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Abstract.

We study the structure of inactive states in a prototypical model glass, the

Kob-Andersen binary Lennard-Jones mixture. These inactive states are obtained

by transition path sampling and are at dynamical phase coexistence with an active

equilibrium state. Configurations in the inactive states are kinetically stable and

are located in deeper basins of the energy landscape than their active counterparts.

By analyzing trajectory-to-trajectory fluctuations within the inactive state, we assess

correlations between kinetic stability, energy and other structural properties. We show

that measures of local order associated to stable local packings and bond-orientational

order are weakly correlated with energy and kinetic stability. We discuss what kinds of

structural measurement might capture the relevant dynamical features of the inactive

state.
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1. Introduction

How should we characterize the amorphous structure of glassy materials? This is a much

debated question, which has given rise to a variety of theoretical and experimental

proposals [1, 2, 3, 4]. One idea, which appears in many different theories, is that

the large relaxation times that are found near to glass transitions are associated

with some universal form of co-operative behavior characterized by a growing length

scale [5, 6, 1, 4]. Alternatively, one might seek a local explanation for glassy behavior:

one can attribute a large time scale to a population of particles that find themselves in

stable local environments, requiring a large activation energy in order to move [7, 8].

These two explanations are different, but they are not necessarily contradictory: it may

well be that stable local environments predominate in glassy materials, and that the

length scales for co-operative motion also grow. Moreover, complex arrangements of

stable local motifs can give rise to so-called medium range order [9, 8], which extends

over length scales larger than the typical nearest neighbor distance.

Evidence that both local and cooperative mechanisms can coexist in glassy systems

comes from several recent simulation studies. Some of them have focused on simple

mixtures of Lennard-Jones particles, which accumulate a significant amount of local

order upon cooling [10, 11, 12, 13]. The local structure of these systems is characterized

by stable motifs, called locally favored structures (LFS), whose abundance increases

markedly as temperature is lowered. Although the specific symmetry of such local

structures is system-dependent, the mechanism seems to be rather general and carries

over to metallic glasses [14, 15, 16, 17]. Other studies have focused on more complex

forms of “amorphous order”, such as point-to-set correlations [18, 19, 20, 21, 22], which

may be expected to govern the co-operative relaxation mechanisms at low temperature.

In the end, the question of the most appropriate description of the amorphous structure

depends strongly on the extent to which different measurements can be used to predict

the behavior of glassy systems [23, 24]. Of course, the answer to this question also

depends on the specific system being studied [25].

A strong indication of universal phenomenology in glassy materials is the existence

of phase transitions, which are associated with diverging length scales and characteristic

order parameter fluctuations [3, 26, 6]. Such transitions may occur at so-called ideal

glass transitions, or they may occur in response to external perturbations such as random

pinning [27], dynamical biasing [28], or in systems of coupled replicas [29, 22]. Here we

consider a well-studied binary mixture of Lennard-Jones particles, originally proposed

by Kob and Andersen (KA) [30, 31]. We focus on systems that are biased dynamically

so that their particles move less than is typical at equilibrium [28]. The specific biasing

procedure used is based on the mathematical theory of large deviations [32]. It leads to a

dynamical phase transition at which structural relaxation of the system appears to stop

completely, as the system enters an inactive state. Such phase transitions were predicted

on the basis of dynamical facilitation theory [33]: in fact they occur in a variety of glassy

model systems [28, 34, 35, 36], consistent with predictions of universality.
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As the dynamical bias is applied to the KA mixture, the system is maintained

in contact with a heat bath at temperature T . However, the structure of the system

changes significantly at the phase transition, so the inactive state differs strongly from

equilibrium states at that temperature [37, 34]. The inactive states are also kinetically

stable, in that they take an unusually long time to recover back to equilibrium when

the dynamical bias is removed [37, 34].

Here, we analyze the local structure of the inactive states, to measure the extent

to which stable local environments determine the properties of these stable glasses.

We achieve this by analyzing sample-to-sample fluctuations among a set of stable glass

configurations. We measure correlations between stabilities, energies, locally favored

structures, crystalline order and local composition. We find that configurations with

the lowest energies tend to be the most stable, but neither their stability nor their

low energy can be attributed to a single structural motif. Our conclusion is that the

correlations between structure, energy and stability of amorphous states in this model

cannot be explained on the basis of a single locally favored structure.

2. Numerical Methods

2.1. KA mixture

The KA mixture consists of particles of two species, A and B, with Lennard-Jones

interactions, as described in [30, 31]. Species A is larger and 80% of the particles are

of this type. The units of length and energy are set by by the interactions between A-

particles, via parameters σ = σAA = 1 and ǫ = ǫAA = 1 respectively. When considering

large deviations of the dynamical activity, it is convenient to use overdamped (Brownian)

dynamics, which we implement using the Monte Carlo (MC) method of [38]. Within

this scheme, the (bare) diffusion constant of a single free particle is D0 = a20/(6τMC)

where a0 = 0.075σ is the maximal MC step in each Cartesian direction and τMC is the

time associated with a single Monte Carlo sweep (one attempted move per particle).

