
Qualitative analysis of a curvature equation modeling MEMS

with vertical loads ∗

Chiara Corsato
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Abstract

We investigate existence, multiplicity and qualitative properties of the solutions of the Dirichlet
problem for the singularly perturbed prescribed mean curvature equation−(1− bu) div

( ∇u√
1 + |∇u|2

)
=

a

(u−R)2
+

b√
1 + |∇u|2

, in Ω,

u = 0, on ∂Ω,

where a, b, R are given constants and Ω is a bounded regular domain in RN . This model appears in
the theory of micro-electro-mechanical systems (MEMS) when the effects of capillarity and vertical
forces are taken into account.
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1 Introduction

With the advent and the wide spreading of miniaturized technology, systems combining the effects of
electrostatic and capillary forces have been receiving more and more attention in the last decades, in
order to fully understand how they operate at small scales; we refer to [39] and to the recent surveys
[28, 21], as general references on this topic. A classical device which has been realized to study the
interplay of such forces consists of two parallel plates, the upper plate having a hole Ω which is filled
with a thin membrane, such as, e.g., a soap film. If a voltage difference is applied, the film is deflected
by a Coulomb force generated between the two components. In [11] a model which describes the shape
of such electrostatically actuated film has been derived from minimizing the total energy of the system,
represented as the sum of the elastic energy, the electric potential and the potential due to the presence
of a vertical force, such as, e.g., a vertical load. Such model consists of a coupled system of partial
differential equations for the shape of the deflected membrane and the electrostatic potential. After
assuming that the electric fringing field has negligible effects on the film, such system can be reduced
to the following single equation, supplemented with Dirichlet boundary conditions, (1 + ε2βv) div

( ∇v√
1 + ε2|∇v|2

)
=

λ

(1 + v)2
+

β√
1 + ε2|∇v|2

, in Ω,

v = 0, on ∂Ω.
(1.1)

The variables and parameters appearing in the equation have the following meaning: v is an adimen-
sional variable describing the shape of the membrane, ε > 0 represents the ratio between the distance
of the two plates and the diameter of the membrane, and is generally small, λ > 0 measures the relative
importance of the electric field versus the surface tension and β measures the relative importance of the
vertical force acting over the membrane, versus the surface tension; of course, β can be of either sign,
according to the orientation of this force with respect to the direction of the electric field, or zero, if
absent; all parameters also incorporate information on the geometry of the system. Making the change
of variable u(x) = −εv(x), a = ε3λ, b = εβ, R = ε, we can rewrite (1.1) in the equivalent form−(1− bu) div

( ∇u√
1 + |∇u|2

)
=

a

(u−R)2
+

b√
1 + |∇u|2

, in Ω,

u = 0, on ∂Ω.
(1.2)

Hereafter, we assume that

(H1) a, b, R, with R > 0, are given constants and Ω is a bounded domain in RN , with a boundary ∂Ω
of class C2, in case N ≥ 2, and Ω = ]− r, r[, with r > 0, in case N = 1.
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The parameter a is generally supposed to be positive, although in the course of our mathematical
discussion a will sometimes be allowed to take non-positive values, while the parameter b can be either
positive, or negative, or zero. Since R = ε is assumed to be positive and small, it is natural to suppose,
when b > 0, that the condition Rb ≤ 1 holds. However, we will also discuss the case where Rb > 1, so
that a singularity on the left of R appears in the equation.

Problem (1.2) appears quite complex, because it simultaneously incorporates the mean curvature
operator

div
( ∇u√

1 + |∇u|2
)

(1.3)

and the two singular terms
a

(u−R)2
and

1

1− bu
, (1.4)

the latter one being determined, as already noticed, by the presence of the factor 1 − bu in front of
the left-hand side of the equation. Therefore, in the literature the model has often been simplified in
various different ways. For instance, in the works [11, 8], in order to discuss the effects in the problem
of the gravity, or possibly of an external pressure, the equation in (1.2) has been replaced by

−div
( ∇u√

1 + |∇u|2
)

=
a

(u−R)2
+ b. (1.5)

Of course, if these effects are neglected, then the term b is dropped: this situation has been investigated
in [9, 8]. On the other hand, approximating the mean curvature operator div

(
∇u/

√
1 + |∇u|2

)
by its

linearization ∆u at 0 leads to the most popular model in the literature, sometimes referred to as the
“canonical model”, {

−∆u =
a

(u−R)2
, in Ω,

u = 0, on ∂Ω.
(1.6)

Although there is a large amount of literature devoted to the existence of positive solutions for the
singular semilinear elliptic problem (1.6), a thorough discussion being given, e.g., in [22], no result seems
to be available for the complete problem (1.2). The absence in the existing literature of any contribution
in this direction might be also attributable to the presence into the equation of the mean curvature
operator (1.3) and of the two singular terms (1.4). The analysis of such non-uniformly elliptic equations
is indeed rather delicate and sophisticated, being fraught with a number of technical difficulties which
do not arise when dealing with non-degenerate problems. In addition, the mean curvature operator has
a relevant impact on the morphology of the solutions and, in general, one cannot expect that either
the solutions be regular, up to the formation of discontinuities, or the boundary conditions be attained.
This is the reason for which it is natural, when dealing with problem (1.2), to introduce a suitable
notion of generalized solution, as the one given below which is inspired from [42, 29, 26] and has been
recently considered in [13, 14, 12].

Definition 1.1 (Notions of solution).

(I) A function u ∈ C2(Ω) ∩ C0(Ω) is a (generalized) solution of (1.2) if the following conditions hold:

(a)
∇u√

1 + |∇u|2
∈ C0(Ω);

(b) u(x) < R and bu(x) < 1 for all x ∈ Ω;

(c) u satisfies the equation in (1.2) for all x ∈ Ω;

(d) for every x ∈ ∂Ω,
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• either u(x) = 0,

• or u(x) > 0 and
∇u(x) · ν(x)√
1 + |∇u(x)|2

= −1,

• or u(x) < 0 and
∇u(x) · ν(x)√
1 + |∇u(x)|2

= 1,

where ν(x) is the unit outer normal to Ω at x ∈ ∂Ω.

(II) A solution u of (1.2) is classical if u(x) = 0 for all x ∈ ∂Ω.

Remark 1.1 The structure of the equation in (1.2) and an iterated application of [25, Theorem 9.19]
implies that u ∈ C∞(Ω) and actually (real) analytic by [34, Theorem 5.8.6].

Remark 1.2 It is worthy to point out that the actual occurrence of generalized non-classical solutions
can be detected even in the simpler case where N = 1 and b = 0, so that problem (1.2) reduces to−

( u′√
1 + |u′|2

)′
=

a

(u−R)2
, in ]− r, r[,

u(−r) = 0, u(r) = 0,

whenever r
R < ρ∗ ≈ 0.34996 and a ∈ ]a∗, a∗∗[, with 0 < a∗ < a∗∗ (cf. [8, 10, 37]).

As problem (1.2) has not been attacked yet in its full generality, we aim in this work to begin its
analysis, providing several results concerning the qualitative properties of the solutions, as well as their
existence and multiplicity. Our approach relies on the use of various tools of nonlinear analysis, such
as the implicit function theorem, topological degree, bifurcation, lower and upper solutions, combined
with PDE and ODE techniques. Instead, we do not explicitly use here the variational structure of
problem (1.2), which can indeed be formally interpreted as the Euler equation of the following singularly
perturbed anisotropic area functional∫

Ω

(1− bu)
√

1 + |∇u|2 dx−
∫

Ω

a

R− u
dx.

One of the reasons is that, in order to deal properly with this functional and the corresponding critical
points, it seems appropriate, as discussed in [4], to settle the problem in the non-standard space BV2(Ω)
and to introduce there a suitable notion of weak solution. Thus, to keep this paper within a reasonable
length we prefer to leave this study to a forthcoming work.

Now we turn to describe the structure of this paper. In Section 2 we perform a qualitative analysis
of the generalized solutions of problem (1.2), providing various information about the sign and the
symmetry of the possible solutions, as well as, in the one-dimensional case, about their concavity
properties.

Section 3 is devoted to derive some existence and non-existence results for problem (1.2) in the N -
dimensional case. We start proving a quantitative necessary condition for the existence of generalized
solutions, which provides an estimate for the pull-in voltage [7, p.11-12] in the presence of a vertical
force. Next, we pass to study the solvability of problem (1.2). We start proving the existence of regular
classical solutions which stem from any point of the line {(0, a,− a

R2 ) | a ∈ R}, provided 2a
R3 6∈ Σ, where

Σ = {λn | n ∈ N+} is the spectrum of −∆ in H1
0 (Ω). This conclusion is achieved by a simple application

of the implicit function theorem. Next, we look at problem (1.2) as a perturbation of−(1− bu) div
( ∇u√

1 + |∇u|2
)

=
b√

1 + |∇u|2
, in Ω,

u = 0, on ∂Ω.
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We first show, also exploiting some ideas from [20], that this problem admits non-degenerate one-sign
solutions, i.e., with non-zero fixed point index, for all small |b|, and no solutions at all, for all large |b|.
Then, by using this information and taking a as a homotopy parameter, a branch of regular classical
solutions of (1.2) is found for each b in a suitable interval. In the one-dimensional case, additional
conclusions are achieved. Namely, we can show that, for all small a, problem (1.2) actually admits two
regular classical solutions for b in a suitable, explicitly computable, interval. It is worthy to observe
that this multiplicity result is determined by the presence in the equation of the additional singular
term 1

1−bu .

In Section 4 we investigate the complementary situation where 2an
R3 ∈ Σ, for some n ∈ N+. Namely,

if 2an
R3 is a simple eigenvalue, we prove the existence of a branch of regular classical solutions (u, a)

of problem (1.2), bifurcating from the line of the trivial solutions {(0, a,− a
R2 ) | a ∈ R} at the point

(0, an,− an
R2 ), and lying in the hyperplane {(u, a,− a

R2 ) | u ∈ C1(Ω), a ∈ R} ⊂ C1(Ω) × R × R. In

particular, bifurcation of positive solutions is detected if n = 1, i.e., 2a1
R3 is the principal eigenvalue λ1.

Exhaustive information about the nodal properties of the solutions within the bifurcating branches are
also obtained when dealing with radially symmetric solutions over balls, or in the one-dimensional case.

Section 5 focuses on the study of the existence and the multiplicity of classical and generalized
one-sign solutions for the one-dimensional counterpart of problem (1.2)−(1− bu)

( u′√
1 + |u′|2

)′
=

a

(u−R)2
+

b√
1 + |u′|2

, in ]− r, r[,

u(−r) = 0, u(r) = 0.

(1.7)

This section is divided into two subsections, where existence and multiplicity are separately discussed.
In the former section, we prove a general existence and non-existence result for both classical and gener-
alized positive solutions of (1.7). In particular, we show that the minimum positive generalized solution
is always classical and we carefully discuss its regularity. All these conclusions rely on an existence result
for generalized solutions, basically obtained by an approximation argument combined with the upper
and lower solutions method and some subtle comparison principles, which may have an independent
interest. In the latter subsection, we discuss the existence of a second positive generalized solution and
we single out the situations where multiplicity occurs, in terms of the values of the parameters a, b, R.
Our analysis also displays the different nature of the multiplicity phenomena, depending on whether
they originate from the one or the other singular term, a

(u−R)2 or 1
1−bu , present into the equation.

Existence and multiplicity of negative solutions are treated as well following similar lines.
We finally point out that, taking b = 0, problem (1.5) becomes a special case of (1.2); hence the

results in this paper provide a proof of some conclusions, drawn in [8] by using [38, Theorem 1.1], whose
proof does not seem complete.

Notation. We denote the open interval ]0,+∞[ by R+ and we set N+ = N ∩ R+. The symbol δij
indicates the Kronecker delta. |Ω| stands for the Lebesgue measure in RN of Ω, |∂Ω| denotes the HN−1-
measure in RN of ∂Ω and ωN indicates the measure of the unit ball in RN . Σ = {λn | n ∈ N+} is the
spectrum of −∆ in H1

0 (Ω). For any function u : Ω→ R, we write

• u ≥ 0 if, for all x ∈ Ω, u(x) ≥ 0,

• u > 0 if u ≥ 0 and u 6= 0,

• u � 0 if, for all x ∈ Ω, u(x) > 0 and, for all x ∈ ∂Ω, either u(x) > 0, or both u(x) = 0 and

lim supt→0−
u(x+tν(x))

t < 0.
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2 Qualitative properties of solutions

In this section we begin the qualitative analysis of problem (1.2). Our first result provides some
general information about the sign and the symmetry of the possible solutions of (1.2). The following
terminology is adopted.

Definition 2.1 (Positive solution).

(I) A solution u of (1.2) is said positive (respectively, negative) if u > 0 (respectively, u < 0).

(II) A solution u of (1.2) is said strictly positive (respectively, strictly negative) if u� 0 (respectively,
u� 0).

We recall that λ1 denotes the principal eigenvalue of −∆ in H1
0 (Ω).

Theorem 2.1. Assume (H1). Then, the following conclusions hold.

(a) If b ≥ 0 and a
R2 + b ≥ 0, then every non-trivial solution of (1.2) is strictly positive.

(b) If a > 0, b < 0 and |b|a ≥ (1 +R|b|)2, then every non-trivial solution of (1.2) is strictly positive.

(c) If 0 < a < R3

2 λ1 and − a
R2 ≤ b < 0, then there exists ε = ε(a, b) > 0 such that every non-trivial

solution u ∈ C2(Ω) ∩ C1(Ω) of (1.2), with ‖u‖C1 < ε, is strictly positive.

(d) If a ≤ 0 and a
R2 + b ≤ 0, then every non-trivial solution of (1.2) is strictly negative.

(e) If 0 < a < R3

2 λ1 and b ≤ − a
R2 , then there exists ε = ε(a, b) > 0 such that every non-trivial

solution u ∈ C2(Ω) ∩ C1(Ω) of (1.2), with ‖u‖C1 < ε, is strictly negative.

Figure 1: Positivity or negativity of possible solutions

Proof. Throughout this proof u denotes a non-trivial solution of (1.2). Let us set, for i, j = 1, . . . , N ,

aij =
(1 + |∇u|2)δij − ∂iu ∂ju(√

1 + |∇u|2
)3 ,

with aij ∈ C1(Ω). Since, for all ξ ∈ RN ,

|ξ|2√
1 + |∇u|2

≥
N∑

i,j=1

aijξiξj =
(1 + |∇u|2)|ξ|2 − (∇u · ξ)2(√

1 + |∇u|2
)3 ≥ |ξ|2(√

1 + |∇u|2
)3 ,
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the linear differential operator
∑N
i,j=1 aij∂ijv is elliptic in Ω and uniformly elliptic in any subdomain

Ω′, with Ω′ ⊂ Ω. Then, we rewrite problem (1.2) in the form−
N∑

i,j=1

aij∂iju =
1

1− bu

( a

(u−R)2
+

b√
1 + |∇u|2

)
, in Ω,

u = 0, on ∂Ω.

(2.1)

Next, we proceed with the proof of items (a)− (e).

Case (a). b ≥ 0 and
a

R2
+ b ≥ 0. Suppose that a ≥ 0. As we have

a

(u(x)−R)2
+

b√
1 + |∇u(x)|2

≥ 0,

for all x ∈ Ω, the weak maximum principle [25, Theorem 3.1] implies that

min
Ω
u = min

∂Ω
u.

Assume, by contradiction, that there is x0 ∈ ∂Ω such that u(x0) = min
∂Ω

u < 0. From the definition of

(generalized) solution we have
∇u(x0) · ν(x0)√

1 + |∇u(x0)|2
= 1.

