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1 Introduction

Quantum Electrodynamics (QED) in 3d is an asymptotically-free gauge theory, which

becomes strongly interacting in the IR. When the U(1) gauge field is coupled to an even

number, 2Nf , of complex two-component fermions, and the Chern-Simons level is zero, the

theory is parity invariant and has an SU(2Nf ) × U(1) global symmetry. For large Nf the

theory flows in the IR to an interacting conformal field theory (CFT) that enjoys the same

parity and global symmetry. The CFT observables are then amenable to perturbation

theory in 1/Nf ; this has been done for scaling dimensions [1–11], two-point functions of

conserved currents [12–14], and the free energy [15]. The IR fixed point is expected to

persist beyond this large-Nf regime, but not much is known about it. Ref. [16] employed
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the conformal bootstrap approach to derive bounds on the scaling dimensions of some

monopole operators. Another method to study the small-Nf CFT is the ε-expansion,

which exploits the existence of a fixed point of Wilson-Fisher type [17] in QED continued

to d = 4 − 2ε dimensions. When ε � 1 we can access observables via a perturbative

expansion in ε and subsequently attempt an extrapolation to ε = 1
2 . The ε-expansion of

QED was employed to estimate scaling dimensions [18, 19], the free energy F [20], and the

coefficients CT and CJ [14]. In particular, ref. [18] considered operators constructed out of

gauge-invariant products of either four or two fermion fields.

Four-fermion operators are interesting because of the dynamical role they can play in

the transition from the conformal to a symmetry-breaking phase, which is conjectured to

exist if Nf is smaller than a certain critical number N c
f [21–26]. In fact, the operators with

the lowest UV dimension that are singlets under the symmetries of the theory are four-

fermion operators. If for small Nf they are dangerously irrelevant, i.e., their anomalous

dimension is large enough for them to flow to relevant operators in the IR, they may

trigger the aforementioned transition [7, 27, 28].1 The one-loop result of ref. [18] led to the

estimate N c
f ≤ 2.

Bilinear operators, i.e., operators with two fermion fields, are interesting because they

are presumably among the operators with lowest dimension. For instance, when continued

to d = 3, the two-form operators Ψγ[µγν]Ψ become the additional conserved currents of the

SU(2Nf ) symmetry, of which only a SU(Nf ) subgroup is visible in d = 4 − 2ε. This leads

to the conjecture that their scaling dimension should approach the value ∆ = 2 as ε→ 1
2 ,

which was tested at the one-loop level in ref. [18].

In order to assess the reliability of the ε-expansion in QED, and to improve the esti-

mates from the one-loop extrapolations, it is desirable to extend the calculation of these

anomalous dimensions beyond leading order in ε. This is the purpose of the present paper.

Let us describe the computations we perform and the significance of the results.

We first consider four-fermion operators. In the UV theory in d = 4 − 2ε, there

are two such operators that, upon continuation to d = 3, match with the singlets of the

SU(2Nf ) symmetry. We compute their anomalous dimension matrix (ADM) at two-loop

level by renormalizing off-shell, amputated Green’s functions of elementary fields with a

single operator insertion. As we discuss in detail in a companion paper [32], knowing this

two-by-two ADM is not sufficient to obtain the O(ε2) scaling dimensions at the IR fixed

point. We also need to take into account the full one-loop mixing with a family of infinitely

many operators that have the same dimension in the free theory. These operators are of

the form

(ΨΓnµ1...µnΨ)2 , (1.1)

1More precisely, when the four-fermion operators are slightly irrelevant in the IR, there is an additional

nearby UV fixed point. As these operators become marginal, the two fixed points cross each other, and they

can annihilate and disappear [29]. For a more detailed discussion, see section 5 of ref. [20]. Ref. [30] pointed

out that in order to describe properly the conjectured transition, one cannot ignore higher-order terms in

the four-fermion couplings. A study of the RG flow that employed ε-expansion and included four-fermion

couplings appeared recently in ref. [31].
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where n is an odd integer, and Γnµ1...µn ≡ γ[µ1 . . . γµn] is an antisymmetrized product of

gamma matrices. All the operators in this family except for the first two, i.e., n = 1, 3,

vanish for the integer values d = 4 and d = 3, but are non-trivial for intermediate values

3 < d < 4. For this reason, they are called evanescent operators. Taking properly into

account the contribution of the evanescent operators, via the approach described in ref. [32],

we obtain the next-to-leading order (NLO) scaling dimension of the first two operators.

We then extrapolate to ε = 1
2 using a Padé approximant, leading to the result presented

in subsection 5.2 and summarized in figure 2. The deviation from the leading order (LO)

scaling dimension is considerable for small Nf , indicating that at this order we cannot

yet obtain a precise estimate for this observable of the three-dimensional CFT. Taking,

however, the NLO result at face value, we would conclude that the four-fermion operators

are never dangerously irrelevant. This resonates with recent results that suggest that

QED3 is conformal in the IR for any value of Nf . Namely, refs. [33–35] argued, based

on 3d bosonization dualities [36–39], that for Nf = 1 the SU(2) × U(1) symmetry is in

fact enhanced to O(4) (this is related to the self-duality present in this theory [40]). Also,

a recent lattice study [41] found no evidence for a symmetry-breaking condensate (for

previous lattice studies see refs. [42–44]).

We then consider the bilinear “tensor-current” operators of the form

ΨΓnµ1...µnΨ , (1.2)

for n = 0, 1, 2, 3. We obtain their IR scaling dimension up to O(ε3) using the three-loop

computations from ref. [45]. Having these higher-order results, we are in the position to

employ different Padé approximants to estimate errors and test the convergence as we in-

crease the order. As mentioned above, in the limit d → 3 the operators with n = 1, 2

approach conserved currents of the SU(2Nf ) symmetry. Indeed, we show in subsection 5.3

(see figure 4) that the extrapolated scaling dimension of the two-form operators approaches

the value ∆ = 2 as we increase the order. As d→ 3, the operators with n = 0, 3 approach

scalar bilinears, which are either in the adjoint representation of SU(2Nf ) or are singlets.

For the singlet scalar, which is continued by a bilinear with n = 3, the results of various ex-

trapolations that we perform are all close to each other (see figure 5), indicating that the ε-

expansion provides a good estimate for this scaling dimension in the full range of Nf . For the

adjoint scalar, different components are continued by operators with either n = 0 or n = 3,

giving two independent extrapolations at each order in ε. As expected, we find that the

two independent extrapolations approach each other as we increase the order (see figure 5).

The rest of the paper is organized as follows: in section 2 we set up our notation and

describe the fixed point of QED in d = 4 − 2ε; in section 3 we present the computation

of the two-loop ADM of the four-fermion operators, and then the result for their scaling

dimension at the IR fixed point in d = 4 − 2ε; in section 4 we present the same result for

the bilinear operators; in section 5 we extrapolate the scaling dimensions to d = 3, and

plot the resulting dimensions as a function of Nf for the various operators we consider;

finally in section 6 we present our conclusions and discuss possible future directions. In

the appendices we collect additional material and some useful intermediate results.
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2 QED in d = 4− 2ε

We consider QED with Nf Dirac fermions Ψa, a = 1, . . . , Nf , of unit charge. The La-

grangian is

LQED = −1

4
FµνFµν + Ψaiγ

µDµΨa , (2.1)

with the covariant derivative defined as

Dµ ≡ ∂µ + ieAµ . (2.2)

Summation over repeated flavor indices is implicit. We work in the Rξ-gauge, defined by

adding the gauge-fixing term

Lg.f. = − 1

2ξ
(∂µA

µ)2 . (2.3)

We collect the Feynman rules in appendix A.

The algebra of the gamma matrices is {γµ, γν} = 2ηµν , with ηµνη
νρ = δρµ and δµµ = d.

We will employ some useful results on d-dimensional Clifford algebras from ref. [46]. We

normalize the traces by Tr[1] = 4, for any d. For d = 3, Ψa decomposes as

Ψa −→
d→3

[
ψa

ψa+Nf

]
, (2.4)

giving 2Nf complex two-component 3d fermions ψi, i = 1, . . . , 2Nf , all with charge 1.

Correspondingly, the gamma matrices decompose as

γµ −→
d→3

[
0 γ

(3)
µ

γ
(3)
µ 0

]
, (2.5)

where {γ(3)
µ }µ=1,2,3 are two-by-two 3d gamma matrices.

In d = 4, the global symmetry preserved by the gauge-coupling is SU(Nf )L×SU(Nf )R.

In d = 4 − 2ε, evanescent operators violate the conservation of the nonsinglet axial cur-

rents [47], so only the diagonal subgroup SU(Nf ) is preserved. In d = 3, this symmetry

enhances to SU(2Nf )×U(1).

We define α ≡ e2

16π2 and denote bare quantities with a subscript “0”. The renormalized

coupling is given by

α0 = Zαα(µ)µ2ε , (2.6)

where the renormalization constant Zα(α, ε) absorbs the poles at ε = 0, and µ is the

renormalization scale. The beta function reads

dα

d log µ
= −2εα+ β(α, ε) , (2.7)

where

β(α, ε) ≡ −αd logZα
d log µ

. (2.8)
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In Minimal Subtraction (MS), β depends only on α and not on ε. The MS QED β function

is known up to four-loop order for generic Nf [48, 49]

β(α) =
8

3
Nfα

2 + 8Nfα
3 −

(
88

9
N2
f + 4Nf

)
α4

−
(

2464

243
N3
f +

16

27
(312ζ(3)− 95)N2

f + 92Nf

)
α5 +O(α6) . (2.9)

Using eqs. (2.7) and (2.9) we find that in d = 4− 2ε the theory has a fixed point at

α∗ =
3

4Nf
ε− 27

16N2
f

ε2 +
9(22Nf + 117)

128N3
f

ε3

+

(
308N2

f + 9(624ζ(3)− 685)Nf − 9963
)

256N4
f

ε4 +O(ε5) , (2.10)

where ζ(n) is the Riemann zeta function.