The natural physical time scale for this system is ∆t = σ2/D0, which is of the order of

the Brownian time. This leads to ∆t = 6τMC/a
2
0, corresponding to approximately 1070

MC sweeps. There are N particles, and the position of particle i at time t is ri(t). The

density is ρ = 1.2σ−3.

2.2. Biased ensembles of trajectories

This article is concerned with the structure of inactive states, which are obtained by a

dynamical biasing scheme, based on large deviation theory. We follow the method of [28]

(see also [34, 39]). We consider trajectories of the system, which run from initial time

t = 0 to final time t = tobs. Large deviation theory is relevant in the limit tobs → ∞:

for numerical purposes, we take tobs ≫ τα and use finite-size scaling methods to analyze

the dependence of our results on tobs [28, 34]. (Here τα is the structural relaxation
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time.) The inactive states considered were obtained at temperature T = 0.6, for which

τα ≈ 12∆t.

As in [28], we define the activity of a trajectory of the system as

K = ∆t

M
∑

j=1

NA
∑

i=1

|r̂i(tj)− r̂i(tj−1)|
2, (1)

where the times (t0, t1, t2, . . . , tM) are equally spaced along the trajectory, as tj = j∆t,

with M = tobs/∆t. The sum over particles i is restricted to particles of type A. Also

the position r̂i(t) = ri(t)−r(t) is defined by subtracting the center of mass r(t) so that

the activity K does not couple to bulk translational motion, which can be significant in

the relatively small systems considered here.

We denote averages in the equilibrium state of this system by 〈·〉0. Then introduce

a dynamical field s which biases the system to low activity. The effect of this field is

similar to the effect of temperature changes in statistical mechanics: by analogy with

the canonical ensemble, the average of some O in the biased system (or “s-ensemble”)

is

〈O〉s = 〈Oe−sK〉0
1

Z(s, tobs)
, (2)

where Z(s, tobs) = 〈e−sK〉0 is a dynamical partition function. For the observable O, one

might take O = K, or O = E(t), the energy of the system at some specific time t (with

0 ≤ t ≤ tobs). For s > 0, one sees that (2) assigns an increased statistical weight to

trajectories with low activity K. (In a similar way, the canonical ensemble of statistical

mechanics assigns an increased weight to configurations with low energy.) The result is

that the s-ensemble biases trajectories to low activity, but without any direct bias on

the structures that the system should adopt in order to achieve these inactive states.

Numerically, we use transition path sampling (TPS) [40] to generate trajectories

that are representative of the s-ensemble, so that averages of the form of (2) correspond

to averages over our sampled trajectories. See [39] for an outline of the method used,

which generates trajectories (sample paths) of the system according to a probability

distribution

P [X|s] = P [X|0] ·
e−sK[X]

Z(s, tobs)
. (3)

Here P [X|0] is the probability that trajectory X occurs in the equilibrium state (s = 0)

and P [X|s] is the probability of that trajectory in the s-ensemble.

In the following we consider data from s-ensembles sampled at T = 0.6, with

N = 256 and tobs = 250∆t. (There are NA = 205 particles of type A and NB = 51 of

type B.) For these parameters, the activity k(s) = 〈K〉s/(NAtobs) exhibits a crossover

from active to inactive behavior at a field s = s∗ ≈ 0.020. At s = s∗, the distribution

of the activity K is bimodal, with the two peaks corresponding to active (large-K) and

inactive (small-K) states. The inactive state that we consider is sampled at s = s∗, with

the restriction to trajectories with K/(NAtobs) < 0.039σ2. This corresponds to sampling

from the inactive phase, at the phase coexistence point. As in [28], we use a criterion
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based on a common neighbor analysis to avoid crystallization of the system: details are

given in Section 2.4 below.

We use two methods to improve the performance of the TPS method. These

are generalizations of standard methods for equilibrium sampling, but now applied to

trajectories. We use parallel tempering (see also [34]) with 8 replicas, of which 6 use

s-values very close to the estimated phase transition point s∗, while the remaining two

use smaller s, where acceptance rates TPS moves are high. In particular it is useful to

have one replica with s = 0, for which all TPS moves are accepted: this facilitates rapid

exploration of trajectory space. In some cases we also apply a bias potential w(K) so

that we sample from a distribution P [X|s, w] ∝ P [X|s]ew(K). This approach facilitates

sampling in cases where P [X|s] contains two phases with a significant barrier between

them (as happens at the first-order phase transition): in that case w(K) can be chosen to

enhance the likelihood of the system crossing the barrier between the phases. Results for

the relevant case w = 0 can be readily obtained by standard histogram reweighting [41].

