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In general quantum operations, or quantum channels cannot be inverted by physical operations, i.e., by
completely positive trace-preserving maps. An arbitrary state passing through a quantum channel loses its fidelity
with the input. Given a quantum channel E , we discuss the concept of its quasi-inverse as a completely positive
trace-preserving map Eqi which when composed with E increases its average input-output fidelity in an optimal
way. The channel Eqi comes as close as possible to the inverse of a quantum channel. We give a complete
classification of such maps for qubit channels and provide quite a few illustrative examples.
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I. INTRODUCTION

Unitary dynamics of quantum systems is an idealization
which almost never occur in reality. There are always in-
evitable and unknown couplings with the environment which
destroy the coherence and purity of a quantum state and hence
the information encoded into a quantum system. One of the
central results in quantum theory is that a general nonunitary
dynamics of an open quantum system can be characterized
by operators acting entirely within the quantum system [1,2].
This general dynamics is aptly called a quantum channel to
signify the passage of quantum states (i.e., photons) through
noisy environment (optical fibers or free air).

The most important goal of quantum communication is to
combat this quantum noise which has led to whole subfields
in quantum information science, like quantum error correction
[3], decoherence free subspaces [4–6], and pre- and postpro-
cessing [7–10] by weak measurements [11,12]. A quantum
channel being completely specified by operators inside a
system, raises the natural and highly important question if
it can be inverted by some other set of operators, that is,
if we can invert a quantum channel and retrieve the input
state in the same way that we do for unitary dynamics. We
stress that by the inverse map in this paper, we mean a
physically implementable map, that is, a completely positive
trace-preserving map. If this inversion is possible, it can
simply replace or at least complement other techniques for
quantum state protection. It is, however, well known that
quantum channels cannot be inverted unless they are simple
unitary channels of the form ρ −→ UρU †.

In this paper we ask to what extent we can come close
to a complete inversion and introduce the concept of quasi-
inversion of a quantum channel. We formulate this question
in a precise form, based on the notion of average fidelity of a
channel. Given a completely positive trace-preserving (CPT)
map or quantum channel E , its overall performance can be
measured through the average input-output fidelity,

F (E ) :=
∫

dφ 〈φ|E (|φ〉〈φ|)|φ〉, (1)

where the integral is taken over all input states. The measure
of the integral is taken to be unitary invariant, i.e., dψ = dφ

for |ψ〉 = U |φ〉, and normalized to
∫

dφ = 1. We now ask if
it is possible to perform a quantum operation at the output,
which increases this average fidelity independently of the
input state and in an optimal way.

Definition 1. Let E : ρ −→ E (ρ) be a channel. Its quasi-
inverse, denoted by Eqi, is any channel fulfilling the following
condition:

F (Eqi ◦ E ) � F (E ′ ◦ E ) ∀ E ′. (2)

for any channel E ′. Obviously for the special case of E ′ being
the identity channel, this condition implies that F (Eqi ◦ E ) �
F (E ), hence the quasi-inverse increases the fidelity of the
channel. Furthermore Eq. (2) implies that the quasi-inverse is
the optimal channel which does this.

In this paper we will restrict our study to qubit channels
which will be shown to have already a rather rich structure. We
will prove that the quasi-inverse of a qubit channel can always
be taken to be a unitary map Eqi(ρ) = V ρ V †, and that it is
both a left and a right quasi-inverse. We then show how it can
be determined explicitly and illustrate the method by several
classes of examples. Finally we note that our approach to
channel quasi-inversion differs from the ones based on “Petz
recovery map” [13–16] and allows for concrete applications
and characterization, as we shall see below.

The case of qubit channels is of interest for at least two
reasons. The first one is of practical importance since qubits
are the main carriers of quantum information (along with
continuous variable quantum states) and much is known about
qubit channels which model various kinds of noises and
physical errors affecting the transmission of quantum states.
The second reason concerns the almost complete classifica-
tion of qubit channels through many works in the literature
[17–19]. While a comparable knowledge is absent for higher
dimensional channels, the results we present will certainly be
useful to extend them to multiqubit channels.
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The structure of the paper is as follows: In Sec. II we gather
the definitions and all the technical tools and in Sec. III we
prove that the quasi-inverse of an arbitrary qubit is a unitary
channel, basing upon a unique property of qubit channels
and prove some general properties of the quasi-inverse. In
Sec. IV we show how the explicit form of the quasi-inverse
of a given channel can be found, and in Sec. V we study
several important examples, including the Pauli channel and
the amplitude damping channel. Interestingly, we show that
the important characteristic of unitality of a channel plays
no role in fixing its quasi-inverse and that it is instead the
symmetry or nonsymmetry of the affine matrix corresponding
to the channel which plays an important role. Finally in
Sec. VI we give a geometric picture of the quasi-inverse and
discuss the uniqueness of the quasi-inverse which turns out to
be unique except for a set of measure zero in the space of all
qubit channels. We conclude the paper with a discussion in
which we elaborate one related work present in the literature.