Our convention for renormalizing fields is

Ψa
0 = Z

1/2
Ψ Ψa, Aµ0 = Z

1/2
A Aµ . (2.11)

By the Ward Identity, ZA = Z−1
α . For our computations we need the field-renormalization

of the fermion up to two-loop order. In MS and generic Rξ-gauge it reads

ZΨ = 1− α

ε
ξ +

α2

ε2
ξ2 +

α2

ε

(
3

4
+Nf

)
+O(α3) . (2.12)

2.1 Operator mixing

To compute the anomalous dimension of local operators O i, we add these operators to the

Lagrangian

LQED → LQED +
∑
i

(C0)i(O0)i , (2.13)

and compute their renormalized couplings Ci at linear level in the bare ones

(C0)j =
∑
i

CiZ j
i . (2.14)

The Z j
i are the mixing renormalization constants from which we obtain the ADM

γ(α, ε) = −d logZ
d log µ

. (2.15)

Like β, γ does not depend on ε in the MS scheme. We introduce the following notation for

the coefficients of the expansion in α and ε

Z(α, ε) = 1 +

∞∑
L=1

αL
∞∑

M=−L
εMZ(L,−M) . (2.16)
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The most direct way to compute the mixing Z j
i is to renormalize amputated one-

particle-irreducible Green’s functions with zero-momentum operator insertions and ele-

mentary fields as external legs. Alternatively, one can renormalize the two-point functions

of the composite operators. The former method has two main advantages. The first is that

to extract n-loop poles only n-loop diagrams need to be computed. The second is that we

can insert the operators with zero momentum. This makes higher-loop computations more

tractable. The disadvantage is that off-shell Green’s functions with elementary fields as

external legs are not gauge-invariant, so some results in the intermediate steps of the cal-

culation are ξ-dependent, which is why we need to include the ξ-dependent wave-function

renormalization of external fermions. In addition, operators that vanish via the equations

of motion (EOM) enter the renormalization of such off-shell Green’s functions. We refer

to the latter as EOM-vanishing operators.

In the next section, we consider composite operators that are quadrilinear and bilinear

in the fermion fields. We first present the computation of the two-loop anomalous dimension

of the four-fermion operators and use it to obtain the O(ε2) IR scaling dimension at the

fixed point. Next, we employ the already existing results of the three-loop anomalous

dimension of bilinear operators [45] to obtain their IR dimension to O(ε3).

3 Four-fermion operators in d = 4− 2ε

In this section, we present the computation of the ADM of the four-fermion operators

Q1 = (ΨaγµΨa)2,

Q3 = (ΨaΓ
3
µ1µ2µ3Ψa)2 ,

(3.1)

at the two-loop level. The antisymmetrization in Γnµ1...µn ≡ γ[µ1 . . . γµn] includes the con-

ventional normalization factor 1
n! .

In d = 4, the operators in eq. (3.1) are the only two operators with scaling dimension

six at the free fixed point that are singlets under the global symmetry SU(Nf )L×SU(Nf )R.

We focus on these flavor-singlet operators because, as explained in the introduction, we are

interested in understanding whether or not they are relevant at the IR fixed point. The

calculation of the ADM for flavor-nonsinglet operators is actually simpler because it involves

a subset of the diagrams. We report the result for some nonsinglet operators in appendix C.

In d = 4− 2ε, insertions of Q1 and Q3 in loop diagrams generate additional structures

that are linearly independent to the Feynman rules of Q1 and Q3. To renormalize the

divergences proportional to such structures, we need to enlarge the operator basis. It is

most convenient to define the complete basis by adding operators that vanish for ε → 0,

and hence are called evanescent operators, as opposed to Q1 and Q3 that we refer to as

physical operators. There is an infinite set of such evanescent operators. One choice of

basis for them is

En = (ΨaΓ
n
µ1...µnΨa)2 + εanQ1 + εbnQ3 , (3.2)

– 6 –
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with n an odd integer ≥ 5. The terms proportional to the arbitrary constants an and bn
are of the form ε times a physical operator; they parametrize different possible choices for

the basis of evanescent operators.2

For the computation of the ADM we adopt the subtraction scheme introduced in

refs. [50, 51]. Since this is the most commonly used scheme for applications in flavor

physics, we refer to it as the flavor scheme. We label indices of the ADM using odd

integers n ≤ 1, so that n = 1, 3 correspond to the physical operators, eq. (3.1), and n ≥ 5

to the evanescent operators, eq. (3.2). The ADM up to two-loop order is3

γ(α, ε) = α
(
γ(1,0) + ε γ(1,−1) +O(ε2)

)
+ α2

(
γ(2,0) +O(ε)

)
, (3.3)

where

γ(1,0)
nm =


16δn3 + 2n(n− 1)(n− 5)(n− 6) for m = n− 2 ,
8
3(2Nf + 1)δn1 − 4(n− 1)(n− 3) for m = n ,

2 for m = n+ 2 ,

0 otherwise ,

(3.4)

γ(1,−1)
nm =



32(−1)
n(n−1)

2 (n− 2)(n− 5)!

−2n(n− 1)(n− 5)(n− 6)an−2

+
(

8
3(2Nf + 1) + 4(n− 1)(n− 3)

)
an

−2an+2 + 88bn for m = 1, n ≥ 5 ,

−80δn5

−2n(n− 1)(n− 5)(n− 6)bn−2

+4(n− 1)(n− 3)bn − 2bn+2 + 2an for m = 3, n ≥ 5 ,

0 otherwise ,

(3.5)

γ(2,0)
nm =



[
− 2

27(2275 + 8Nf ) −4
9(49 + 3Nf )

16
9 (199 + 107Nf ) 110 +

80Nf
3

]
+

+a5

[
−2 0

8
3(1 +Nf ) 2

]
+ b5

[
0 −2

88 −8
3Nf

]
for n,m = 1, 3 ,

0 for n ≥ 5 and m = 1, 3 ,

not required otherwise .

(3.6)

At the two-loop level we have shown only the entries in the physical-physical two-by-

two (Q1,Q3) block, and the evanescent-physical entries, which by construction vanish in

the flavor scheme. No other two-loop entry enters the prediction of the O(ε2) prediction of

the scaling dimensions at the fixed point.

2Adding terms with higher powers in ε have no effect in the two-loop computation that we discuss here.
3The one-loop (Q1, Q3) block of the ADM can be found in ref. [52]; it is sufficient to obtain the O(ε)

prediction of the scaling dimensions [18].
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Notice that the invariant (Q1,Q3) block of γ(2,0) depends on the coefficients a5 and

b5, which parametrize our choice of basis. This dependence can be understood as a sign of

scheme-dependence [53]. Clearly, this implies that the scaling dimensions at O(ε2) are not

simply obtained from the eigenvalues of this invariant block, as its eigenvalues depend on a5

and b5 too. The additional contribution that cancels this basis-dependence originates from

the O(ε) term γ(1,−1) in the one-loop ADM. Such O(ε) terms are indeed induced in every

scheme that contains finite renormalizations, such as the flavor scheme. For a thorough

discussion of the scheme/basis-dependence and its cancellation we refer to ref. [32].

There are a few non-trivial ways of partially testing the correctness of the two-loop

results:

i) We performed all computations in general Rξ gauge. This allowed us to explicitly

check that the mixing of gauge-invariant operators indeed does not depend on ξ.

ii) We verified that all the two-loop counterterms are local, i.e., the local counterterms

from one-loop diagrams subtract all terms proportional to 1
ε log µ in two-loop dia-

grams.

iii) We checked that the 1
ε2

poles of the two-loop mixing constants satisfy the relation

Z(2,2) =
1

2
Z(1,1)Z(1,1) − 1

2
β(1,0)Z(1,1) , (3.7)

where β(1,0) is the one-loop coefficient of the beta-function. This is equivalent to the

ε-independence of the anomalous dimension [54].

In the next two subsections, we discuss the renormalization of the one- and two-loop

Green’s functions from which we extract the relevant entries of the mixing matrix Z —

and ultimately the ADM entries in eqs. (3.4), (3.5), and (3.6) — and some technical as-

pects of the two-loop computation. A reader more interested in the results for the scaling

dimensions may proceed directly to section 3.4.

3.1 Operator basis

As argued in section 2.1, in general we need to consider also EOM-vanishing operators

when renormalizing off-shell Green’s functions. Moreover, in our computation we adopt an

IR regulator that breaks gauge-invariance, so we also need to take into account some gauge-

variant operators. Below we list all operators that, together with (Q1,Q3) and {En}n≥5,

enter the renormalization of the two-loop Green’s functions we consider.

EOM-vanishing operators. There is a single EOM-vanishing operator, N1, that affects

the ADM at the one-loop level and another one, N2, that affects it at the two-loop level.

