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1 Introduction

The problem of preserving supersymmetry on space-time manifolds with boundaries has a

long history in the literature. Most notably it has been extensively studied in the context

of open strings and D-branes (see for instance [1–11]). Much attention was also given to the

study of supergravity in spaces with boundaries. This includes applications to the strong

coupling limit of E8 × E8 heterotic string theory [12], supersymmetric Randall-Sundrum

models [13] and general study of supergravity in various dimensions [14–18].

In field theory, a classification of the half-BPS supersymmetric boundary conditions

(BC) for N = 4 Super Yang-Mills was obtained in [19], and the behavior of these BC

under S-duality was analyzed in a subsequent paper [20]. With fewer supersymmetries, the

general BC and their interplay with dualities are still largely unexplored. (See [21–23] for

the 3d case.)

Furthermore, recently there has been a great progress, initiated in [24–26], in under-

standing how supersymmetry can be preserved on curved manifolds. Advances in local-

ization suggest that partition functions factorize on some curved backgrounds, and the

factors have the interpretations of partition functions on manifold with boundaries (see for

instance [27–29]). Motivated by this set of questions, in this paper we consider N = 1

theories on a 4d space-time with a boundary.
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A supersymmetric Lagrangian L transforms under supersymmetry into a total deriva-

tive δL = ∂µVµ. When there is a boundary, the variation of the action is a boundary term

δ

∫

M

L =

∫

∂M
Vn . (1.1)

Here M is space-time, nµ is the normal to the boundary and Vn = nµVµ. We will consider

this as the basic obstruction to preserving supersymmetry. We will show how to construct

boundary Lagrangians ∆ for which δ∆ = −Vn so that

δ

(∫

M

L +

∫

∂M
∆

)
= 0 . (1.2)

In this way we can construct actions which are invariant under supersymmetry, indepen-

dently of the choice of BC. This idea was suggested by several authors [15, 30–36]. In this

paper we explore this idea systematically for N = 1 in 4d.

Let us demonstrate how this works in an example, given by [35] (see also [36]). Consider

a superpotential, which comes from a chiral multiplet W = (w,ψw, Fw) with supersymme-

try variations

δw =
√
2ζψw ,

δFw =
√
2iζ̄σ̄µ∂µψw .

Clearly
∫
M

Fw is a supersymmetric bulk action. We can use ∆ = iw as a compensating

boundary Lagrangian if we restrict to variations for which ζ̄α̇ = ζασn
αα̇. This defines a

subalgebra isomorphic to N = 1 in 3d. It follows that

∫

M

Fw + i

∫

∂M
w (1.3)

is invariant under this subalgebra without using BC.

We see in this example that Vn =
√
2iζ̄σ̄nψw is exact only with respect to a subalgebra

of the supersymmetry transformations. This corresponds to the fact that we cannot pre-

serve all the supersymmetries of the bulk theory. Importantly, we note that the boundary

action follows only from the structure of the chiral multiplet. It is independent of the

details of the theory and of the specific BC we choose.

This universality of the boundary action is the first of the two central points of this

paper. Focusing on 4d N = 1 it is possible to classify all the ∆’s which solve −Vn = δ∆

for any supersymmetric Lagrangian. This leads to a classification of the subalgebras that

can be preserved in this way. We obtain that they are isomorphic to one of the following

1. N = 1 in 3d: by preserving a linear combination of the supercharges Qα and Q̄α̇ of

opposite chirality. This breaks the R-symmetry.

2. N = (0, 2) in 2d: by preserving a single component of each chirality independently to-

gether with the R-symmetry and breaking to 2d Lorentz symmetry on the boundary.

3. N = (0, 1) in 2d: the intersection of the two options above.
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Option (1.) corresponds to the solution of [35, 36], while (2.) is to the best of our knowledge

novel. They are related by dimensional reduction to the familiar A- and B-type branes in

N = (2, 2) in 2d [1, 2]. The third subalgebra is the intersection of the first two. It comes

about if we introduce two terms in the boundary action, each preserving only one of the

two subalgebras above. In each case, after the boundary action is introduced, one can have

various choices for BC which are compatible with the preserved subalgebra.

Interestingly, the conditions under which the boundary Lagrangians are well-defined

operators are exactly the same as the criteria in [37] for the existence of certain supersym-

metric multiplets of the energy-momentum tensor. For example, for Abelian gauge theories

with a Fayet-Iliopoulos (FI) term the A-type boundary Lagrangian is not gauge invariant.

In these theories, the Ferrara-Zumino (FZ) multiplet of the energy-momentum tensor is

not defined. Similarly, a theory must have a preserved R-symmetry in order to construct

the B-type boundary action. Exactly in this case one can define the R-multiplet of the

energy-momentum tensor. Moreover, the subalgebras above are in one-to-one correspon-

dence with those preserved by BPS domain walls (case 1.) strings (2.) or both (3.). In fact,

we will see that there is a relation between the boundary Lagrangian and the brane charges

appearing in the supersymmetry algebra. These in turn are related to the multiplets of the

energy-momentum tensor [38].

However, it is important to note that the failure of a certain boundary action to exist

does not immediately lead to obstructions on preserving the subalgebras above in presence

of the boundary. This is because it may be possible to choose appropriate BC that make the

operators in the boundary Lagrangian well-defined (we will give an example of how that can

happen in the main body). It only represents an obstruction to preserve supersymmetry

independently of the choice of BC.

The relation between a nontrivial Vµ and brane charges in the algebra has been known

for a long time [39]. These brane charges appear in the supersymmetry variation of the

supercurrent as follows

{Qα, S̄α̇ν} = 2σµ
αα̇(Tµν + Cµν) + . . . ,

{Qα, Sβρ} = σ
µν
αβCρµν + . . . ,

where S
µ
β and S̄

µ
α̇ are the supercurrents, Cµν is the string current, Cµνρ is the domain

wall current and the ellipses are Schwinger terms. If Vn is exact with respect to a certain

subalgebra, then all the brane currents which do not respect this subalgebra must drop. For

A-type (B-type) the string (domain wall, respectively) current must vanish up to Schwinger

terms. The non-vanishing brane current contributes a boundary term when the current

algebra is integrated. We will show that it gives exactly the correct boundary action.1

The interpretation of the boundary actions as arising from brane charges together with

the relation to the FZ- and R-multiplets is the second key point of the paper. It is our

hope that this understanding will facilitate the study background supergravity in theories

defined on a manifold with a boundary.

1This bears some resemblance to partial supersymmetry breaking in [40]. It would be interesting to

explore the relation with anomaly inflow and generalized symmetries, see for example [41, 42].
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M = space-time (µ = 0, . . . , 3)

∂M
(µ̂ 6= n)

Σ = constant time slice (a 6= 0)

∂Σ = boundary of Σ (â 6= 0, n)

nµ

Figure 1. Conventions for space-time and index assignment.

The remainder of the paper is organized as follows. In section 2 we will review the

basics of symmetries in quantum field theories with a boundary and explain the idea of

compensating boundary actions. In section 3 we focus on N = 1 in 4d and explain how to

construct boundary actions. In section 4 we show that these results can be interpreted in

terms of the brane currents of supersymmetry.

2 On symmetries and boundaries

In this section we review some basic aspects of theories with boundaries and symmetries.

In particular we discuss compensating boundary Lagrangians, and emphasize that they

give rise to improvements of certain symmetry currents.

Consider a space-time M = R
1,2 × (−∞, 0] with a boundary ∂M = R

1,2. (The

convention for the metric is mostly plus.) The boundary is specified by an outward normal

vector nµ which is normalized to unit length. Only cases in which nµ is a constant space-

like vector are discussed in this paper. We use the index µ = 0, . . . , 3 for coordinates in

the bulk and µ̂ 6= n for coordinates on the boundary.2 We will also consider constant time

slices, which we denote by Σ. The index a 6= 0 is designated for coordinates on Σ and

â 6= 0, n for its boundary ∂Σ (see figure 1).