II. PRELIMINARIES

In this section we review the basic knowledge on the
structure of qubit channels [17,18]. A quantum channel E
[a completely positive trace-preserving (CPT) map] can be
characterized by its Kraus representation,

ρ −→ E (ρ) =
∑

i

KiρK†
i , (3)

subject to the condition
∑

i K†
i Ki = I . Such a map is unital,

(E (1)=1) if
∑

i KiK
†
i = I . For qubits, where ρ = 1

2 (1 + r·σ ),
this map induces an affine map on the Bloch sphere in the
form,

r −→ r′ = Mr + t . (4)

Here M = [Mαβ] is a real 3 × 3 matrix and t a vector in R3

with components (α, β = 1, 2, 3):

Mαβ = 1
2 Tr(σα E (σβ )), tα = 1

2 Tr(σα E (1)), (5)

where σα, α ∈ {1, 2, 3} are the standard Pauli matrices.
Remark 1. Throughout the paper we use the letter i ∈

{1, 2, · · · }) for indexing the Kraus operators and α, β, γ ∈
{1, 2, 3} for indexing the components of three-dimensional
vectors and Pauli matrices.

For unital channels, one has obviously t = 0. Complete
positivity of the map, puts stringent requirements on the
parameters of M and t . Therefore while a quantum channel
can be characterized by the pair (M, t ), not every affine map
corresponds to a quantum channel. Moreover from (4) one
easily finds how composition of quantum channels is reflected
in the composition of their corresponding affine maps:

E ′ ≡ (M ′, t ′), E ≡ (M, t ) −→ E ′ ◦ E ≡ (M ′M, M ′t + t ′).

(6)

The conditions on the affine map imposed by completely
positivity of the qubit channel E are obtained by first proving
that E can be decomposed in the canonical form [17,18]:

E = U ◦ Ec ◦ V, (7)

or

E (ρ) = UEc(V ρ V −1)U −1, (8)

where U and V are unitary matrices, and Ec is a channel
with a diagonal M matrix denoted as 	c = diag(λ1, λ2, λ3).
Correspondingly, the M matrix of E can be rewritten as M =
RU 	cRV , where RU and RV are SO(3) representations of U
and V . The parameters λ1, λ2, and λ3 are real and satisfy
|λi| � 1 ∀ i and (1 ± λ3)2 � (λ1 ± λ2)2 which constrain the
vector (λ1, λ2, λ3) to lie inside a tetrahedron [17,18]. For uni-
tal channels (when t = 0), these are necessary and sufficient
conditions, but for general channels (when t 
= 0), these are
only necessary conditions which should be supplemented by
other inequalities involving t [17].

Finally let us express the average fidelity of the channel
in terms of its affine map. A pure state |φ〉〈φ| = 1

2 (1 + n · σ )
where n is a unit vector on the surface of the Bloch sphere is
transformed to ρ := E (|φ〉〈φ|) = 1

2 (1 + (Mn + t ) · σ ). Using
the equality Tr(σασβ ) = 2δαβ , the fidelity of input and output
state is found to be

〈φ|ρ|φ〉 = Tr(|φ〉〈φ|ρ) = 1
2 [1 + n · (Mn + t )]. (9)

Averaging this fidelity over the surface of Bloch sphere and
using ∫

dn n = 0,

∫
dn nα nβ = 1

3
δαβ, (10)

where dn is the integration measure on the surface of the
Bloch sphere, we find the average fidelity of the qubit channel,

F (E ) = 1
2

(
1 + 1

3 Tr(M )
)
. (11)

It is desirable to express the average fidelity directly in
terms of the Kraus operators of the channel. Let the Kraus
operators be given by Ki = ai + bi · σ, where ai and bi are in
general complex numbers and vectors, respectively. The trace-
preserving condition

∑
i K†

i Ki = 1 imposes the constraints,

〈a∗a〉 + 〈b∗ · b〉 = 1, 〈ab∗〉 + 〈a∗ b〉 + i〈b∗ × b〉 = 0, (12)

where we have introduced the shorthand notations 〈c〉 =∑
i ci, 〈d〉 = ∑

i d i.
To express the average fidelity in terms of Kraus operators,

we note from (1), that

F (E ) =
∑

i

∫
dφ|〈φ|Ki|φ〉|2 (13)

and use

〈φ|Ki|φ〉 = 1
2 Tr[Ki (1 + n · σ)] = ai + bi · n, (14)

where again we have used |φ〉〈φ| = 1
2 (1 + n · σ ). Using (10)

this leads to

F (E ) = 〈a∗a〉 + 1
3 〈b · b∗〉, (15)

which of the trace-preserving property (12) can also be
written as

F (E ) = 1 − 2
3 〈b · b∗〉 = 1

3 (1 + 2〈a∗a〉). (16)

We will see in the following that the matrix B = [Bαβ], with

Bαβ = 1
2 〈bαb∗

β + b∗
αbβ〉, (17)
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plays a central role in determining the quasi-inverse of a
channel. In terms of this matrix the average fidelity reads

F (E ) = 1 − 2
3 Tr(B). (18)

Finally the connection between the Kraus representation and
the affine map is obtained through Eq. (5) which gives

t = 〈a∗b + ab∗ + ib × b∗〉, (19)

and M = S + A, where the real symmetric matrix S = [Sαβ]
is given by

Sαβ = (1 − 2〈b · b∗〉)δαβ + 〈bαb∗
β + b∗

αbβ〉, (20)

and the real antisymmetric matrix A = [Aαβ] by

Aαβ = −
3∑

γ=1

εαβγ vγ , v = i〈a∗b − ab∗〉, (21)

where εα,β,γ is the Levi-Civita symbol. In the sequel, we
sometimes denote a quantum channel E with affine map pair
(M, t ) as EM,t or simply by the pair (M, t ) itself. It should also
be noted that while it is straightforward to obtain the affine
map from its Kraus representation, the converse is not easy at
all.