They read

N1 =
1

e
∂νFµν(Ψaγ

µΨa) + Q1 ≡ N γ
1 + Q1 , (3.8)

N2 =
1

e
∂νFµν(Ψaγ

µΨa) +
1

e2
(∂ρF

µρ)(∂νFµν) ≡ N γ
1 + N γγ

2 . (3.9)

– 8 –
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In addition, there are EOM-vanishing operators that are only necessary to close the basis

of independent Lorentz structures for certain Green’s functions. For completeness, we list

them here

N3 = iΨa
⇀
/D
⇀
/D
⇀
/DΨa , (3.10)

N4 = Ψa(
↼
/Dγµγν + γµγν

⇀
/D )ΨaFµν . (3.11)

Here /D ≡ γµDµ and the arrow indicates on which field the derivative is acting.

Gauge-variant operators. Renormalization constants subtract UV poles of Green’s

functions. It is thus essential to ensure that no IR poles are mistakenly included in the

renormalization constants. In practice, this means that an energy scale must be present in

dimensionally regularized integrals. Otherwise, UV and IR contributions cancel each other

and the result of the loop integral is zero in dimensional regularization [47].

One possibility to introduce a scale is to keep the external momentum in the loop

integral. However, i) such loop integrals are more involved than integrals obtained by

expanding in powers of external momenta over loop momenta, and ii) keeping external

momenta does not necessarily cure all the IR divergences, e.g., diagrams with gluonic

snails in non-abelian gauge theories. Another possibility for QED would be to introduce a

mass for the Dirac fermions. The drawback in this case is that we would have to consider

many more EOM-vanishing operators.

Instead, we apply the method of “Infrared Rearrangement” [55, 56]. This method con-

sists in rewriting the massless propagators as a sum of a term with a reduced degree of diver-

gence and a term depending on an artificial mass, mIRA. Section 3.3 contains more details

about the method. The caveat is that the method violates gauge invariance in intermediate

steps of the computation. All breaking of gauge invariance is proportional to m2
IRA and

explicitly cancels in physical quantities. However, to restore gauge-invariance, also gauge-

variant operators proportional to m2
IRA need to be consistently included in the computation.

Fortunately, due to the factor of m2
IRA, at each dimension there are only a few of them.

At the dimension-four level, a single operator is generated, i.e., the photon-mass operator:

m2
IRAAµA

µ . (3.12)

At the dimension-six level, there are more operators, but only one, P, enters our ADM

computation because Q1 and Q3 mix into it at one-loop. It reads

P =
1

e
m2

IRA

∑
a

ΨaγµΨaAµ . (3.13)

3.2 Renormalizing Green’s functions

In this subsection, we highlight the relevant aspects in the computation of the renor-

malization constants Z j
i , from which we extracted the ADM presented above, via the

renormalization of amputated one-particle irreducible Green’s functions.

For each Green’s function we need to specify the operator we insert as well as the

elementary fields on the external legs. In our case, the external legs are either four ele-

mentary fermions, or two fermions and a photon, or two photons. At tree-level, a Wick

contraction with the elementary fields defines a vertex structure for each operator. We

– 9 –



J
H
E
P
1
2
(
2
0
1
7
)
0
5
4

〈N1〉(2)
∣∣
S̃
≡


. . .


S̃

+


. . .


S̃

+ 2Z
(1)
Ψ


. . .


S̃

+

+
(
Z

(1)
Ψ + Z

(1)
A

)
. . .


S̃

+
(
Z

(2)
Ψ + Z

(2)
A + Z

(1)
Ψ Z

(1)
A

)

S̃

Figure 1. An illustration of the non-trivial case of 〈N1〉(2)
∣∣
S̃

, with S̃ any of the structures in

eq. (A.10). The squares denote operator insertions and the crosses counterterms. The first paren-

thesis collects two-loop insertions of the operator N1, which is a linear combination of N γ
1 and Q1.

The second collects the one-loop insertions with counterterms on the propagators and the QED

vertices. The third and fourth are one-loop insertions multiplied with the field and charge renor-

malization of the fields and charges composing the N1, see eq. (3.15). The fifth are the tree-level

insertions multiplied with the two-loop field and charge renormalization constant from the N γ
1 .

denote the ΨΨΨΨ structures with S, the ΨΨAµ ones with S̃, and the AµAν one with

Ŝ. An additional subscript indicates the operator associated to a given structure. The

representation in terms of Feynman diagrams is

Ψ
b

Ψ
a

Ψ
b

Ψ
a

O

= iCOSO p

→

q

↓

Ψ
a

Ψ
a

A
µ

O

= iCO S̃O

q

→

A
µ

A
ν

O

= iCO ŜO

We collect all structures that enter the computation in appendix A.

In what follows, we refer to

〈O〉(L)
∣∣
S

(3.14)

as a sum over a specific subset of Feynman diagrams: i) All these diagrams have a single

insertion of the operator O. ii) They are dressed with interactions such that they contribute

at O(αL). In particular, we include all counterterm diagrams proportional to field and

charge renormalization constants, but we do not include diagrams that contain mixing

constants. We keep those separate to demonstrate how we extract them. iii) The subscript

S indicates that out of this sum of diagrams we only take the part proportional to the

structure S. In short, the notation of eq. (3.14) denotes the L-loop insertion of O projected

on S, including contributions from field and charge renormalization constants.

To illustrate the notation we show in figure 1 a small subset of the Feynman diagrams

for the non-trivial case of 〈N1〉(2)
∣∣
S̃

, with S̃ any of the structures in eq. (A.10). Note that,

since N1 is a linear combination of terms with different fields, see eq. (3.8), its field and
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Green’s function Depends on Constant(s) extracted

One-loop AµAν Z(1)
ON2

Z(1)
ON2

ΨΨAµ Z(1)
ON1

, Z(1)
OP , Z(1)

ON2
Z(1)

ON1
, Z(1)

OP

ΨΨΨΨ Z(1)
OO ′ , Z

(1)
ON1

Z(1)
OO ′

Two-loop AµAν Z(2)
QN2

, Z(1)
QN , Z(1)

Q,P Z(2)
QN2

ΨΨAµ Z(2)
QN , Z(1)

QO , Z(1)
QN , Z(1)

QP Z(2)
QN1

ΨΨΨΨ Z(2)
QQ′ , Z

(2)
QN1

, Z(1)
QO , Z(1)

QN , Z(1)
QP Z(2)

QQ′

Table 1. A summary of the Green’s functions we consider. The loop order (L-loop) refers to the

αL contribution to the corresponding Green’s function (second column). The third column contains

the mixing renormalization constants that the given Green’s function depends on. The last column

contains the ones we extract in each case.

charge renormalizations depend on the part we insert, namely

(N1)0 = Z−1/2
α Z

1/2
A ZΨ

1

e
∂νFµν(Ψaγ

µΨa) + (ZΨ)2(Ψaγ
µΨa)2 . (3.15)

Next we derive the conditions on the Green’s functions that determine the mixing con-

stants. For transparency we frame the constant(s) that we extract from a given condition.

In table 1 we summarize which Green’s functions we consider, on which mixing renormal-

ization constants they depend, and which one we extract in each case. For brevity we use

the following shorthand notation:

Q, Q′ = Q1, Q3 , E = En , N = N1, N2 , O, O ′ = Q1, Q3, En .

We collect the results for the renormalization constants in appendix B.

AµAν at one-loop. At one-loop there is no insertion of any four-fermion operator that

contributes to the Green’s function with only two external photons. Thus

Z(1)
ON2

= 0 . (3.16)

ΨΨAµ at one-loop. Contrarily, one-loop insertions of four-fermion operator contribute

to the ΨΨAµ Green’s function. By expanding the diagram in the basis of S̃ structures, we

determine the mixing into operators with a tree-level projection onto ΨΨAµ, namely N1

and P. For the physical operators the conditions are

〈Q〉(1)
∣∣
S̃N1

+ Z(1)
QN1

〈N1〉(0)
∣∣
S̃N1

+Z(1)
QN2
〈N2〉(0)

∣∣
S̃N1

= O(ε0) , (3.17)

〈Q〉(1)
∣∣
S̃P

+ Z(1)
QP 〈P〉

(0)
∣∣
S̃P

= O(ε0) . (3.18)

In the first line we use that Z(1)
QN2

= 0, as extracted from the AµAν Green’s function.

Similarly, we determine the mixing of En into N1

〈En〉(1)
∣∣
S̃N1

+ Z(1)
EnN1

〈N1〉(0)
∣∣
S̃N1

+Z(1)
EnN2
〈N2〉(0)

∣∣
S̃N1

= O(ε) . (3.19)

Notice that in this case the mixing constants subtract finite terms, as required by the flavor

scheme we adopt.
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ΨΨΨΨ at one-loop. Next, we compute the one-loop insertions in the ΨΨΨΨ Green’s

function. Firstly, we insert physical operators, i.e., Q,

〈Q〉(1)
∣∣
SO

+ Z(1)
QO 〈O〉

(0)
∣∣
SO

+Z(1)
QN1
〈N1〉(0)

∣∣
SO

= O(ε0) , (3.20)

with the only non-vanishing 〈N1〉(0)
∣∣
SO

being the one for O = Q1. We see that extracting

Z(1)
QQ1

assumes knowledge of Z(1)
QN1

, which we have previously determined via the ΨΨAµ

Green’s function. Next, we insert evanescent operators. Again, the only difference here is

that their mixing constants into physical operators subtract finite pieces

〈En〉(1)
∣∣
SQ

+ Z(1)
EnQ 〈Q〉

(0)
∣∣
SQ

+Z(1)
EnN1
〈N1〉(0)

∣∣
SQ

= O(ε) , (3.21)

〈En〉(1)
∣∣
SE

+ Z(1)
EnE 〈E 〉

(0)
∣∣
SE

= O(ε0) . (3.22)

This completes the computation of all one-loop constants required to determine the

mixing of physical operators at the two-loop level. Next, we renormalize the same Green’s

functions at the two-loop level.