The theories we consider are specified by a 4d bulk action S =
∫
M

L and possibly

also a 3d boundary action S∂M =
∫
∂M L∂M. Taking the variation we get

δ(S + S∂M) =

∫

M

(
∂L

∂Φ
− ∂µ

∂L

∂(∂µΦ)

)
δΦ+

∫

∂M

(
∂L

∂(∂nΦ)
δΦ+ δL∂M

)
. (2.1)

2We use n as an index in the obvious way xn = xµnµ.
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Here Φ represents all the fields in the theory. The BC are relations of the form

G(Φ, ∂nΦ)|∂M = 0 , (2.2)

and stationarity of the action on the equations of motion requires that
(

∂L

∂(∂nΦ)
δΦ+ δL∂M

)∣∣∣∣
G=0

= ∂µ̂(. . .) . (2.3)

For simplicity we are not including additional dynamical fields on the boundary.

Symmetries are transformations of the fields δsymΦ which leave the action invariant.

(We denote symmetry variations with δsym to distinguish from generic variations δ.) When

there are no boundaries, a symmetry is required to satisfy

δsymL = ∂µVµ . (2.4)

By Noether’s theorem this implies the existence of a current3

Jµ = − ∂L

∂(∂µΦ)
δsymΦ+ Vµ (2.5)

satisfying ∂µJ
µ = 0 on-shell. This implies that Q =

∫
Σ J0 is time independent. (2.5) is

said to be the canonical form of the current.

Suppose now that there is a boundary, and a transformation satisfying (2.4) is given.

In this context, δsym may be called a bulk symmetry. Under what conditions does this lead

to the implications of a symmetry? Let us mention two aspects of this problem.

Firstly, the time-derivative of the charge contains a boundary term

∂0Q = −
∫

∂Σ
Jn . (2.6)

This means that the conservation may fail because charge can leak through the boundary.

The equation Jn|∂Σ = 0 is usually emphasized as the basic requirement of the BC for

preserving the symmetry. A different starting point is to demand that the BC (2.2) are

invariant under the symmetry transformation, a criterion that we call symmetric BC. This

amounts to imposing4

δsymG|G=0 = 0 . (2.7)

We will explain below how this leads to the existence of a conserved charge. This condition

was discussed by several authors (see for instance [2, 5, 6, 8, 9]), mainly as a consistency

requirement for supersymmetric BC.

Secondly, in presence of a boundary, a bulk symmetry gives rise to a boundary term

in the variation of the action

δsym(S + S∂M) =

∫

∂M
Vn +

∫

∂M
δsymL∂M . (2.8)

3We choose this rather unconventional sign of Jµ for consistency with the conventions of [37] and [38]

for the supercurrent and the energy-momentum tensor.
4For space-time symmetries such as supersymmetry which acts with derivatives on fields, we can only

demand that (2.7) holds up to equations of motion.
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This obstruction to the invariance of the action can be removed without invoking the BC

(or rather a priori to fixing the BC), by choosing a boundary term which cancels the

bulk variation.5

Notably, these two aspects are related because the boundary term that cancels (2.8)

appears in the stationarity condition (2.3), in a way which makes it consistent with sym-

metric BC. Before coming to this point, we proceed to show how symmetric BC lead to

vanishing flux.

2.1 Constructing conserved charges

It follows from (2.6) that the charge is conserved if and only if, for our choice of BC, the

normal component of the current is a total derivative on ∂Σ, i.e.

Jn|∂Σ = ∂âKâ (2.9)

for some Kâ (recall â 6= 0, n). Let us show how this is obtained from symmetric BC.

Consider a bulk symmetry as in (2.4). Using the equations of motion we can write the

variation of the bulk action as

δsymS|on−shell =

∫

∂M

∂L

∂(∂nΦ)
δsymΦ . (2.10)

Note that this is valid only if δsym belongs to the field variations which are allowed by the

BC, i.e. we have to consider symmetric BC. Comparing this with (2.4) we get that

Jn|∂M = ∂µ̂Kµ̂ (2.11)

for some Kµ̂ (recall µ̂ 6= n). This looks very similar to the condition (2.9), but not quite

since it includes a time derivative and so does not vanish when integrated on ∂Σ. This is

easily corrected.

One modifies the definition of the charge by including a boundary term

Q′ =

∫

Σ
J0 +

∫

∂Σ
K0 . (2.12)

It is easy to check that ∂0Q
′ = −

∫
∂Σ ∂âKâ = 0. In fact, this can be understood as an

improvement of the current. We can find an anti-symmetric tensor Lµν = −Lνµ such that

Kµ = Lµn. One then constructs an improved current

J ′µ = Jµ + ∂νL
µν (2.13)

for which Q′ =
∫
Σ J ′0 and J ′n|∂Σ = 0. Let us stress that it is the canonical current (2.5)

which is improved here.

5Of course, if we assume that the BC are symmetric then it follows from the stationarity of the action (2.3)

that the boundary term vanishes on-shell.
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2.2 Compensating boundary lagrangians

We now turn to a discussion of the boundary terms that can be added to make the action

invariant under a symmetry transformation. This idea was first applied to supersymmetry

a long time ago [30, 31]. More recently it was expounded by Belyaev and van Nieuwen-

huizen [15, 35, 43]. (See also [21, 34, 36].)

Suppose that there exists a ∆ such that

Vn + δsym∆ = ∂µ̂Kµ̂ . (2.14)

In other words Vn is exact in the symmetry variation, up to a total derivative on the

boundary. Then adding
∫
∂M∆ ensures that the action is δsym invariant without reference

to BC. We call ∆ a compensating boundary Lagrangian.

Beyond the compensating term we have the freedom to add any symmetric boundary

action, i.e. a term which is invariant by itself. (Note that ∆ is only defined up to such

“closed” terms.) This leads to the general form

S +

∫

∂M
∆+

∫

∂M
L

′
∂M , (2.15)

where δsymL ′
∂M = ∂µ̂K′

µ̂.

We can use the form of the action in (2.15) to determine explicitly the required im-

provement Kµ̂ which corresponds to a conserved charge. Let us assume for simplicity that

the boundary Lagrangian consists only of the compensating term ∆. Note that equa-

tion (2.3) holds with δ → δsym if we have symmetric BC. Then, using (2.3) and (2.14),

we find6

Jn|∂M = − ∂L

∂(∂nΦ)
δsymΦ+ Vn = ∂µ̂Kµ̂ . (2.16)

If one introduces in addition a boundary term L ′
∂M as in (2.15) then the effect is to

change (2.16) by Kµ̂ → Kµ̂ +K′
µ̂.

Note that, with a compensating boundary Lagrangian, the stationarity condition is

manifestly consistent with symmetric BC. This suggests that it is always sufficient to

consider actions adhering to the form (2.15). One should keep in mind that it is possible to

add a boundary term which vanishes trivially on the BC and is not symmetric. The claim

is modulo such terms. The mismatch goes also in the other direction. Given an action of

the form (2.15), it may be possible to choose BC which are not symmetric but still respect

the stationarity condition of the action.

Let us now summarise the discussion above by the following comments. We emphasize

that in what follows we will not attempt at finding general solutions of δsymG|G=0 = 0,

rather we will focus on equation (2.14). The point is that while there are many solutions of

δsymG = 0, the possible solutions of (2.14) are finite, each corresponding to a whole family

of BC. Moreover, the ∆’s which solve (2.14) are universal in that they are determined

independently of the theory and of the BC.

6We consider a case where the total derivative in (2.3) vanishes for simplicity.
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2.3 The energy-momentum tensor

Let us look closer at the case of translational symmetries, specified by a constant vector

ǫµ. Since the Lagrangian is a scalar, it follows that δǫL = ǫµ∂µL . This gives rise to the

canonical energy-momentum tensor

ǫν T̂ν
µ = ǫν

(
− ∂L

∂(∂µΦ)
∂νΦ+ δµνL

)
. (2.17)

Here the index ν is the direction of the translation, and µ is the current index (i.e. Jµ
ǫ =

ǫν T̂ν
µ) with respect to which it is conserved. In this convention Pν =

∫
Σ T̂ν

0 and P0 ≤ 0.