Note in passing that from (20) and (17) Tr(M )=3−4
Tr(B) which implies the equality of the two expressions (11)
and (18) for the average fidelity. Also note that when M is
symmetric, we can write

B = 1
4 [2M + 1 − Tr(M )]. (22)

This relation will be important when we discuss the quasi-
inverse of qubit channels with symmetric affine maps.

III. THE QUASI-INVERSE AND ITS
GENERAL PROPERTIES

We now state one of the main results of this paper.
Theorem 1. The quasi-inverse of any qubit channel can

always be taken to be a unitary map.
Proof. First consider the definition of average fidelity. An

important property of this quantity is its linearity, that follows
from its definition in Eq. (1), whence

F

(∑
i

λiEi

)
=

∑
i

λiF (Ei ), (23)

where
∑

i λi = 1 and λi � 0 , ∀λi.
We now use a theorem of [19] according to which a

necessary and sufficient condition for a qubit channel to be
a random unitary channel, namely a convex combination of
unitaries, is that it should be unital. Note that this theorem
is not true for higher dimensions and holds only for qubit
channels. Suppose now that the quasi-inverse Eqi is unital.
This means that Eqi = ∑

i pi Ui, where Ui(ρ) = Uiρ U †
i is a

unitary map, and

F (Eqi ◦ E ) � F (E ). (24)

Therefore we have

F

[∑
i

pi Ui ◦ E
]
� F (E ). (25)

Let Umax be the unitary map which has the highest con-
tribution on the left-hand side. Then it is obvious that if we
replace all the random unitaries on the left-hand side by Umax,
we get an even higher average fidelity:

F [Umax ◦ E] � F

[∑
i

pi Ui ◦ E
]

= F [Eqi ◦ E] � F (E ).

(26)
Therefore for any qubit channel whose quasi-inverse is unital,
we can always take the quasi-inverse to be a simple unitary.

It now remains to see under what circumstances the quasi-
inverse is unital. To solve this problem, it is useful to work
with the channel representation in terms of affine maps. Let 

be the admissible domain of the parameters of the affine map
defined by the pair (M, t ) and let EM,t be the corresponding
channel. Assume that Eqi

N0,t0
is its quasi-inverse; according to

Definition 1, this implies that

F
(
Eqi

N0,t0
◦ EM,t

)
� F (EM,t ), (27)

and that for any other channel EN ′,t ′ , (N ′, t ′) ∈ , one has

F
(
Eqi

N0,t0
◦ EM,t

)
� F (EN ′,t ′ ◦ EM,t ). (28)

In view of Eq. (11) these two conditions are equivalent to

Tr(N0 M ) � Tr(M ), (29)

and

Tr(N0M ) � Tr(N ′ M ). (30)

Note that although t0 does not appear on the right-hand
side of this inequality, it affects the allowable range of N0.
However, if Eqi

N0,t0
is a CPT map, then Eqi

N0,0
is also a CPT

map (the converse is not true, since the inclusion of the
parameters t restricts the allowable range of parameters of M
[17]). Therefore the average fidelity of the map EN0,0 ◦ EM,t is
the same as the average fidelity of the map EN0,t0 ◦ EM,t and
both are determined by Tr(N0 M ). Thus, the two conditions
(27) and (28) can be rewritten as

F
(
Eqi

N0,0
◦ EM,t

)
� F (EM,t ), (31)

and

F
(
Eqi

N0,0
◦ EM,t

)
� F (EN ′,t ′ ◦ EM,t ), ∀(N ′, t ′) ∈ . (32)

Therefore if the channel (N0, t0) is the quasi-inverse for the
channel (M, t ), then the unital channel (N0, 0) is also the
quasi-inverse for that channel with the same improvement of
fidelity. This means that we can always take the quasi-inverse
of a qubit channel to be unital and hence unitary according to
the first part of the proof. �

Given the canonical decomposition (8), one may be
tempted to relate the quasi-inverses of E and Ec. Theorem 2
below and the subsequent remark elaborate this point. We first
need a lemma.

Lemma 1. Let E2 and E1 be related as E2 = U ◦ E1 ◦ U−1,
i.e.,

E2(ρ) = UE1(U −1ρ U )U −1. (33)

Then

F (E2) = F (E1). (34)
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Proof. The proof is straightforward once we use the def-
inition of the average fidelity, make a change of variable
U |φ〉 −→ |ψ〉, and use the invariance of the integration mea-
sure dφ = dψ . �

Theorem 2. The quasi-inverse of the map E = U ◦ Ec ◦
U−1 is given by Eqi = U ◦ Eqi

c ◦ U−1.