AµAν at two-loop. At the two-loop order Q1 and Q3 insertions do contribute to the

AµAν Green’s function. They can thus mix into the operator N2. Even though N2 itself

does not have a tree-level projection on physical operators, we need this mixing to extract

the two-loop mixing of Q1 and Q3 into N1 in the next step. The projection onto the Ŝ

structure results in the condition

〈Q〉(2)
∣∣
ŜN2

+ Z(2)
QN2

〈N2〉(0)
∣∣
ŜN2

+
∑
N

Z(1)
QN 〈N 〉

(1)
∣∣
ŜN2

+Z(1)
QP〈P〉

(1)
∣∣
ŜN2

= O(ε0) . (3.23)

ΨΨAµ at two-loop. Next we renormalize the ΨΨAµ Green’s function at the two-loop

level. We only need the two-loop mixing of physical operators into N1, because only N1 has

a tree-level projection onto Q1. To unambiguously determine the projection on the struc-

ture S̃N1 , we have to fix a basis of linear independent structures, which correspond to lin-

early independent operators. At this loop order, we find that apart from N1 we also need to

include the operators N3 and N4 to project all generated structures. This projection is the

only point in which these operators enter our computation. The finiteness of the two-loop

ΨΨAµ Green’s function determines the two-loop mixing of physical operators into N1 via4

〈Q〉(2)
∣∣
S̃N1

+ Z(2)
QN1

〈N1〉(0)
∣∣
S̃N1

+Z(2)
QN2
〈N2〉(0)

∣∣
S̃N1

+

+
∑
O

Z(1)
QO〈O〉

(1)
∣∣
S̃N1

+
∑
N

Z(1)
QN 〈N 〉

(1)
∣∣
S̃N1

+Z(1)
QP〈P〉

(1)
∣∣
S̃N1

= O(ε0) . (3.24)

ΨΨΨΨ at two-loop. Finally, we have collected all results necessary to renormalize the

two-loop ΨΨΨΨ Green’s function. The renormalization conditions for the mixing in the

4Note that 〈N1〉(1)
∣∣
S̃N1

= 〈N γ
1 〉(1)

∣∣
S̃N1

+〈Q1〉(1)
∣∣
S̃N1

, as N1 has two Feynman rules.
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physical sector read

〈Q〉(2)
∣∣
SQ1

+ Z(2)
QQ1

〈Q1〉(0)
∣∣
SQ1

+Z(2)
QN1
〈N1〉(0)

∣∣
SQ1

+
∑
O

Z(1)
QO〈O〉

(1)
∣∣
SQ1

+ (3.25)

+
∑
N

Z(1)
QN 〈N 〉

(1)
∣∣
SQ1

+Z(1)
QP〈P〉

(1)
∣∣
SQ1

= O(ε0) ,

〈Q〉(2)
∣∣
SQ3

+ Z(2)
QQ3

〈Q3〉(0)
∣∣
SQ3

+
∑
O

Z(1)
QO〈O〉

(1)
∣∣
SQ3

+
∑
N

Z(1)
QN 〈N 〉

(1)
∣∣
SQ3

+ (3.26)

+ Z(1)
QP〈P〉

(1)
∣∣
SQ3

= O(ε0) .

We see here explicitly that, because N1 has a tree-level projection onto Q1, we need Z(2)
QN1

to determine Z(2)
QQ1

.

3.3 Evaluation of Feynman diagrams

Already at the two-loop level the number of Feynman diagrams entering the Green’s func-

tions is quite large. The present computation is thus performed in an automated setup.

Firstly, the program QGRAF [57] generates all diagrams creating a symbolic output for each

diagram. This output is converted to the algebraic structure of a loop diagram and sub-

sequently computed using self-written routines in FORM [58]. The methods for the compu-

tation and extraction of the UV poles of two-loop diagrams are not novel and also widely

used throughout the literature. Here, we shall only sketch the steps and mention parts

specific to our computation.

One major simplification of the computation comes from the fact that we can always

expand the integrand in powers of external momenta over loop-momenta and drop terms

beyond the order we are interested in. For instance, for the ΨΨΨΨ Green’s function all

external momenta can be directly set to zero, while for the ΨΨAµ one we need to keep the

external momenta up to second order to obtain the mixing into N1 (see S̃N1 in eq. (A.10)).

After the expansion, all propagators are massless so the resulting loop-integrals vanish

in dimensional regularization. To regularize the IR poles and perform the expansion in ex-

ternal momenta we implement the “Infrared Rearrangement” (IRA) procedure introduced

in refs. [55, 56]. In IRA, an — in our case massless — propagator is replaced using the

identity
1

(p+ q)2
=

1

p2 −m2
IRA

−
q2 + 2p · q +m2

IRA

p2 −m2
IRA

1

(p+ q)2
, (3.27)

where p is the loop momentum, q is a linear combination of external momenta, and mIRA

is an artificial, unphysical mass. We see that the first term in the decomposition contains

the scale mIRA and carries no dependence on external momenta in its denominator. In

the second term, the original propagator reappears, but thanks to the additional factor

the overall degree of divergence of the diagram is reduced by one. When we apply the

decomposition recursively, we obtain a sum of terms with only loop-momenta and mIRA

in the denominators plus terms proportional to 1
(p+q)2

. These last terms, however, can be

made to have an arbitrary small degree of divergence. Therefore, in a given diagram we

can always perform the decomposition as many times as necessary until terms proportional

to 1
(p+q)2

are finite and can thus be dropped if we are only interested in the UV poles.
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When applying IRA on photon propagators, the resulting coefficients of the poles are

not gauge-invariant, because we drop the finite terms in the expansion of propagators.

This is why some gauge-variant operators/counterterms enter in intermediate stages of the

computation, for instance the operator P. Such operators are always proportional to m2
IRA

and so only a small number of them enters at each dimension. For more details on the

prescription we refer to the original work [56].

The IRA procedure results in integrals with denominators that i) are independent of

the external momenta, and ii) contain the artificial mass mIRA. We can always reduce

these integrals to scalar “vacuum” diagrams by contracting them with metric tensors and

solving the resulting system of linear equations, e.g., see ref. [56]. This tensor reduction

reduces all integrals to one- and two-loop scalar integrals of the form∫
ddp

(p2 −m2
1)n1

and

∫∫
ddp1d

dp2

(p2
1 −m2

1)n1(p2
2 −m2

2)n2(p1 − p2)2n3
, (3.28)

with the integers n1, n2, n3 ≥ 1, and m1 6= 0. The one-loop integral can be directly

evaluated, whereas all two-loop integrals can be reduced to a few master integrals using

the recursion relation in ref. [59]. In fact, in our case m1 = m2 = mIRA and the use of

recursion relations is not required.

In the evaluation of the Feynman diagrams, we use the Clifford algebra in d dimensions

for i) the evaluation of traces with gamma matrices when the diagram in question has closed

fermion loops, and ii) the reduction of the Dirac structures to the operator structures S

or S̃ listed in appendix A.

3.4 Anomalous dimensions at the fixed point

By substituting the value of the coupling at the fixed point, eq. (2.10), in the result of

eq. (3.3), we obtain the ADM at the fixed point as an expansion in ε

γ∗ = γ∗1 ε+ γ∗2 ε
2 +O(ε3) , (3.29)

where

(γ∗1 )nm =
3

2Nf
×


8δn3 + n(n− 1)(n− 5)(n− 6) for m = n− 2

4
3 (2Nf + 1)δn1 − 2(n− 1)(n− 3) for m = n

1 for m = n+ 2

0 otherwise ,

(3.30)

(γ∗2 )nm =



− 1
24N2

f

[
2383 + 224Nf 375 + 18Nf
−1212− 2568Nf −1485− 360Nf

]
+ 3

8N2
f
a5

[
−3 0

4Nf + 4 3

]
+ 3

8N2
f
b5

[
0 −3

132 −4Nf

]
for n,m = 1, 3 ,

24
Nf

(−1)
n(n−1)

2 (n− 2)(n− 5)!

+ 3
2Nf

(−n(n− 1)(n− 5)(n− 6)an−2

+
(
4
3 (2Nf + 1) + 2(n− 1)(n− 3)

)
an

−an+2 + 44bn) for m = 1, n ≥ 5 ,

− 60
Nf
δn5

+ 3
2Nf

(−n(n− 1)(n− 5)(n− 6)bn−2

+2(n− 1)(n− 3)bn − bn+2 + an) for m = 3, n ≥ 5 ,

not required otherwise .

(3.31)
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Nf 1 2 3 4 5 6 7 8 9 10

(∆1)1 −7.39 −3.07 −1.72 −1.10 −0.766 −0.562 −0.429 −0.337 −0.272 −0.224

(∆2)1 46.1 14.1 7.43 4.84 3.51 2.73 2.21 1.86 1.59 1.39

(∆1)2 13.4 8.07 6.39 5.60 5.17 4.90 4.71 4.59 4.49 4.42

(∆2)2 −84.0 −23.5 −11.6 −7.12 −4.94 −3.70 −2.91 −2.37 −1.99 −1.70

Table 2. The values of the one-loop (∆1)i and the two-loop (∆2)i coefficients defined in eq. (3.32)
for Nf = 1, . . . , 10. Only three significant digits are being displayed.

Note that the physical-physical block is not invariant at order ε2, because there are non-zero

entries (γ∗)n1 and (γ∗)n3 for all n ≥ 5.