Hence, there exists x1 ∈ Ω such that u(x1) < u(x0) = min
Ω
u, which is impossible. We have thus proved

that u > 0. Let us show that u� 0. If there exists x0 ∈ Ω such that u(x0) = 0 = min
Ω
u, then the strong

maximum principle implies that u vanishes in any subdomain Ω′, with Ω′ ⊂ Ω and x0 ∈ Ω′, and hence
u = 0 in Ω, which is a contradiction, as u 6= 0. If there exists x0 ∈ ∂Ω such that u(x0) = 0 = min

Ω
u and

∂νu(x0) = 0, then
∇u(x0) = 0,

because u(x0) = min
∂Ω

u. In this case, as by assumption ∇u√
1+|∇u|2

∈ C0(Ω), we can find a ball B ⊂ Ω,

with ∂Ω ∩ ∂B = {x0}, such that ∇u ∈ C0(B). Since the differential operator on the left-hand side of
the equation in (2.1) is uniformly elliptic in B, the Hopf boundary point lemma yields ∂νu(x0) < 0,
which is a contradiction.

Suppose that a < 0. If there exists x0 ∈ Ω such that min
Ω
u = u(x0) < 0, then from (1.2) we get

0 ≥ a

(u(x0)−R)2
+ b >

a

R2
+ b ≥ 0,

which is impossible. Similarly as above, we verify that there cannot exist x0 ∈ ∂Ω such that u(x0) =
min

Ω
u < 0. Thus, we conclude that u ≥ 0 and, as u 6= 0, u > 0. Let us show that u � 0. First, we

notice that, due to the definition of (generalized) solution, max
Ω

u > 0 must be attained at an interior

point x1 ∈ Ω, which yields

0 ≤ a

(u(x1)−R)2
+ b <

a

R2
+ b. (2.2)

Next, if we suppose by contradiction the existence of x0 ∈ Ω such that min
Ω
u = u(x0) = 0, then, by

(2.2),
a

(u(x0)−R)2
+

b√
1 + |∇u(x0)|2

=
a

R2
+ b > 0,
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and we can find a maximal subdomain Ω′, with x0 ∈ Ω′, such that, for all x ∈ Ω′,

a

(u(x)−R)2
+

b√
1 + |∇u(x)|2

> 0.

As a < 0, we have ∇u ∈ L∞(Ω′) and hence the differential operator on the left-hand side of the equation
in (2.1) is uniformly elliptic in Ω′. The strong maximum principle yields u = 0 in Ω′, thus contradicting
the maximality of Ω′, in case Ω′ 6= Ω, or u(x) > 0 for all x ∈ Ω, in case Ω′ = Ω. Similarly as above, we
finally prove that if there exists x0 ∈ ∂Ω such that u(x0) = 0, then ∂νu(x0) ∈ [−∞, 0[.

Case (b). a > 0, b < 0 and |b|a ≥ (1 +R|b|)2. We first notice that, as min
Ω
u > − 1

|b| ,

a

(u(x)−R)2
+

b√
1 + |∇u(x)|2

>
a

( 1
|b| +R)2

+ b ≥ 0,

for all x ∈ Ω. Next, we argue like in case (a) to prove that u� 0.

Case (c). 0 < a < R3

2 λ1 and − a
R2 ≤ b < 0. Let us introduce the function η : ]−∞, R[→ R defined by

1

(R− s)2
=

1

R2
+

2

R3
s+ η(s)s. (2.3)

Clearly, η satisfies
η(s)s ≥ 0, for all s < R, and lim

s→0
η(s) = 0.

Pick ε > 0 such that

aε < R2 and
2a

R

√
1 + ε2

R2 − aε
< λ1. (2.4)

Let u be a solution of (1.2) satisfying ‖u‖C1 < ε. Thus, we also have that u ∈ H1
0 (Ω). Multiplying the

equation in (1.2) by −u
−

1−bu and integrating by parts, by (2.3), we get, as
a

R2
+ b ≥ 0,

1√
1 + ε2

∫
Ω

|∇u−|2 dx ≤
∫

Ω

|∇u−|2√
1 + |∇u|2

dx = −
∫

Ω

( a

(R− u)2
+

b√
1 + |∇u|2

) u−

1− bu
dx

≤
∫

Ω

(
− a

R2
+

2a

R3
u− − b

) u−

1 + bu−
dx

≤
∫

Ω

2a

R3

(u−)2

1 + bu−
dx ≤ 2a

R

1

R2 − aε

∫
Ω

|u−|2 dx.

Condition (2.4) and the Poincaré inequality yield u− = 0 and hence u ≥ 0. As u 6= 0 and

a

(u(x)−R)2
+

b√
1 + |∇u(x)|2

≥ a

R2
+ b ≥ 0,

for all x ∈ Ω, the strong maximum principle and the Hopf boundary point lemma finally imply that
u� 0.

Case (d). a ≤ 0 and a
R2 + b ≤ 0. The proof is similar to the one of Case (a) and therefore is omitted.
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Case (e). 0 < a < R3

2 λ1 and b ≤ − a
R2 . Let η be the function defined in (2.3). Pick ε ∈ ]0, R[ such that

ε|b|
2(1 + ε|b|)

<
1√

1 + ε2
(2.5)

and

a
(

2
R3 + ηε

)
1√

1+ε2
− ε|b|

2(1+ε|b|)

< λ1, (2.6)

where

ηε = sup
|s|≤ε

|η(s)|.

Let u be a solution of (1.2) satisfying ‖u‖C1 < ε. Hence, we have u ∈ H1
0 (Ω). Multiplying the

equation in (1.2) by u+

1−bu and integrating by parts, we get

1√
1 + ε2

∫
Ω

|∇u+|2 dx ≤
∫

Ω

|∇u+|2√
1 + |∇u|2

dx =

∫
Ω

( a

(R− u)2
+

b√
1 + |∇u|2

) u+

1− bu
dx

=

∫
Ω

( a

R2
+ b+

2a

R3
u+ + a η(u+)u+ − b|∇u+|2√

1 + |∇u|2(1 +
√

1 + |∇u|2)

) u+

1 + |b|u+
dx

≤ a
( 2

R3
+ ηε

)∫
Ω

|u+|2dx+

∫
Ω

|∇u+|2

2

|b|u+

1 + |b|u+
dx.

As the function f(s) = |b|s
1+|b|s is increasing, we conclude that

1√
1 + ε2

∫
Ω

|∇u+|2 dx ≤ a
( 2

R3
+ ηε

)∫
Ω

|u+|2dx+
|b|ε

2(1 + |b|ε)

∫
Ω

|∇u+|2 dx.

Conditions (2.5) and (2.6), together with the Poincaré inequality, yield u+ = 0. As u 6= 0, arguing as
in Case (a), with a < 0, we infer that u� 0.

Remark 2.1 It is clear that, if a
R2 + b = 0 and a ≤ 0, then problem (1.2) has only the trivial solution.

Moreover, if a
R2 + b = 0 and a < R3

2 λ1, then the trivial solution is isolated in C1(Ω̄). On the other
hand, if a

R2 + b 6= 0, then any solution of problem (1.2) is non-trivial.

Remark 2.2 Note that, in Case (c), if ε > 0 fulfills the conditions in (2.4) for some 0 < a < R3

2 λ1,
then it satisfies them for all 0 < ā < a. In the same way, in Case (e), if ε ∈ ]0, 1[, then (2.5) holds for

all b; further, if ε ∈ ]0, 1[ fulfills (2.6) for some 0 < a < R3

2 λ1 and b < − a
R2 , then it satisfies it for all

0 < ā < a and b̄ ≤ − ā
R2 , with b̄ ≥ b. Hence, we conclude that, in Cases (c) and (e) respectively,

• if a, b, ā, b̄ satisfy 0 < ā ≤ a < R3

2 λ1, − a
R2 ≤ b < 0, − ā

R2 ≤ b̄ < 0, then ε(a, b) ≤ ε(ā, b̄)

and

• if a, b, ā, b̄ satisfy 0 < ā ≤ a < R3

2 λ1, b ≤ − a
R2 , b̄ ≤ − ā

R2 , b ≤ b̄, then ε(a, b) ≤ ε(ā, b̄).

Next, we give some information about the symmetries of the possible solutions of (1.2).

Lemma 2.2. Assume (H1). Suppose that M is an orthogonal matrix such that M(Ω) = Ω. Let u be a
solution of (1.2) and set v(x) = u(Mx) for all x ∈ Ω. Then, v is a solution of (1.2).
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Proof. For all x ∈ Ω, we have
∇v(x) = MT∇u(Mx)

and

J
( ∇v(x)√

1 + |∇v(x)|2
)

= J
( MT∇u(Mx)√

1 + |MT∇u(Mx)|2
)

= MTJ
( ∇u√

1 + |∇u|2
)

(Mx)M,

where Jf(x) denotes the Jacobian matrix of the function f evaluated at x. Hence, as MT = M−1, we
get

div
( ∇v(x)√

1 + |∇v(x)|2
)

= tr
(
J
( ∇v(x)√

1 + |∇v(x)|2
))

= tr
(
MTJ

( ∇u√
1 + |∇u|2

)
(Mx)M

)
= tr

(
J
( ∇u√

1 + |∇u|2
)

(Mx)
)

= div
( ∇u√

1 + |∇u|2
)

(Mx).

Thus, we conclude that v satisfies the differential equation in (1.2). Further, as ν(x) = MT ν(Mx), we
have

∇v(x) · ν(x) = MT∇u(Mx) ·MT ν(Mx) = ∇u(Mx) · ν(Mx).

Therefore, v satisfies the boundary conditions in (1.2) as well.

Additional information can be obtained in the one-dimensional case.

Lemma 2.3. Assume (H1). Let u : ]α, ω[→ R be a maximal solution of−(1− bu)
( u′√

1 + |u′|2
)′

=
a

(u−R)2
+

b√
1 + |u′|2

,

u(x0) = u0, u
′(x0) = 0,

(2.7)

for some x0 ∈ ]α, ω[ and u0 ∈ R. Then, u is symmetric with respect to x0, i.e., x ∈ ]α, ω[ if and only if
2x0 − x ∈ ]α, ω[ and u(x) = u(2x0 − x).

Proof. For all x ∈ ]2x0 − ω, 2x0 − α[, define v(x) = u(2x0 − x). Due to the structure of the equation, v
is a solution of (2.7) too. Hence, by uniqueness, we conclude that either ]α, ω[ = R, or ]α, ω[ is bounded
and x0 = 1

2 (α+ ω), with u(x) = u(2x0 − x) for all x ∈ ]α, ω[.

Remark 2.3 Due to the autonomous character of problem (1.2), we can always suppose, in the one-
dimensional case, that Ω is a symmetric interval, e.g., Ω = ]− r, r[.

Proposition 2.4. Assume (H1). Let u be a solution of−(1− bu)
( u′√

1 + |u′|2
)′

=
a

(u−R)2
+

b√
1 + |u′|2

, in ]− r, r[,

u(−r) = 0, u(r) = 0.

(2.8)

Then, then following conclusions hold:

(a) u has a finite number of zeros in [−r, r];
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(b) for each maximal interval ]x1, x2[ such that u(x) 6= 0 for all x ∈ ]x1, x2[, u is symmetric with
respect to the midpoint x1+x2

2 of ]x1, x2[;

(c) if u has a zero, then u is a classical solution of (2.8), with further u ∈ C1([−r, r]), in case this is
an interior zero;

(d) if the number of zeros of u in [−r, r] is even, then u is even.

Proof. Part (a). We rewrite the equation in (2.8) in the form

−u′′ = g(u, u′)

with

g(s, ξ) =
( a

(s−R)2
+

b√
1 + ξ2

) (1 + ξ2)3/2

1− bs
.

As g is real analytic, the Cauchy theorem implies that u is real analytic (cf., e.g., [5, p. 196]); hence u
has a finite number of zeros in [−r, r].
Part (b). Consider a maximal interval ]x1, x2[ ⊆ [−r, r] such that u(x) 6= 0 for all x ∈ ]x1, x2[. Suppose
that, for all x ∈ ]x1, x2[, u(x) > 0, the other case being treated similarly. By definition of solution, there
exists x0 ∈ ]x1, x2[ such that u′(x0) = 0. Lemma 2.3 implies that u is symmetric with respect to x0. To
fix ideas, let us assume that x0 − x1 ≤ x2 − x0. Then, in case u(x1) = 0, we have also u(2x0 − x1) = 0.
As u(x) > 0 in ]x1, x2[, we conclude that 2x0−x1 = x2, i.e., x0−x1 = x2−x0 and u is symmetric with
respect to the midpoint of ]x1, x2[. On the other hand, in case x1 = −r, u(−r) > 0 and u′(−r+) = +∞,
we have u(2x0 + r) > 0 and u′(2x0 + r−) = −∞, which implies 2x0 + r = r, i.e., x0 = 0 and again the
point of symmetry of u is the midpoint of the interval.

Part (c). Assume first that u vanishes at the boundary of the domain only, that is, u(−r) · u(r) = 0,
and u(x) 6= 0 for all x ∈ ]−r, r[. By Part (b), we deduce that u is symmetric with respect to 0, therefore
u(−r) = 0 = u(r) and u is a classical solution of (2.8). Second, assume that u has an interior zero x1.
We can suppose that x1 is the smallest interior zero of u. Then, applying Part (b), with reference to the
interval ]− r, x1[, we see that u(−r) = 0 and |u′(−r)| < +∞. The same argument shows that u(r) = 0.

Part (d). Assume that u has four zeros. By Part (c), u is a classical solution and hence the four zeros
can be labelled as −r < x1 < x2 < r. Set x0 = x1+x2

2 . By Part (b), we know that x0 − x1 = x2 − x0

and u(x) = u(2x0 − x). Suppose that x0 ≤ 0, the other case being treated similarly. Then, we have
0 = u(−r) = u(2x0 + r). As u(x) 6= 0 in ]x2, r[ and 2x0 + r ∈ ]x2, r], we conclude that 2x0 + r = r and
hence x0 = 0. In the general case, where the number of zeros of u is even, the conclusion is achieved
by a recursive argument.

We end this section with the following result.

Lemma 2.5. Assume (H1). Let (a, b) be such that
a

R2
+ b ≥ 0. Then, every positive solution of (2.8)

is concave, even and strictly positive.

Proof. Let u be a positive solution of (2.8).

In case a ≥ 0 and
a

R2
+ b ≥ 0, we have, for all x ∈]− r, r[,

a

(u(x)−R)2
+

b√
1 + |u′(x)|2

≥ 0, if b ≥ 0,

a

(u(x)−R)2
+

b√
1 + |u′(x)|2

≥ a

R2
+ b ≥ 0, if b < 0.
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This implies that u is concave and hence strictly positive. The symmetry of u then follows from
Proposition 2.4.

In case a < 0 and
a

R2
+ b ≥ 0, Theorem 2.1 - Case (a) guarantees that u is strictly positive and

Proposition 2.4 implies that it is even. Let us prove that u is concave. Let x0 ∈ ]− r, r[ be such that
u(x0) = maxu. We have u′′(x0) ≤ 0 and hence

a

(maxu−R)2
+ b ≥ 0.

Note that, for any x1 ∈ [−r, r], we have

a

(u(x1)−R)2
+ b ≥ a

(maxu−R)2
+ b ≥ 0.