In general, the canonical energy-momentum tensor is not symmetric. We will use a hat to

distinguish it from the symmetric energy-momentum tensor.

Now suppose that there is a boundary. This explicitly breaks translations for which

ǫµnµ 6= 0. For the remaining translations with ǫµnµ = 0 we have that δǫS = 0 and thus

they do not require compensating boundary actions.

Suppose that the definition of the theory includes a boundary Lagrangian L∂M. If

a translation by ǫµ̂ is preserved, we must have that δǫL∂M = ∂µ̂(ǫ
µ̂L∂M). As explained

above, this implies an improvement of T̂ν
µ. The precise form depends on L∂M, and is

necessarily not symmetric (unlike the canonical current which can always be symmetrized).

This is linked with the breakdown of Lorentz invariance ensued by the boundary.

In the discussion above it is important to notice that the energy-momentum tensor

that we are improving is the canonical one. This will be important for us because in the

context of supersymmetry one usually considers multiplets in which the energy-momentum

tensor is symmetric. We will have to take this discrepancy into account.

3 Boundary actions in supersymmetry

In this section we shall begin our investigation of supersymmetry. The basic constraint

on the supercharges that can be preserved in flat space with boundaries arises because

supersymmetry transformations anti-commute to translations, some of which are inevitably

broken by the boundary. This implies that only a subset of the supersymmetries can survive

in presence of boundaries.7

Focusing on the case ofN = 1 supersymmetry in 4d, there are two maximal subalgebras

that can be preserved, one isomorphic to N = 1 in 3d and the other one to N = (0, 2)

in 2d. These options correspond to the possible compensating boundary actions that one

can construct. We shall refer to these two cases as A-type and B-type respectively. We

find these names appropriate because they are related by dimension reduction to the BC

in N = (2, 2) in 2d bearing the same name. Note that in the case of B-type the 3d Lorentz

invariance on the boundary is broken by the boundary action.

7Note that on curved manifolds it is sometimes possible to introduce a boundary without breaking any of

the supersymmetries preserved by the background. This is because in general the Killing vectors associated

to the isometries that appear on the r.h.s. of the supersymmetry algebra on curved space do not form a

basis of the tangent space (see for instance [25]). Therefore, one can introduce a boundary that is left

invariant by all the isometries appearing in the algebra.
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In N = 1 supersymmetry in 4d there are two ways to build bulk actions. One can

construct a supersymmetric Lagrangian as the D-component of a real multiplet or as the

F -component (F̄ -component) of a chiral (anti-chiral) superfield. The basic idea is to use

the other bosonic fields in the multiplet to construct compensating boundary terms. We

will see below that this follows straightforwardly from the supersymmetry variations which

relate the components of the multiplet.

We will use the conventions of [44], except that we take the Killing spinors ζα and ζ̄α̇

to be commuting.

3.1 A-type boundary actions

This is the solution given by Belyaev and van Nieuwenhuizen [35] and later elaborated by

Bilal [36], which we now review. (A 2d analogue can be found in [3, 45].) In addition, we

derive the improvement which follows from the D-term action. It will play an important

role in section 5.

Let us begin by recalling the example which appeared in the introduction, i.e. the

compensating term for the superpotential. The supersymmetric Lagrangian comes from

the F -component of a chiral multiplet W = (w,ψw, Fw). As explained before, it follows

from the structure of the chiral multiplet that the boundary term is

δζ̄

∫

M

Fw =
√
2i

∫

∂M
ζ̄σ̄nψw . (3.1)

To obtain the compensating action we restrict to a subalgebra defined by the relation

ζ̄α̇ = eiγ(ζσn)α̇. If the theory has an R-symmetry we can set γ = 0 (as assumed in the

introduction for simplicity), otherwise it is a free parameter. Equivalently, we consider

supercharges which take the form

Q̃α =
1√
2

(
e−iγ/2Qα + eiγ/2(σnQ̄)α

)
. (3.2)

The supersymmetry transformations thus generated are denoted by δ̃. The supercharges

satisfy the reality condition

(σnQ̃†)α = Q̃α . (3.3)

The bulk action supplemented by the boundary term is

SF,A−type =

∫

M

Fw + ieiγ
∫

∂M
w . (3.4)

One can verify that δ̃SF,A−type = 0 with no information assumed about the value of ψw

on the boundary. Note that the boundary action breaks R-symmetry explicitly. The

subalgebra we obtained is in fact isomorphic to N = 1 supersymmetry in 3d

{Q̃α, Q̃β} = 2(Γµ̂)αβPµ̂ , (3.5)

where we defined the 3d gamma matrices by Γµ̂ ≡ 2σnµ̂ (recall that µ̂ 6= n), so that

{Γµ̂,Γν̂} = −2ηµ̂ν̂ . Only momenta tangent to the boundary appear in this algebra.

– 9 –
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We are now ready to consider the D-term action. As noted above, the D-term resides

in a real multiplet whose components are V = (C,χ, χ̄,M, M̄, vµ, λ, λ̄,D). They are related

by the following transformations

δC = iζχ− iζ̄χ̄ ,

δχα = ζαM + (σµζ̄)α(ivµ + ∂µC) ,

δχ̄α̇ = ζ̄α̇M̄ + (σ̄µζ)α̇(ivµ − ∂µC) ,

δM = 2ζ̄λ̄+ 2iζ̄σ̄µ∂µχ ,

δM̄ = 2ζλ+ 2iζσµ∂µχ̄ ,

δvµ = iζσµλ̄+ iζ̄σ̄µλ+ ∂µ(ζχ+ ζ̄χ̄) ,

δλα = iζαD + 2(σµνζ)α∂µvν ,

δλ̄α̇ = −iζ̄α̇D + 2(σ̄µν ζ̄)α̇∂µvν ,

δD = −ζσµ∂µλ̄+ ζ̄σ̄µ∂µλ .

The top component D is a bulk supersymmetric Lagrangian. Restricting as above to the

supercharges Q̃α we arrive at the following formula for the D-term action supplemented

by boundary terms

SD,A−type =

∫

M

D +
1

2

∫

∂M
(e−iγM + eiγM̄) +

∫

∂M
∂nC . (3.6)

It is important to note that, unlike the previous case, the boundary terms compensate the

bulk variation up to a total derivative on the boundary. Explicitly, we have that

Vn + δ̃

(
e−iγM + eiγM̄

2
+ ∂nC

)
= i∂µ̂

(
e−iγ ζ̄σ̄µ̂χ+ eiγζσµ̂χ̄

)
. (3.7)

The significance of this was explained in section 2; a specific improvement of the canonical

current is required in order to get a conserved supercharge. Using again the relation

ζ̄ = eiγζσn, we find that the improvement of the canonical supercurrent is

ζS̃µ → ζS̃µ − 2i∂ν(ζσ
µνχ− ζ̄σ̄µν χ̄) . (3.8)

There is a relation between the D-term boundary action and F -term boundary action.

This comes about because a D-term Lagrangian can always be written as a superpotential

up to boundary terms. More precisely, given a real superfield V , we can define a chiral

superfield −1
2D̄

2V , whose F -component is D + ∂2C − i∂µv
µ and bottom component is

−iM̄ . Using expression (3.4) for the F -term action with the boundary term, combined

with the complex conjugate, leads exactly to the action (3.6).

3.2 B-type boundary actions

We have presented above the construction of compensating boundary actions which corre-

spond to the 3d N = 1 subalgebra. It is natural to ask if it is possible to preserve super-

charges of opposite chirality in an independent way, thus also preserving the R-symmetry.