Proof. From the above lemma, it immediately follows that
if

E = U ◦ Ec ◦ U−1,

then F (E ) = F (Ec). We now note that the definition of quasi-
inverse for the channel Ec implies

F
(
Eqi

c ◦ Ec
)
� FEc , (35)

and for all other channels E ′,

F
(
Eqi

c ◦ Ec
)
� F (E ′ ◦ Ec). (36)

Define

Eqi := U ◦ Eqi
c ◦ U−1. (37)

Then one finds

Eqi ◦ E = (
U ◦ Eqi

c ◦ U−1) ◦ (U ◦ Ec ◦ U−1)

= U ◦ (
Eqi

c ◦ Ec
) ◦ U−1, (38)

and using Lemma 1 once more, one obtains

F (Eqi ◦ E ) = F
(
Eqi

c ◦ Ec
)
� F (Ec) = F (E ). (39)

This proves that Eqi as in (37) increases the average fidelity of
E . Now let E ′ be any other channel. We have

F (E ′ ◦ E ) = F (E ′ ◦ U ◦ Ec ◦ U−1)

= F (U ◦ [U−1 ◦ E ′ ◦ U ◦ Ec] ◦ U−1), (40)

and using again Lemma 1, we find

F (E ′ ◦ E ) = F ([U−1 ◦ E ′ ◦ U ◦ Ec]) = F (E ′′ ◦ Ec), (41)

where E ′′ := U−1 ◦ E ′ ◦ U . Using Eq. (36), we have

F (E ′ ◦ E ) � F
(
Eqi

c ◦ Ec
) = F (Eqi ◦ E ), (42)

where (38) has also been used. �
Remark 2. We should stress that for general channels of

the form E = U ◦ Ec ◦ V , one cannot simply write the quasi-
inverse as Eqi = V−1 ◦ Eqi

c ◦ U−1. It is true that

Eqi ◦ E = V−1 ◦ Eqi
c ◦ Ec ◦ V, (43)

and hence according to Lemma 1 and Eq. (35),

F (Eqi ◦ E ) = F
(
Eqi

c ◦ Ec
)
� F (Ec), (44)

where in the inequality we have used the definition of quasi-
inverse of the channel Ec. However, we can no longer use
the equality of F (Ec) and F (E ), since this equality is not
valid when U and V−1 in the canonical decomposition of the
channel are different.

IV. EXPLICIT FORM OF THE QUASI-INVERSE

To find the explicit form of this quasi-inverse, let the
quasi-inverse be Eqi(ρ) = V ρ V †. The average fidelity of the

combined channel,

Eqi ◦ E =
∑

i

(V Ki )ρ (V Ki )
†,

can be obtained from (16). We simply need to determine the
scalar coefficients of the new Kraus operators V Ki = a′

i1 +
b′

i · σ .
The unitary matrix V can be taken of the form V =

x01 + ix · σ,with x0 and x real and x2
0 + x · x = 1, the possible

presence of an overall phase in V is here not playing any role.
Therefore we find

V Ki = (x01 + ix · σ)(ai1 + bi · σ ) = a′
i1 + b′

i · σ, (45)

where a′
i = x0ai + ix · bi . Using (16), the fidelity of the com-

bined channel is F = 1
3 (1 + 2〈a′∗a′〉) which can be rewritten

as

F (Eqi ◦ E ) = 1 − 2

3
Tr(B) + 2

3
xT · B̂ · x

+ 2i

3
x0 〈a∗b − ab∗〉 · x, (46)

where

B̂ ≡ B − 1 + Tr(B). (47)

By combining (47) and (22) we find B̂ = 1
2 (M − Tr(M )).

Note that setting x0 = 1 and x = 0 (V = 1), one gets back the
fidelity of the original channel. Recalling the definition of the
vector v in (21) and also the average fidelity of the original
channel in (18), the increase of average fidelity F (E ) ≡
F (Eqi ◦ E ) − F (E ) can then be written as

F (E ) = 2
3 (xT · B̂ · x + x0 v · x). (48)

Maximizing its value over all unitary maps, i.e., maximizing
over the real parameters (x0, x), subject to the constraint
x2

0 + x · x = 1, determines the quasi-inverse of the channel. It
is convenient to rewrite the right-hand side of (48) in quadratic
form:

F (E ) = 2

3
(x0 xT )Q

(
x0

x

)
, (49)

where

Q = 1

2

(
0 vT

v 2B̂

)
; (50)

its maximum value is given by

F (E ) = 2
3 Max(λmax, 0), (51)

where λmax is the largest eigenvalue of the 4 × 4 matrix
Q. The normalized eigenstate (x0, x)T corresponding to this
largest eigenvalue will determine the quasi-inverse of E , i.e.,
the unitary rotation V = x01 + ix · σ, or equivalently V =
eiφ x̂·σ , with cos φ = x0 and x = sin φ x̂, with x̂ the unit vector
along x.

A simple calculation from Eq. (45) shows that the value
of a′

i for both V Ki and KiV are equal. This means that if we
had sought a right quasi-inverse, we would have reached the
same equations as in (49) and (51). This can also be seen from
the affine map picture. Let Eqi and E induce, respectively, the
affine maps (N, t ′) and (M, t ). Then

F (Eqi ◦ E ) ≡ 1
2

(
1 + 1

3 Tr(N M )
)
, (52)
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which is symmetric with respect to the interchange of the two
channels. Therefore the quasi-inverse of a qubit channel is
both a right and a left quasi-inverse. We now study further
properties of quasi-inverses.