In particular, if x1 is any critical point of u, we have u′′(x1) ≤ 0, with u′′(x1) < 0 whenever u(x1) <
maxu; thus, in any case, x1 is a local maximum point of u. This implies that u′(x) ≥ 0 in ] − r, 0]
and u′(x) ≤ 0 in [0, r[. Furthermore, there is r1 ∈ [0, r[ such that u′(x) > 0 in ] − r,−r1[, u′(x) = 0
if −r1 ≤ x ≤ r1, u′(x) < 0 in ]r1, r[. As u is analytic we have indeed r1 = 0. Let us show that u′

in decreasing in [−r, 0]. Assume, by contradiction, that this is false, i.e., there exist x1, x2 ∈ [−r, 0[,
with x1 < x2, such that u′(x1) < u′(x2). Hence, u′ must have a local maximum point x0 ∈ ] − r, 0[.
Computing the third derivative of u at x0 and using u′′(x0) = 0 and hence a

(u(x0)−R)2 + b√
1+|u′(x0)|2

= 0,

we obtain, from the equation in (2.8),

u′′′(x0) = − 2au′(x0)

(R− u(x0))3

(1 + u′(x0)2)3/2

1− bu(x0)
> 0,

which is a contradiction. Thus, we conclude, by symmetry, that u is concave in [−r, r].

3 Existence and non-existence of solutions

A necessary condition for the solvability

We state in this section a quantitative necessary condition for the existence of solutions of problem (1.2).
This condition provides an estimate for the pull-in voltage [8, p.12], as expressed by Remark 3.1.

Theorem 3.1. Assume (H1). Then, for every b ∈ R there exists â(b) ∈ R+ such that problem (1.2)

has no solutions for a > â(b). In addition, no solution may exist for a ≥ 0 and b ≥ |∂Ω|
|Ω| .

Proof. Let us observe that, if u is a solution of (1.2), then the structure of the equation implies that

div
(

∇u√
1+|∇u|2

)
∈ L∞(Ω). Hence, according to [3], the vector field ∇u√

1+|∇u|2
belongs to the space

X(Ω)N and the weak trace ∇u√
1+|∇u|2

· ν on ∂Ω of the component of ∇u√
1+|∇u|2

with respect to the unit

outer normal ν to Ω is defined. Thus, the integration by parts formula holds by [3, Theorem 1.1].

Assume first b ≥ 0. Let u be a non-trivial solution of (1.2) for some a ≥ 0. We know, from Theorem
2.1 - Case (a), that u� 0. Integrating in Ω the equation in (1.2), we get

−
∫

Ω

(1− bu) div
( ∇u√

1 + |∇u|2
)
dx

= −
∫
∂Ω

(1− bu)
∇u√

1 + |∇u|2
· ν dHN−1 − b

∫
Ω

|∇u|2√
1 + |∇u|2

dx
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= −
∫
∂Ω

(1− bu)
∇u√

1 + |∇u|2
· ν dHN−1 − b

∫
Ω

√
1 + |∇u|2 dx+

∫
Ω

b√
1 + |∇u|2

dx

=

∫
Ω

a

(R− u)2
dx+

∫
Ω

b√
1 + |∇u|2

dx

and hence

|∂Ω| ≥ −
∫
∂Ω

(1− bu)
∇u√

1 + |∇u|2
· ν dHN−1

=

∫
Ω

a

(R− u)2
dx+ b

∫
Ω

√
1 + |∇u|2 dx >

( a
R2

+ b
)
|Ω|.

This implies that, if a ≥ 0, b ≥ 0, a
R2 + b ≥ |∂Ω|

|Ω| problem (1.2) has no solutions.

Assume next b < 0. Let u be a non-trivial solution of (1.2) for some a > 0. Suppose a ≥ (1+|b|R)2

|b| .

We know, from Theorem 2.1 - Case (b), that u� 0. Integrating in Ω the equation in (1.2), we get

|∂Ω| ≥ −
∫
∂Ω

∇u√
1 + |∇u|2

· ν dHN−1

=

∫
Ω

1

1 + |b|u

( a

(R− u)2
+

b√
1 + |∇u|2

)
dx

>
1

1 + |b|R

( a

R2
− |b|

)
|Ω|.

This implies that, if a ≥ max
{( |∂Ω|
|Ω| (1 + |b|R) + |b|

)
R2, (1+|b|R)2

|b|
}

, problem (1.2) has no solutions.

Remark 3.1 From the proof of Theorem 3.1, we get the estimate

â(b) ≤

max
{( |∂Ω|
|Ω| (1 + |b|R) + |b|

)
R2, (1+|b|R)2

|b|
}
, if b < 0,( |∂Ω|

|Ω| − b
)
R2, if b ≥ 0.

It is apparent from the structure of (1.2) that â(b)→ +∞, as b→ −∞.

Existence of solutions perturbing from (0, a,− a
R2 )

We discuss in this section the existence of classical solutions stemming from the trivial solution at the
points (a,− a

R2 ). We recall again that Σ = {λn | n ∈ N+} denotes the spectrum of −∆ in H1
0 (Ω).

Lemma 3.2. Assume (H1). Then, for each (a0, b0) ∈ R × R, with a0
R2 + b0 = 0 and 2a0

R3 6∈ Σ, there
exists δ0 > 0 such that, for any (a, b) ∈ R×R, with |a−a0|+ |b− b0| < δ0, problem (1.2) has a classical
solution u = u(a, b) ∈ C1(Ω), which continuously depends on the parameters (a, b) in the topology of
C1(Ω) and satisfies

lim
(a,b)→(a0,b0)

‖u(a, b)‖C1 = 0.

In addition, if a0 <
R3

2 λ1, then δ0 > 0 can be chosen so that

u(a, b0)� 0, for all a0 < a < a0 + δ0, (3.1)
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Figure 2: Regions of existence of classical solutions, coloured with different shades of grey. If a < R3

2 λ1,
the solutions are strictly positive above the line a

R2 + b = 0 (light grey region), strictly negative below
(dark grey region).

and

u(a, b0)� 0, for all a0 − δ0 < a < a0. (3.2)

Finally, if a0 <
R3

2 λ1, then u is (locally exponentially asymptotically) whereas, if a0 >
R3

2 λ1, then u is
unstable.

Proof. Fix p > N and define, in W 2,p(Ω) ∩W 1,p
0 (Ω)× R× R, the open set

V = {(u, a, b) ∈W 2,p(Ω) ∩W 1,p
0 (Ω)× R× R | u(x) < R and b u(x) < 1 in Ω} (3.3)

and the operator F : V → Lp(Ω) by

F(u, a, b) = div
( ∇u√

1 + |∇u|2
)

+
( a

(u−R)2
+

b√
1 + |∇u|2

) 1

1− bu
. (3.4)

From the Addendum A, we know that F is of class C∞, with partial derivative

∂uF(u, a, b)[v] = div
( ∇v√

1 + |∇u|2
− ∇u · ∇v(√

1 + |∇u|2
)3∇u)− ( 2av

(u−R)3
+

b∇u · ∇v(√
1 + |∇u|2

)3) 1

1− bu

+
( a

(u−R)2
+

b√
1 + |∇u|2

) bv

(1− bu)2
,

for all v ∈W 2,p(Ω) ∩W 1,p
0 (Ω). If a0

R2 + b0 = 0, we have

F(0, a0, b0) = 0 and ∂uF(0, a0, b0)[v] = ∆v +
2a0

R3
v.

As 2a0
R3 6∈ Σ, the Fredholm alternative [23, p. 303] and the open mapping theorem imply that

∂uF(0, a0, b0) : W 2,p(Ω) ∩W 1,p
0 (Ω)→ Lp(Ω)

is a linear homeomorphism. Hence the implicit function theorem yields the existence of a constant
δ0 > 0 and a map U : {(a, b) ∈ R2 | |a − a0| + |b − b0| < δ0} → W 2,p(Ω) ∩W 1,p

0 (Ω) of class C∞ such
that, for all (u, a, b) ∈ V, with ‖u‖W 2,p < δ0, |a− a0|+ |b− b0| < δ0,

F(u, a, b) = 0 if and only if u = U(a, b).
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For simplicity we write u(a, b) in place of U(a, b) to indicate the dependence of the solution u on
the parameters a, b. As W 2,p(Ω) is embedded into C1,α(Ω) for any α ∈ ]0, 1− N

p [, it follows that

u ∈ C1,α(Ω). Then, we infer, from [25, Theorem 9.19], that u ∈ C2,α(Ω) and is a classical solution.
Finally, the sign properties of the solutions can be proved as follows. Fix (a0, b0), with a0

R2 + b0 = 0.

According to Theorem 2.1, only the case a0 > 0 requires a proof. Therefore, assume a0 ∈ ]0, R
3

2 λ1[, and

pick ā ∈ ]a0,
R3

2 λ1[. From Theorem 2.1 and Remark 2.2, we can find ε = ε(ā, b0) > 0 such that, for all
a ∈ ]a0, ā[, all solutions of (1.2), with

‖u‖C1 < ε,

satisfy u� 0. Choosing δ0 > 0 sufficiently small and using the Sobolev embedding theorem yield (3.1).
A similar argument allows to prove (3.2).

The stability conclusions follows from the linearized stability-instability principle in, e.g., [33, Section
9.1].

From Lemma 3.2 we derive the following existence result for problem (1.2). Here we just consider
the situation a ≥ 0 we are mainly concerned with.

Theorem 3.3. Assume (H1). Then, there exists b∗ ∈ R+ such that for all b < b∗, with b 6∈ {−R2 λn |
n ∈ N+}, there are constants a∗(b), a∗(b), with 0 ≤ a∗(b) < a∗(b) ≤ â(b) (â(b) being defined in Theorem
3.1), such that, for all a ∈ ]a∗(b), a

∗(b)[, problem (1.2) has a classical solution u = u(a, b) ∈ C1(Ω). In
addition, we have that

(a) if b ≥ 0, then u� 0;

(b) if −R2 λ1 < b < 0 and a∗(b) < a < −R2b, then u� 0;

(c) if −R2 λ1 < b < 0 and −R2b < a < a∗(b), then u� 0.

Finally, u is stable if b > −R2 λ1, unstable otherwise.

Existence of solutions perturbing from (u, 0, b)

We discuss in this section the existence of classical solutions obtained by perturbing problem (1.2) with
a = 0. We consider at first the case a = 0 and then the case a > 0. Special attention is devoted to the
one-dimensional case where multiple solutions are detected.

The case a = 0, N arbitrary. Consider problem (1.2) with a = 0, that is,−div
( ∇u√

1 + |∇u|2
)

=
b

1− bu
1√

1 + |∇u|2
, in Ω,

u = 0, on ∂Ω.
(3.5)

Assume (H1) and fix any α ∈ ]0, 1[. Set, for convenience,

A = c(N)|Ω|1/N (2N/2 + 1) (3.6)

and

b̂ =
1

c(N)|Ω|1/N (2N/2 + 1)2
, (3.7)

where c(N) = N−1ω
−1/N
N and ωN is the measure of the unit sphere in RN . For any given b ∈ ]0, b̂[,

define the open bounded subset of C1,α(Ω)

UM = {u ∈ C1,α(Ω) | ‖u‖∞ < 1
b −A, ‖∇u‖C0,α < M}, (3.8)
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where M > 0 is a constant that will be determined in Proposition 3.4 below. Pick p > N
1−α and, for

each v ∈ UM and σ ∈ [0, b], denote by u = T (σ, v) ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) the unique solution of the

problem −
N∑

i,j=1

(1 + |∇v|2)δij − ∂iv ∂jv(√
1 + |∇v|2

)3 ∂iju =
σ

1− σv
1√

1 + |∇v|2
, in Ω,

u = 0, on ∂Ω.

Such a solution u ∈W 2,p(Ω)∩W 1,p
0 (Ω) does exist by, e.g., [25, Theorem 9.15], since the linear differential

operator L : W 2,p(Ω) ∩W 1,p
0 (Ω)→ Lp(Ω), defined by

Lu =

N∑
i,j=1

aij∂iju,

with coefficients

aij =
(1 + |∇v|2)δij − ∂iv ∂jv(√

1 + |∇v|2
)3 ∈ C0,α(Ω) for i, j = 1, . . . , N ,

is uniformly elliptic in Ω, as

|ξ|2√
1 + |∇v|2

≥
N∑

i,j=1

aijξiξj =
(1 + |∇v|2)|ξ|2 − (∇v · ξ)2(√

1 + |∇v|2
)3 ≥ |ξ|2(√

1 + |∇v|2
)3 for all ξ ∈ RN ,

and
σ

1− σv
1√

1 + |∇v|2
∈ C0,α(Ω).

By using the Lp elliptic regularity theory (see, e.g., [25, Lemma 9.17]) and the compact embedding of
W 2,p(Ω) into C1,α(Ω), it is a standard matter to prove that T : [0, b] × UM → C1,α(Ω) is completely
continuous. It is also clear that the fixed points u ∈ UM of T (b, ·) are precisely the classical solutions
u ∈ UM of (3.5).

Proposition 3.4. Assume (H1) and, in case N ≥ 2, further suppose that

(H2) for all x ∈ ∂Ω, the mean curvature H(x) of ∂Ω at x satisfies H(x) ≥ 0.

Let b̂ be given by (3.7). Then, for each b ∈ ]0, b̂[, there exists a constant M > 0 such that

deg(I − T (b, ·), UM , 0) = 1, (3.9)

where UM is defined in (3.8) and I is the identity operator. In particular, problem (3.5) has at least
one classical solution u ∈ UM with u� 0.

Proof. We fix b ∈ ]0, b̂[ and look for a constant M > 0 such that, defining UM through (3.8), condition
(3.9) holds. To this end, for any σ ∈ [0, b], we consider the problem−div

(
∇u√

1 + |∇u|2

)
=

σ

1− σu
1√

1 + |∇u|2
, in Ω,

u = 0, on ∂Ω.

(3.10)

Let u be a classical solution of (3.10), for some σ ∈ [0, b], satisfying

‖u‖∞ ≤
1

b
−A.

By Theorem 2.1 we have u ≥ 0, with u = 0 if and only if σ = 0.
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Step 1. ‖u‖∞ ≤ 2
N
2 A < 1

b − A. We follow some ideas from [20, Lemma]. For δ ∈ [0, 1
b − A[, let us

consider the function vδ = max{u−δ, 0} and the set Aδ = {x ∈ Ω | u(x) ≥ δ}. Using vδ as test function
in (3.10), we obtain ∫

Aδ

|∇vδ|2√
1 + |∇vδ|2

dx =

∫
Aδ

σ

1− σu
vδ√

1 + |∇vδ|2
dx

and hence ∫
Aδ

√
1 + |∇vδ|2 dx−

∫
Aδ

1√
1 + |∇vδ|2

dx =

∫
Aδ

σ

1− σu
vδ√

1 + |∇vδ|2
dx.

Observing that
σ

1− σu
≤ b

1− bu
≤ b

1− b( 1
b −A)

=
1

A
,

we then deduce that∫
Aδ

|∇vδ| dx ≤
∫
Aδ

√
1 + |∇vδ|2 dx

=

∫
Aδ

1√
1 + |∇vδ|2

dx+

∫
Aδ

σ

1− σu
vδ√

1 + |∇vδ|2
dx

≤ |Aδ|+
1

A

∫
Aδ

vδ dx.

Using Sobolev inequality on the left-hand side and Hölder inequality on the right-hand side, we obtain

‖vδ‖
L

N
N−1
≤ Ac(N)

A− c(N) |Ω|1/N
|Aδ| (3.11)

where c(N) is the Sobolev constant such that, for all u ∈W 1,1
0 (Ω),

‖u‖LN/N−1 ≤ c(N)‖∇u‖L1 .