Naively the answer to this question appears to be negative: on the boundary we expect to

– 10 –



J
H
E
P
0
2
(
2
0
1
6
)
1
6
3

find a supersymmetry algebra with 2 supercharges and the only candidate seems to be the

3d N = 1 algebra, whose supercharges are real Majorana fermions and which has no R-

charge. However, this line of reasoning includes the assumption that 3d Lorentz invariance

is maintained.

Relaxing this assumption, we are allowed to preserve only one component of Qα and

one of Q̄α̇. This is implemented by choosing Killing spinors ζα and ζ̄α̇.

Without loss of generality we will place nµ along one of the axes, by choosing xn = x2.

Let us consider again the D-term action. The variations are written as

δ

∫

M

D = −
∫

∂M
ζσ2λ̄ and δ̄

∫

M

D =

∫

∂M
ζ̄σ̄2λ . (3.9)

To find compensating boundary actions we choose the Killing spinors ζα = (1, 0)T and

ζ̄α̇ = (−1, 0)T , which satisfy the identities ζσ1 = iζσ2 and ζ̄σ̄1 = −iζ̄σ̄2. Using (3.6) we

then find that a B-type modified D-term is given by

SD,B−type =

∫

M

D −
∫

∂M
v1 . (3.10)

It is easy to check that this boundary action does not lead to a time derivative on the

boundary, so no improvement of the canonical current is needed. The boundary action can

also be written as a bulk term
∫
M

v12 with vµν = ∂µvν − ∂νvµ. This makes manifest the

invariance under shifts of vµ by a total derivative.8

The boundary action explicitly breaks the three dimensional Lorentz invariance by

picking a preferred direction x1 on the boundary. We remain with 2d Lorentz invariance

in the (x0, x3) plane. Defining Q− = ζαQα and Q̄− = ζ̄α̇Q̄
α̇ the preserved subalgebra is

{Q−, Q̄−} = 2(P 0 + P 3) . (3.12)

This subalgebra is isomorphic to (0, 2) supersymmetry in the two dimensions spanned by

x0 and x3. Changing the sign of the boundary action in (3.10) changes the 2d chirality

leading to (2, 0) instead.

We now explain how to find B-type compensating boundary action for an F -term bulk

Lagrangian. To this end, we will see that it is necessary to invoke the existence of an

R-symmetry. Moreover, differently from all the previous cases, in this case the cancellation

of the boundary term will rely on the equations of motion. (It is however independent

of the choice of boundary conditions.) For definiteness, we focus on a (R-symmetric)

superpotential in a Wess-Zumino model.

8One might wonder whether it is possible to preserve two supercharges corresponding to the two com-

ponents of ζα, while breaking ζ̄α̇ (or viceversa). Indeed one can see from (3.6) that an additional possibility

for the D-term compensating boundary action exists
∫

M

D − i

∫

∂M

vn , (3.11)

which exactly corresponds to preserving only ζα. (Preserving ζ̄α̇ would be achieved by changing the sign of

the boundary term.) This subalgebra is not compatible with the requirement that ζ̄ = ζ†, which is satisfied

in Lorentzian signature, and therefore we reject this possibility. The clash with unitarity is reflected in the

boundary action being not real.
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Consider then a set of chiral fields Φa of R-charges Ra, a Kähler potential K(Φa, Φ̄ā)

and a superpotential W (Φa). The equations of motion are given by

D̄2∂aK = 4∂aW . (3.13)

The superpotential must have R-charge 2 in order to preserve the R-symmetry, i.e. it must

satisfy the constraint

∑

a

RaΦ
a∂aW = 2W . (3.14)

Likewise, the R-neutrality of the Kähler potential means that

∑

a

iRa

(
Φa∂aK − Φ̄ā∂āK

)
= 0 (3.15)

(up to a Kähler transformation which we disregard for brevity). One can then define a real

multiplet V ′ = (C ′, . . . , D′) by

V ′ =
1

2

∑

a

RaΦ
a∂aK . (3.16)

Using the equations of motion one obtains D̄2V ′ = 4W , which leads to the relation Fw +

F̄w̄ = −(D′ + ∂2C ′). We saw in the study of the D-term that the variation of D′ is

compensated by adding −v′1 on the boundary; ∂2C ′ gives rise to an additional boundary

term. Hence, we obtain the following form for the F -term and the relative compensating

boundary Lagrangian

SF,B−type =

∫

M

(Fw + F̄w̄) +

∫

∂M
(∂nC

′ + v′1) . (3.17)

To find the corresponding improvement it is useful to note that the fermionic fields of V ′

and W are related by
√
2ψw = iλ′ − σµ∂µχ̄

′. This leads to

Vn =
√
2iζ̄σ̄nψw = −δ̄

(
∂nC

′ + v′1
)
− 2iζ̄σ̄nµ∂µχ̄

′ , (3.18)

and similarly for the ζ variation. We then find that the supercurrents should be improved

according to

ζSµ → ζSµ − 2iζσµν∂νχ
′ , ζ̄S̄µ → ζ̄S̄µ + 2iζ̄σ̄µν∂νχ̄

′ . (3.19)

3.3 Discussion

We would now like to look closer at the boundary actions obtained above, focusing on the

cases of a Wess-Zumino model and a U(1) gauge theory. This will expose an intriguing

relation to the supersymmetry multiplets of the energy-momentum tensor. Requiring that

the boundary actions are well-defined presents nontrivial constraints on the underlying

field theory, which will be shown to be equivalent to the existence of those multiplets.

For a Wess-Zumino model the D-term Lagrangian comes from the real superfield V =
1
2K. The A-type compensating boundary Lagrangian for this D-term contains the term
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∂nC = 1
2∂nK. This makes sense only if the Kähler potential K is well-defined up to an

additive constant. Equivalently, the Kähler connection

− i

2
(∂aKdΦa − ∂āK∂Φ̄ā) (3.20)

must be globally well-defined. Note that this is never the case if the target space is compact.

Another example comes from the Fayet-Iliopoulos term (FI) in Abelian gauge theories.

The real superfield V associated to such a D-term action is the elementary Abelian vector

superfield. Its bottom component C is shifted by an arbitrary real function under a gauge

transformation, making the would-be compensating action ∂nC not gauge invariant.

On the contrary, the B-type boundary action (3.10) for the D-term is not affected by

any ambiguity in the examples that we have just considered. Both under Kähler transfor-

mations in the Wess-Zumino model, and under gauge transformations in the U(1) gauge

theory with an FI term, the boundary Lagrangian changes into a total derivative on the

boundary; hence the action is well-defined. On the other hand, we showed that the con-

struction of the B-type boundary actions requires the existence of an R-symmetry. (Note

that without a superpotential there is always an R-symmetry that assigns charge 0 to all

the chiral superfields.)

When the boundary Lagrangian does not exist in some theory, it is not possible to

obtain a total action that is invariant under the associated subalgebra independently of the

BC. Let us stress that this does not mean that the subalgebra cannot be preserved in this

theory. This is because we also need to specify some BC to fully define the theory, and it

may be possible that the boundary operator becomes well-defined (or vanish altogether)

when evaluated on the BC.

An example will help clarify this issue. Consider a single chiral superfield Φ, whose

components we denote by (φ, ψ), with a canonical Kähler potential K = ΦΦ̄. Suppose we

identify Φ ∼ Φ + 1, i.e. we take the target space to be cylinder. In this case the Kähler

form (3.20) is not globally well-defined, and the term 1
2∂n(φφ̄) in the boundary action is

not a well-defined operator. Nevertheless, consider the following BC

φ = φ̄ ,

∂nφ = −∂nφ̄ ,

ψ = σnψ̄ .

(3.21)

Note that these BC respect the identification φ ∼ φ + 1 on the target space. A short

computation reveals that the BC are symmetric with respect to the subalgebra given by

the relation ζ = σnζ̄, i.e. an A-type subalgebra. Consistently, note that the boundary action

vanishes identically when evaluated on (3.21). This means that given the BC (3.21) the

boundary term is not required for the stationarity of the action, and hence it is redundant.