Theorem 3. For all qubit channels E whose affine matrix is
symmetric and positive, the quasi-inverse is the identity map,
i.e., their average fidelity cannot be increased.

Proof. A symmetric matrix is diagonalizable. Therefore in
a suitable basis it is in the form,

M ≡ 	c = diag(λ1, λ2, λ3). (53)

In the same basis the matrix B̂ is of the form,

B̂ = − 1
2 diag(λ2 + λ3, λ1 + λ3, λ1 + λ2), (54)

which in view of (51) implies that if all λi’s are nonnegative,
then F (E ) = 0. Therefore such a channel has a nontrivial
quasi-inverse only if at least one of the eigenvalues of M, i.e.,
one of λi’s is negative. �

V. EXAMPLES

In this section, we present several examples. First it is
crucial to note from the relation M = RU 	cRV that the affine
matrix of a channel is symmetric if and only if it is of
the form E = U ◦ Ec ◦ U−1. This connection drastically dif-
ferentiates between the quasi-inverse of qubit channels with
the symmetric affine matrix (for which U = V −1 in their
canonical form) and qubit channels with the nonsymmetric
affine matrix (for which U 
= V −1). Interestingly, the unitality
of the channel does not play any role in this distinction,
except for the implicit role that the transition vector t plays
in determining the range of the parameters λi [17]. In fact
there is a basic difference between channels with symmetric
and nonsymmetric affine matrices. In the symmetric case,
v = 0 and the eigenvectors of the matrix Q in (50) are of the
form (0, x̂)T with x̂ a unit vector. Therefore the quasi-inverse
of such a channel, if different from identity, is an inversion
(a π rotation) around some axis, i.e., Eqi(ρ) = V ρV †, with
V = x̂ · σ, and x̂ a unit vector. In the nonsymmetric case (21),
v 
= 0 and the corresponding eigenvector will not necessarily
have x0 = 0 and hence the quasi-inverse will be a rotation with
a specific angle depending on the channel parameters. Below
we will present one example of each kind.

A. The Pauli channel

This is a channel with the symmetric affine matrix.

E (ρ) = p0ρ + p1σxρσx + p2σyρσy + p3σzρσz, (55)

with pi � 0 and
∑3

i=0 pi = 1. This leads to

B = diag(p1, p2, p3), (56)

and

Q = diag(0, p1 − p0, p2 − p0, p3 − p0). (57)

The average fidelity of the channel is given by

F (E ) ≡ 1 − 2
3 Tr(B) = 1

3 (1 + 2p0). (58)

After combining with the quasi-inverse, the increase of aver-
age fidelity (51) is given by

F (E ) = 2
3 Max(λmax, 0) = 2

3 Max(pmax − p0, 0), (59)

where pmax is the largest of the probabilities p1, p2, and p3.
Therefore if pmax > p0, the fidelity of the channel can be in-
creased from 1

3 (1 + 2p0) to 1
3 (1 + 2pmax). The quasi-inverse

V is now a reflection with respect to the axis corresponding to
pmax (i.e., the x axis if p1 is the largest probability). Moreover,
we find that if p0 � 1

2 and pmax � 1
2 , then F (E ) � 2

3 and
F (Eqi ◦ E ) � 2

3 . This means that the quasi-inverse can indeed
increase the average fidelity of a noisy channel which is below
the value of 2/3 corresponding to that of a “classical” random
channel, to above this value. Note that it is not always the case
that the inversion is determined by one of the Kraus operators.
An example where this is not the case is given in Sec. VD.

B. The amplitude damping channel

The amplitude damping channel EAD is a nonunital charac-
terized by the following Kraus operators,

A0 =
(

1 0
0 γ

)
, A1 =

(
0

√
1 − γ 2

0 0

)
. (60)

The Q matrix is given by

Q = 1

2

⎛⎜⎝0 0 0 0
0 −γ (γ + 1) 0 0
0 0 −γ (γ + 1) 0
0 0 0 −2γ

⎞⎟⎠. (61)

As seen from above, for this channel, v = 0 and hence this
is a channel with a symmetric affine matrix. Later on we
will consider a slightly twisted version of it which has a
nonsymmetric affine matrix. It is readily seen that if γ > 0,
then λmax is negative and hence no increase in average fidelity
is possible, i.e., no nontrivial quasi-inverse exists. However,
for γ < 0, the largest eigenvalue is λmax = −γ and F =
− 2

3γ implying that the quasi-inverse is V = σz. The fidelity
of the channel itself is given from Eq. (18) as F (EAD) =
1
2 + 1

6γ 2 + 1
3γ and the fidelity of the combined channel is

F (Eqi ◦ EAD) = 1
2 + 1

6γ 2 − 1
3γ .

Remark 3. If we denote the amplitude damping channel
with negative γ by E−

AD and that with positive γ , which is
the standard amplitude damping channel, by E+

AD, then from
the form of their Kraus operators, it is evident that E−

AD =
Z ◦ E+

AD, where Zρ = σzρ σz. However, from this relation,
one cannot infer any conclusion between their quasi-inverses,
since the concept of quasi-inverse as defined in this paper
doesn’t lead to a relation like (� ◦ E )qi = Eqi ◦ �qi.