Let δ1 ≥ δ2. Observe that

‖vδ2‖
L

N
N−1

=
(∫

Aδ2

v
N
N−1

δ2
dx
)N−1

N ≥
(∫

Aδ1

v
N
N−1

δ2
dx
)N−1

N ≥ (δ1 − δ2)|Aδ1 |
N−1
N . (3.12)

From (3.11) and (3.12), we obtain

(δ1 − δ2)
N
N−1 |Aδ1 | ≤

( Ac(N)

A− c(N) |Ω|1/N
) N
N−1 |Aδ2 |

N
N−1 .

Applying [27, Lemma B.1] yields

‖u‖∞ ≤
Ac(N)|Ω|1/N2N

A− c(N)|Ω|1/N
= 2N/2A. (3.13)

The conclusion follows because, for b ∈ ]0, b̂[, we have

1

b
−A >

1

b̂
−A = 2N/2A.

Step 2. There is a constant K > 0, only depending on N,Ω, A, b, such that

|∇u(x)| ≤ K for all x ∈ ∂Ω. (3.14)
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To this end, we rewrite the equation in (3.10) in the form

(1 + |∇u|2)∆u−
N∑

i,j=1

∂iu ∂ju ∂iju+
σ

1− σu
(1 + |∇u|2) = 0.

Note that the structure conditions (14.43) and (14.54) in [25] are satisfied, as well as, by (H2), the
inequalities (14.51). Indeed, adopting the notation introduced in [25, Section 14.3], we can take, in
(14.43), (14.54) and (14.51),

aij = Λaij∞ + aij0 , aij∞ = δij −
pipj
|p|2

, aij0 =
pipj
|p|2

, for i, j = 1, . . . , N,

b = |p|Λb∞ + b0, b∞ = 0, b0 =
σ

1− σz
(1 + |p|2),

Λ = 1 + |p|2, λ = 1, K± = (N − 1)H.

Hence, we can apply [25, Corollary 14.7] and conclude, as σ ∈ [0, b] and ‖u‖∞ ≤ 2
N
2 A, that (3.14)

holds.

Step 3. There exists a constant L > 0, only depending on N,Ω, A, b,K, such that

‖∇u‖∞ < L.

To this end, we show that all assumptions of [25, Theorem 15.2] are satisfied. We write now the equation
in (3.10) in the form

∆u−
N∑

i,j=1

∂iu ∂ju

1 + |∇u|2
∂iju+

σ

1− σu
= 0.

Following the notation used in [25, Sections 15.1, 15.2], we take

aij = δij −
pi pj

1 + |p|2
, aij∗ = δij , λ∗ = 1, ci = − pi

1 + |p|2
, for i, j = 1, . . . , N,

b =
σ

1− σz
, r = −1, s = 0, E =

|p|2

1 + |p|2
,

and, setting

δ = ∂z +

N∑
i=1

pi∂xi
|p|2

δ =

N∑
i=1

pi∂pi ,

by calculations, we get

α =
2

1 + |p|2
− 1, β = −1 + |p|2

|p|2
σ

1− σz
, γ =

1 + |p|2

|p|2
( σ

1− σz

)2

,

and hence

a = −1, b = sup
[0, 1b−A]

− σ

1− σz
, c = sup

[0, 1b−A]

( σ

1− σz

)2

.

In addition, we have that
(δ + r + 1)aij∗ = (δ + s)aij∗ = 0

and all quantities

δE = 2
( |p|

1 + |p|2
)2

, δE = 0, (δ + r)b = − σ

1− σz
, (δ + s)b =

( σ

1− σz

)2

are uniformly bounded for |z| ≤ 1
b −A. Hence, the structure conditions (15.32) and the condition a ≤ 0

are satisfied and Step 3 follows from [25, Theorem 15.2].
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Step 4. Conclusion. Finally, from Theorem 13.2 and the successive note at page 323 in [25], we infer
the existence of constants β ∈ ]0, 1[ and M > 0, only depending on N,Ω, A, b, L, such that

‖∇u‖C0,β < M.

By replacing α with β in the definition of UM in case β < α, we conclude that, for every σ ∈ [0, b], T (σ, ·)
has no fixed point on ∂UM . The homotopy invariance of the degree implies that deg(I −T (σ, ·),UM , 0)
is constant in [0, b] and hence

deg(I − T (b, ·),UM , 0) = deg(I − T (0, ·),UM , 0) = deg(I,UM , 0) = 1.

In particular, problem (3.5) has, for all b ∈ ]0, b̂[, a classical solution u ∈ UM , which satisfies u� 0, by
Theorem 2.1.

By the symmetry properties of problem (3.5), we can draw similar conclusions for b ∈ ]− b̂, 0[ as
well.

Proposition 3.5. Assume (H1) and, in case N ≥ 2, (H2). Then, for any given b ∈ ] − b̂, 0[, there
exists a constant M > 0 such that

deg(I − T (b, ·),UM , 0) = 1,

where UM = {u ∈ C1,α(Ω) | ‖u‖∞ < − 1
b −A, ‖∇u‖C0,α < M}. In particular, problem (3.5) has at least

one classical solution u ∈ UM with u� 0.

Remark 3.2 Our existence results slightly improve [20, Theorem]; better conclusions are achieved in
[19] by other methods that, however, do not provide the degree information given in (3.9). It is worth

noticing that, according to Theorem 3.1, problem (3.5) has no solution for |b| ≥ |∂Ω|
|Ω| .

The case a = 0, N = 1. In the one-dimensional case much more precise conclusions, concerning the
solvability of problem (3.5), can be obtained by direct calculations. Let us denote by t# ≈ 1.19997 the
unique positive solution of the equation t tanh(t) = 1 and set

b# =
1

r sinh(t#)
. (3.15)

Remark 3.3 Since, if N = 1, |Ω| = 2r and |∂Ω| = 2, we have b# < 1
r = |∂Ω|

|Ω| .

Proposition 3.6. Assume (H1). Then, the following conclusions hold:

(a) if 0 < |b| < b#, then the problem−(1− bu)
( u′√

1 + |u′|2
)′

=
b√

1 + |u′|2
, in ]− r, r[,

u(−r) = 0, u(r) = 0

(3.16)

has exactly two classical solutions u1, u2 ∈ C2([−r, r]), with u1, u2 � 0 for b > 0 and u1, u2 � 0
for b < 0;

(b) if |b| = b#, then problem (3.16) has exactly one classical solution u1 ∈ C2([−r, r]), with u1 � 0
for b = b# and u1 � 0 for b = −b#;
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(c) if |b| > b#, then problem (3.16) has no solutions.

Proof. For all (b, v) satisfying 1− bv > 0, the solution of the initial value problem−(1− bu)
( u′√

1 + |u′|2
)′

=
b√

1 + |u′|2
,

u(0) = v, u′(0) = 0

(3.17)

is given by

u(x) = u(x; b, v) =


1

b
− 1− bv

b
cosh

( bx

1− bv

)
if b 6= 0,

v if b = 0.

In order that u(·; b, v) be a solution of (3.16), the couple (b, v) must satisfy ϕ(b, v) = 0, where

ϕ(b, v) = u(r; b, v) =


1

b
− 1− bv

b
cosh

( br

1− bv

)
if b 6= 0,

v if b = 0.
(3.18)

The function ϕ is odd symmetric and analytic, with first order partial derivatives

∂bϕ(b, v) =


1

b2

(
− 1 + cosh

( br

1− bv

)
− br

1− bv
sinh

( br

1− bv

))
if b 6= 0,

−1

2
r2 if b = 0

and

∂vϕ(b, v) = cosh
( br

1− bv

)
− br

1− bv
sinh

( br

1− bv

)
.

It is apparent that ∇ϕ never vanishes. Elementary calculations also show that

• ϕ(0, 0) = 0 and, for b > 0, ϕ(b, 0) < 0 and lim
v→1/b

ϕ(b, v) = −∞;

• in case b ≥ t#

r , ∂vϕ(b, v) ≤ 0, if v ∈ [0, 1
b [;

• in case 0 < b < t#

r , ∂vϕ(b, v) > 0, if v ∈ [0, 1
b −

r
t#

[, ∂vϕ(b, 1
b −

r
t#

) = 0 and ∂vϕ(b, v) < 0, if

v ∈] 1
b −

r
t#
, 1
b [;

• ∂bϕ(b, v) = 1
b2

(
− 1 + ∂vϕ(b, v)

)
< 0, if b > 0 and 0 < v < 1

b ;

• ϕ(b, 1
b −

r
t#

) = 1
b −

r
t#

cosh t# > 0, if b ∈ ]0, b#[, and ϕ(b, 1
b −

r
t#

) = 0, if b = b#.

Hence, we conclude, by the implicit function theorem, that the set {(b, v) | 1−bv > 0, ϕ(b, v) = 0} is the
graph of an odd analytic function ψ : ]−∞,+∞[→ [−b#, b#], which is strictly increasing in [0, 1

b −
r
t#

[,

strictly decreasing in ] 1
b −

r
t#
,+∞[, and satisfies ψ(0) = 0 and limv→+∞ ψ(v) = 0.

Therefore, all the stated conclusions hold; in particular, u solves (3.16) for some b if and only if −u
solves (3.16) with b replaced by −b.

Remark 3.4 From the proof of Proposition 3.6, we get the following additional information about the
solutions of (3.17) and, hence, of (3.16):
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(a) for any b ∈ ]0, b#[, we have

0 < u1(0; b) <
1

b
− r

t#
< u2(0; b) <

1

b
and u1(0; b#) =

1

b#
− r

t#
,

lim
b→0+

u1(0; b) = 0, lim
b→0+

u2(0; b) = +∞,

u1(0; b) is strictly increasing in ]0, b#[ and u2(0; b) is strictly decreasing in ]0, b#[ ;

(b) for any b ∈ ]− b#, 0[, we have

0 > u1(0; b) >
1

b
+

r

t#
> u2(0; b) >

1

b
and u1(0;−b#) = − 1

b#
+

r

t#
,

lim
b→0−

u1(0; b) = 0, lim
b→0−

u2(0; b) = −∞,

u1(0; b) is strictly increasing in ]− b#, 0[ and u2(0; b) is strictly decreasing in ]− b#, 0[ ;

(c) for any b ∈ ]0, b#[, we have

• if v ∈ [0, u1(0; b)[∪ ]u2(0; b), 1
b [, then u(r; b, v) < 0,

• if v ∈ ]u1(0; b), u2(0; b)[, then u(r; b, v) > 0;

(d) for any b ∈ ]− b#, 0[, we have

• if v ∈ ] 1
b , u2(0; b)[∪ ]u1(0; b), 0], then u(r; b, v) > 0,

• if v ∈ ]u2(0; b), u1(0; b)[, then u(r; b, v) < 0.

The case a > 0, N arbitrary. From Proposition 3.4 we deduce the following result, which comple-
ments Theorem 3.3.

Theorem 3.7. Assume (H1) and, in case N ≥ 2, (H2). Let A and b̂ be given by (3.6) and (3.7),
respectively. Suppose that

R > 2
N
2 A = c(N)|Ω|1/N (2N/2 + 1)2N/2.

Then, for each b ∈ R, with |b| ∈ ]0, b̂[, there exists â(b) > 0 such that, for all a ∈ ]0, â(b)[, problem (1.2)
has at least one classical solution u ∈ C1(Ω), with u� 0 if b > 0 and u� 0 if b < 0.

Remark 3.5 The constant 2
N
2 A = c(N)|Ω|1/N (2N/2 + 1)2N/2 is the bound obtained in (3.13) and, by

(3.6) and (3.7), we have 2N/2A = 1
b̂
−A.

Proof. Fix b ∈ ]0, b̂[ and consider the set UM defined in (3.8). By (3.13), any solution u ∈ UM of (3.5),
satisfies ‖u‖∞ ≤ 2N/2A and u ∈ UM . By assumption, we then have ‖u‖∞ < R. Pick R̃ ∈ ]2N/2A,R[
and define the set

ŨM = {u ∈ C1,α(Ω) | ‖u‖∞ < min{ 1
b −A, R̃}, ‖∇u‖C0,α < M}.

Hence, any solution u ∈ ŨM of (3.5) belongs to ŨM .

For all v ∈ ŨM and a ∈ R, denote by u = S(a, v) ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) the unique solution of the

problem−
N∑

i,j=1

(1 + |∇v|2)δij − ∂iv ∂jv
(1 + |∇v|2)3/2

∂iju =
1

1− bv

(
a

(v −R)2
+

b√
1 + |∇v|2

)
, in Ω,

u = 0, on ∂Ω.
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The operator S : R × ŨM → C1,α(Ω) is completely continuous and the fixed points u ∈ ŨM of S(a, ·)
are precisely the solutions u ∈ C2(Ω) ∩ ŨM of (1.2). As S(0, ·) = T (b, ·) and T (b, ·) has no fixed point

on the boundary of ŨM , the continuity of S(a, ·) with respect to the parameter a yields the existence

of â(b) > 0 such that, for all a ∈ ]− â(b), â(b)[, S(a, ·) has no fixed point on the boundary of ŨM .
Hence, the degree information provided by Proposition 3.4 and the homotopy invariance property of
the degree imply the existence of a continuum C ⊂ ]− â(b), â(b)[× ŨM of solutions pairs (a, u) of (1.2),
with projR C = ] − â(b), â(b)[. As the solutions u of (3.5), with b > 0, satisfy u � 0, we infer, possibly
reducing â(b), that u� 0 for all (a, u) ∈ C.

The proof of the corresponding conclusions in the case where b ∈ ]− b̂, 0[ is based on Proposition
3.5 and follows similar patterns.

The case a > 0, N = 1. In the one-dimensional case, a multiplicity result for the problem−(1− bu)
( u′√

1 + |u′|2
)′

=
a

(u−R)2
+

b√
1 + |u′|2

, in ]− r, r[,

u(−r) = 0, u(r) = 0,

(3.19)

can be obtained using Proposition 3.6.

Remark 3.6 Note that, according to Remark 3.4, there exists a unique b̃ ∈ [0, b#] such that

• u1(0; b̃) = R, if R ≤ 1
b#
− r

t#
;

• u2(0; b̃) = R, if R > 1
b#
− r

t#
;

where u1(·; b) and u2(·; b) are respectively the smaller and the larger solution of (3.16).

Figure 3: The null set of the function ϕ given by (3.18) and the definition of the constant b̃, according
to R > 1

b#
− r

t#
, on the left, or R < 1

b#
− r

t#
, on the right.
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Proposition 3.8. Assume (H1). Let t# be the unique positive solution of the equation t tanh(t) = 1
and let b# be defined by (3.15). Then, the following conclusions hold:

(a) in case R < 1
b#
− r

t#
, for every b ∈ ]0, b̃[, there exists a#(b) > 0 such that, for all a ∈ ]0, a#(b)[,

problem (3.19) has at least one classical solution u ∈ C2([−r, r]), with u� 0;

(b) in case R > 1
b#
− r

t#
, for every b ∈ ]0, b#], there exists a#(b) > 0 such that, for all a ∈ ]0, a#(b)[,

problem (3.19) has at least one classical solution u ∈ C2([−r, r]), with u� 0, if b ∈ ]0, b̃], and has
at least two classical solutions u1, u2 ∈ C2([−r, r]), with u1, u2 � 0, if b ∈ ]b̃, b#[;

(c) for every b ∈ ]− b#, 0[, there exists a#(b) > 0 such that, for all a ∈ ]0, a#(b)[, problem (3.19) has
at least two classical solutions u1, u2 ∈ C2([−r, r]), with u1, u2 � 0.