Bearing in mind this caveat, we note that the conditions that allow to define the A-type

and B-type boundary actions are in one-to-one correspondence with those found by [37]

for the existence of the FZ- and R-multiplets, respectively. These are supersymmetric

multiplets of operators that include the energy-momentum tensor. This relation will be

elucidated in the next section by a calculation of the current algebra in Wess-Zumino
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models. In preparation for the next section, let us discuss some relevant aspects of the

supercurrent multiplets and their expression in Wess-Zumino models.

The basic fact is that both the FZ-multiplet and the R-multiplet can only be defined

in a restricted class of 4d N = 1 supersymmetric field theories. A third, larger multiplet

which exists in general was introduced in [37] and dubbed S-multiplet. The FZ-multiplet

and the R-multiplet are naturally embedded into the S-multiplet. When either of the two

shorter multiplets is defined, it can be obtained from the S-multiplet via an improvement

transformation (that sets to zero some of its components). A short review of the S-multiplet

and its improvements is given in appendix A.

In Wess-Zumino models, given a Kähler potential K(Φa, Φ̄ā) and a superpotential

W (Φa) the S-multiplet is given by

Sαα̇ = 2∂a∂āKDαΦ
aD̄α̇Φ̄

ā ,

χα = D̄2DαK , (3.22)

Yα = 4DαW .

Using the improvement (A.9) we can set χα = 0 if we choose UFZ = −2
3K, and we reduce

to the FZ-multiplet. This is an allowed improvement only if the Kähler potential is well-

defined up to an additive constant. On the other hand, to obtain the R-multiplet we must

demand that the theory has an R-symmetry. Similarly to the comments in the previous

section, when this is the case UR = −∑aRaΦ
a∂aK is a real multiplet and the equations

of motion imply that 1
2DαD̄

2UR = −4DαW . The improvement by UR sets Yα = 0 and

gives the R-multiplet, whose bottom component is the conserved R-current.

It is interesting to compare the improvements of the supercurrent Sµα which are im-

plied by the above choices of U with the improvements (3.8) and (3.19) coming from the

compensating boundary actions. Consider first the R-multiplet, compared to the improve-

ment that results from the B-type superpotential. Looking at the θ-component of UR, we

see that the improvement which follows from the R-multiplet turns out to be twice the

B-type improvement (3.19). We will have to wait until the next section to see how this

discrepancy is resolved. It will turn out that the S-multiplet formulas have to be modified

due to boundary effects.

Now consider the case with well-defined FZ-multiplet and compare to the improvement

for the A-type boundary action. We obtained the A-type compensating boundary action

for the D-term by first rewriting the D-term as an integral over only half superspace, and

then applying the result for the F -term. The resulting F -term for a Wess-Zumino model

comes from the chiral superfield 4W − 1
2D̄

2K. Therefore, we have to improve Sαα̇ in such

a way that

Yα = 4DαW → Dα(4W − 1
2D̄

2K) . (3.23)

This correspond to an improvement with U ′
FZ = −K. (Note that this is different from the

improvement UFZ = −2
3K that sets χα to 0.) Comparing to the improvement that was

obtained from the A-type boundary action (3.8), we find again the same discrepancy by a

factor of 2.
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4 Boundary actions and brane charges

In this section we will show that the compensating boundary actions can be interpreted in

terms of brane charges of the N = 1 supersymmetry algebra in 4d. From this point of view,

a supersymmetric boundary is analogous to a BPS extended object. The algebra admits two

kinds of half-BPS extended objects, namely domain walls and strings, (and quarter-BPS

configurations obtained by combining the previous two, i.e. domain wall junctions) [46–

49]. As we will see, they correspond to A-type and B-type compensating boundary actions,

respectively. In order to give a self-contained presentation, we will start by briefly reviewing

brane charges and BPS objects (see [50] for more details).

4.1 Brane charges and BPS branes in N = 1 in 4d

The most general N = 1 supersymmetry algebra in 4d which takes into account brane

charges is

{Qα, Q̄α̇} = 2σµ
αα̇(Pµ + Zµ) , (4.1)

{Qα, Qβ} = σ
µν
αβZµν . (4.2)

The structure of the brane charges Zµ and Zµν is fixed by Lorentz invariance. The real

vector Zµ is a string charge and the complex two-form Zµν a domain wall charge.

The corresponding conserved currents are a two-form current Cµν and a three-form

current Cµνρ which are related to the charges by

Zµ =

∫

Σ
d3xCµ

0 , (4.3)

Zµν =

∫

Σ
d3xCµν

0 . (4.4)

In flat space without a boundary the corresponding charge will vanish in any configuration

with fields approaching zero sufficiently fast at infinity. This is how one recovers the usual

supersymmetry algebra. States carrying brane charges can sometimes be annihilated by

a subalgebra of the initial 4d N = 1 supersymmetry algebra. In this case the brane is

called BPS.

For instance, for a domain wall with normal vector nµ, we can go to the rest frame in

which Pµ = (E, 0, 0, 0), E being the energy of the configuration. The brane charge in this

frame can be written as

Zµν = 2iZ ǫ0µνρn
ρ , (4.5)

where Z is a complex number. E and Z are formally infinite, but the energy and charge

per unit volume are finite. Consider the supercharges

Q̃α =
1√
2

(
e−iγ/2Qα + eiγ/2(σnQ̄)α

)
(4.6)

that appeared in (3.2). Computing their anticommutators in the rest frame, we find

{Q̃α, Q̃β} = −Γ0
αβ(2E − e−iγZ − eiγZ∗) = −2Γ0

αβ(E − |Z|) . (4.7)
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In the last equality we fixed γ to cancel the phase of Z. The reality condition of Q̃α in (3.3)

implies the BPS bound E ≥ |Z|. When E = |Z|, the supercharges Q̃α annihilate the state

of the domain wall, and the configuration is half-BPS.

Note that, if we consider fluctuations around the state of the domain wall, it is natural

to consider a shifted momentum

P ′µ̂ = P µ̂ + |Z|ηµ̂0. (4.8)

The supercharges Q̃α then generate an algebra isomorphic to N = 1 in 3d

{Q̃α, Q̃β} = 2Γµ̂
αβP

′
µ̂ . (4.9)

Analogous statements hold for the BPS string associated with the charge Zµ. In that

case we have a real two-form nµν normal to the two-dimensional world-sheet. In the rest

frame the charge can be written as

Zµ = −1

2
Zǫ0µνρn

νρ (4.10)

for a real constant Z, and we fixed the normalization so that nµνn
µν = 2 and ZµZ

µ = Z2.

We can introduce the chiral projectors

(P±)
β
α =

1

2
(δ β

α ∓ i(σµν) β
α nµν) , (4.11)

(P†
±)

α̇
β̇
=

1

2
(δα̇

β̇
∓ i(σ̄µν)α̇

β̇
nµν) . (4.12)

The anticommutator of the projected supercharges (Q± = P±Q, Q̄± = Q̄P†
±) is

{Q±, Q̄±} = 2(E ∓ Z) . (4.13)

If we take E = |Z|, depending on the sign of Z the string will be invariant under the super-

charges + or −. Shifting the momentum P ′µ̂ = P µ̂ + ηµ̂0|Z|, the preserved supercharges

will generate an algebra isomorphic to N = (0, 2) in 2d (or N = (2, 0) for the opposite sign

of Z). If both domain walls and strings are present, at most a superalgebra isomorphic

to the N = (0, 1) (or N = (1, 0)) in 2d can be preserved, and the corresponding state is

quarter-BPS.

