtain the mean and

standard deviation of the recovered distribution in Mgas for Figs 12
and 14. The same procedure is used for YX and equation (24) and
Fig. 11.

Our likelihood framework also never computes a weak lensing
mass that fits the observed radial shear profile gt(r) best. Instead it
computes how probable we are to find the observed shear profile,
given the mass predicted from the scaling relations. Nevertheless,
to be able to plot weak lensing masses, we perform maximum-
likelihood fits to the contamination-corrected shear profiles and use
their location and uncertainty when plotting weak lensing masses.

Figure 10. Comparison of our posterior probability distributions of the 
normalizations of the SZE and YX scaling relations with the posterior and 
priors of de Haan et al. (2016) converted to our parametrization of the 
mass–YX scaling relation (24).

the still relatively small sample of SPT clusters with weak lensing 
information.

The mass-slope and redshift evolution parameters follow their 
prior probability distribution in the observable on which an infor-
mative prior was imposed. The BYX constraint is determined purely 
by the BSZ–BYX degeneracy. Likewise, the CSZ constraint is gov-
erned by the CSZ–CYX (CMg ) degeneracy. The CSZ values derived in
this way differ by 0.3σ between the YX (CSZ = 0.96+0

0
.
.
41
43) and Mgas 

(CSZ = 0.79 ± 0.43) chains. Both values are higher
− 

than the CSZ 
prior in de Haan et al. (2016), but even the higher CSZ(YX) value  
deviates by only 0.5σ . All CSZ posteriors of de Haan et al. (2016) 
agree with our values to better than 1σ .

Our modelling of the weak lensing bias and scatter (Section 5.1) 
introduces numerous nuisance parameters that we are not able to 
constrain with the data. They all follow the priors. Similarly, we 
are not able to distinguish between various sources of scatter in our
data. As the degeneracy between σ ln ζ and σln YX (σln Mg ) shows, we  
are only able to put limits on the sum of their squares, i.e. the total 
scatter of the scaling relations.

It is expected from numerical simulations that the intrinsic scatter 
of the weak lensing and SZE measurements is correlated (e.g. Shi-
rasaki, Nagai & Lau 2016). For the current data, however, we cannot 
constrain any of the three correlation coefficients. Furthermore, for 
all parameters the constraints obtained by leaving the correlation 
coefficients free are indistinguishable from those where we set all 
correlation coefficients to zero.

In Figs 11–13, we show the scaling relations (23)–(25) with 
marginalized uncertainties in comparison with the data points. In 
these plots, green circles indicate the 19 clusters followed up with 
Megacam, while light brown triangles are the 13 HST observations 
from S18. In all of these figures, the distributions of the Megacam 
and HST data points appear to be consistent with each other. This 
visual impression is confirmed by finding consistent normalizations 
of the scaling relations when the sample is split in redshift at z = 
0.6 (Bocquet et al., in preparation).

Note that we do not observe the weak lensing mass Mwl directly 
and that the X-ray observables are radial profiles and not scalar
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Figure 12. Same as Fig. 11, but for the Mgas–mass scaling relation. We
compare our best-fitting relation, where the slope was set by a galaxy cluster
number count analysis (de Haan et al. 2016), with those of Vikhlinin et al.
(2009), Pratt et al. (2009), Mahdavi et al. (2013), the WtG team (Mantz et al.
2016) and Chiu et al. (2018).

Furthermore, when we plot cluster data points in ζ–mass scaling
relations we also need an estimate of ζ for each cluster. We obtain
this from the observable SNR ξ via

ζ̂ =
√

ξ 2 − 3/ffield , (32)

where ffield is a scaling factor to correct for the different depths of
fields in the 2500 deg2 SPT–SZ survey.

Figs 11–14 show the predicted scaling relations for the underlying
cluster population and are not corrected for our SZE selection. This
is most obvious in Fig. 14, where the two low-scatter mass proxies
ζ̂ and Mgas are plotted against each other for a cluster population
selected in ξ . The Eddington bias is clearly visible in the lower left
corner of this plot from the points falling below the best-fitting line,
i.e. they are preferentially scattered towards higher ζ̂ . We remind
the reader that the scaling relation analysis takes this bias into
account through the shape of the mass function and the SPT cluster
selection function. The scaling relation plotted in Fig. 14 is obtained
by combining equations (23) and (25) into

Mgas

5 × 1014 M�
= AMg

(
6

7

)BMg
(

ζ

ASZ

)BMg /BSZ

(33)

and omitting the redshift evolution terms, because they are taken
care of when the plotted data are rescaled to a common redshift.