Proof. In the course of this proof we ever keep the notation used in Proposition 3.6 and in Remark 3.4.

Case (a). Fix b ∈ ]0, b∗[ and pick v0 = v0(b) ∈ ]u1(0; b), R[, where u1(·; b) is the smaller solution of
(3.16). The continuous dependence on initial values and parameters imply that, for every ε > 0, there
exists a = a(b, ε) > 0 such that, for all a ∈ [0, a] and v ∈ [0, v0], the solution z(·; a, b, v) of−(1− bu)

( u′√
1 + |u′|2

)′
=

a

(u−R)2
+

b√
1 + |u′|2

,

u(0) = v, u′(0) = 0,

(3.20)

is defined on [0, r] and satisfies

‖z(·; a, b, v)− z(·; 0, b, v)‖C1 < ε.

Indeed, otherwise, we could find ε > 0 and sequences (an)n, with an > 0 and an → 0, (vn)n, with
vn ∈ [0, v0] and vn → v ∈ [0, v0], and (zn)n, with zn = z(·; an, b, vn) solution of (3.20), such that, for all
n, either zn is not defined in [0, r], or

‖z(·; an, b, vn)− z(·; 0, b, v)‖C1 ≥ ε.

Observe that z(·; 0, b, v) is defined on [0, r]. Hence, from [24, Theorem I-6], we infer that z(·; an, b, vn) is
defined in [0, r], for all large n, and converges, in the topology of C1([0, r]), to z(·; 0, b, v), thus yielding
a contradiction.

By Remark 3.4, we know that there are v1, v2 ∈ ]0, v0[, with v1 < v2, such that the corresponding
solutions zi(·; 0, b, vi), for i ∈ {1, 2}, of (3.16) satisfy

z1(r; 0, b, v1) < 0 and z2(r; 0, b, v2) > 0.

Hence, there exists ε > 0 sufficiently small such that, setting a#(b) = a(b; ε), we conclude that, for any
a ∈ ]0, a#(b)[, also the corresponding solutions zi(·; a, b, vi), for i ∈ {1, 2}, of (3.20) satisfy

z1(r; a, b, v1) < 0 and z2(r; a, b, v2) > 0.

The continuous dependence property and the intermediate value theorem yield the existence of a solution
u ∈ C2([0, r]), with u(0) ∈ ]0, v0[, of the problem−(1− bu)

( u′√
1 + |u′|2

)′
=

a

(u−R)2
+

b√
1 + |u′|2

, in ]0, r[,

u′(0) = 0, u(r) = 0.

(3.21)

Since u is concave, it is decreasing and strictly positive. Finally, the even extension of u onto [−r, r] is
the solution of (3.19) we are looking for.
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Case (b). As the first part of the conclusion can be proved like in Case (a), we only give the proof of the
multiplicity result. Therefore, fix b ∈ ]b∗, b#[ and pick v0 = v0(b) ∈ ]u2(0; b),min{R, 1

b}[, where u2(·; b)
is the larger solution of (3.16). Using Remark 3.4 again, we find v1, v2, v3 ∈ ]0, v0[ with v1 < v2 < v3

such that the corresponding solutions zi(·; 0, b, vi), for i ∈ {1, 2, 3}, of (3.16) satisfy

z1(r; 0, b, v1) < 0, z3(r; 0, b, v3) < 0 and z2(r; 0, b, v2) > 0.

Hence, there exists ε > 0 sufficiently small such that, setting a#(b) = a(b; ε), we conclude that, for any
a ∈ ]0, a#(b)[, also the corresponding solutions zi(·; a, b, vi), for i ∈ {1, 2, 3}, of (3.20) satisfy

z1(r; a, b, v1) < 0, z3(r; a, b, v3) < 0 and z2(r; a, b, v2) > 0.

The continuous dependence property and the intermediate value theorem now yield the existence of two
solutions u1, u2 ∈ C2([0, r]) of (3.21), with u1(0), u2(0) ∈ ]0, v0[, which provide the desired solutions of
(3.19).

Case (c). Fix b ∈ ]− b#, 0[. Pick v0 = v0(b) ∈ ] 1
b , u2(0; b)[, where ui(·; b), for i ∈ {1, 2}, are the solutions

of (3.16), with u2(0; b) < u1(0; b). Let us consider the modified problem−(1− bu)
( u′√

1 + |u′|2
)′

=
a

(R+ u−)2
+

b√
1 + |u′|2

,

u(0) = v, u′(0) = 0,

(3.22)

for some v ∈ [v0, 0]. As in the previous steps, for every ε > 0, there exists a = a(b; ε) > 0 such that, for
all a ∈ ]0, a[ and v ∈ [v0, 0], the solution z(·; a, b, v) of (3.22) is defined in [0, r] and satisfies

‖z(·; a, b, v)− z(·; 0, b, v)‖C1 < ε.

The same shooting-type argument used above then yields the existence of ε > 0 and a#(b) = a(b; ε) > 0,
such that, for all a ∈ ]0, a#(b)[, there exist two solutions u1, u2 ∈ C2([−r, r]) of the modified problem−(1− bu)

( u′√
1 + |u′|2

)′
=

a

(R+ u−)2
+

b√
1 + |u′|2

, in ]− r, r[,

u(−r) = 0, u(r) = 0,

which are even and satisfy u1(0), u2(0) ∈ ]v0, 0[.
It remains to show that, for i ∈ {1, 2}, ui � 0 and hence is a solution of (5.3). Otherwise there should

exist x ∈ ]0, r] such that ui(x) = maxui ≥ 0 and u′i(x) = 0. From the equation, possibly restricting
a#(b) in such a way that a#(b) < R2|b|, we get the contradiction u′′i (x) = (− a

R2 − b) 1
1−bui(x) > 0. This

proves the result.

4 Bifurcation from simple eigenvalues

In the previous section we proved, in particular, the solvability of problem (1.2) when the parameters
(a, b) vary in a neighbourhood of any point (a0, b0) lying on the line a0 + R2b0 = 0, provided that
2a0
R3 6∈ Σ, where Σ = {λn | n ∈ N+} is the spectrum of −∆ on H1

0 (Ω). Now we discuss the case where
2a0
R3 ∈ Σ. Namely, we fix a point (0, an,− an

R2 ), where 2an
R3 = λn ∈ Σ, for some n ∈ N+, and we study the

bifurcation of the solution set of problem (1.2) from the line of the trivial solutions {(0, a,− a
R2 ) | a ∈ R}

at the point (0, an,− an
R2 ), within the hyperplane {(u, a,− a

R2 ) | u ∈ C1(Ω), a ∈ R} ⊂ C1(Ω)× R× R.
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Let us assume condition (H1), fix p > N , with p ≥ 2 if N = 1, and consider, in the space
W 2,p(Ω) ∩W 1,p

0 (Ω)× R, the open set

O = {(u, a) ∈W 2,p(Ω) ∩W 1,p
0 (Ω)× R | u(x) < R and R2 + a u(x) > 0 in Ω}.

Next, define the operator H : O → Lp(Ω) by setting

H(u, a) = F(u, a,− a
R2 ) = div

( ∇u√
1 + |∇u|2

)
+
( 1

(u−R)2
− 1

R2

1√
1 + |∇u|2

) aR2

R2 + au
,

where F is defined in (3.4). Let us observe that (u, a) ∈ O satisfies H(u, a) = 0 if and only if−
N∑

i,j=1

(1 + |∇u|2)δij − ∂iu ∂ju
(1 + |∇u|2)3/2

∂iju =
( 1

(u−R)2
− 1

R2

1√
1 + |∇u|2

) aR2

R2 + au
, in Ω,

u = 0, on ∂Ω.

(4.1)

Similarly as in the proof of Lemma 3.2 we see that any u ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) satisfying (4.1), for

some a, belongs to C1,α(Ω), for all α ∈ ]0, 1− N
p [, and is a classical solution.

Since for all a ∈ R, (0, a) solves (4.1), we look for non-trivial solutions of this problem by using
bifurcation theory. By Addendum A, the operator H is of class C∞ and its partial derivative ∂uH is
given by

∂uH(u, a)[v] = div
( ∇v√

1 + |∇u|2
− ∇u · ∇v(√

1 + |∇u|2
)3∇u)

−
( 2v

(u−R)3
− 1

R2

∇u · ∇v(√
1 + |∇u|2

)3) aR2

R2 + au

−
( 1

(u−R)2
− 1

R2

1√
1 + |∇u|2

) a2R2v

(R2 + au)2
,

for all (u, a) ∈ O and v ∈W 2,p(Ω) ∩W 1,p
0 (Ω); in particular, we have

∂uH(0, a)[v] = ∆v +
2a

R3
v.

Hence, bifurcation may occur only at the points (0, an), with an = R3λn
2 for some n ∈ N+. In order to

state our first bifurcation result, we introduce the set of the non-trivial solutions of (4.1),

S = {(u, a) ∈ O | u 6= 0 and H(u, a) = 0}.

Theorem 4.1. Assume (H1). Suppose that, for some n ∈ N+, λn ∈ Σ is a geometrically simple

eigenvalue, with corresponding eigenfunction ϕn and set an = R3λn
2 . Then, the following conclusions

hold:

(a) (0, an) is a bifurcation point of (4.1); more precisely there exist a neighbourhood U of (0, an) in
O, a constant δ > 0, and functions

ψ : ]− δ, δ[→
{
u ∈W 2,p(Ω) ∩W 1,p

0 (Ω) |
∫

Ω

uϕn dx = 0
}
, χ : ]− δ, δ[→ R

of class C∞ such that
ψ(0) = 0, χ(0) = an,

and
S ∩ U = {(u, a) | u = tϕn + tψ(t), a = χ(t), |t| < δ};
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(b) the curve Γ = {(tϕn + tψ(t), χ(t)) | |t| < δ} is contained in a connected component C of S such
that either C is not compact in O, or C contains a point (0, am) with m 6= n;

(c) near (0, an) the component C behaves as follows:

(i) if R2λn 6= 4 and
∫

Ω
ϕ3
n dx 6= 0, then the bifurcation is transcritical, i.e., χ′(0) 6= 0, with

χ′(0) > 0, in case (R2λn − 4)
∫

Ω
ϕ3
n dx > 0, and χ′(0) < 0, in case (R2λn − 4)

∫
Ω
ϕ3
n dx < 0;

(ii) if R2λn = 4, or
∫

Ω
ϕ3
n dx = 0, then the bifurcation is subcritical, i.e., χ′(0) = 0 and χ′′(0) < 0.

Remark 4.1 If C is not compact in O, then either C meets ∂O, or C is unbounded.

Figure 4: Bifurcation from the line of the trivial solutions {(0, a,− a
R2 ) | a ∈ R} at the point (0, an,− an

R2 ),

within the hyperplane {(u, a,− a
R2 ) | u ∈ C1(Ω), a ∈ R)}: the subcritical case on the left, the transcritical

case on the right.

Proof. The proof is divided into three steps.

Step 1. Local bifurcation. By Addendum A, we have, for all (u, a) ∈ O and v ∈W 2,p(Ω) ∩W 1,p
0 (Ω),

∂aH(u, a) =
( 1

(u−R)2
− 1

R2

1√
1 + |∇u|2

) R4

(R2 + au)2
,

∂uH(u, a)[v] = div
( ∇v√

1 + |∇u|2
− ∇u · ∇v(√

1 + |∇u|2
)3∇u)

−
( 2v

(u−R)3
− 1

R2

∇u · ∇v(√
1 + |∇u|2

)3) aR2

R2 + au

−
( 1

(u−R)2
− 1

R2

1√
1 + |∇u|2

) a2R2v

(R2 + au)2
,
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∂uaH(u, a)[v] = −
( 2v

(u−R)3
− 1

R2

∇u · ∇v(√
1 + |∇u|2

)3) R4

(R2 + au)2

−
( 1

(u−R)2
− 1

R2

1√
1 + |∇u|2

) 2aR4v

(R2 + au)3
.

Let us set

L = ∂uH(0, an) = ∆ + λnI and M = ∂uaH(0, an) =
2

R3
I,

where I is the identity operator. It is clear that L is a Fredholm operator with index 0, with kernel

N(L) = span{ϕn}

and range

R(L) =
{
u ∈ Lp(Ω)

∣∣ ∫
Ω

uϕn dx = 0
}
.

Further, M satisfies the transversality condition

M[ϕn] =
2

R3
ϕn 6∈ R(L).

Hence, the Crandall-Rabinowitz theorem in [15, Theorem 1.7] applies and yields conclusion (a), that
is, there exist a neighbourhood U of (0, an) in O, a constant δ > 0, and functions

ψ : ]− δ, δ[→
{
u ∈W 2,p(Ω) ∩W 1,p

0 (Ω)
∣∣ ∫

Ω

uϕn dx = 0
}
, χ : ]− δ, δ[→ R

of class C∞ such that {
1

2

}
ψ(0) = 0, χ(0) = an,

and
S ∩ U = {(u, a) | u = tϕn + tψ(t), a = χ(t), |t| < δ}.

Step 2. Global bifurcation. We are going to apply the Rabinowitz global bifurcation theorem [40], in
the form of [41, Theorem 4.3] (see also [31, Chapter 6], [32]). We only need to show that ∂uH(u, a)
is a Fredholm operator of index 0, for all (u, a) ∈ O. Let us fix (u, a) ∈ O and denote the operator
∂uH(u, a) simply by ∂uH. Set, for i, j = 1, . . . , N ,

aij =
(1 + |∇u|2)δij − ∂iu∂ju(√

1 + |∇u|2
)3 ,

bi = − a∂iu(√
1 + |∇u|2

)3
(R2 + au)

,

c =
2aR2

(u−R)3(R2 + au)
+
( 1

(u−R)2
− 1

R2

1√
1 + |∇u|2

) a2R2

(R2 + au)2
,

with aij , bi, c ∈W 1,p(Ω). We have, for all v ∈W 2,p(Ω) ∩W 1,p
0 (Ω),

∂uH[v] =

N∑
i,j=1

aij∂
2
ijv +

N∑
i,j=1

∂iaij∂jv −
N∑
i=1

bi∂iv − cv.
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As, for all ξ ∈ RN ,

|ξ|2√
1 + |∇u|2

≥
N∑

i,j=1

aijξiξj =
(1 + |∇u|2)|ξ|2 − (∇u · ξ)2(√

1 + |∇u|2
)3 ≥ |ξ|2(√

1 + |∇u|2
)3 ,

∂uH is uniformly elliptic. Pick a constant σ > 0 so large that c + σ ≥ 0 and define the operators
A : C1(Ω)→ Lp(Ω), by

A[v] = −
N∑

i,j=1

∂iaij∂jv,

and B : W 2,p(Ω) ∩W 1,p
0 (Ω)→ Lp(Ω), by

B[v] = ∂uH[v] +A[v]− σv.

The operator A is continuous and, by [25, Theorem 9.15, Lemma 9.17], B is a linear homeomorphism.
Moreover, as B−1 : Lp(Ω) → C1(Ω) is compact, AB−1 : Lp(Ω) → Lp(Ω) is compact too and then
I − AB−1 : Lp(Ω)→ Lp(Ω) is a Fredholm operator of index 0. Writing

∂uH− σI = B −A = (I − AB−1)B,

we conclude that ∂uH− σI : W 2,p(Ω) ∩W 1,p
0 (Ω)→ Lp(Ω) is a Fredholm operator with

index (∂uH− σI) = index (I − AB−1) + index (B) = 0.