As we have already stressed, the algebras of the supercharges which are symmetries of

the BPS domain wall, or the BPS string, are exactly the same algebras which are preserved

by the A-type compensating boundary action, or the B-type, respectively. Indeed, we

will see in the following subsections that we can interpret such boundary Lagrangians as

brane currents supported on the boundary. Taking this point of view, the shift in the

momentum P ′µ̂ = P µ̂ + ηµ̂0|Z| reflects the addition of a new term proportional to |Z| to
the action (recall that, as discussed in section 2, adding the boundary Lagrangian affects

the energy-momentum tensor.) This is the boundary term necessary to obtain an action

which is invariant under the preserved algebra. Therefore, this approach will lead to an

independent computation of the compensating boundary action, based on the algebra of

charges rather than on the variation of the action.
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4.2 Current algebra of supersymmetry and boundaries

Consider the full current algebra of supersymmetry — the equal time commutation relations

of the supercurrents. Schematically, it takes the form

{S̄0
α̇(t,y), S

µ
α(t,x)} = 2σν

αα̇Tν
µδ(3)(y − x) + . . . ,

{S0
α(t,y), S

µ
β (t,x)} = 0 + . . . , (4.14)

where the ellipses represent total derivative terms, usually referred to as Schwinger terms.

It is not known in general how to fix the form of all these terms. Note that when there are

no boundaries and no extended objects this equation can be straightforwardly integrated

to yield the 4d N = 1 supersymmetry algebra {Q̄α̇, Qα} = 2σν
αα̇Pν .

Integrating the anticommutators (4.14) only over the y coordinate on a fixed time slice,

one obtains the anticommutator of the supercharge with the supercurrent operator, known

as the half-integrated algebra. When there is no boundary, the result of integrating (4.14)

once is universal for any N = 1 theory in 4d [37]. The following half-integrated current

algebra is obtained

{Q̄α̇, Sαµ} = σν
αα̇

(
2Tνµ + 2Cνµ − 1

2
ǫνµρσ∂

ρjσ + i∂νjµ − iηνµ∂
ρjρ

)
,

{Qβ , Sαρ} = σ
µν
αβCρµν .

Here Cµν and Cρµν are respectively the string and domain wall currents introduced above.

Besides the brane currents, an additional operator jµ appears in the algebra. The operators

in (4.15) form the S-multiplet (reviewed in appendix A). Let us emphasize that the energy-

momentum tensor in (4.15) is symmetric.

As explained in the appendix A, improvements of the S-multiplet are parametrized by

a real superfield

U = u+ θη + θ̄η̄ + θ2N + θ̄2N̄ − θσµθ̄Vµ + . . . . (4.15)

Here we follow the conventions of [38]. This leads to improvements of the energy-momentum

tensor and the supercurrent given by

Sαµ → Sαµ + ∂ν(2σµνη)α ,

Tµν → Tµν +
1

2
(∂µ∂ν − ηµν∂

2)u .

Other operators in the S-multiplet transform as

jµ → jµ + Vµ ,

Cνµ → Cνµ +
3

4
ǫνµρσ∂

ρV σ , (4.16)

Cνµρ → Cνµρ + 2ǫνµρσ∂
σN .

Note that the improvement preserves the symmetry of the energy-momentum tensor. Under

such improvements the half-integrated current algebra (4.15) is covariant — it retains its
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form when the improvements form a multiplet. In some cases, the improvements can be

used to set to zero some of the Schwinger terms. If the brane currents can be improved to

0, the multiplet is reduced to a shorter one. In particular, when the string current Cµν is

set to 0, the shortened multiplet is the FZ-multiplet, while when the domain wall current

Cµνρ is set to 0 we obtain the R-multiplet.

Consider now the current algebra for theories with a boundary. We wish to inte-

grate (4.14) carefully taking into account all the total derivative terms. This will introduce

contributions in the integrated algebra of supercharges which have the structure of the

brane charges in (4.1) and (4.2). In analogy with the BPS states, only a subalgebra which

is blind to the brane charges can be preserved. Unlike the case with no boundary, the

charges are now sensitive to improvements. We must choose the improvements in such a

way that the resulting charges are time independent.

There are several subtleties in realising the idea just presented. Naively, one could

just integrate (4.15), with the correct improvement taken into account. However, this does

not work for the following reason. The problem is that to obtain (4.15) from (4.14), one

needs to integrate some total derivative terms in (4.14). We could set their contribution

to zero by choosing appropriate BC. However this approach does not allow us to obtain

information about the boundary terms. We wish to remain agnostic about a specific choice

of BC and keep track of all the boundary contributions.

The following simple example will help explain how boundary terms appear in the

algebra, and their relation to the boundary Lagrangian. Consider a real scalar ϕ with a

free Lagrangian. The canonical Hamiltonian (density) is given by

T00 =
1

2
(∂0ϕ)

2 +
1

2
(∂aϕ)

2 (4.17)

and the canonical commutation relations by

i[∂0ϕ(x), ϕ(y)] = δ(3)(x− y) . (4.18)

If we pick time-translationally invariant BC, H =
∫
Σ T00 generates the symmetry of time

translation. Indeed one readily checks that i[H,ϕ] = ∂0ϕ. However, consider also the

action of H on the canonical momenta. Using the equations of motion we obtain

i[H, ∂0ϕ(x)] = ∂2
0ϕ(x)− δ(xn)∂nϕ(x) . (4.19)

Note the additional term localized on the boundary {xn = 0}. Considering the canonical

relation

i[∂0ϕ, · ] =
δ

δϕ
( · ) , (4.20)

we recognize that this boundary term is analogous to the one coming from the variation

of the action. Similarly to the latter, also the boundary term in (4.19) must be set to zero

by the BC. In this case it is clear that Neumann BC are implied. We can have Dirichlet

BC by adding a boundary term −1
2

∫
∂Σ ∂n(ϕ

2) to H, which leads to

i[H, ∂0ϕ(x)] = ∂2
0ϕ(x) + ∂nδ(x

n)ϕ(x) . (4.21)
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Recall that the boundary term affects the Hamiltonian via the improvement of the energy-

momentum tensor discussed in section 2. We can see from this simple example how the

boundary terms in commutation relations with the Hamiltonian are related to boundary

terms in the Lagrangian. This will continue to be true for supersymmetry, albeit in a more

convoluted way.

Let us address an objection which might be prompted by the discussion above. We

have been using the naive canonical commutation relations, without taking into account

how they are modified by the BC. Alternatively, one should first decide on BC and then

formulate canonical commutation relations which are consistent with this choice. However,

as mentioned before, doing that will prevent us from keeping track of the boundary terms.

We will bypass this problem in the following way. We consider a theory which is

defined in infinite flat space, such that the usual commutation relations hold everywhere.

Now we focus our attention on a domain Σ = {xn ≤ 0} inside the infinite time slice R
3.

Charges formed by integration on this restricted domain are of course not guaranteed to be

conserved, but there is no problem in computing their commutation relations. In this way

we can now use the naive commutation relations and keep track of total derivative terms.

4.3 Wess-Zumino model

In this section we consider a Wess-Zumino model with canonical Kähler potential and

generic superpotential. We will compute the current algebra explicitly starting from the

canonical commutation relations, and use it to show the relation between the brane charge

and the boundary action. We work in this setup in order to compute explicitly the boundary

terms.