We are interested in finding the first two eigenvalues of γ∗ up to order ε2. They

determine the scaling dimensions of the corresponding eigenoperators at the IR fixed point.

We denote these scaling dimensions by

(∆IR)i = ∆UV(ε) + ε(∆1)i + ε2(∆2)i +O(ε3) , (3.32)

with i = 1, 2 and ∆UV(ε) = 6−4ε. To compute the first two eigenvalues we have truncated

the problem to include a large but finite number of evanescent operators. Taking a suffi-

ciently large truncation, the scheme/basis-dependence of the approximated result can be

made negligible at the level of precision we are interested in (for details see ref. [32]). In

table 2, we list the values of (∆1)i and (∆2)i for Nf = 1, . . . , 10 after we included enough

evanescent operators such that the three significant digits listed remain unchanged. The

table is the main result of this section. In section 5, we will use these results as a starting

point to extrapolate the scaling dimensions to d = 3.

4 Bilinear operators in d = 4− 2ε

In this section we consider operators that are bilinear in the fermionic fields. The most

generic bilinear operators without derivatives are

ΨaΓ
n
µ1...µnΨb , ΨaΓ

n
µ1...µnγ5Ψb , (4.1)

with n ≥ 0. γ5 can be consistently continued to d = 4 − 2ε using the ’t Hooft-Veltman

prescription [60, 61]. The indices a, b = 1, . . . , Nf are indices in the fundamental of the

diagonal “vector” SU(Nf ) subgroup of the SU(Nf )L × SU(Nf )R symmetry of the theory

in d = 4. In d = 4 − 2ε, the conservation of the nonsinglet axial currents is violated

by evanescent operators [47], and thus only the diagonal SU(Nf ) is a symmetry. On the

other hand, the CFT in d = 3 is expected to enjoy the full SU(Nf )L× SU(Nf )R symmetry,

which is actually enhanced to SU(2Nf ) × U(1). Therefore, in continuing the operators

of eq. (4.1) to d = 3, we find that the ones with γ5 are in the same multiplets of the

flavor symmetry as those without. So even though their scaling dimensions can differ

as a function of ε, the enhanced symmetry entails that they should agree when ε = 1
2 .

Since the operators with γ5 do not provide new information about the 3d CFT, and the
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’t Hooft-Veltman prescription makes computations technically more involved, we restrict

our discussion here to operators without γ5. As a future direction, it would be interesting

to test this prediction of the enhanced symmetry by comparing the scaling dimensions of

operators with γ5 after extrapolating to d = 3 at sufficiently high order. We also restrict

the discussion to operators with n ≤ 3, because the others are evanescent in d = 3.

The anomalous dimension of bilinear operators without γ5 has been computed for a

generic gauge group at three-loop accuracy in ref. [45]. For our U(1) gauge theory we

substitute CA = 0 and CF = TF = 1. Moreover, there is a difference in the normalization

convention for the anomalous dimension, so that γhere = 2γthere. Under SU(Nf ) each

operator decomposes into a singlet and an adjoint component,

B
(n)
sing µ1...µn

= ΨaΓ
n
µ1...µnΨa , (4.2)

(B
(n)
adj µ1...µn

) b
a = ΨaΓ

n
µ1...µnΨb − 1

Nf
δba ΨcΓ

n
µ1...µnΨc , (4.3)

respectively. A priori, the two components can have different anomalous dimensions. The

difference between the singlet and the adjoint originates from diagrams in which the opera-

tor is inserted in a closed fermion loop. When the operator has an even number of gamma

matrices, the closed loop gives a trace with an odd total number of gamma matrices, which

vanishes. So for even n there is no difference between the singlet and the adjoint, i.e., they

have the same anomalous dimension.

Below we collect the results for n ≤ 3.

Scalar:

∆(B
(0)
sing) = ∆(B

(0)
adj) = 3− 2ε− 9

2Nf
ε+

60Nf + 135

16N2
f

ε2

+
140N2

f − 81Nf (16ζ(3)− 5)− 3078

32N3
f

ε3 +O(ε4) . (4.4)

Vector: for n = 1 both operators are conserved currents, so they do cannot have an

anomalous dimension, i.e.,

∆(B
(1)
sing) = ∆(B

(1)
adj) = 3− 2ε . (4.5)

Two-form:

∆(B
(2)
sing) = ∆(B

(2)
adj) = 3− 2ε+

3

2Nf
ε−

52Nf + 225

16N2
f

ε2 (4.6)

−
36N2

f − 3Nf (144ζ(3) + 287) + 1728ζ(3)− 3078

32N3
f

ε3 +O(ε4) .

Three-form:

∆(B
(3)
sing) = 3− 2ε+

15

2Nf
ε2 +

26Nf − 369

8N2
f

ε3 +O(ε4) , (4.7)

∆(B
(3)
adj) = 3− 2ε− 6

Nf
ε2 +

Nf + 45

N2
f

ε3 +O(ε4) . (4.8)
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In d = 4 these three-form operators are Hodge-dual to axial currents. Actually, the

fact that they do not get an anomalous dimension at one-loop, as seen from the

equations above, is related to this. However, Hodge-duality cannot be defined in

d = 4 − 2ε and the anomalous dimensions start to differ from those of the axial

current at the two-loop level.

This exhausts the list of bilinears without γ5 that flow to physical operators as d→ 3. In

section 5.3 we discuss which operators of the CFT in d = 3 are continued by the operators

above, and extrapolate the above results to obtain estimates for their scaling dimensions.

5 Extrapolation to d = 3

5.1 Padé approximants

A computation of a certain order in ε provides an approximation to the observable, e.g.

the scaling dimension ∆, in terms of a polynomial

∆ = ∆UV(ε) +

k∑
i=1

∆iε
i +O(εk+1) . (5.1)

Taking ε → 1
2 in this polynomial gives the “fixed order” d = 3 prediction of the

ε-expansion. Typically, the fixed-order results show poor convergence as the order is in-

creased. A standard resummation technique adopted for these kind of extrapolations is to

replace the polynomial with a Padé approximant. The Padé approximant of order (k,l) is

defined as

∆Padé(k, l) ≡
∑k

i=0 ciε
i

1 +
∑l

j=1 djε
j
. (5.2)

The coefficients ci and di are determined by matching the expansion of eq. (5.2) with

eq. (5.1). k+ l must equal the order at which we are computing. Another condition comes

from the fact that we are interested in the result for ε → 1
2 . In order for the ε-expansion

to smoothly interpolate from ε = 0 to ε = 1
2 , an employable Padé approximant should not

have poles for ε ∈ [0, 1
2 ] for the values of Nf that we consider. In what follows, we show the

predictions from a Padé approximation only if it does not contain any pole on the positive

axis of ε for any value of Nf = 1, . . . , 10.

5.2 Four-fermion operators as d→ 3

In d = 3, the two four-fermion operators in the UV can be rewritten as

Q1 −→
d→3

(ψiγ
(3)
µ ψi)2 , Q3 −→

d→3
(ψiψ

i)2 , (5.3)

where i = 1, . . . , 2Nf . In this rewriting we see explicitly that these operators are singlets

of SU(2Nf ).

We now evaluate the scaling dimensions (∆)1 and (∆)2 of the two corresponding IR

eigenoperators, at NLO. For the NLO prediction we employ the Padé approximation of
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Nf 1 2 3 4 5 6 7 8 9 10

(∆)1 LO 0.304 2.47 3.14 3.45 3.62 3.72 3.79 3.83 3.86 3.89

NLO Padé (1,1) 4.12 4.23 4.27 4.27 4.26 4.24 4.23 4.21 4.20 4.19

(∆)2 LO 10.7 8.03 7.19 6.80 6.58 6.45 6.36 6.29 6.25 6.21

NLO Padé (1,1) 6.86 6.52 6.35 6.25 6.19 6.15 6.12 6.10 6.08 6.07

Table 3. LO and NLO Padé (1,1) predictions for the scaling dimension of the two flavor-singlet

four-fermion operators at d = 3 for various values of Nf . Only three significant digits are being

displayed.

1 2 3 4 5 6 7 8 9 10
Nf

1

3

5

7

9

11

∆
(d

=
3)

Four-fermion operators

(∆)1 : LO

(∆)1 : NLO Padé (1,1)

(∆)2 : LO

(∆)2 : NLO Padé (1,1)

Figure 2. Extrapolations of the scaling dimensions of the two flavor-singlet four-fermion operators

to d = 3, as a function of Nf . In black (lower two lines) (∆)1 and in red (upper two lines) (∆)2.

Dashed lines are the LO estimate and solid lines the NLO Padé (1,1).

order (1,1). We list the values of the LO and NLO Padé (1,1) predictions for the values of

Nf = 1, . . . , 10 in table 3.

We visualize the results in figure 2. The dashed lines are the result of the one-loop

ε-expansion computation. Indeed, as discussed in ref. [18], the one-loop approximation

predicts that the lowest eigenvalue becomes relevant for Nf < 3. The two-loop computation

presented here changes this prediction. The two solid lines represent the NLO Padé (1,1)

approximation to the two scaling dimensions. We observe that for no value of Nf does the

lowest eigenvalue reach marginality. We also see that the corrections to the LO result are

significant, especially for small Nf , i.e., Nf = 1, 2. This means that for such small values of

Nf , NLO accuracy is not sufficient to obtain a precise estimate for this scaling dimension.

Nevertheless, at face value, the result of the two-loop ε-expansion suggests that QED3 is

conformal in the IR for any value of Nf .