In Section 3, we analyze various indicators of stability and local order of inactive

states. For local structural measurements, we consider averages over the full ensemble

of trajectories generated by TPS. However, when it is computationally expensive

to measure the relevant quantities, we use a representative sample containing 38

trajectories. Where we show scatter plots, the points shown should be interpreted

as representative samples from P [X|s].

We note that the s-ensemble is not perfectly time-translation invariant [42, 43]:

there are transient regimes associated with the beginning and end of the trajectories.

However, time-translation invariance does hold in the “bulk” of the trajectories (that is,

for times t ≫ τ and tobs − t ≫ τ , where τ is the time scale associated with decay of the

transient). For these reasons, when selecting representative inactive configurations from

the s-ensemble, we take one configuration per trajectory, evaluated at time t = tobs/2.

In some cases, we also take time-averages within the inactive state, to reduce the effect

of intra-state fluctuations due to fast degrees of freedom. In this case, the averages are

taken over the time period (tobs/4) < t < (4tobs/5). Figure 1 illustrates this procedure.

2.3. Kinetic stability of the inactive state: definition of tmelt

As in previous work [37, 34], we measured the time it takes for inactive states to relax to

equilibrium (or “melt”), once the bias is removed. We take the the central configuration

(t = tobs/2) from each inactive trajectory and we run 100 independent dynamical

trajectories from this configuration, at T = 0.6. For each initial configuration, we

measure the average (time-dependent) energy E(t): it fits well to an exponential function

E = Eeq+(E0−Eeq)e
−t/tmelt , from which we obtain a (configuration-dependent) “melting

time” tmelt. (Here, Eeq is the equilibrium average energy at T = 0.6, while E0 and tmelt

are fitting parameters.)
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Figure 1. Illustration of initial and final transient regimes for a representative

trajectory with K ≈ 7.77. In our analysis, we average the inherent structure energy,

panel (a), over the central part of the trajectory (shaded area). This avoids effects

from transients near the initial and final times. Note that in this illustrative trajectory

there is an initial transient but no final transient, but since the ensemble is time-reversal

symmetric so the opposite situation is equally likely. Panel (b) shows the root mean

square displacement ∆r = [(1/N)
∑

i |ri(t) − ri(0)|
2]1/2 over the same time period,

showing that the particles move significantly only within the transient regime.

2.4. Local order: definitions of structural measurements

We now describe our analyses of local structure. To reveal the most important

structural features of inactive states, we focus on inherent structures (IS), in which

thermal distortions are removed. For any configuration {ri(t)}, the inherent structure

corresponds to the closest local minimum of the potential energy surface, which

we determine using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS)

minimization algorithm [44]. Because we truncate the Lennard-Jones interactions at

rc = 2.5σαβ , a small fraction of energy minimizations does not converge to a strict

local minimum, but to configurations that contain a spurious unstable mode. These

configurations are nonetheless retained in our inherent structure analysis since they are

statistically indistinguishable from actual local minima.

Locally favored structures are natural candidates to explain the increased stability

of inactive states sampled in the s-ensemble. LFS are identified through a radical

Voronoi tessellation of the inherent structures [45] using the Voro++ library [46].

At equilibrium, we focus on Voronoi cells centered on B-particles, which possess 8

pentagonal faces and 2 quadrilateral faces. Such cells increase in number as temperature
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(a) (b) (c) (d)

Figure 2. Typical local structures associated to (0,2,8) Voronoi cells [panels (a) and

(b)] and to (0,4,4,6) cells [panels (c) and (d)]. The former are identified as the LFS

of the model, the latter are associated to fcc ordering. White and red spheres depict

A and B particles, respectively. The majority of LFS have chemical coordination as

in (a), while panel (b) displays an LFS with two B-particles along the symmetry axis.

Note that (0,4,4,6) cells do not always always clear 6-fold symmetry, see panel (d).

Bonds drawn according to a fixed cut-off distance, as explained in the main text.

drops [10] and are identified as the preferred local structure of the KA mixture. In the

Voronoi nomenclature, these structures are referred to as (0, 2, 8) cells ‡. Note that,

in contrast to other studies [47, 12, 13], we measure the overall fraction f(0,2,8) of LFS

centers instead of the concentration of particles being part of such LFS structures. In

addition, we monitor the fraction of (0, 4, 4, 6) cells centered around A-particles (see

Figure 2c), which are associated with fcc and bcc crystal structures [48].

To ensure that our results do not depend qualitatively on the technical details of the

tessellation, we also performed a modified tessellation [49] to account for the different

sizes of the particles in the KA mixture. In this case, segments connecting neighboring

particles are bisected at a fraction fαβ = σαα/(σαα + σββ) depending on the species of

the particles’ pair [49, 10]. As is well known [45], there can be appreciable discrepancies

between Voronoi cell statistics obtained using these two approaches. We found that, on

average, signatures match about 80% of the times and that (0, 2, 8) cells are slightly less

frequent when using the radical tessellation. These discrepancies do not affect, however,

the main conclusions of our work, see Section 3.