The maximum principle for strong solutions [25, Theorem 9.5] implies that the equation ∂uH[v]−σv = 0
has only the trivial solution. Hence ∂uH − σI : W 2,p(Ω) ∩W 1,p

0 (Ω) → Lp(Ω) is one-to-one. Being
Fredholm of index 0, it is onto and, being continuous, it is a linear homeomorphism. In addition,
(∂uH − σI)−1 : Lp(Ω) → Lp(Ω) is compact and therefore I + σ(∂uH − σI)−1 : Lp(Ω) → Lp(Ω) is a
Fredholm operator of index 0. Finally, writing

∂uH = (I + σ(∂uH− σI)−1)(∂uH− σI),

we conclude that ∂uH : W 2,p(Ω) ∩W 1,p
0 (Ω)→ Lp(Ω) is a Fredholm operator with

index (∂uH) = index
(
(I + σ(∂uH− σI)−1

)
+ index (∂uH− σI) = 0.

Therefore, by [41, Theorem 4.3] there exists a connected component C of S, bifurcating from (0, an)
and containing the curve

Γ = {(tϕn + tψ(t), χ(t)) | |t| < δ}.
In addition, as by Lemma 3.2 bifurcation may occur only at the points (0, am) with m ∈ N+, it follows
that either C is not compact in O, or C contains a point (0, am) with m 6= n, thus yielding conclusion
(b).

Step 3. Behaviour of the bifurcation branch near (0, an). Computing the derivatives ofH (see Addendum

A) and recalling that an = R3λn
2 , we find

∂uuH(0, an)[ϕn][ϕn] =
(6an
R4
− 4a2

n

R5

)
ϕ2
n +

an
R2
|∇ϕn|2 =

(3λn
R
−Rλ2

n

)
ϕ2
n +

Rλn
2
|∇ϕn|2

and

∂uuuH(0, an)[ϕn][ϕn][ϕn] = −3 div(|∇ϕn|2∇ϕn) +
( 12

R2
λn −

9

2
λ2
n +

3

2
R2λ3

n

)
ϕ3
n

− 3

4
R2λ2

n|∇ϕn|2ϕn.
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Following [2, Chapter 5], we set

A =

∫
Ω

ϕn ∂uaH(0, an)[ϕn] dx,

B =
1

2

∫
Ω

ϕn ∂uuH(0, an)[ϕn][ϕn] dx,

C = − 1

6A

∫
Ω

ϕn ∂uuuH(0, an)[ϕn][ϕn][ϕn] dx.

Next, observe that

A =
2

R3

∫
Ω

ϕ2
n dx > 0,

B =
3λn
8R

(4−R2λn)

∫
Ω

ϕ3
n dx,

because ∫
Ω

ϕn|∇ϕn|2 dx =
1

2
λn

∫
Ω

ϕ3
n dx,

and

C = − 1

2A

∫
Ω

(
|∇ϕn|4 +

(5

3

(Rλn
2
− 9

10R

)2
+

53

20R2

)
λnϕ

4
n

)
dx < 0,

because

−
∫

Ω

div(|∇ϕn|2∇ϕn)ϕn dx =

∫
Ω

|∇ϕn|4 dx and

∫
Ω

ϕ2
n|∇ϕn|2 dx =

1

3
λn

∫
Ω

ϕ4
n dx.

Then, conclusion (c) follows from the representation

χ(t) = an −
B

A
t+ Ct2 + o(t2).

Thus, the proof is complete.

The next result is concerned with the bifurcation of positive solutions. Let us set

S+ = {(u, a) ∈ S | u� 0}.

Corollary 4.2. (Bifurcation of positive solutions) Assume (H1). Then, there exists a connected

component C+ of the set S+, bifurcating from (0, a1), with a1 = R3λ1

2 , which is not compact in O.
Moreover, near (0, a1) the component C+ behaves as follows:

(i) if R2λ1 > 4, then the bifurcation of C+ from (0, a1) is supercritical;

(ii) if R2λ1 ≤ 4, then the bifurcation of C+ from (0, a1) is subcritical.

Proof. As λ1 is a simple eigenvalue of −∆ on H1
0 (Ω) and ϕ1 � 0 in Ω, Theorem 4.1 applies and yields

the existence of a neighbourhood U of (0, a1) in O × R, a constant δ > 0 and functions

ψ : ]− δ, δ[→
{
u ∈W 2,p(Ω) ∩W 1,p

0 (Ω)
∣∣ ∫

Ω

uϕ1 dx = 0
}
, χ : ]− δ, δ[→ R

of class C∞ such that
ψ(0) = 0, χ(0) = a1,
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and
S ∩ U = Γ = {(tϕ1 + tψ(t), χ(t)) | |t| < δ}.

Let us set

Γ+ = {(tϕ1 + tψ(t), χ(t)) | 0 < t < δ} and Γ− = {(tϕ1 + tψ(t), χ(t)) | −δ < t < 0}.

We are going to apply the unilateral global bifurcation theorem in [41, Theorem 4.4] (see also [31,
Chapter 6], [32]). As the norm in the Lebesgue space Lp(Ω), with p ≥ 2, is of class C1 (cf., e.g., [30,
pp. 44-45]) and, hence, the norm in the Sobolev space W 2,p(Ω) ∩W 1,p

0 (Ω) shares the same property,
we only need to show that

(1− τ)∂uH(u, a) + τ∂uH(0, a)

is a Fredholm operator of index 0, for all (u, a) ∈ O and τ ∈ ]0, 1[. Indeed, this operator can be written
as

N∑
i,j=1

∂i((1− τ)aij + τδij)∂jv)−
N∑
i=1

(1− τ)bi∂iv − ((1− τ)c− τ 2
R3 a)v,

with, for all ξ ∈ RN ,

|ξ|2 ≥
N∑

i,j=1

(
(1− τ) aij + τδij

)
ξiξj = (1− τ)

(1 + |∇u|2)|ξ|2 − (∇u · ξ)2(√
1 + |∇u|2

)3 + τ |ξ|2 ≥ |ξ|2(√
1 + |∇u|2

)3 .
Hence, the operator (1 − τ)∂uH(u, a) + τ∂uH(0, a) is uniformly elliptic, with coefficients in W 1,p(Ω).
Thus, the same argument used in the second step of the proof of Theorem 4.1 yields the conclusion.

Let us denote by C+ the connected component of S \ Γ−, which contains Γ+, whose existence is
guaranteed by [41, Theorem 4.4].

Let us prove that every (u, a) ∈ C+ \ {(0, a1)} satisfies u � 0. Assume, by contradiction, that this
is false. Since, thanks to the conclusion (b) of Theorem 4.1, C+ \ {(0, a1)} is connected, there must
exist (u, a) ∈ C+ \ {(0, a1)} and a sequence ((uk, ak))k in C+ \ {(0, a1)}, with uk � 0 for all k, which
converges to (u, a) in W 2,p(Ω)× R, such that:

• either u = 0 and a = am = R3

2 λm, for some m > 1,

• or u > 0, but not u� 0; in this case, by Remark 2.1, a > 0.

In the former case, we set, for all k, vk = uk
‖uk‖C1

. Each vk belongs to W 2,p(Ω) ∩ W 1,p
0 (Ω) and

satisfies vk � 0. Moreover, observing that

1

(u−R)2
− 1

R2

1√
1 + |∇u|2

=
2R− u

R2(u−R)2
u+

|∇u|2

R2
√

1 + |∇u|2(1 +
√

1 + |∇u|2)
,

by (4.1), vk satisfies

−∆vk =

N∑
i,j=1

−∂iuk
1 + |∇uk|2

∂jvk ∂ijuk +
2R− uk

R2(uk −R)2
vk
akR

2
√

1 + |∇uk|2
R2 + akuk

+
|∇uk|

R2
√

1 + |∇uk|2(1 +
√

1 + |∇uk|2)
|∇vk|

akR
2
√

1 + |∇uk|2
R2 + akuk

, in Ω. (4.2)

It is easily checked that the right-hand side of this equation is uniformly bounded with respect to k in
Lp(Ω). Hence (vk)k is bounded in W 2,p(Ω) ∩W 1,p

0 (Ω) and thus there exist a subsequence of (vk)k,
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still denoted by (vk)k, and v ∈ W 2,p(Ω) ∩W 1,p
0 (Ω) such that (vk)k converges weakly in W 2,p(Ω) and

strongly in C1(Ω) to v, with ‖v‖C1 = 1. Since (uk)k converges to 0 in C1(Ω), letting k → +∞ in (4.2),
we conclude that v satisfies {

−∆v = λmv, in Ω,
v = 0, on ∂Ω.

This yields a contradiction, because v � 0, whereas all eigenfunctions corresponding to λm, with m > 1,
change sign in Ω.

In the latter case, from (4.1) we infer

−div
( ∇u√

1 + |∇u|2
)
≥
( 1

(u−R)2
− 1

R2

) aR2

R2 + au
≥ 0, in Ω.

The strong maximum principle and the Hopf boundary point lemma yield u� 0, which is a contradic-
tion, thus proving that C+ \ {(0, a1)} ⊆ S+.

Therefore, [41, Theorem 4.4] implies that C+ is not compact in O.
Finally, the behaviour of C+, as described by (i) and (ii), follows from Theorem 4.1.

Next, we discuss the bifurcation of nodal solutions. We first consider the one-dimensional case.

Corollary 4.3. (Bifurcation of nodal solutions in case N = 1) Assume (H1). Then, for all
n ∈ N+, conclusion (a) of Theorem 4.1 holds for the problem−

( u′√
1 + |u′|2

)′
=
( 1

(u−R)2
− 1

R2

1√
1 + |u′|2

) aR2

R2 + au
, in ]− r, r[,

u(−r) = 0, u(r) = 0,

(4.3)

with an = R3n2π2

8r2 and ϕn(x) = sin(nπ(x+r)
2r ).

In addition, the curve Γ = {(tϕn + tψ(t), χ(t)) | |t| < δ} is contained in a connected component C of
S, which is not compact in O. Moreover, for every (u, a) ∈ C \ {(0, an)}, u has exactly n + 1 zeros in
[−r, r].

Finally, near (0, an) the component C behaves as follows:

(i) if Rnπ 6= 4 r and n is odd, then the bifurcation is transcritical, i.e., χ′(0) 6= 0, with χ′(0) > 0, in
case Rnπ > 4 r, and χ′(0) < 0, in case Rnπ < 4 r;

(ii) if Rnπ = 4 r or n is even, then the bifurcation is subcritical, i.e., χ′(0) = 0 and χ′′(0) < 0.

Proof. In case Ω = ] − r, r[, for each n ∈ N+, λn = n2π2

4r2 is a simple eigenvalue, with eigenfunction

ϕn(x) = sin(nπ(x+r)
2r ). Then, the existence of C follows from Theorem 4.1.

Let us prove the nodal properties of the solutions in C. By the uniqueness property of the Cauchy
problem, every non-trivial solution of (4.3) has only simple zeros. Since the map that counts the number
of simple zeros of a function is continuous with respect to the topology of C1([−r, r]), we conclude that
the number of zeros of the non-trivial solutions is constant on C and equals n+ 1. Hence, in particular,
C does not contain another point (0, am) with am 6= an.

Next, conclusions (i) and (ii) follow from Theorem 4.1 observing that∫ r

−r
sin3

(nπ(x+ r)

2r

)
dx =

{
0, if n is even,
8r

3nπ , if n is odd.

This concludes the proof.
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Remark 4.2 In the case n = 1, combining the arguments of the proof of Corollary 4.2 with the nodal
properties of the solutions yields the existence of a connected component C− of the set S− = {(u, a) ∈
S | u� 0}, bifurcating from (0, R

3π2

8r2 ), which is not compact in O.

Remark 4.3 Recall that by Proposition 2.4, if n is odd, we know that u is even, i.e., u is radially
symmetric.

Now we deal with radially symmetric solutions of (4.1) on balls. In the following statement, Jα
denotes the Bessel function of the first kind of order α and {µn,α | n ∈ N+} is the set of the positive
zeros of Jα.

Corollary 4.4. (Bifurcation of nodal radial solutions in case N ≥ 2) Assume (H1), where
Ω = Br is the ball of center 0 and radius r in RN , with N ≥ 2. Then, for all n ∈ N+, conclusion (a)
of Theorem 4.1 holds, where

an =
R3

2

(µn,α
r

)2

, with α = N−2
2 ,

and ϕn(x) = |x|−αJα(
√
λn|x|).

In addition, the curve Γ = {(tϕn + tψ(t), χ(t)) | |t| < δ} is contained in a connected component C
of S, which is not compact in O. Moreover, for every (u, a) ∈ C, there exists v, with exactly n zeros in
[0, r] such that u(x) = v(|x|) in Ω.

Finally, near (0, an) the component C behaves as follows:

(i) if R2λn = 4, then the bifurcation is subcritical, i.e., χ′(0) = 0 and χ′′(0) < 0;

(ii) if N ≥ 3 and R2λn 6= 4, then the bifurcation is transcritical, i.e., χ′(0) 6= 0, with χ′(0) > 0, in
case R2λn > 4, and χ′(0) < 0, in case R2λn < 4.

Proof. Recall that the eigenvalues and the corresponding eigenfunctions of the problem
−∆u = λu in Br,

u = 0 on Br,

u radially symmetric

are given (see, e.g., [18]) by

λn =
(µn,α

r

)2

and ϕn(x) = |x|−αJα(
√
λn|x|), with α = N

2 − 1 and n ∈ N+.

In particular, all the eigenvalues are simple. Hence, we can apply Theorem 4.1. The nodal properties
of the solutions in C can be proved as in Corollary 4.3, passing to the ordinary differential equation
equivalent to (4.1). In order to prove the claimed information on the local behaviour of C near the
bifurcation point, we need to evaluate∫

Br

ϕ3
n(x) dx = ωN

∫ r

0

tN−1ϕ3
n(t) dt = ωN

∫ r

0

t1−αJ3
α

(µn,α
r

t
)
dt

where the fact that N − 1− 3α = N − 1− 3(N2 − 1) = 1− α is used. The change of variable

s =
µn,α
r

t

yields ∫ r

0

t1−αJ3
α

(µn,α
r

t
)
dt =

( r

µn,α

)2−α ∫ µn,α

0

s1−αJ3
α(s) ds.
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By [6, Lemma 3.2] we conclude ∫ t

0

s1−αJ3
α(s) ds > 0 for all t > 0,

provided that α ≥ 1
2 , i.e., N ≥ 3.

Remark 4.4 In case N = 2, we can prove that the conclusion (ii) holds only for n large enough. This
is due to the fact that, in order to get (ii), we need to show that∫ µn,0

0

sJ3
0 (s) ds 6= 0.

By [35, Formula 10.22.74], we have ∫ +∞

0

sJ3
0 (s) ds > 0.

Since µn,0 → +∞, as n→ +∞, we obtain∫ µn,0

0

sJ3
0 (s) ds > 0,

that is, ∫
Br

ϕ3
n(x) dx > 0,

for all large n large. Actually, we have the numerical evidence that∫ t

0

sJ3
0 (s) ds > 0 for all t > 0.

Hence, should this inequality be true, we could conclude that transcritical bifurcation occurs, in dimen-
sion N = 2, whenever λnR

2 6= 4.

5 Existence and multiplicity of one-sign solutions in case N = 1

This section is divided into two subsections, where existence and multiplicity of one-sign solutions for
the one-dimensional problem are separately discussed.

Existence of one-sign solutions in case N = 1

We start studying the existence of positive solutions for the problem{
−u′′ = g(x, u, u′), in ]− r, r[,
u(−r) = 0, u(r) = 0.