One may ask why a simple change of sign γ −→ −γ

makes so much difference in the quasi-inverse of a channel.
The answer is best seen when we look at the affine trans-
formation associated with the amplitude damping channel:
M = 1

2 diag(γ , γ , γ 2) and t = (0, 0, 1 − γ 2)T . When γ > 0,
the Bloch sphere is only shrunk and translated, but when γ <

0, it is also reflected with respect to the z axis (see Fig. 1). The
quasi-inverse compensates for this reflection and increases the
average fidelity of the E−

AD, an action which if applied to E+
AD

decreases the average fidelity instead of increasing it.
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x

y

z

x

y

z

(a) (b)

FIG. 1. The transformation of the Bloch sphere under the am-
plitude damping channels E−

AD (the small elipsoid) (a) before the
quasi-inverse and (b) after the quasi-inverse. The contrast in colors is
meant to show the lower average fidelity compared to (b) where the
quasi-inverse reflects the Bloch sphere with respect to the z axis and
raises the average fidelity.

In fact this is a general feature of channels which can be
quasi-inverted in this sense. Figure 2 shows how two generic
points in the Bloch sphere move under the channel E to the
opposite side of the Bloch sphere and how the quasi-inverse
bring them back to the original side of the Bloch sphere
where they are closer to their initial place. Note that in both
operations, the distance of the two states decreases under the
CPT maps E and Eqi, as they should; however, the average
fidelity increases under the quasi-inverse channel.

Consider now a slight modification of this channel when
A0 is changed to

A0 =
(

1 0
0 iγ

)
. (62)

The corresponding channel is still trace preserving and
nonunital but has a nonsymmetric associated affine matrix.

1
2

3

E

E

Eqi

Eqi

FIG. 2. The increase of average fidelity is consistent with the
contraction property of both the channel and its quasi-inverse. E
decreases the distance between the states 1 and 1′, Eqi decreases
their distance still further, but the final distance between the input
and output states (1 and 3) or (1′ and 3′) is lowered compared with
the distance between (1 and 2) or (1′ and 2′) when only E acts.

The matrix Q is now given by

Q = 1

2

⎛⎜⎝
0 0 0 γ

0 −γ 2 0 0
0 0 −γ 2 0
γ 0 0 0

⎞⎟⎠, (63)

so that λmax = |γ |
2 and hence F = |γ |

3 . Then, the quasi-
inverse is the unitary V = ei π

4 σz . The average fidelity of this
amplitude damping channel before applying the quasi-inverse
is

F (EAD) = 1 − 2
3 Tr(B) = 1

2 + 1
6γ 2, (64)

and

F (Eqi ◦ EAD) = 1

2
+ 1

6
γ 2 + |γ |

3
, (65)

which is larger than the average fidelity of the original channel
for all values of γ .

C. A mixed unitary channel

This is a channel with the nonsymmetric affine matrix.

E (ρ) = p0ρ + p
3∑

i=1

Uiρ U †
i , (66)

where Ui = e−i θ
2 σi is a rotation around the xi axis with angle θ

and p0 + 3p = 1. The matrix Q is now given by

Q =

⎛⎜⎝ 0 v/2 v/2 v/2
v/2 q 0 0
v/2 0 q 0
v/2 0 0 q

⎞⎟⎠, (67)

where v = p sin θ and q = 4p sin2 θ
2 − 1 . For q � 0,

the largest eigenvalue of this matrix is λmax = 1
2 (q +√

q2 + 3v2) , with the corresponding eigenvector given by

|λmax〉 ∝ ( 3v
2λmax

1 1 1)
T
. This means that the quasi-

inverse of the channel is given by the unitary V = eiφ n·σ ,
where

cos φ =
√

3v√
3v2 + 4λ2

max

, n = 1√
3

(x + y + z). (68)

The increase in average fidelity is given by F (E ) = 2
3 λmax ,

which is plotted in Fig. 3 as a function of parameters p and θ .

D. A channel whose quasi-inverse is different from one
of its own Kraus operators

The Pauli channel is a special channel for which the
quasi-inverse turns out to be one of the Kraus operators of
the channel, i.e., the Pauli matrices. There are many other
channels for which this is not the case. In order to remain
within the domain of analytical solutions and avoid numerical
methods, we define a new channel and call it the tetrahedron
channel. The channel is defined by

E (ρ) = qρ +
3∑

i=0

pi(ui · σ) ρ (ui · σ), (69)
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ΔF (E)

θ
p

0.20

0.10

0.30
π

2

FIG. 3. The increase of average fidelity for the random unitary
channel given in (66).

where q = 1 − p0 − p1 − p2 − p3. The vectors ui are chosen
to be the corners of a tetrahedron as

u0 = 1√
3

(1, 1, 1),

u1 = 1√
3

(1,−1,−1),

u2 = 1√
3

(−1, 1,−1),

u3 = 1√
3

(−1,−1, 1), (70)

so that the corresponding b vectors are given by bi = √
pi ui,

i = 0, 1, 2, 3, from which the corresponding B matrix can be
computed. For simplicity we consider the special case where

p1 = p2 = p, p0 = p3 = p′, (71)

with p + p′ � 1/2 due to the normalization condition q +
2p + 2p′ = 1. With this choice, one finds