Two additional structural metrics are employed to detect local packings with

crystal-like order: bond-orientational order (BOO) parameters and common neighbor

analysis (CNA). In both cases, our analysis relies on the notion of a particle’s

neighborhood, which we define as follows: two particles i and j are considered as

neighbors, i.e. they form a bond, if their distance rij is less than a threshold value rmαβ,

which depends on the species α and β of the particles. For inherent structures, the values

of rmαβ are 1.41, 1.30 and 1.09 for AA, AB and BB pairs, respectively. These values match

the location of the first minimum in the relevant radial distribution function gαβ(r). We

note that we choose rAB slightly larger than the location of the first minimum of gAB(r),

to try to account for typical A−B separations along the principal axis of the LFS, see

Figure 2a. Also note that the positions of these minima are rather insensitive to changes

‡ The “signature” of a Voronoi cell (n3, n4, n5, . . .) where nk is the multiplicity of faces with k vertices.
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Figure 3. Partial radial distribution functions gAA(r), gAB(r), and gBB(r) for

inherent structures at T = 1.1, 0.45 and in the active state at T = 0.6, s = s∗.

The vertical dotted lines are located at r = 1.41, 1.30, and 1.09, respectively.

in temperature or activity, see Figure 3.

To quantify the degree of local bond-orientational order in the system, we use a

standard expansion of the bonds formed by neighboring particles in terms of spherical

harmonics Ylm [50]. For each particle i, the complex vector

Qlm =

Nb(i)
∑

j=1

Ylm(r̂ij) (4)

encodes information about the l-fold orientational symmetry of bonds formed by particle

i with its Nb(i) neighbors. Here, r̂ij is the unit vector between particles i and j. From

these quantities we then construct a set of rotationally-invariant bond-order parameters

Ql(i) =

√

√

√

√

4π

2l + 1

l
∑

m=−l

|Qlm(i)|2 (5)

which are sensitive to different kind of symmetries of the local structure. Specifically, the

Q6 parameter is large for fcc and hcp structures and will be used in the following as a

simple measure of local crystal-like order. § We also monitor Q4, which is sensitive

to structures with local cubic symmetry. We also calculated the locally averaged,

bond-order parameters Q̄l defined by Lechner and Dellago [51]. We found that these

quantities show qualitatively similar trends as the standard BOO parameters defined

above. However, the analysis of Q̄l is complicated by the different symmetry of the local

structures around A and B particles in the KA mixture.

To complement our study of crystal-like local order, we perform a common neighbor

analysis of the system [52]. Within this approach, bonds between pairs of particles

§ Note that although large Q6 values can also correspond to strong local icosahedral order, our Voronoi

tessellation shows that icosahedral structures are very scarce in the system. At low T , the fraction of

(0, 0, 12) Voronoi cells is typically 5 times lower than (0, 4, 4, 6) and around an order of magnitude lower

than (0, 2, 8).
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Figure 4. Distribution of BOO parameters Q4 [(a) and (c)] and Q6 [(b) and (d)] from

equilibrium configurations at T = 0.45. Contributions due to B- and A-particles are

reported separately in panels (a),(b) and (c),(d), respectively. Dashed lines are partial

distributions filtered according to the indicated Voronoi signature around the particle.

are assigned a triplet of integers {k, l,m} that characterizes the connectivity between

neighboring particles. In particular, we keep track of the fraction f{1,4,2} of bonded pairs

of particles that have four mutual neighbors (l = 4) and are such that mutual neighbors

share exactly two bonds between each other (m = 2). High concentrations of {1, 4, 2}

bonds are indicative of fcc/hcp crystalline order. As in previous work [28], our criterion

to discard trajectories generated by TPS with too high crystalline order is based on

such {1, 4, 2} bonds, whose average concentration must not exceed 8% over the whole

trajectory. We note that the concentration of such bonds is higher in inherent structures

than in “instantaneous” configurations.

Finally, we comment on the sensitivity of our local structure measurements to the

neighbors’ definition. In Figure 4 we show the equilibrium distribution of Q4 and Q6

at T = 0.45, split into contributions due to A and B particles. The distribution of

Q4 around B particles is broad and characterized by distinct peaks. We think these

peaks are an artifact of using a fixed nearest neighbor distance, which does not always

account for the relevant local connectivity (see Figure 2a and 2b). We found that

these peaks are absent when using the Voronoi-based definition of nearest neighbors.

Figure 4 shows that (0,2,8) cells are associated to larger (smaller) values of Q6 and

(Q4). Analysis of distributions around A-particles shows that (0,4,4,6) structures are

associated to systematically larger values of Q6, as expected. These trends are robust

and hold irrespective of neighbors’ definition. Finally, we found that the neighbors’

definition significantly affects the statistics of CNA bonds. In particular, the number of

(1,4,2) bonds varies appreciably when switching to a Voronoi-based definition. These
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discrepancies do not affect qualitatively our main conclusions, but they highlight the

difficulty of an unambiguous identification of local structural motifs in glassy systems.