Consider a chiral superfield Φ = (φ, ψ, F ). The Kähler potential is K = Φ̄Φ and the

superpotential W (Φ). The canonical commutation relations are

i[∂0φ(x), φ̄(y)] = δ(3)(x− y) , (4.22)

{ψ̄α̇(x), ψα(y)} = −σ0
αα̇δ

(3)(x− y) . (4.23)

Given the superfield expression Sαα̇ = 2DαΦD̄α̇Φ̄ for the S-multiplet, the component

operators take the form

Tµν = ∂µφ̄∂νφ+ ∂ν φ̄∂µφ+ ηµν
(
−∂ρφ̄∂

ρφ− |w′|
)

+
i

2
(ψ̄σ̄(ν∂µ)ψ + ψσ(ν∂µ)ψ̄) , (4.24)

Sµ
α = −

√
2
(
(σν σ̄µψ)α∂ν φ̄− i(σµψ̄)αw̄

′
)
, (4.25)

S̄α̇µ = −
√
2
(
(σ̄νσµψ̄)α̇∂νφ− i(σ̄µψ)α̇w′

)
, (4.26)

Cµνρ = −4ǫµνρσ∂
σw̄ , (4.27)

Cµν =
1

2
ǫµνρσ∂

ρ
(
iφ ∂σφ̄− iφ̄ ∂σφ+ ψσσψ̄

)
, (4.28)

jµ = ψσµψ̄ . (4.29)
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As we saw in section 2, the Noether procedure gives a different (and non symmetric)

expression for the energy-momentum tensor

T̂νµ =
i

2

(
ψ̄σ̄µ∂νψ + ψσµ∂νψ̄

)
+ bosonic = Tνµ +

1

4
ǫνµρσ∂

ρjσ . (4.30)

Writing the supercharge as an integral of the 0-component of the supercurrent, the

canonical commutation relations give the expected action on the scalar field9

i[Q̄α̇, φ̄(x)] = −
√
2 ψ̄α̇(x) . (4.31)

On the other hand, we see that an additional boundary term is obtained when acting on

the derivative of the field

i[Q̄α̇, ∂ν φ̄(x)] = −
√
2 ∂νψ̄

α̇(x) +
√
2 δ0ν (σ̄

nσ0ψ̄)α̇ δ(xn) . (4.32)

This entails the following modification of the half-integrated current algebra

{Q̄α̇, Sα0} = σν
αα̇

(
2Tν0 + 2Cν0 −

1

2
ǫν0ρσ∂

ρjσ + i∂νj0 − iην0∂
ρjρ − iψ̄ σ̄0σnσ̄νψ δ(xn)

)
,

(4.33)

whereas the anticommutators of Q with S and Q̄ with S̄ are not modified.

Consider now the B-type boundary action, first in the case W = 0 in which no im-

provement is needed to get the conserved supercharge. Recall that in our conventions the

normal nµ to the boundary is in the direction x2, and the Killing spinors which generate

symmetries of the action can be chosen to be ζα = (1, 0)T and ζ̄α̇ = (−1, 0)T . The su-

percharges Q− = ζαQα and Q̄− = ζ̄α̇Q̄
α̇ anticommute to a translation along the light-like

Killing vector ζσµζ̄∂µ = ∂0 − ∂3.

Since no improvement is needed in this case, we can obtain the algebra between the

conserved supercharges Q−, Q̄− just by integrating (4.33). Under an integral we can

convert the delta function to a total derivative thus leading (with some algebra) to

{Q̄−, Q−} = ζσν ζ̄

∫

Σ

(
2Tν0 + 2Cν0 +

1

2
ǫν0ρσ∂

ρjσ
)

= 2 ζσν ζ̄

∫

Σ

(
T̂ν0 + Cν0

)
. (4.34)

Note that the additional boundary term −iψ̄ σ̄0σnσ̄νψ δ(xn) in (4.33) cancels exactly the

imaginary term i∂νj0− iην0∂
ρjρ upon integration. This is required by consistency, because

only hermitean operators can appear on the right hand side of the commutator (4.34).

We can express the string current in terms of the components of the real multiplet

V = 1
2K. The result is Cνµ = ǫνµρσ∂

ρvσ. Plugging this expression, we finally obtain

{Q̄−, Q−} = 2

(∫

Σ
T̂00 −

∫

Σ
T̂30 +

∫

∂Σ
v1

)
= 2(P 0 + P 3) . (4.35)

9Note the relation i(δζ + δζ̄)(·) = [ζαQα + ζ̄α̇Q̄
α̇, · ] .
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We recognize the boundary term provided by Cνµ as the improvement of the canonical

energy-momentum tensor (2.17) associated to the boundary action (3.10). (Recall that our

convention is Pµ =
∫
T ′ 0
µ = −

∫
T ′
µ0 where T ′

µν is the improved tensor.)

Let us show how improvements of the supercurrents modify the picture. From the

multiplet structure of the improvement, encoded in the superfield U in (4.15), and from

the modification δSαµ = 2 ∂ν(σµνη)α of the supercurrent, we have

{Q̄α̇, δSαµ} = σν
αα̇

(
∂ν∂µu− ηνµ∂

2u+ ǫνµρσ∂
ρV σ + i∂νVµ − iηνµ∂

ρVρ

)
+ . . . ,

{Qβ , δSαρ} = 2(σµν)αβǫρµνσ∂
σN .

The ellipsis represent terms localized on the boundary which vanish for the zeroth com-

ponent, and are therefore not important for us. These terms do not follow from the

S-multiplet and must be verified by an explicit computation. The supercharge after the

improvement is

Q′
α =

∫

Σ
(S0

α + δS0
α) = Qα + δQα (4.36)

where δQα is a boundary term. Therefore, the total boundary contribution to the algebra

due to the improvement is {Q̄α̇, δQα}+ {δ̄Qα̇, Qα}. The net effect is hence twice the real

part of the integral of (4.36) on the time-slice, and the imaginary part cancels. Similarly,

the contribution to {Qα, Qβ} is twice the integral of {Qβ , δSαρ} in (4.36). This explains

the puzzling factor of 2 that we came across in section 3.

Let us now consider the B-type action with W 6= 0 which preserves an R-symmetry.

In this case, we need an improvement (4.16)–(4.16) with

UB−type = −V ′ ≡ −1

2

∑

a

RaΦ̄
ā∂āK , (4.37)

where V ′ is the real multiplet (3.16) that was used in the construction of the boundary

action. This improvement sets to zero the domain wall current. Indeed, initially we had

Cρµν = −4ǫρµνσ∂
σw̄, and the effect of the improvement is to change w̄ → w̄−N , where N

is the θ2 component of UB−type. This is the same as the bottom component of

−1

4
D2

(
−1

2

∑

a

RaΦ̄
ā∂āK

)
=

1

8

(
∑

a

RaΦ̄
āD2∂āK

)
= W̄ , (4.38)

and therefore the domain wall current cancels. Computing the change in the boundary

terms due to the improvement, as in (4.36), we now get

{Q̄′
−, Q

′
−} = 2

(∫

Σ
T̂00 −

∫

Σ
T̂30 +

∫

∂Σ
v1 −

∫

∂Σ
(∂2C

′ + v′1)

)
, (4.39)

where Q′ denotes the conserved supercharge. This result is again in agreement with the

improvement of the canonical energy-momentum tensor expected from the boundary ac-

tion (3.17). In terms of the conserved generators of translations, the algebra is again

{Q̄′
−, Q

′
−} = 2(P 0 + P 3).
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In the computation above we have ignored one term, which we now comment on. This

is the anticommutator of the improvements {δQ̄α̇, δQα}. Let us evaluate it in a simple

example, by considering a canonical Kähler potential for a single chiral superfield of R-

charge 1 and vanishing superpotential. It follows that δSαµ = −
√
2∂ν(φ̄ψσ

νµ)α. We find

{δQ̄α̇, δSα0(x)} = σ̄nσµ0∂µ
(
φφ̄ δ(xn)

)
. (4.40)

Integrating once more this term leads to a δ(0) term on the boundary, which requires some

regularization procedure. Since the problem clearly comes from the fact that the boundaries

of the two domains of integration coalesce, a simple way to regulate this expression is by

slightly changing the range of integration for one of the charges. We keep Σ = {xn ≤ 0}
as before and define another domain by Σε = {xn ≤ ε}, where ε > 0. We now define δQ̄α̇

by integration of Σε instead of Σ. This changes δ(xn) to δ(xn − ε) in (4.40). When we

now perform the second integration on the domain Σ, the delta function is not localized on

the boundary and the expression vanishes, so that we recover the previous results in the

limit ε → 0.

Finally, consider the A-type boundary action. The improvement that we must consider

in this case is

UA−type = −V ≡ −1

2
K , (4.41)

where V is again the real multiplet which gives us the D-term action.10 In this case we

preserve Majorana supercharges defined by the linear combination

Q̃α =
1√
2
(e−iγ/2Q′ + eiγ/2σnQ̄′)α , (4.43)

where ′ denotes that we include the boundary contribution from the improvement. We

want to compute {Q̃α, Q̃β} starting from the original current algebra. We take γ = 0 to

avoid cluttering, but it should be obvious how this parameter can be reintroduced.