Our estimates for the normalizations of the X-ray scaling rela-
tions show good agreement with previous studies (Vikhlinin et al.
2009; Pratt et al. 2009; Mahdavi et al. 2013; Mantz et al. 2016). For
the mass–YX relation, this holds over the entire mass range under
investigation here. For the mass–Mgas relation, the sometimes signif-
icantly different slopes lead to good agreement only in the vicinity
of our pivot point Mp = 5 × 1014 h−1

70 M� and marginal discrep-
ancies at the extreme ends of the mass range under investigation
here. This is particularly obvious for the relations of Mahdavi et al.
(2013), who find a slope slightly smaller than but consistent with
self-similarity, and Mantz et al. (2016), whose slope is very nearly

Figure 13. The ζ–mass scaling relation and estimates ζ̂ and M500 for the
32 clusters with weak lensing data. Points marked in black are clusters with
Chandra X-ray data used in the scaling relation analysis, i.e. all clusters
shown in Figs 11 and 12.

Figure 14. The derived ζ–Mgas scaling relation (equation 33). Cluster data
points show the redshift evolution corrected estimate ζ̂ (equation 32). We
show only the parameter uncertainty and not the intrinsic scatter for this
relation.

exactly self-similar. However, at our pivot M
piv
500 = 5 × 1014 M� we

agree with all cited studies, within our mutual uncertainties.
We note again that we are not able to constrain the slope BMg with

our present data set. Rather, our value for the slope is determined
by the prior we put on BSZ – based on the cosmology analysis of
de Haan et al. (2016) – and the degeneracy between BSZ and BMg .
Future weak lensing analyses of SPT-selected clusters covering a
wider ξ and thus mass range will enable us to constrain the slope
directly from weak lensing observations, instead of only through
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(2009) and 6.3 per cent lower than that of de Haan et al. (2016).
At Mgas = 6 × 1013 M� we obtain M500 values 4.6 per cent higher
than Vikhlinin et al. (2009).

At the same time, our choice to avoid self-calibration of the
mass–observable scaling relation from cluster number counts limits
our ability to constrain the slopes and evolution parameters of these
relations with a cluster sample of the present size. We therefore
chose to impose informative priors on these quantities based on the
self-calibration results of the SPT–SZ cluster cosmology analysis.

We have already secured more follow-up data, including HST
data, so that we can expect to overcome this limitation in the near
future. Particularly, the planned combination of SPT–SZ data with
the shear catalogues of the Dark Energy Survey survey (Zuntz et al.
2018), combined with an expanded SZE cluster sample from the
SPTpol experiment (Austermann et al. 2012), should allow us to
extract meaningful constraints on the slope of the mass–SZE scaling
relation and lead to a more stringent estimation of mass–observable
scaling relation normalizations.
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Figure A1. Same as Fig. 2 for typical, randomly chosen exposures. In this case, exposure 2 of SPT-CL J0234–5831.
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APPEN D IX B: MASS RECONSTRUCTIONS AND SHEAR PROFI LES

Figure B1. Left panel: significance contours of the surface mass density reconstruction in yellow (medium thick lines). These rise in steps of 1σ starting at 0
(solid lines) and decrease in steps of 1σ (dashed lines). See Section 4.1 for details on their computation. The solid red (thick) lines are the SPT SNR, also rising
in steps of 1σ . The solid white (thin) lines show the SNR of the density of colour-selected red-sequence cluster galaxies. The colour image in the background
is a composite of the Megacam gri images. Right panel: this panel shows the binned tangential shear around the SZ-derived cluster centre and its best-fitting
NFW shear profile (see Section 4.2) in the top panel. Shaded areas were not used in the fitting procedure. The bottom panel shows the cross-shear component,
which should be consistent with zero in the absence of systematic errors.

Figure B2. Same as Figure B1 for SPT-CL J0240–5946.
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Figure B3. Same as Figure B1 for SPT-CL J0254–5857.

Figure B4. Same as Figure B1 for SPT-CL J0307–6225.
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Figure B5. Same as Figure B1 for SPT-CL J0317–5935.

Figure B6. Same as Figure B1 for SPT-CL J0346–5439.
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Figure B7. Same as Figure B1 for SPT-CL J0348–4515.

Figure B8. Same as Figure B1 for SPT-CL J0426–5455.
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Figure B9. Same as Figure B1 for SPT-CL J0509–5342.

Figure B10. Same as Figure B1 for SPT-CL J0516–5430.
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Figure B11. Same as Figure B1 for SPT-CL J0551–5709.

Figure B12. Same as Figure B1 for SPT-CL J2022–6323.
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Figure B13. Same as Figure B1 for SPT-CL J2030–5638.

Figure B14. Same as Figure B1 for SPT-CL J2032–5627.
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Figure B15. Same as Figure B1 for SPT-CL J2135–5726.

Figure B16. Same as Figure B1 for SPT-CL J2138–6008.
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Figure B17. Same as Figure B1 for SPT-CL J2145–5644.

Figure B18. Same as Figure B1 for SPT-CL J2332–5358.
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Figure B19. Same as Figure B1 for SPT-CL J2355–5055.
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