Next, we comment on the relation of our result to the 1/Nf -expansion in d = 3. At

large Nf , the gauged U(1) current, ψiγ
(3)
µ ψi, is set to zero by the EOM of the gauge field,

hence the operator Q1 is an EOM-vanishing operator. However, besides Q3, there still is
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another flavor-singlet scalar operator of dimension 4 for Nf =∞, namely F 2
µν . Q3 and F 2

µν

mix at order 1/Nf [11]. Looking at the ε-expansion result in figure 2 we see that indeed

only the lowest eigenvalue (∆)1 (black lines) approaches 4 for large Nf . The other scaling

dimension (red lines) approaches 6 as Nf → ∞, implying that the two eigenoperators

cannot mix at large Nf . This is consistent precisely because there is only one non-trivial

singlet four-fermion operator at large Nf . Its mixing with F 2
µν cannot be captured within

the ε-expansion, because the UV dimension of F 2
µν differs from that of a four-fermion

operator in d = 4− 2ε. We can, however, test whether for any value of ε ∈ [0, 1
2 ] the lowest

eigenvalue (∆)1, which starts off larger at ε = 0, crosses the dimension of F 2
µν . Such a

level-crossing would require to revisit the extrapolation to ε = 1
2 and possibly affect the

estimate. The scaling dimension of F 2
µν in ε-expansion is

∆(F 2) = 4− 2ε+ α2 ∂

∂α

(
1

α2

dα

d log µ

)∣∣∣∣
α=α∗

, (5.4)

with α∗ given in eq. (2.10) up to O(ε4). At three- and four-loop order the only Padé

approximation without poles in the positive real axis of ε is the order (2,1) and (2,2),

respectively. In figure 3 we plot (∆)1,2 and ∆(F 2) as a function of d for the representative

cases of Nf = 1, 2, and 10. We observe that the only case in which (∆)1 crosses ∆(F 2)

before d = 3 is when Nf = 1 and when we employ N2LO Padé (2,1) to predict ∆(F 2). The

N3LO Padé (2,2) prediction for Nf = 1 does not cross (∆)1 and the same holds for larger

values of Nf . Therefore, at least at this order, F 2
µν should not play a significant role in

obtaining the four-fermion scaling dimension.

5.3 Bilinears as d→ 3

Next we consider bilinear operators in d = 3. In the UV, restricting to the ones without

derivatives, the possibilities are

Scalar:

B(0)
sing = ψiψ

i , (5.5)

(B(0)
adj ) j

i = ψiψ
j − 1

2Nf
ψkψ

kδ j
i . (5.6)

The subscript refers to the representation of SU(2Nf ). The singlet is parity-odd.

We can combine parity with an element of the Cartan of SU(2Nf ), in such a way

that one component of the adjoint scalar is parity-even. Since parity squares to the

identity, this Cartan element can only have +1 and −1 along the diagonal, which up

to permutations we can take to be the first Nf , and the second Nf diagonal entries,

respectively. With this choice, the parity-even bilinear is
∑Nf

a=1(ψaψ
a−ψa+Nf

ψa+Nf ).

This is the candidate to be the “chiral condensate” in QED3 [22].

Vector:

B(1)
sing µ = ψiγ

(3)
µ ψi , (5.7)

(B(1)
adj µ ) j

i = ψiγ
(3)
µ ψj − 1

2Nf
ψkγ

(3)
µ ψkδ j

i . (5.8)
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3 4

d

3

4

5

6

7
∆

Nf = 1

3 4

d

Nf = 2

(∆)1 : NLO Padé (1,1)

(∆)2 : NLO Padé (1,1)

∆(F 2) : N2LO Padé (2,1)

∆(F 2) : N3LO Padé (2,2)

3 4

d

Nf = 10

Figure 3. ε-expansion approximations to the scaling dimensions of the two flavor-singlet four-

fermion operators (black and red lines) and F 2
µν (blue lines) as a function of the dimension d, i.e.,

for ε ∈ [0, 12 ]. The left, center, and right panel show the result for the representative cases of

Nf = 1, 2, and 10, respectively. We observe that the N3LO Padé (2,2) prediction of ∆(F 2) never

crosses the NLO Padé (1,1) prediction of (∆)1 in the extrapolation region.

The singlet is the current of the gauged U(1). When the interaction is turned on, it

recombines with the field strength and does not flow to any primary operator of the

IR CFT. The adjoint is the current that generates the SU(2Nf ) global symmetry.

Therefore, we expect it to remain conserved along the RG and flow to a conserved

current of dimension ∆ = 2 in the IR.

We now identify which d = 4−2ε bilinears from section 4 approach the d = 3 bilinears

above. Substituting the decomposition of eqs. (2.4) and (2.5), and also using 3d Hodge

duality, we find that

B
(3)
sing

d→3−→ B(0)
sing , (5.9)

B
(0)
adj, B

(3)
adj

d→3−→ B(0)
adj , (5.10)

B
(1)
sing

d→3−→ B(1)
sing , (5.11)

B
(1)
adj, B

(2)
adj

d→3−→ B(1)
adj . (5.12)

We denote by ∆(B) the scaling dimension of the operator in the IR CFT in d = 3 that a

certain bilinear B flows to. Therefore, we expect

∆(B
(3)
sing)

d→3−→ ∆(B(0)
sing) , (5.13)

∆(B
(0)
adj), ∆(B

(3)
adj)

d→3−→ ∆(B(0)
adj) , (5.14)

∆(B
(2)
adj)

d→3−→ 2 . (5.15)
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Nf 1 2 3 4 5 6 7 8 9 10

∆(B(0)
sing) ∆(B

(3)
sing)

LO 2 2 2 2 2 2 2 2 2 2

NLO Padé (1,1) 2.65 2.48 2.38 2.32 2.27 2.24 2.21 2.19 2.17 2.16

N2LO Padé (2,1) 2.49 2.40 2.35 2.30 2.27 2.24 2.22 2.20 2.19 2.17

N2LO Padé (1,2) 2.51 2.42 2.35 2.30 2.27 2.24 2.22 2.20 2.18 2.17

∆(B(0)
adj) ∆(B

(0)
adj)

LO −0.250 0.875 1.25 1.44 1.55 1.62 1.68 1.72 1.75 1.77

NLO Padé (1,1) 1.32 1.55 1.67 1.73 1.78 1.81 1.83 1.85 1.87 1.88

N2LO Padé (2,1) 0.238 1.17 1.48 1.63 1.72 1.78 1.82 1.85 1.87 1.89

∆(B
(3)
adj)

LO 2 2 2 2 2 2 2 2 2 2

NLO 0.500 1.25 1.50 1.62 1.70 1.75 1.79 1.81 1.83 1.85

N2LO Padé (2,1) 1.69 1.75 1.79 1.81 1.84 1.85 1.87 1.88 1.89 1.90

N2LO Padé (1,2) 1.99 1.95 1.93 1.92 1.91 1.91 1.91 1.92 1.92 1.92

∆(B(1)
adj) ∆(B

(2)
adj)

LO 2.75 2.38 2.25 2.19 2.15 2.12 2.11 2.09 2.08 2.08

NLO −1.58 1.09 1.59 1.76 1.85 1.89 1.92 1.94 1.95 1.96

N2LO Padé (2,1) 1.58 1.88 1.95 1.97 1.98 1.99 1.99 1.99 1.99 1.99

N2LO Padé (1,2) 2.00 2.09 2.08 2.06 2.05 2.03 2.02 2.02 2.01 2.01

Table 4. ε-expansion extrapolations of scaling dimension of the d = 3 bilinear operators B(0)sing,

B(0)adj, and the conserved current B(1)adj. In cases in which the NLO Padé (1,1) approximant is singular

we list instead the values of the fixed-order NLO prediction. Only three significant digits are being

displayed.

The last equation provides a test of the ε-expansion and the first two provide estimates of

the observables ∆(B(0)
sing) and ∆(B(0)

adj). To this end, we employ the viable Padé approximants

for Nf = 1, . . . , 10. In table 4 we list the ε-expansion predictions at d = 3 for Nf = 1, . . . , 10.

For the cases in which the order (1,1) Padé approximant is singular, we list the fixed-order

NLO prediction.

In figure 4 we plot the extrapolations for the scaling dimension of the conserved flavor-

nonsinglet current B(1)
adj as a function of Nf . We observe that both N2LO Padé approximants

are closer to 2 than the LO and NLO ones, and they remain close to 2 even for small values

of Nf . We consider this to be a successful test of the ε-expansion, which supports its

viability as a tool to study QED3.

In figure 5 we plot the various extrapolations for the scaling dimension of the two scalar

operators B(0)
sing and B(0)

adj as a function of Nf . For B(0)
sing we find good convergence behaviour

between the NLO Padé (1,1) and the two N2LO Padé approximations. Therefore, for this

observable we are able to provide a rather convincing estimate. We do stress, however, that

the comparison of the various approximations does not provide rigorous error estimates,
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1 2 3 4 5 6 7 8 9 10
Nf

1

2

3

∆
(d

=
3)

current B(1)
adj

B
(2)
adj : LO

B
(2)
adj : NLO

B
(2)
adj : N2LO Padé (2,1)

B
(2)
adj : N2LO Padé (1,2)

Figure 4. ε-expansion predictions for the scaling dimension of the bilinear vector operator B(1)adj

at d = 3. The operator is associated to the conserved flavor-nonsinglet current of SU(2Nf ), thus

its scaling dimension is expected to equal 2. We observe that the N2LO Padé approximations are

indeed close to this expectation even for small values of Nf .

since the error due to the extrapolation is not under control. For B(0)
adj we have two different

operators that provide a continuation to d = 4 − 2ε. It is encouraging that as the order

increases, the two resulting estimates approach each other. Even so, we find that for small

Nf the N2LO Padé approximations are spread, so the ε-expansion at this order does not

provide a definite prediction. As Nf increases the situation improves, namely all NLO and

N2LO approximations begin to converge.