3. Results

The results presented in this work are of two types. We first consider averaged structural

measures in the inactive state, and we compare with analogous results for equilibrium

states at various temperatures. These results show that, on average, inactive states

have energies and LFS populations consistent with equilibrium states at T ≈ 0.435.

However, the inactive states differ from the equilibrium ones in that their local packing

has somewhat more bond-orientational order, and the CNA analysis indicates a slightly

higher proportion of {1, 4, 2} bonds, which are associated with crystalline packing. This

indicates that the local packing of particles in the inactive state differs from packing

in low-temperature equilibrium states, although we emphasise that these structural

differences are very subtle and the system does not display extended regions of crystalline

order.

These results illustrate which kinds of local structure appear in typical inactive

states, but they cannot detect whether there is any causal connection between these

structures and the stability of these states, nor whether a measurement of structure

allows the dynamical properties of a configuration to be predicted. The second part of

our analysis addresses this question by considering the fluctuations within the inactive

state. The local structural measures that we compute have significant fluctuations in this

state, and are only weakly correlated with the energies and the kinetic stabilities of the

different inactive configurations. For example, while the average number of LFS is larger

in the inactive state, there are still many inactive configurations with low energies but

whose LFS populations are small, comparable to high-temperature equilibrium states.

Consistent with previous studies [25, 24], this indicates that the correlations between

LFS concentrations and dynamics in the KA model are not strong enough to make

predictions of dynamical properties.

3.1. Averaged structural measurements in equilibrium and inactive states

Figure 5 shows the evolution of the preferred local order as the temperature of the

KA mixture is reduced. The equilibrium values 〈eIS〉0 and 〈f028〉0 are plotted one

against the other by using temperature as an implicit parameter. We emphasize

that f028 is evaluated using the inherent structures of the system, as are the other

structural quantities (bond order, CNA) considered in the following. The relationship

between the average energy and the fraction of LFS is approximately linear. Thus, the

increased stability of inherent structures below the onset of slow dynamics, TO ≈ 1, is

correlated with the growing fraction of LFS [11]. Superficially, these data also suggest

that increasing the number of (0, 2, 8) cells present in the system bears a fixed energy

cost, which is given by the slope of the straight line in Figure 5. This would imply



Structure of inactive states of a binary Lennard-Jones mixture 11

-7.7

-7.68

-7.66

-7.64

-7.62

-7.6

-7.58

-7.56

-7.54

 2  2.4  2.8  3.2  3.6  4  4.4

In
he

re
nt

 s
tr

uc
tu

re
 e

ne
rg

y,
 e

IS

LFS fraction, f(0,2,8) [%]

0.45
0.47

0.5

0.55

0.6

0.7
0.8

0.9
1.1

1.84.0

0.435

Inactive

-7.7

-7.65

-7.6

 0  2.5  5  7.5

T=0.45

e I
S

f(0,2,8)

Figure 5. Average inherent structure energy eIS plotted against the average LFS

concentration f028, at equilibrium (circles) and in the inactive state at T = 0.6, s = s∗

(red square). The temperatures of the equilibrium samples are given by the labels.

Error bars indicate the numerical uncertainties on these average values (standard

error). Inset: scatter plot of eIS against f028 for individual inherent structures sampled

at equilibrium at T = 0.45. The correlation between eIS and f028 is weak (R = −0.16).

that individual structures are essentially independent in this temperature regime, in

agreement with the small associated correlation lengths [13]. Note, however, that the

fluctuations of f028 and inherent structure energies do not correlate strongly on a sample-

to-sample basis, as shown in inset of Figure 5 for T = 0.45: we return to this point in

Section 3.2. Throughout this work R indicates Pearson’s correlation coefficient, which

is defined for observables A and B as R = 〈δAδB〉/
√

〈δA2〉〈δB2〉, with δA = A− 〈A〉,

and similarly for δB.

Also shown in Figure 5 is the average behavior of the inactive state. As noted

previously [28, 37], this state is lower in energy than the active state with which it

coexists, whose structural properties are close to equilibrium at temperature T = 0.6.