B = 1

3

⎛⎝2p + 2p′ 2p − 2p′ 0
2p − 2p′ 2p + 2p′ 0

0 0 2p + 2p′

⎞⎠, (72)

with eigenvalues

λ1 = 4p

3
, λ2 = 4p′

3
, λ3 = 2p + 2p′

3
, (73)

and corresponding eigenvectors

e+ = 1√
2

(x + y), e− = 1√
2

(x − y), e3 = z, (74)

where x, y, z here denote the Cartesian three-dimensional unit
vectors. The original average fidelity of this channel is given
by

F (E ) = 1 − 2
3 Tr(B) = 1 − 4

3 (p + p′), (75)

and the increase in average fidelity is given by

F (E ) = 2
3 Max[λmax, 0], (76)

1
2

1
2

3
10

3
10

3
16

3
16

p

p

V = e+ · σ

V = e− · σ

V = I

FIG. 4. The region of parameters where the tetrahedron channel
has a quasi-inverse. In the colored (yellow) region where V = 1, no
increase is obtained in average fidelity. In the other (gray) regions the
correcting quasi-inverse (i.e., the unitary operator) is shown. Here
e± = 1√

2
(x ± y).

or, explicitly,

F (E ) =
{

2
3 Max

{
2p′ − 1 + 10p

3 , 0
}

if p � p′,
2
3 Max

{
2p − 1 + 10p′

3 , 0
}

if p � p′.
(77)

The regions where an increase of fidelity is possible, and the
unitary operator V that achieves it, are shown in Fig. 4.

Of course due to the symmetry of the tetrahedron channel,
we can obtain, without further calculations, similar results if
other pairs of probabilities are equal. When p0 = p2 = p and
p1 = p3 = p′, one finds the same results as before but with
e± = 1√

2
(x ± z); similarly, the same holds when p0 = p1 = p

and p2 = p3 = p′ provided e± = 1√
2
(y ± z).

VI. THE GEOMETRIC PICTURE

One may ask why we have not followed entirely the
approach of affine maps for finding the quasi-inverse of a qubit
channel by using equation,

F (Eqi ◦ E ) ≡ 1
2

(
1 + 1

3 Tr(N M )
)
, (78)

and finding the matrix N which maximizes the trace on
the right-hand side. The problem is that even if one finds
such a matrix by say numerical methods, it is not guaran-
teed that it defines a qubit channel. In fact while any qubit
channel defines an affine map, not all affine maps define
qubit channels. Nevertheless one can solve this problem for
the special case of symmetric affine maps in a geometrical
way. We note that such affine maps pertain to channels of
the form E = U ◦ Ec ◦ U−1, with Ec having a diagonal affine
matrix, 	c = diag(λ1, λ2, λ3). For complete positivity of the
map (the qubit channel), these parameters are confined to
be inside a tetrahedron as shown in Fig. 5. The corners of
these tetrahedron correspond to Ei : ρ −→ σiρ σi where i ∈
{0, 1, 2, 3} also includes the identity matrix σ0 = 1, that is,
to simple conjugation by Pauli matrices. The edges, faces,
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v1

v2

v3

v0

v1 = (1,−1,−1)
v2 = (−1, 1,−1)
v3 = (−1,−1, 1)

v0 = (1, 1, 1)

λ

μ

FIG. 5. The canonical qubit channel Ec is characterized by the
vector λ. Its quasi-inverse Eqi

c is characterized by a vector μ which
maximizes the product λ · μ in the expression 1

2 (1 + 1
3 λ · μ).

and the inside of the tetrahedron correspond, respectively, to
convex combination of two, three, and four of these simple
maps. According to Theorem 2, we only need to find the
quasi-inverse Eqi

c whose affine matrix is again diagonal Nc =
diag(μ1, μ2, μ3) with parameters in the same tetrahedron.
The parameters μi should be chosen to maximize the fidelity,

F
(
Eqi

c ◦ Ec
) = 1

2

(
1 + 1

3 Tr(Nc	c)
)

= 1
2

(
1 + 1

3 (μ1λ1 + μ2λ2 + μ3λ3)
)
. (79)

If it were not for the constraint that the vector μ should be
inside the tetrahedron, it could have simply been taken parallel
to λ = (λ1, λ2, λ3). However, with this constraint and with our
knowledge from Theorem 1 that the quasi-inverse can be a
unitary map, it is enough to take the vector μ to correspond
to one of the vertices v0, v1, v2, or v3 depending on which
one has the smallest Euclidean distance from λ. Inserting the
coordinates of these vertices from Fig. 5 into the following
formulas,

||v0 − λ||, ||v1 − λ||, ||v2 − λ||, ||v3 − λ||, (80)

and simplifying, we find that the comparison of these dis-
tances amounts to comparing the following expressions and
determining which one is the maximum,

λ1 + λ2 + λ3 , λ1 − λ2 − λ3 , λ2 − λ1 − λ3 , λ3 − λ1 − λ2.

(81)

The maximality of these terms correspond, respectively, from
left to right to the quasi-inverse being the identity operator
or conjugation by σ1, σ2, and σ3. More concretely, when all
the λi’s are nonnegative, λ1 + λ2 + λ3 is the largest of the
above terms, which implies that λ is closest to v0 and hence
the quasi-inverse is the identity map. When λ1 � λ2, λ3, then
the second term in (81) is the largest term and λ is closest to
v1 implying that the quasi-inverse is σ1, etc.