In table 4 we list the numerical values for the various estimates of the bilinear scaling

dimensions for Nf = 1, . . . , 10.

Next, we compare to the large-Nf predictions for the scaling dimensions of the bilinears.

The Padé approximants used to estimate the dimensions of B(0)
sing and B(0)

adj do not develop

a pole in the extrapolation region 0 ≤ ε ≤ 1
2 for any value of Nf ≥ 1. Therefore, we can

consider the approximants evaluated at ε = 1
2 , as a function of Nf , expand them around

Nf =∞, i.e.,

∆Padé(k, l)

∣∣∣∣
ε= 1

2

= 2 +
c(k,l)

Nf
+O(N−2

f ) , (5.16)

and compare the coefficient c(k,l) with its exact value obtained from the large-Nf expansion,

clarge-Nf . In what follows we use ' to denote that we display only two significant digits.

For B(0)
sing, the prediction from large-Nf is [5, 6]

B(0)
sing: clarge-Nf =

64

3π2
' 2.2 , (5.17)

and the extrapolation obtained from the three-form singlet gives

B
(3)
sing: c(1,2) ' 2.3 , c(2,1) ' 2.4 . (5.18)
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1 2 3 4 5 6 7 8 9 10
Nf

2.0

2.2

2.4

2.6

∆
(d

=
3
)

B(0)
sing

B
(3)
sing : LO

B
(3)
sing : NLO Padé (1,1)

B
(3)
sing : N2LO Padé (2,1)

B
(3)
sing : N2LO Padé (1,2)

1 2 3 4 5 6 7 8 9 10
Nf

1.0

1.2

1.4

1.6

1.8

2.0

B(0)
adj

B
(0)
adj : LO

B
(0)
adj : NLO Padé (1,1)

B
(0)
adj : N2LO Padé (2,1)

B
(3)
adj : LO

B
(3)
adj : NLO

B
(3)
adj : N2LO Padé (2,1)

B
(3)
adj : N2LO Padé (1,2)

Figure 5. ε-expansion predictions for the scaling dimension of the scalar bilinear operators B(0)sing

(left panel), and B(0)adj (right panel) at d = 3. The different colors for B(0)adj correspond to estimates

from different continuations of the operator (see legend).

For B(0)
adj, the prediction from large-Nf is [4, 6]

B(0)
adj: clarge-Nf = − 32

3π2
' −1.1 , (5.19)

and the extrapolations obtained from the three-form and scalar adjoints give

B
(3)
adj: c(1,2) ' −1.4 , c(2,1) ' −1.4 , (5.20)

B
(0)
adj: c(2,1) = 0 . (5.21)

This suggests that the extrapolation of the three-form may provide a better estimate for

the scaling dimension of the adjoint scalar at this order.

6 Conclusions and future directions

We employed the ε-expansion to compute scaling dimensions of four-fermion and bilinear

operators at the IR fixed point of QED in d = 4−2ε. We estimated the corresponding value

for the physically interesting case of d = 3. The results seem to confirm the expectations

from the enhancement of the global symmetry as d → 3 (see figures 4 and 5). Therefore,

going beyond the leading order gave us more confidence that the continuation is sensible.
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At the same time, it appears that — with the exception of the scalar-singlet bilinear

— to obtain precise estimates for the scaling dimensions for small values of Nf requires

even higher-order computations and perhaps more sophisticated resummation techniques

(see for instance chapter 16 of ref. [62] and references therein). The computation of such

higher orders in ε via the standard techniques used in the present work would require hard

Feynman-diagram calculations.

In recent years, several authors exploited conformal symmetry to introduce a variety

of novel techniques to compute observables of the fixed point in ε-expansion. Ref. [63]

proposed an approach based on multiplet recombination, further applied and developed in

refs. [64–79]. Another approach is the analytic bootstrap, either together with the large-

spin expansion [80], or in its Mellin-space version [81–84]. Finally, ref. [85] aimed at directly

computing the dilatation operator at the Wilson-Fisher fixed point. It would be interesting

to attempt to apply these techniques to QED in d = 4− 2ε.

On a different note, ref. [86] recently argued that QCD3 with massless quarks undergoes

a transition from a conformal IR phase, which exists for sufficiently large number of flavors,

to a symmetry-breaking phase when Nf ≤ N c
f . This is analogous to the long-standing

conjecture for QED3, and so four-fermion operators may play the same role. Therefore,

at least for the case of zero Chern-Simons level, ε-expansion can be employed in a similar

manner to estimate N c
f . A LO estimate appeared in ref. [87]. In light of our results for

QED3, it would be worth studying how this estimate is modified at NLO.
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A Feynman rules

From the QED Lagrangian in Rξ-gauge,

LQED+g.f. = −1

4
FµνFµν −

1

2ξ
(∂µA

µ)2 + Ψaiγ
µDµΨa , (A.1)

we obtain the Feynman rules
q

→

Ψ
a

Ψ
a =

i

/q
, (A.2)

q

→

A
µ

A
ν = − i

q2

(
ηµν − (1− ξ)q

µqν

q2

)
, (A.3)

Ψ
a

Ψ
a

A
µ = −ieγµ . (A.4)
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There is one additional counterterm coupling that we need to specify. It is a relic of the

procedure with which we regulate IR divergences (see section 3.3), which essentially breaks

gauge invariance. For this reason to consistently renormalize Green’s function we need to

include a counterterm analogous to a mass for the photon, i.e.,

A
µ

A
ν = −i δm2

IRA η
µν . (A.5)

Only the one-loop value of δm2
IRA enters our computations. It reads

δm2
IRA = α

4Nf
ε
m2

IRA +O(α2) . (A.6)

To find the EOM-vanishing operators at the non-renormalizable level we apply the

EOM of the fermion and photon. They read

γµDµΨa = 0 , DµΨaγ
µ = 0 , ∂νFµν + eΨaγµΨa = 0 . (A.7)

For brevity we use the shorthand notation γµD
µ ≡ /D and use an arrow to indicate the

direction in which the derivative in /D acts, i.e.
↼
/D and

⇀
/D ≡ /D.

We consider the Lagrangian with additional couplings proportional to the operators

introduced in section 3.1

L = LQED +
∑
i

CiOi . (A.8)

To compute the Green’s function we need the Feynman rules of the operators we

insert, as well as all the structures that we need to project the amplitude. For instance, to

renormalize the Green’s function of ΨΨAµ with one-loop insertions of Q1 we need not only

the Feynman rule of Q1, but also the ΨΨAµ structure of all operators that Q1 generates

at one-loop.

In our case, the Feynman rules for the following three final states suffice:

Ψ
b

Ψ
a

Ψ
b

Ψ
a

O

= iCOSO p

→

q

↓

Ψ
a

Ψ
a

A
µ

O

= iCO S̃O

q

→

A
µ

A
ν

O

= iCO ŜO

where the structures SO , S̃O , ŜO depend on the inserted operator. For the set of operators

– 25 –



J
H
E
P
1
2
(
2
0
1
7
)
0
5
4

relevant to our computation they read

SO Q1 : 2γµ ⊗ γµ
Q3 : 2γ[µγνγρ] ⊗ γ[µγνγρ]

En : 2γ[µ1 · · · γµn] ⊗ γ[µ1 · · · γµn] + εanSQ1
+ εbnSQ3

N1 : SQ1

(A.9)

S̃O N1 : 1/e
(
q2γµ − /qqµ

)
N2 : S̃N1

N3 : e
(
(p+ q)2γµ − /q/pγµ + 2(/q + /p)p

µ
)

N4 : 4/q/pγ
µ − 4/qp

µ + 2(2/p+ /q)q
µ − 2(2p·q + q2)γµ

P : i/e m2
IRA

(A.10)

ŜO N2 :
2

e2

(
ηµνq4 − q2qµqν

)
. (A.11)

B Renormalization constants

In this appendix we list the mixing-renormalization constants of four-fermion operators.

First we list the constants we need to compute the ADM of flavor-singlet four-fermion

operators, which we discussed in the main text, and subsequently the constants entering

the computation of the ADM of flavor-nonsinglet four-fermion operators, which we discuss

in appendix C.

B.1 Flavor-singlet four-fermion operators

The divergent and finite pieces of the one-loop constants of the mixing between physical and

evanescent operators are directly related to the one-loop anomalous dimension of eqs. (3.4)

and (3.5) via

Z(1,1)
O O ′ =

1

2
γ

(1,0)
O O ′ , Z(1,0)

O O ′ =
1

2
γ

(1,−1)
O O ′ , (B.1)

with O, O ′ any physical or evanescent operator from section 3.1. To extract these constant

from the ΨΨΨΨ Green’s function we had to first compute the one-loop mixing of the four-

fermion operators into the EOM-vanishing operator N1. For the physical operators the

corresponding constants are

Z(1,1)
Q1 N1

= −4

3
(2Nf + 1) , Z(1,0)

Q1 N1
= 0 , (B.2)

Z(1,1)
Q3 N1

= −8 , Z(1,0)
Q3 N1

= 0 , (B.3)

and for the evanescent operators they are

Z(1,1)
En N1

= 0 , Z(1,0)
En N1

= −(−1)
n(n−1)

2 16(n− 2)(n− 5)!