The inactive state also includes more LFS [47], and appears to lie on the extrapolation

of the equilibrium line, so its structure appears similar to that of equilibrium states at

T ≈ 0.435. However, there are also subtle differences in local structure between the

inactive state and low-temperature equilibrium states. This is illustrated in Figure 6

where we show results for the average BOO parameters Q4 and Q6, and for {1, 4, 2}

bonds in the CNA analysis. Q6 and f{1,4,2} are measures of structural order that

have large values in fcc and hcp crystals. We see that inactive states have slightly

more pronounced 6-fold bond-orientational order and as well as higher concentration

of {1, 4, 2} bonds than equilibrium configurations at a similar depth in the energy

landscape. We emphasize that these measurements only quantify local packing and

do not imply that the system is exhibiting long-range, crystalline order. Also, note that



Structure of inactive states of a binary Lennard-Jones mixture 12

-7.7

-7.68

-7.66

-7.64

-7.62

-7.6

-7.58

-7.56

-7.54

 0.104  0.112  0.12  0.128

(a)
In

he
re

nt
 s

tr
uc

tu
re

 e
ne

rg
y,

 e
IS

BOO, Q4

0.45
0.47

0.5

0.55

0.6

0.7

0.8
0.9
1.1
1.84.0

0.435
Inactive

 0.356  0.36  0.364  0.368

(b)

BOO, Q6

0.45
0.47

0.5

0.55

0.6

0.7

0.8
0.9

1.1
1.84.0

0.435
Inactive

 9.2  9.6  10  10.4  10.8

(c)

CNA, f{1,4,2} [%]

0.45
0.47

0.5

0.55

0.6

0.7

0.8
0.9

1.1
1.84.0

0.435
Inactive

Figure 6. Average inherent structure energy eIS plotted against average BOO

parameters (a) Q4 (b) Q6 and (c) concentration of {1, 4, 2} bonds for inherent

structures sampled at equilibrium (circles) and in the inactive state at T = 0.6, s = s∗

(red square). The temperatures of the equilibrium samples are given by the labels.

while the biasing field s has been found to induce crystallization in this system, leading

to long-ranged order [28], our transition path sampling method rejects trajectories in

which crystalline order grows too large (see Section 2.2), ensuring that our results include

only amorphous inactive states.

Comparing with previous work [37], we note that while inactive states were

compared with low-temperature equilibrium states in that work, their smaller system

size (N = 150) meant that reliable results for equilibrium states could not be obtained

below T ≈ 0.47, due to crystallization. Here, the use of larger systems (N = 256)

allows equilibration at temperatures as low as T = 0.435. However, the properties

of the inactive states do depend on the system size: based on their IS energies, the

inactive states (N = 150) considered in [37] seem to correspond with equilibrium states

close to T ≈ 0.4, significantly lower than we find here, for N = 256. The larger systems

considered here are also less kinetically stable (fitting the relaxation of the average energy

during melting of the inactive state, we obtain an average tmelt ≈ 140∆t, in contrast to

a value of 290∆t from [37]). The origins of these finite-size effects are not clear to us – it

would be interesting to investigate these further. It is also useful to compare our results

with [46], where two different biasing parameters were used, leading to inactive states

with different structures. Our results are consistent with theirs for the case where their

bias is purely dynamical; they also used a bias which couples to the local structure of

the system, in which case the structure of the inactive state is (unsurprisingly) rather

different.
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Figure 7. Average inherent structure energies of inactive trajectories correlate well

with (a) melting times tmelt and (b) activity K. In panel (a), log denotes the natural

logarithm. The corresponding Pearson correlation coefficients R are indicated in the

figure. Note that the scatter plot in (a) is based on a representative subset of inactive

trajectories. Averages of eIS are evaluated over the central part of the trajectory, as

described in Section 2.2.

3.2. Correlation between structural and dynamical properties within the inactive state

The inactive state considered here is at (dynamical) phase coexistence with a near-

equilibrium active state at T = 0.6. The active and inactive states differ strongly in

energy and in their structure, and these differences show that structural and dynamical

properties of these states are correlated. However, establishing a causal relationship

between these properties is much more challenging. We address this issue by analyzing

fluctuations within the inactive state, which allows us to demonstrate that some of the

correlations found so far are not strong enough to form the basis of a causal link. To

suppress some fast “intra-state” fluctuations, we average the structural properties of

interest over the central part of the inactive trajectories, as described in Section 2.2.

Perhaps the most striking dynamical property of configurations from the inactive

state is their kinetic stability: if inactive states are allowed to evolve under their

natural (unbiased, s = 0) dynamics, they take a long time to relax (melt) back

to equilibrium [37, 34]. We measured the time tmelt associated with this relaxation

process, as described in Section 2.3. Figure 7 shows a scatter plot of log(tmelt), against

the structural quantity eIS for a representative set of inactive trajectories. One sees

a significant correlation: among all inactive trajectories, those with lower inherent

structure energies are dynamically more stable. Figure 7b shows a similarly strong

correlation between the inherent structure energy and the dynamical activity of the

individual trajectories.