(5.1)

The notion of solution of problem (5.1) is similar to the one introduced for problem (1.2). Precisely,
a function u ∈ C2(] − r, r[) ∩ C0([−r, r]) is a (generalized) solution of (5.1) if the following conditions
hold:

• −u′′(x) = g(x, u(x), u′(x)) for all x ∈ ]− r, r[;

• either u(−r) = 0, or u(−r) > 0 and u′(−r+) = +∞, or u(−r) < 0 and u′(−r+) = −∞;
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• either u(r) = 0, or u(r) > 0 and u′(r−) = −∞, or u(r) < 0 and u′(r−) = +∞.

A solution u of (5.1) is classical if u(−r) = 0 = u(r).

Theorem 5.1. Let β1, β2 ∈ C2(] − r, r[) ∩ C0([−r, r]) and β = min{β1, β2} ≥ 0. Let D = {(x, s, ξ) ∈
[−r, r]× R× R | 0 ≤ s ≤ β(x)}. Suppose that

(a) g : D → R is continuous;

(b) g(x, s, ξ) ≥ 0 for all (x, s, ξ) ∈ D;

(c) uniqueness holds for the Cauchy problems associated with the equation in (5.1);

(d) for i = 1, 2, −β′′i (x) ≥ g(x, βi(x), β′i(x)) for every x ∈ ]− r, r[.

Then there exists a solution u of (5.1) satisfying 0 ≤ u ≤ β and u is the minimum among all solutions
v of (5.1) satisfying 0 ≤ v ≤ β.

In case u > 0 we also have u� 0.

Proof. For all n, there exists Nn ∈ R such that, for all (x, s, ξ) ∈ D with |ξ| ≤ n, we have g(x, s, ξ) ≤ Nn.
For every n, we consider the function

gn(x, s, ξ) = min{g(x, s, ξ), Nn}

and the problem {
−u′′ = gn(x, u, u′), in ]− r, r[,
u(−r) = 0, u(r) = 0.

(5.2)

Observe that, for i = 1, 2, βi is an upper solution of (5.2). Moreover, 0 is a lower solution of (5.2).
Hence, by [16, Theorem II-1.6], there exists a solution vn ∈ C2([−r, r]) of (5.2) satisfying 0 ≤ vn ≤ β
which is the minimum among all solutions v of (5.2) satisfying 0 ≤ v ≤ β.

Step 1. Convergence. By the sign assumption on g, vn is concave in ]− r, r[. Hence, there exists M > 0
such that, for all n, ‖vn‖∞ + ‖v′n‖L1 ≤ M . Therefore there exists a subsequence of (vn)n, we still
denote by (vn)n, converging in L1(−r, r) and a.e. in ] − r, r[ to a function u ∈ BV (−r, r) (see e.g. [1,
Theorem 3.23]). Let us verify the regularity in ]− r, r[ of u. Fix ε with 0 < ε < r. The concavity and
the boundedness of vn imply that

v′n(−r + ε) ≤ M

ε
and v′n(r − ε) ≥ −M

ε
.

By the monotonicity of v′n we conclude that

|v′n(x)| ≤ M

ε

for every n and all x ∈ [−r + ε, r − ε]. As, by continuity of g, there exists L > 0 such that,

0 ≤ g(x, s, ξ) ≤ L, for all (x, s, ξ) ∈ D with |ξ| ≤ M
ε ,

we have also, for every n ≥ M
ε and all x ∈ [−r + ε, r − ε],

0 ≤ gn(x, vn(x), v′n(x)) = g(x, vn(x), v′n(x)) ≤ L.

Since vn satisfies the equation in (5.2), by the Arzelà-Ascoli theorem, the sequence (vn)n converges in
C1([−r + ε, r − ε]) to u. Taking the limit we conclude that u satisfies the equation

−u′′ = g(x, u, u′),
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in [−r + ε, r − ε]. Note that then u ∈ C2(]− r, r[) and satisfies

−u′′ = g(x, u, u′), in ]− r, r[.

As u is the pointwise limit of a sequence of non-negative concave functions, we know that u is non-
negative concave and either u ≡ 0 or u� 0.

Step 2. Behaviour at the boundary. To prove that u is a solution of (5.1), it remains to consider the
behaviour of u at the points −r and r. Since u is non-negative and concave, there exist the limits

lim
x→−r+

u(x) = u(−r+) ∈ [0,+∞[, lim
x→r−

u(x) = u(r−) ∈ [0,+∞[,

and

lim
x→−r+

u′(x) = u′(−r+) ∈ [0,+∞[∪{+∞}, lim
x→r−

u′(x) = u′(r−) ∈ ]−∞, 0] ∪ {−∞}.

Suppose that u(−r+) > 0. We aim to show that u′(−r+) = +∞. By contradiction, suppose that
u′(−r+) ∈ R. Consider the Cauchy problems{

−w′′ = gn(x,w,w′),

w(0) = vn(0), w′(0) = v′n(0),

and {
−w′′ = g(x,w,w′),

w(0) = u(0), w′(0) = u′(0).

The continuous dependence on parameters and initial conditions, which follows from (c), yields

0 = lim
n→+∞

vn(−r) = u(−r+) > 0,

which is a contradiction.
In a parallel way, we obtain that u′(r−) = −∞ in case u(r−) > 0.

Step 3. Minimality of the solution u. Let us prove that u is is the minimum among all solutions v of
(5.1) satisfying 0 ≤ v ≤ β. Let v be such a function. Then, for each n, v is an upper solution of (5.2)
with v ≥ 0, hence, by the minimality of vn, we conclude that vn ≤ v and therefore u ≤ v, in ]−r, r[.

Remark 5.1 If, in addition to the hypotheses of Theorem 5.1, we assume that β(−r) = β(r) = 0, then
the solution u we have found is classical.

Corollary 5.2. Fix d ∈ R+ ∪ {+∞} and let g : [−r, r]× [0, d[×R→ R be a non-negative continuous
function. Assume that uniqueness holds for the Cauchy problems associated with the equation in (5.1).
If there exists a solution u of (5.1), then there exists the minimum solution um among all solutions of
(5.1).

Proof. First observe that, as g is non-negative, every solution of (5.1) is non-negative.
By Theorem 5.1 applied with β = u, there exists the minimum solution um of (5.1) among all

solutions v satisfying 0 ≤ v ≤ u. If um is not the minimum solution of (5.1), then there exists a solution
v of (5.1) with min(v−um) < 0. By Theorem 5.1, there exists the minimum solution u0 of (5.1) among
all solutions v satisfying 0 ≤ u0 ≤ min{um, v}. This implies that 0 ≤ u0 < um ≤ u which contradicts
the fact that um is the minimum solution lying between 0 and u.
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Let us consider problem (1.2) in case N = 1 and Ω = ]− r, r[, i.e.,−(1− bu)
( u′√

1 + |u′|2
)′

=
a

(u−R)2
+

b√
1 + |u′|2

, in ]− r, r[,

u(−r) = 0, u(r) = 0,

(5.3)

where a, b ∈ R are parameters and R > 0 is a fixed constant.
We associate with the equation in (5.3) the function

g(x, s, ξ) =
( a

(s−R)2
+

b√
1 + ξ2

) (1 + ξ2)3/2

1− bs
. (5.4)

We prove now a comparison principle for the solutions of (5.3).

Lemma 5.3. Assume (H1). Suppose that
a1

R2
+ b1 ≥ 0 holds, with a1 ≥ 0, and take any a2 ≥ a1 and

b2 ≥ b1. Suppose further that problem (5.3) has positive solutions ui for (a, b) = (ai, bi), with i = 1, 2,
and that u1(−r) = u2(−r) and u′1(−r) = u′2(−r) (or, equivalently, u1(r) = u2(r) and u′1(r) = u′2(r)),
possibly infinite. Then, we have u2 ≤ u1. In particular, if u1 is the minimum positive solution of (5.3)
for a = a1 and b = b1, then a1 = a2, b1 = b2 and u1 = u2.

Proof. Set c = u1(−r) = u2(−r) and d = 1/u′1(−r) = 1/u′2(−r) if u′1(−r) 6= +∞, d = 0 otherwise.
Observe that, by Lemma 2.5 and by uniqueness for the Cauchy problems associated with the equation
in (5.3), we have that u1 and u2 are both strictly positive, concave, even and increasing on [−r, 0].
Denote by ϕ1 and ϕ2 the inverse functions of the restrictions to [−r, 0] of u1 and u2, respectively, and
set y1 = ϕ′1, y2 = ϕ′2. Observe that the function y1 = y1(z) is a solution of the initial value problemy

′ =
( a1

(R− z)2
+

b1y√
1 + y2

) (1 + y2)3/2

1− b1z
,

y(c) = d,

and the function y2 = y2(z) is a solution of the initial value problemy
′ =

( a2

(R− z)2
+

b2y√
1 + y2

) (1 + y2)3/2

1− b2z
,

y(c) = d.

(5.5)

We claim that y1(z) ≤ y2(z) for all z ∈ [c, ω[, where ω = min{u1(0), u2(0)}. By contradiction, suppose
that there exists z0 ∈ ]c, ω[ where y1(z0) > y2(z0). As y2 is a solution of (5.5) and y1 satisfies

y′1 ≤
( a2

(R− z)2
+

b2y1√
1 + y2

1

) (1 + y2
1)3/2

1− b2z
,

using, e.g., [36, Lemma 2.1], for all p ∈ ]y2(z0), y1(z0)[, there exists a solution y : [c, z0] → R of the
equation

y′ =
( a2

(R− z)2
+

b2y√
1 + y2

) (1 + y2)3/2

1− b2z

satisfying min{y1, y2} ≤ y ≤ max{y1, y2} and y(z0) = p. As p > y2(z0) we obtain a solution of the
initial value problem (5.5) which is different from y2, thus yielding a contradiction with the uniqueness
of the solution of the Cauchy problem. Since

ϕ2(z)− ϕ1(z) =

∫ z

c

(
y2(s)− y1(s)

)
ds ≥ 0,
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for all z ∈ [c, ω[, we conclude that ϕ1 ≤ ϕ2 on [c, ω[. Therefore u2 ≤ u1 which concludes the first part
of the proof.

To prove the second claim of the statement we apply Theorem 5.1 for g defined in (5.4), with β = u2,
a = a1 and b = b1. Hence, the minimum positive solution u1 of (5.3), for a = a1 and b = b1, satisfies
also u1 ≤ u2 and, consequently, we have u1 = u2 as well as a1 = a2 and b1 = b2.

Theorem 5.4. Assume (H1). Suppose that
a1

R2
+ b1 ≥ 0 holds, with a1 ≥ 0, and take any a2 ≥ a1 and

b2 ≥ b1. Let u1 be the minimum positive solution of (5.3) for a = a1 and b = b1, in case
a1

R2
+ b1 > 0,

and u1 = 0 in case
a1

R2
+ b1 = 0. Suppose further that u2 is a positive solution of (5.3) for a = a2 and

b = b2, with u1 6= u2. Then, we have u1 � u2.

Proof. By applying Theorem 5.1 for g defined in (5.4), with β = u2, a = a1 and b = b1, we have that
u1 ≤ u2.

Let us prove that, for all x ∈ ]− r, r[, u1(x) < u2(x). In case a1 = a2 and b1 = b2, the claim follows
by uniqueness for the Cauchy problems associated with the equation in (5.3). In case (a1, b1) 6= (a2, b2)
assume, by contradiction, that min(u2− u1) = u2(x0)− u1(x0) = 0. Then we have u′2(x0)− u′1(x0) = 0
and u′′2(x0) − u′′1(x0) ≥ 0. From the equation satisfied by u2 and u1 we obtain the contradiction
u′′2(x0)− u′′1(x0) < 0.

By Lemma 5.3, we infer that either u1(−r) < u2(−r) or u′1(−r) < u′2(−r). Altogether this gives
u1 � u2.

Proposition 5.5. Assume (H1). Suppose that u is the minimum positive solution of (5.3) for some

a ≥ 0 and b ≥ − 2
R , with

a

R2
+ b > 0. Then, u is classical.

Proof. Recall that, by Lemma 2.5, u is concave and even. By contradiction, suppose that u(−r) =
u(r) = δ > 0.

Observe that, for any fixed x ∈ [−r, r], the function

f1(δ) =
b

1− b(u(x)− δ)

is decreasing on [0, δ] and, due to the assumption b ≥ − 2
R , the function

f2(δ) =
a

(u(x)− δ −R)2(1− b(u(x)− δ))

is decreasing on [0, δ]. Hence β = u− δ satisfies

−β′′ ≥
( a

(β −R)2
+

b√
1 + |β′|2

) (1 + |β′|2)3/2

1− b β

and we can apply Theorem 5.1 for g defined in (5.4), with β = u − δ. Therefore, problem (5.3) has a
solution u1 satisfying 0 ≤ u1 ≤ u− δ, thus contradicting the minimality of u.

Proposition 5.6. Assume (H1). Suppose there exist a2 ≥ a1 ≥ 0 and b2 ≥ b1 with (a2, b2) 6= (a1, b1),
a1

R2
+ b1 > 0, such that (5.3), with a = a2 and b = b2, has a positive classical solution. Then the

minimum positive solution u of (5.3), with a = a1 and b = b1, is classical and u ∈ C2([−r, r]).
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Proof. By Theorem 5.4, the minimum positive solution u of (5.3), with a = a1 and b = b1, is classical.
As u2 6= u, by Lemma 5.3 we have that u′(−r) < u′2(−r). From the equation, we conclude that
u ∈ C2([−r, r]).

Corollary 5.7. Assume (H1). Suppose that u is the minimum positive solution of (5.3), for some a ≥ 0

and b < − 2
R , with

a

R2
+ b ≥ 0. Assume there exists b ≥ − 2

R such that (5.3), with b = b, has a positive

solution u. Then, u is classical and u ∈ C2([−r, r]).

Proof. Without loss of generality we can assume that u is the minimum solution of (5.3) for a and b = b.
By Proposition 5.5, u is classical. It also satisfies

−u′′ ≥
( a

(u−R)2
+

b√
1 + |u′|2

) (1 + |u′|2)3/2

1− b u
.

Hence, we can apply Theorem 5.1 for g defined in (5.4), with β = u, and therefore u is classical. The
rest of the proof follows exactly as in Proposition 5.6.

Theorem 5.8. Assume (H1). Let us set

b∗ = sup{b | problem (3.16) has a solution u with u(0) < R}

and recall that λ1 = π2

4r2 . Then, we have 0 < b∗ < +∞ and there exists a function a∗ : ]− R
2 λ1, b

∗[→ R+

such that

(a) for all b ∈ ]− R
2 λ1, 0[, a∗(b) > −R2b;

(b) a∗ is strictly decreasing and right-continuous;

(c) problem (5.3) has at least one positive solution u1 in the following cases:

• 0 ≤ b < b∗ and 0 < a ≤ a∗(b),
• −R2 λ1 < b < 0 and −R2b < a ≤ a∗(b);

(d) problem (5.3) has no positive solution in the following cases:

• b ≥ b∗ and a > 0,

• −R2 λ1 < b < b∗ and a > a∗(b).

Moreover, the solution u1 we have found in (c) is classical and also, if a < a∗(b), u1 ∈ C2([−r, r]), in
the following cases:

• 0 ≤ b < b∗ and 0 < a ≤ a∗(b),

• πR ≤ 4r, −R2 λ1 < b < 0 and −R2b < a ≤ a∗(b),

• πR > 4r, − 2
R ≤ b < 0 and −R2b < a ≤ a∗(b),

• πR > 4r, −R2 λ1 < b < − 2
R and −R2b < a ≤ a∗(− 2

R ).