− 4

3
(2Nf + 1)an − 8bn , (B.4)
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with n an odd integer ≥ 5. To compute these constants for generic n we used Clifford-

algebra identities from ref. [46].

As explained in section 3.2, in the computation of the mixing at two-loop level more

operators enter. The only one-loop mixings entering the computation, apart from those

above, is the mixing of the physical four-fermion operators into the EOM-vanishing operator

N2, and the gauge-variant operator P. The former vanish, i.e.,

Z(1,1)
Q N2

= 0 , Z(1,0)
Q N2

= 0 , (B.5)

and the latter read

Z(1,1)
Q1 P = 8Nf + 4 , Z(1,1)

Q3 P = 4 , Z(1,0)
Q P = 0 , (B.6)

with Q = Q1, Q3. We do not list the corresponding constants for the evanescent operators

because they do not enter the two-loop computation of the mixing of physical operators.

In table 1 we summarised on which renormalization constants the Green’s functions

we computed depend on. We see that to determine the two-loop mixing of the four-fermion

operators we first need to determine the two-loop mixing of the physical operators into the

two EOM-vanishing operators N1 and N2. The corresponding constants read

Z(2,2)
Q1 N2

=
8

9
Nf (2Nf + 1) , Z(2,1)

Q1 N2
=

8

9
Nf , (B.7)

Z(2,2)
Q1 N1

= −4

9
(12N2

f + 10Nf + 11) , Z(2,1)
Q1 N1

=
4

27
(Nf + 11) , (B.8)

Z(2,2)
Q3 N2

=
16

3
Nf , Z(2,1)

Q3 N2
=

32

9
Nf , (B.9)

Z(2,2)
Q3 N1

= −8

3
(24Nf + 11) , Z(2,1)

Q3 N1
= −8

9
(103Nf + 86)

− 4

3
a5(2Nf + 1)− 8b5 . (B.10)

Finally, the two-loop mixing constants of the two physical operators read

Z(2,2)
Q Q′ =

[
2
9

(
24N2

f + 20Nf + 103
)

2
3(3Nf + 1)

88
3 (3Nf + 1) 22

]
, (B.11)

Z(2,1)
Q Q′ =

[
− 1

54(8Nf + 2275) −1
9(3Nf + 49)

4
9(107Nf + 253) 5

6(8Nf + 9)

]

+ a5

[
−1

2 0
2
3(3Nf + 14) 1

]
+ b5

[
0 −1

2

44 −2
3(Nf − 12)

]

+ a7

[
0 0

−1
2 0

]
+ b7

[
0 0

0 −1
2

]
, (B.12)

with Q = Q1, Q3.
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B.2 Flavor-nonsinglet four-fermion operators

The renormalization of the Green’s functions with insertions of flavor-nonsinglet four-

fermion operators is analogous to the one with flavor-singlets but less involved. Their

flavor-off-diagonal structure forbids them to receive contributions from any EOM-vanishing

or gauge-variant operator at two-loop order. Therefore, in this case we only need the mixing

constants within the physical and evanescent sectors.

As in the flavor-singlet case, the one-loop mixing is directly related to the one-loop

anomalous dimensions of eqs. (C.4) and (C.5) via

Z(1,1)
O O ′ =

1

2
γ

(1,0)
O O ′ , Z(1,0)

O O ′ =
1

2
γ

(1,−1)
O O ′ , (B.13)

with O, O ′ any physical or evanescent flavor-nonsinglet four-fermion operator; the one-

loop anomalous dimensions above are given in appendix C. Finally, the two-loop mixing

constants of the two physical operators read

Z(2,2)
Q Q′ =

[
18 2

3Nf
24Nf 18

]
, (B.14)

Z(2,1)
Q Q′ =

[
−81

2 −1
9(Nf + 63)

−4(11Nf − 9) −1
6(32Nf + 3)

]

+ a5

[
−1

2 0

−2
3(Nf − 12) 1

]
+ b5

[
0 −1

2

36 −2
3(Nf − 12)

]

+ a7

[
0 0

−1
2 0

]
+ b7

[
0 0

0 −1
2

]
, (B.15)

with Q = Q1, Q3.

C Flavor-nonsinglet four-fermion operators

In the main part of this work we investigated bilinear and flavor-singlet four-fermion oper-

ators. There exist also four-fermion operators that are not singlets under flavor. The ones

we consider in this appendix are spanned by the basis

Q1 = T acbd (Ψaγ
µΨb)(Ψcγ

µΨd) , (C.1)

Q3 = T acbd (ΨaΓ
3µνρΨb)(ΨcΓ

3
µνρΨ

d) , (C.2)

En = T acbd (ΨaΓ
nµ1...µnΨb)(ΨcΓ

n
µ1...µnΨd) + εanQ1 + εbnQ3 , (C.3)

with T acdb = T cabd and T acad = T abbd = 0. The computation of their ADM at one- and two-loop

order entails only a subset of the Feynman diagrams needed for flavor-singlet case and is

actually less involved as discussed in appendix B. In this appendix we present their ADM

and their scaling dimensions at the IR fixed point in d = 4 − 2ε, and use this to estimate

the corresponding d = 3 observables.
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In the flavor scheme, the full one-loop ADM of the physical and evanescent operators

and the two-loop entries required read:

γ(1,0)
nm =


2n(n− 1)(n− 5)(n− 6) for m = n− 2

−4(n− 1)(n− 3) for m = n

2 for m = n+ 2

0 otherwise ,

(C.4)

γ(1,−1)
nm =



−2n(n− 1)(n− 5)(n− 6)an−2

+4(n− 1)(n− 3)an − 2an+2 + 72bn for m = 1, n ≥ 5

−80δn5

−2n(n− 1)(n− 5)(n− 6)bn−2

+4(n− 1)(n− 3)bn − 2bn+2 + 2an for m = 3, n ≥ 5

0 otherwise ,

(C.5)

γ(2,0)
nm =



[
−162 −28− 4

9Nf
144− 176Nf 78− 64

3 Nf

]
+

+a5

[
−2 0

−8
3Nf 2

]
+ b5

[
0 −2

72 −8
3Nf

]
for n,m = 1, 3

0 for n ≥ 5 and m = 1, 3

not required otherwise .

(C.6)

The part of the one-loop result that does not depend on an and bn was first computed in

ref. [50].

Next we evaluate these ADMs at the fixed point

(γ∗1)nm =
3

2Nf
×


n(n− 1)(n− 5)(n− 6) for m = n− 2

−2(n− 1)(n− 3) for m = n

1 for m = n+ 2

0 otherwise .

(C.7)

(γ∗2)nm =



− 1
8N2
f

[
729 153 + 2Nf

324 + 792Nf −351 + 96Nf

]

+ 3
8N2
f
a5

[
−3 0

−4Nf 3

]
+ 3

8N2
f
b5

[
0 −3

108 −4Nf

]
for n,m = 1, 3 ,

3
2Nf

(−n(n− 1)(n− 5)(n− 6)an−2

+2(n− 1)(n− 3)an − an+2 + 36bn) for m = 1, n ≥ 5 ,

− 60
Nf
δn5

+ 3
2Nf

(−n(n− 1)(n− 5)(n− 6)bn−2

+2(n− 1)(n− 3)bn − bn+2 + an) for m = 3, n ≥ 5 ,

not required otherwise .

(C.8)
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Nf 1 2 3 4 5 6 7 8 9 10

(∆1)1 −9.00 −4.50 −3.00 −2.25 −1.80 −1.50 −1.29 −1.12 −1.00 −0.900

(∆2)1 35.6 8.53 3.63 1.95 1.19 0.782 0.544 0.393 0.292 0.221

(∆1)2 9.00 4.50 3.00 2.25 1.80 1.50 1.29 1.12 1.00 0.900

(∆2)2 −101 −29.3 −14.9 −9.40 −6.67 −5.09 −4.08 −3.38 −2.87 −2.49

Table 5. Three significant digits of the one-loop, (∆1)i, and the two-loop, (∆2)i, contributions to

the scaling dimension of the flavor-nonsinglet four-fermion operators for various cases of Nf . To

obtain the two-loop (∆2)i values we implemented the algorithm to include the effect of evanescent

operators [32].

Nf 1 2 3 4 5 6 7 8 9 10

(∆)1 LO −0.500 1.75 2.50 2.88 3.10 3.25 3.36 3.44 3.50 3.55

NLO Padé (1,1) 3.26 3.17 3.22 3.30 3.37 3.43 3.49 3.53 3.57 3.60

(∆)2 LO 8.50 6.25 5.50 5.12 4.90 4.75 4.64 4.56 4.50 4.45

NLO −16.7 −1.09 1.78 2.78 3.23 3.48 3.62 3.72 3.78 3.83

Table 6. LO and either NLO Padé (1,1) or fixed-order NLO predictions for the scaling dimension

of the two flavor-nonsinglet four-fermion operators at d = 3 for various values of Nf . Only three

significant digits are being displayed.

Following ref. [32] we shift to the scheme in which the physical-physical subblock forms an

invariant subspace. In this scheme we are able to extract the scheme-independent O(ε2)

corrections to the scaling dimensions, i.e., the (∆2)is. In table 5 we list the values for

the representative cases of Nf = 1, . . . , 10 and in table 6 the LO and NLO predictions for

the scaling dimensions at d = 3. The NLO Padé (1,1) prediction of scaling dimension

(∆)2 contains poles in the extrapolation region ε ∈ [0, 1
2 ], so we list the fixed-order NLO

prediction instead.
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