By contrast, Figure 8 shows similar scatter plots between eIS and local structural

measures. Here the correlations are much weaker: states with large numbers of LFS

have lower energy on average (recall Figure 5), but measuring the number of LFS in an

inactive trajectory provides very little information about its IS energy. We emphasize

that these correlations are as weak as those measured at the level of single inactive
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Figure 8. Measures of local order, such as (a) the average fraction of LFS and (b) the

average bond-orientational order parameter Q6, do not correlate well with the average

inherent structure energy eIS of inactive trajectories. The corresponding correlation

coefficients R are indicated in the figure. Averages are evaluated over the central part

of the trajectory, as described in Section 2.2.

configurations, as shown in the inset of Figure 5.

The correlations between several measured properties of inactive states are

summarized in Table 1. We found that both Pearson and Spearman (i.e. rank-ordered)

correlation coefficients provide similar results, with the former being systematically

higher by a few percent. Overall, individual measures of local structure, be they

associated to LFS or to local crystalline order, correlate weakly to inherent structure

energy. Somewhat surprisingly, the average bond-orientational parameter Q4 has the

strongest correlation among all local observables we investigated ‖, which suggests that

Q4 may capture some relevant, and so far unnoticed, features of the structure of this

model. It may be interesting to investigate this point further in future work.

We emphasise that the analyses of local structure leading to Table 1 are all based

on inherent structures, in order to reduce the thermal distortion of the local structure.

We also evaluated these correlations based on instantaneous configurations, in which

case LFS concentrations correlate somewhat more strongly with instantaneous energies

(R ≈ 0.29). Correlations with melting times remain, however, practically absent

(|R| ≈ 0.1).

We also analyzed some additional local order parameters that have been used

recently to characterize the structure of the KA mixture. We investigated the role

of the chemical composition of LFS structures [53], focusing on (0,2,8) Voronoi cells

having two B-particles along the symmetry axis of the prism. This structure, depicted

in Figure 2b, can expected to be a favorable motif at low temperature [53]. We found

the correlation between the fraction of such structures and eIS to be even lower than for

the full statistics of (0,2,8) cells. Similar weak correlations are found with the fraction of

‖ Evaluating the Q4 parameter using the Voronoi neighbors (instead of neighbours based on a bond-

length cutoff) and using an additional limitation of at most 12 neighbors, the correlation coefficient

with tmelt is reduced to 0.4 and the one with eIS to 0.19.
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Table 1. Pearson correlation coefficients between observables measured in the inactive

state. Correlations are measured using averages over the central part of the TPS

trajectory, , as described in Section 2.2, except for K, which is defined over the full

trajectory, and (tmelt, ǫ
∗, χ∗), which depend only on the configuration at the mid-

point of the trajectory (t = tobs/2). Correlation coefficients for the melting time

are evaluated using log tm. Measurements performed using a representative subset of

inactive trajectories carry only one significant digit and are typeset in italic. R values

larger than 0.5 are indicated by bold text.

eIS K f(0,2,8) f(0,4,4,6) Q6 Q4 f{1,4,2} tmelt ǫ∗ χ∗

eIS − 0.75 -0.18 -0.06 -0.12 0.33 -0.01 -0.8 0.5 -0.6

K 0.75 − -0.21 -0.05 -0.20 0.36 -0.09 -0.7 0.4 -0.4

f(0,2,8) -0.18 -0.21 − -0.22 0.17 -0.32 -0.06 -0.1 -0.1 -0.1

f(0,4,4,6) -0.06 -0.05 -0.22 − 0.21 -0.09 0.23 0.0 -0.2 -0.0

Q6 -0.12 -0.20 0.17 0.21 − -0.25 0.26 0.2 -0.2 0.0

Q4 0.33 0.36 -0.32 -0.09 -0.25 − 0.30 -0.5 0.3 -0.2

f{1,4,2} -0.01 -0.09 -0.06 0.23 0.26 0.30 − 0.2 -0.2 0.1

tmelt -0.8 -0.7 -0.1 0.0 0.2 -0.5 0.2 − -0.7 0.7

ǫ∗ 0.5 0.4 -0.1 -0.2 -0.2 0.3 -0.2 -0.7 − -0.8

χ∗ -0.6 -0.4 -0.1 -0.0 0.0 -0.2 0.1 0.7 -0.8 −

A particles fully surrounded by A particles, which is a simple measure of crystalline local

order in the KA mixture [28]. Finally, we note that measurements of f(0,2,8) obtained

using the modified Voronoi tessellation described in Section 2.4 are 95% correlated to

those reported here and provide similar, weak correlation coefficients with energy and

activity (both equal to 0.21).

We emphasize that while the correlations in Figure 8 are very weak, they are

non-zero. We note that similar weak correlations also hold in equilibrium states, as

may be deduced from Figure 5. This means that if one averages eIS and f028 over

several configurations, the fluctuations in these quantities decrease, and their correlation

becomes apparent. This effect can be seen, for example, by averaging over time windows

that are long enough that a single trajectory visits many different structures. In that

case, a correlation appears between time-averaged values of eIS and f028 [34], but this

does not mean that measurement of a configuration’s local structure provides predictive

information for the dynamical properties of the system.