Once the quasi-inverse of the canonical map Ec is obtained
as one of the σi’s, the quasi-inverse of the map E is obtained
from Eqi as UσiU † = x · σ where x is the eigenvector corre-
sponding to the largest eigenvalue of its matrix M or B̂.

VII. THE PROBLEM OF UNIQUENESS

We have stated in Theorem 1 that the quasi-inverse can
be taken to be unitary. Indeed a better statement is that the
quasi-inverses of all, but a set of measure zero qubit channels,
are unitary. The point is that the matrix Q of a channel E has
two equal largest eigenvalues corresponding to two different
unitary operators V1 and V2 as quasi-inverses, where F (V1 ◦
E ) = F (V2 ◦ E ). This then leads to a one-parameter family
of quasi-inverses Eqi

p = (1 − p)V1 + pV2, not all members of
which are unitary. For generic channels the quasi-inverse is
unique and unitary, since this degeneracy happens only for
a set of measure zero in the space of all qubit channels.
From the geometric picture in the previous section, we can
now elaborate more on this point for the case of channels
with symmetric affine matrices. Consider the tetrahedron in
Fig. 5. We see that unless the tip of the affine vector λ is
equidistant to the corners of the tetrahedron, there is always
a unique quasi-inverse which is a unitary (corresponding
to the vertex closest to the tip of λ). Only at this set of
measure zero, we have degeneracy of quasi-inverses, where
the convex combination of these quasi-inverses also leads to
the same average fidelity and hence we have unital quasi-
inverses which are no longer pure unitary. As an example,
consider the channel E = 1

2 (σxρσx + σyρσy), corresponding
to the middle of an edge of the tetrahedron, corresponding to
the affine map M = diag(0, 0,−1). The quasi-inverse of this
channel is Eqi

p = (1 − p)σxρσx + pσyρσy for any p, leading to
the channel (Eqi

p ◦ E )(ρ) = 1
2 (ρ + σzρσz ) for which the affine

matrix is NM = diag(0, 0, 1).

VIII. DISCUSSION

We have introduced the concept of quasi-inverse of quan-
tum channels and have proved several of its properties for
qubit channels, including their unitarity, and equality of left
and right inverses. A concrete formalism for finding the quasi-
inverse of general qubit channels has been introduced and
several classes of examples have been studied in detail. In
relation to these results, various possible extensions can be
considered. The first one is a possible generalization to higher
dimensional channels. While we have considered general uni-
tal and nonunital qubit channels, the proof of the unitarity of
the quasi-inverse hinges on a very specific property of unital
qubit channels, [19], according to which any unital qubit
channel is a random unitary channel. A counter example to
this theorem in higher dimensions was first found by [20,21].
A specific example is given by Landau and Streater [22] in
odd dimensions,

E (ρ) = 1

j( j + 1)
[JxρJ†

x + JyρJ†
y + JzρJ†

z ]. (82)

Moreover, the main difficulty for generalizing these results to
higher dimensions is that contrary to the qubit case, where a
rather complete characterization of the space of all channels
is available [17,18], our knowledge about higher dimensional
channels is very limited.

Furthermore, let us remark that the results presented here
using the average fidelity should hold also for other linear
fidelity functions. In addition, it is plausible to believe that,
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as in the case of qubit channels, the quasi-inverse of any
general channel should be an extreme point on the space of
all channels. However, the problem of finding the extreme
points of the space of higher dimensional channels is a highly
nontrivial open problem.

A different, possible extension of our work regards the
analysis of the quasi-inverses of classical stochastic or bi-
stochastic maps. Here we have a fairly well-developed knowl-
edge on the space itself and its extreme points [23], but then
the difficulty is in the fidelity function between two classical
probability distributions which is no longer linear. We plan to
report on these issues in the future.

Connections of our results with the error correction theory
is also worth mentioning. We have found quasi-inverses of the
Pauli and the amplitude damping channels as two common
error models which of practical relevance. While it is true
that error-correcting codes are used to recover the encoded
information transmitted through noisy channels, the effec-
tiveness of error correction depends on whether the encoded
information is affected drastically or slightly, i.e., on the error
probabilities of the combined channel Eqi ◦ E . Applying the
quasi-inverse at the end of a channel certainly lowers the error
rate and makes any error correction scheme more reliable and
effective.

We would also like to briefly comment on other notions
of inverses that have appeared in the literature. The quasi-

inverse of a channel Eqi is different from its time reversal ER

introduced in [24] in the context of entropy production in open
quantum systems. The operation R is not unitary, rather an
involution (ER)R = E , in direct contrast to the quasi-inverse
channel as defined in this paper. Furthermore, as already
observed in the Introduction, our approach also differs from
those based on the “Petz recovery map” [13–16]; indeed,
our quasi-inverse is defined through the average fidelity,
while the “Petz recovery map” depends on specific reference
states.

Finally it would be interesting to investigate how the quasi-
inverse of a channel can partially restore the coherence of
input states of different channels [25–27], an area which has
recently seen intensive research.
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