The anticommutators can be expanded as

{Q̃α, Q̃
β} =

1

2

(
{Q′

α, Q
′β} − σn

αα̇{Q̄
′α̇, Q̄′

β̇
}σ̄nβ̇β − {Q′

α, Q̄
′

β̇
}σ̄nβ̇β + σn

αα̇{Q̄
′α̇, Q

′β}
)

.

(4.44)

Let us start with the first term on the r.h.s. The effect of the improvement (4.16) on the

domain wall current is to shift w̄ → w̄ + i
2M . Therefore

{Q′
α, Q

′β} = 8δ0ν(σ
νµ)α

β
∫

Σ
∂µ

(
iw̄ − 1

2
M

)
. (4.45)

10Note that the component expansion of V is different from that of U :

V = C + iθχ− iθ̄χ̄+
i

2
θ
2
M −

i

2
θ̄
2
M̄ − θσ

µ
θ̄vµ

+ iθ
2
θ̄

(

λ̄+
i

2
σ̄
µ
∂µχ

)

− iθ̄
2
θ

(

λ+
i

2
σ
µ
∂µχ̄

)

+
1

2
θ
2
θ̄
2

(

D +
1

2
∂
2
C

)

. (4.42)

It is defined in this way so that the variations take the form of (3.6).

– 22 –



J
H
E
P
0
2
(
2
0
1
6
)
1
6
3

Note again that this is twice of the contribution that one would naively expect from the

improvement of the S-multiplet.

Next we consider the opposite chirality commutation relations. It is easy to check that

the component V σ = −vσ of V exactly cancels the string current Cνµ = ǫνµρσ∂
ρvσ. The

computation gives

{Q̄′α̇, Q
′β} = −2 σ̄να̇β

∫

Σ

(
T̂ν0 − (∂ν∂0 − ην0∂

2)C
)

. (4.46)

Summing up all the contributions, we obtain

{Q̃α, Q̃
β} = 4(σnν)α

β

(∫

Σ
T̂ν

0 + δ0ν

∫

∂Σ

{
i(w − w̄) +

1

2
(M + M̄) + ∂nC

})
. (4.47)

We find again agreement with the boundary action (3.4)–(3.6).

We have thus demonstrated by an explicit computation of the current algebra of the

supercharges, for both A-type and B-type subalgebras, how to recover the results of section

3 in an independent way. We obtain the preserved subalgebra with a Hamiltonian modified

by boundary terms which exactly correspond to the compensating boundary actions. It is

seen explicitly that they are obtained from the brane charges. This establishes the relation

between boundary actions and brane charges.
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A Multiplets of the energy-momentum tensor

The algebra of charges (4.1)–(4.2) can be rewritten in terms of the associated conserved

currents as

{Qα, S̄α̇ν} = 2σµ
αα̇(Tµν + Cµν) + . . . , (A.1)

{Qα, Sβρ} = σ
µν
αβCρµν + . . . , (A.2)
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where the dots denote possible additional Schwinger terms (i.e. terms compatible with the

conservation that do not contribute to the charges). These anti-commutation relations

imply that the brane currents are related by supersymmetry transformations to the su-

percurrent Sµα, and therefore they belong to the same multiplet of local operators, which

also includes the energy-momentum tensor. Let us provide a brief review of this multiplet

following the notation of [38].

Every local N = 1 supersymmetric field theory in 4d contains a so-called S-
multiplet [37], which is a real superfield Sαα̇ satisfying

D̄α̇Sαα̇ = Yα + χα , (A.3)

with Yα and χα obeying the constraints

DβYα +DαYβ = 0 , D̄2Yα = 0 ,

Dαχα − D̄α̇χ̄
α̇ = 0 , D̄α̇χα = 0 .

Solving the constraints one finds the following expansion in components (Sµ ≡ 1
4 σ̄

α̇α
µ Sαα̇)

Sµ = jµ − iθ

(
Sµ − i√

2
σµψ̄

)
+ iθ̄

(
S̄µ − i√

2
σ̄µψ

)
+

i

2
θ2Ȳµ − i

2
θ̄2Yµ

+ (θσν θ̄)

(
2Tνµ − ηνµA− 1

8
ǫνµρσF

ρσ − 1

2
ǫνµρσ∂

ρjσ
)

− 1

2
θ2θ̄

(
σ̄ν∂νSµ +

i√
2
σ̄µσ

ν∂νψ̄

)
+

1

2
θ̄2θ

(
σν∂ν S̄µ +

i√
2
σµσ̄

ν∂νψ

)

+
1

2
θ2θ̄2

(
∂µ∂

νjν −
1

2
∂2jµ

)
, (A.4)

Yα =
√
2ψα + 2θαF + 2i(σµθ̄)αYµ − 2

√
2iθσµθ̄(σµν)α

β∂νψβ

+ iθ2(σµθ̄)α∂µF + θ̄2θα∂
µYµ − 1

2
√
2
θ2θ̄2∂2ψα , (A.5)

χα = −iλα(y) + θβ

(
δβαD(y)− i(σµν)α

βFµν(y)
)
+ θ2σ

µ
αα̇∂µλ̄

α̇(y) . (A.6)

Here Tµν is symmetric and Fµν is antisymmetric. These components are not all indepen-

dent, in order to solve (A.3) we further need to impose

∂µTµν = ∂µSµα = ∂[µYν] = ∂[µFνρ] = 0

and
4Tµ

µ =6A−D ,

i∂µjµ =F −A ,

2(σµS̄µ)α =λα − 3
√
2iψα .

Taking into account these relations, the multiplet contains 16 + 16 independent degrees

of freedom (bosonic + fermionic). Note that Tµν is the symmetric and conserved energy-

momentum tensor, and Sµα is the conserved supercurrent.
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The supersymmetric variations of the supercurrent operator are given by

iδS̄
µ
α̇ ≡ ζβ{Qβ , S̄

µ
α̇} = (ζσν)α̇

[
2T νµ − iηνµ∂ρjρ + i∂νjµ − 1

2
ǫνµρσ

(
∂ρjσ +

1

4
Fρσ

)]
,

iδSµ
α ≡ ζβ{Qβ , S

µ
α} = 2i(ζσµν)αȲν .

Comparing with (A.1)–(A.2) we can identify the brane currents as

Cµν = − 1

16
ǫµνρσF

ρσ , (A.7)

Cµνρ = −ǫµνρσȲ
σ . (A.8)

Note that indeed the additional term in (A.7) besides Tµν + Cµν is a Schwinger term.

The conserved current operators are not defined univocally, they can be changed by

improvement transformations. For the S-multiplet the possible improvements are given in

terms of a real superfield U , and take the form

Sαα̇ → Sαα̇ + [Dα, D̄α̇]U ,

Yα → Yα +
1

2
DαD̄

2U , (A.9)

χα → χα +
3

2
D̄2DαU .

In some cases it is possible to reduce the S-multiplet to a smaller multiplet. This

happens when χα or Yα can be set to zero by an improvement transformation (A.9). When

χα can be set to zero, the reduced multiplet is called Ferrara-Zumino (FZ). When Yα can

be set to zero, the reduced multiplet is called the R-multiplet. In this case the current jµ
is conserved, and it corresponds to a preserved U(1) R-symmetry of the theory. The FZ-

multiplet and the R-multiplet contain 12+12 degrees of freedom. If both χα and Yα can

be improved to 0 simultaneously, then the theory is superconformal and the corresponding

multiplet is 8+8.

Note that when χα = 0 also the string current (A.7) vanishes. Therefore, when the

theory admits BPS strings, it is impossible to set χα to zero by an improvement transfor-

mation, and the theory does not admit an FZ-multiplet. Analogously, if the theory admits

BPS domain walls, then Yα cannot be improved to 0, and the theory does not admit an

R-multiplet [38].
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