From Table 1, our conclusion is that standard measures of local order are not

sufficient to capture the most important structural fluctuations observed in the inactive

state. None of the individual structural measures give predictive information as to

the IS energy or the kinetic stability. We see several possible theoretical scenarios

that are consistent with these data: (i) There are multiple local order measures whose

fluctuations contribute to those of eIS, so that only the fluctuations of a more complex

structural order parameter (for example, a sum of LFS and local crystalline order)

can correlate to eIS. We also cannot rule out the possibility that different strategies to

detect local structures, such as the topological cluster classification [54], lead to stronger
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Figure 9. Correlation between average inherent structure energy and (a) ǫ∗ and (b)

the maximum of overlap susceptibility χ∗. Note that only the central configurations

from the inactive trajectories are used in the calculation of ǫ∗ and χ∗.

correlations. (ii) The dynamic quantities K and log(tm) are related to structural defects,

which increase eIS, but which are not captured by any of the local order measures. The

latter are primarily sensitive to low-energy stable regions. These structural defects are

yet to be identified – it would be interesting to investigate correlations between kinetic

stability and the low density regions identified in [24]. (iii) Some more complex forms of

order are responsible for the stability of the inactive state, for example soft spots [55, 37],

medium ranged-order [9, 8], or point-to-set correlations [19, 21, 22].

To investigate further this last scenario of strong point-to-set correlations and

amorphous order, we revisit the results of [22]. In that work, a field ǫ was introduced,

which biases one copy of a system to be similar to a second copy, which is fixed in

an inactive configuration C0. The theoretical prediction [29] is that if the temperature

is sufficiently low and the inactive state is very stable, one should observe a first-order

phase transition as a function of the bias ǫ. The order parameter for this phase transition

is the overlap Q, which measures the similarity between the two copies of the system,

with Q = 1 if the configurations are identical and Q ≈ 0 if they are uncorrelated.

We consider configurations C0 taken from the inactive state. Characterizing the

expected phase transition requires averaging over many different C0, but we consider

each C0 separately here, in order to consider fluctuations within the inactive state. For

each fixed C0, a sharp crossover in Q was observed [22], as the bias ǫ is increased. The

value of the bias at which this crossover takes place is ǫ∗ = ǫ∗(C0). At the crossover,

one may also measure a susceptibility χ∗, which is related to the variance of the order

parameter as χ∗ = N〈(δQ)2〉, where the average is taken at fixed C0, with ǫ = ǫ∗. One

also has χ∗ = (d/dǫ)〈Q〉.

The physical meaning of ǫ∗ and χ∗ is as follows. If ǫ∗ is small, this means that only

a small bias is required in order to localize the system in the same metastable state

as configuration C0. This localization has a free-energy cost associated with the loss of

entropy of the parent fluid (here the active state) [56]; there is also a free energy gain
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since the energy of C0 is lower than that of the parent fluid. The net free-energy cost

for localization must be compensated by the bias ǫ, so one expects ǫ∗ to be small if C0
is a low-energy stable configuration. This expectation is confirmed by Figure 9a, which

shows a good correlation between ǫ∗(C0) and the IS energy of C0, with lower energy

corresponding to smaller ǫ∗. The meaning of the susceptibility χ∗ is more subtle: it

measures how sharp is the transition between the parent fluid and the system localized

in the inactive metastable state. One expects the transition to be sharp (and hence χ∗

large) in cases where there is a significant interfacial cost between active and inactive

states, leading to bistable behavior for the overlap [57]. These large interfacial costs

are also expected to be correlated with large time scales for relaxation, following the

arguments of [6]. Figure 9b shows that this expectation does indeed hold, in that large

χ∗ correlates to a good extent with low IS energy, which is itself strongly correlated with

kinetic stability (Figure 7).

4. Conclusions

We have investigated the structure of inactive states obtained by a large deviation

analysis, following [28]. The inactive states have low energy and high kinetic stability.

These states are prepared at dynamical phase coexistence with an equilibrium state at

T = 0.6 but, on average, their local structures are similar to those of equilibrium states

at T ≈ 0.435. However, CNA and BOO measurements reveal subtle differences between

inactive and low-temperature equilibrium states. We also find that the inactive state

has quite large fluctuations in its local structure. For example, the concentration of LFS

ranges from 2 − 6% (see Figure 8), even after averaging over fast fluctuations within

the inactive state. Correlations between the LFS concentration and the dynamical

properties of the inactive state are weak, so LFS measurements alone cannot predict

dynamical behavior in this system [24, 25]. Correlations between dynamics and other

local order metrics are similarly weak. On the other hand, collective properties such as

the IS energy and the coupled-replica measurements of [22] do correlate with dynamical

features, indicating that the coupling between structure and dynamics is strong, even if

it may not be local.

The data underlying this publication are available at http://doi.org/10.15125/BATH-00209.
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