Remark 5.2 According to Remark 3.6, we have b∗ = b̃, if R ≤ 1
b#
− r

t#
, and b∗ = b#, if R > 1

b#
− r

t#
.

Remark 5.3 By Theorem 3.1, recall that b∗ ≤ 1
r .
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Remark 5.4 Observe that, if πR ≤ 4r, then all solutions u1 whose existence is proved above are
classical.

Remark 5.5 If a > 0 and b ≥ 0, by Theorem 2.1 any solution of problem (5.3) is positive. Hence we
deduce that, for all b ∈ ]0, b∗[ and a > a∗(b), problem (5.3) has no solutions at all.

Proof. The proof is divided into several steps.

Step 1. Existence of a positive solution u ∈ C2([−r, r]) for 0 ≤ b < b∗ and small a > 0. Fix b ∈ [0, b∗[,
choose b ∈ ]b, b∗[ and let u ∈ C2([−r, r]) be a positive solution of (3.16) for b = b, with u(0) < R. Then,
for a > 0 small enough we have, for all x ∈ ]− r, r[,

b√
1 + |u′(x)|2

1

1− bu(x)
>
( a

(u(x)−R)2
+

b√
1 + |u′(x)|2

) 1

1− bu(x)
.

Hence β = u satisfies the assumptions of Theorem 5.1, for g defined in (5.4), and therefore problem (5.3)
has a positive solution u ≤ u. This proves that the set

Ab = {a > 0 | problem (5.3) has a positive solution}

is not empty. Define a∗(b) = supAb. Recall that, by Remark 3.1, a∗(b) ≤ ( 1
r − b)R

2. Moreover, by
definition of a∗(b), problem (5.3) has no positive solution for a > a∗(b).

Step 2. Existence of a positive solution u ∈ C2([−r, r]) for −R2 λ1 < b < 0, a > −R2b with a + R2b
small. This can be deduced from Lemma 3.2. Define Ab as above and set a∗(b) = supAb. By Theorem
3.1, we have that a∗(b) < +∞. Moreover, by definition of a∗(b), problem (5.3) has no positive solution
for a > a∗(b).

Step 3. Non-existence of solution for b > b∗ and a > 0. Assume, by contradiction, that β is a positive
solution of (5.3) with b > b∗ and a > 0. Then β satisfies the assumptions of Theorem 5.1 for g defined
by (5.4) with a = 0 and, hence, there exists a positive solution u of problem (3.16) with u(0) < R for
b > b∗, thus contradicting the definition of b∗.

Step 4. Non-existence of solution for b = b∗ and a > 0. Assume, by contradiction, that ū is a positive
solution of (5.3) with b = b∗ and ā > 0. Then, for every a ∈ ]0, ā[, ū satisfies the assumptions of
Theorem 5.1 for g defined by (5.4) with a and b = b∗ and, hence, there exists the minimum positive
solution u of problem (5.3) with u(0) < R. By Proposition 5.5 u is classical and, by Proposition 5.6,
possibly replacing a with ã < a, u ∈ C2([−r, r]). Take b > b∗ such that

1− bu(x) > 0 and
b− b∗

1− bu(x)
≤ a

R2
,

for all x ∈ [−r, r]. Then u satisfies the assumptions of Theorem 5.1 for g defined by (5.4) with a = 0 and,
hence, there exists a positive solution û of problem (3.16) with û(0) < R for b > b∗, thus contradicting
the definition of b∗.

Step 5. Existence of the minimum positive solution u1 and its regularity for either 0 ≤ b < b∗ and
0 < a < a∗(b) or −R2 λ1 < b < 0 and −R2b < a < a∗(b). Choose â ∈ ]a, a∗(b)] such that problem (5.3),
for â and b, has a positive solution û. Then β = û satisfies the assumptions of Theorem 5.1 for g
as in (5.4) and therefore problem (5.3) has a minimum positive solution u1. Its regularity in case
either b ≥ 0, or πR > 4r, − 2

R ≤ b < 0 and −R2b < a ≤ a∗(b), or πR > 4r, −R2 λ1 < b < − 2
R and

−R2b < a ≤ a∗(− 2
R ), can be deduced from Proposition 5.5, Proposition 5.6, and Corollary 5.7.
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Step 6. Existence of a positive classical solution for 0 ≤ b < b∗ and a = a∗(b). We pick an increasing
sequence (an)n with 0 < a1 < a∗(b) converging to a∗(b). For each n we denote by un the minimum
positive solution of problem (5.3) with a = an and b. We claim that the sequence (un)n is bounded
away from R. Take δ ∈ ]0, R/2[ satisfying

4δ(R− δ) < a1r. (5.6)

We aim to show that un(x) < R − δ for all x ∈ [−r, r] and all n. Suppose, by contradiction, that
maxun = un(0) ≥ R− δ for some n. By the concavity of un, we have

un(x) ≥ un(0)

r
(x+ r) ≥ R− δ

r
(x+ r) for all x ∈ [−r, 0].

Set x0 = − rδ
R−δ . Then we have

un(x) ≥ R− 2δ, for all x ∈ [x0, 0].

Integrating the equation in (5.3) on the interval [x0, 0] we obtain, by (5.6),

u′n(x0)√
1 + |u′n(x0)|2

≥
∫ 0

x0

an
(2δ)2

dx ≥ a1

4δ2

rδ

R− δ
> 1,

which is a contradiction.
As the sequence (un)n is uniformly upper bounded by R − δ, arguing as in Step 1 and Step 2 of

the proof of Theorem 5.1, we see that there exists a subsequence converging to some function u ∈
C2(]− r, r[)∩C0([−r, r]) which satisfies 0 ≤ u ≤ R− δ in [−r, r] and is a solution of (5.3) for a = a∗(b).
By Proposition 5.5, the minimum positive solution is a classical solution of (5.3) for a = a∗(b).

Step 7. Existence of a positive solution for −R2 λ1 < b < 0 and a = a∗(b). We argue as in Step 6
choosing δ ∈ ]0, R/2[ such that ( a1

4δ2
+ b
) 1

1− bR
rδ

R− δ
> 1.

Taking the minimum positive solution, by Proposition 5.5, we obtain a positive solution of (5.3) for
a = a∗(b), which is classical if b ≥ − 2

R .

Step 8. The function a∗ is decreasing. Suppose that b1 < b2 < b∗ and assume that, for some a1 > 0,
there exists a positive solution β of (5.3) with a = a1 and b = b2. Observe that β satisfies the
assumptions of Theorem 5.1 for g as in (5.4) with a = a1 and b = b1. Therefore, problem (5.3), with
a = a1 and b = b1, has a solution u1, thus showing that a∗(b1) ≥ a∗(b2).

Step 9. The function a∗ is strictly decreasing. Suppose, by contradiction, that b1 < b3 and a∗(b1) =
a∗(b3). Denote by u3 the minimum positive solution of (5.3) for b = b3 and a = a∗(b1). Take b2 ∈ ]b1, b3[
and let β be the minimum positive solution of (5.3) for b = b2 and a = a∗(b2) (= a∗(b1) = a∗(b3) by the
previous step). By Proposition 5.6, either β is not classical, or β is classical. In the latter case, possibly
replacing β with the minimum positive solution of (5.3), where b2 is substituted by b̃2 ∈ ]b1, b2[, we also
have β ∈ C2([−r, r]). This implies that we have, for all x ∈ [−r, r],( a∗(b1)

(β(x)−R)2
+

b2√
1 + |β′(x)|2

) 1

1− b2β(x)
>
( a∗(b1)

(β(x)−R)2
+

b1√
1 + |β′(x)|2

) 1

1− b1β(x)
.

Hence, there exists ε > 0 such that β satisfies the assumptions of Theorem 5.1 for g defined by

g(x, s, ξ) =
(a∗(b1) + ε

(s−R)2
+

b1√
1 + ξ2

) (1 + ξ2)3/2

1− b1s
.

This implies that problem (5.3), for a = a∗(b1) + ε and b = b1, has a solution, thus contradicting the
definition of a∗(b1).
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Step 10. The function a∗ is right-continuous. As a∗ is decreasing, we know that lim
b→b+0

a∗(b) ≤ a∗(b0).

Assume, by contradiction, that lim
b→b+0

a∗(b) < a∗(b0) and choose ε < a∗(b0)− lim
b→b+0

a∗(b). Observe that,

for all b > b0, we have
a∗(b) < a∗(b0)− ε. (5.7)

Let u0 satisfy −u
′′
0 =

( a∗(b0)

(u0 −R)2
+

b0√
1 + |u′0|2

) (1 + |u′0|2)3/2

1− b0 u0
, in ]− r, r[,

u0(−r) = 0, u0(r) = 0.

We can choose δ > 0 small enough such that, for all x ∈ [−r, r],

−u′′0(x) ≥
( a∗(b0)− ε

(u0(x)−R)2
+

b0 + δ√
1 + |u′0(x)|2

) (1 + |u′0(x)|2)3/2

1− (b0 + δ)u0(x)
.

By Theorem 5.1 for g defined in (5.4), problem (5.3), with a = a∗(b0)− ε and b = b0 + δ, has a solution
and, hence, we infer that a∗(b0 + δ) ≥ a∗(b0)− ε, thus contradicting (5.7).

We provide some estimates on a∗(b), which refine the ones given in Remark 3.1.

Proposition 5.9. Assume (H1). Let a∗ : ] − R
2 λ1, b

∗[→ R+ be the function defined in Theorem 5.8.
Then,

a∗(b) ≤ min
{(
λ1 − b2

) R3

2 + bR
,
(1

r
− b
)
R2
}
, if 0 ≤ b < b∗, (5.8)

and

a∗(b) ≤ λ1R
3

2
(1− bR), if − R

2
λ1 < b < 0.

In case b > 0, the following lower estimate also holds:

a∗(0)(1− bR)− bR2 ≤ a∗(b).

Proof. The proof is divided into two parts.

Part 1. Upper estimate on a∗(b). In case a ≥ 0 and b ≥ 0, if u is a solution of (5.3), then u satisfies

−u′′ =
( a

(u−R)2
+

b√
1 + |u′|2

) (1 + |u′|2)3/2

1− bu

≥
( a

(u−R)2
+ b
) 1

1− bu
≥
( a

R2
+ b
)

+
( 2a

R3
+
( a
R2

+ b
)
b
)
u ≥

( 2a

R3
+
( a
R2

+ b
)
b
)
u.

(5.9)

As u is concave and even, we have ∫ r

−r
|u′(x)| dx = 2(u(0)− u(r)),

so that u′ ∈ L1(−r, r), and

u(x)− u(−r) ≥ u′(x)(x+ r) ≥ 0, for all x ∈ [−r, 0],

u(x)− u(r) ≥ u′(x)(x− r) ≥ 0, for all x ∈ [0, r].
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Hence, as ϕ1(x) = sin( π2r (x+ r)), we infer

lim
x→∓r

u′(x)ϕ1(x) = lim
x→∓r

u′(x)(x± r)ϕ1(x)

x± r
= 0.

Integrating by parts, we obtain

− lim
x→r

∫ x

−x
u′′ϕ1 ds = lim

x→r

[
− u′(x)ϕ1(x) + u′(−x)ϕ1(−x)

]
+ lim
x→r

∫ x

−x
u′ϕ′1 ds

=

∫ r

−r
u′ϕ′1 ds = u(r)ϕ′1(r)− u(−r)ϕ′1(−r)−

∫ r

−r
uϕ′′1 ds = λ1

∫ r

−r
uϕ1 ds.

From (5.9) we deduce

λ1

∫ r

−r
uϕ1 ds ≥

( 2a

R3
+
( a
R2

+ b
)
b
)∫ r

−r
uϕ1 ds,

and the first estimate in (5.8) follows. The second estimate follows from Remark 3.1.

In case b < 0 and
a

R2
+ b > 0, if u is a positive solution of (5.3), then u satisfies

−u′′ =
( a

(u−R)2
+

b√
1 + |u′|2

) (1 + |u′|2)3/2

1− bu

≥
( a

(u−R)2
+ b
) 1

1− bR
≥
( a

R2
+ b
) 1

1− bR
+

2a

R3

1

1− bR
u ≥ 2a

R3

1

1− bR
u.

Hence arguing as above we obtain the estimate a ≤ λ1
R3

2 (1− bR).

Part 2. Lower estimate on a∗(b). We finally prove that the inequality

a∗(b) ≥ a∗(0)(1− bR)− bR2

holds for all b > 0. We shall assume 0 < b < 1
R , otherwise the right-hand side is negative and the

inequality trivially holds. Assume, by contradiction, the existence of b with

a∗(b) + bR2

1− bR
< a∗(0).

Let ε > 0 be such that
a∗(b) + ε+ bR2

1− bR
< a∗(0)

and u∗ be the solution of (5.3) with b = 0 and a = a∗(0). We have

−
( u∗′√

1 + |u∗′|2
)′

=
a∗(0)

(u∗ −R)2
≥ a∗(b) + ε

(1− bR)(u∗ −R)2
+

bR2

(1− bR)(u∗ −R)2

≥ a∗(b) + ε

(1− bu∗)(u∗ −R)2
+

b

(1− bu∗)
√

1 + |u∗′|2
.

Then β = u∗ satisfies the assumptions of Theorem 5.1 for g as in (5.4) with a = a∗(b) + ε and hence
there exists a solution of (5.3) with a = a∗(b) + ε, which contradicts the definition of a∗(b).

We conclude this section discussing the existence of negative solutions. In the following theorem the
constant b# comes from (3.15).
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Theorem 5.10. Assume (H1). For all b, with −b# < b < 0 and a, with 0 < a < −R2b, problem (5.3)
has at least one solution u ∈ C2([−r, r]) with u� 0.

Proof. Fix b ∈ [−b#, 0[. By Proposition 3.6 there exists a solution u1(·; 0, b) � 0 of (3.16). For any
a ∈ ]0,−R2b[, u1(·; 0, b) is a lower solution and 0 is an upper solution of (5.3). Observing that

g(s, ξ) = a
(1 + |ξ|2)3/2

(s−R)2(1− b s)
+ b

1 + |ξ|2

1− b s
≥ b1 + |ξ|2

1− b s

satisfies a one-sided Nagumo condition, we can apply [16, Theorem II-3.1] and get the existence of a
solution u(·; a, b) ∈ C2([−r, r]) of (5.3). As 0 is not a solution, we have u < 0. Actually, we have u� 0.
Indeed, otherwise, there should exist x ∈ [−r, r] such that u(x) = maxu = 0 and u′(x) = 0. From the
equation we obtain the contradiction u′′(x) = − a

R2 − b > 0.

Multiplicity of one-sign solutions in case N = 1

We start this section studying the multiplicity of positive solutions for problem (5.3).

Theorem 5.11. Assume (H1). Suppose that problem (5.3) has a positive solution û, for a = â ≥ 0 and

b = b̂ ≤ 1
R , with

â

R2
+ b̂ > 0. Then, for any a and b, with 0 ≤ a ≤ â, b ≤ b̂,

a

R2
+ b ≥ 0, (â, b̂) 6= (a, b)

problem (5.3) has at least two solutions u1 and u2, satisfying

(a) 0� u1 � u2 and u1 is the minimum among all positive solutions of (5.3), in case
a

R2
+ b > 0;

(b) 0 = u1 � u2, in case
a

R2
+ b = 0.

Remark 5.6 In case b = 0, this multiplicity result was first established in [7] (see also [9, 37]).

Proof. In case a = 0, the result follows from Proposition 3.6. So, let us assume that a > 0.

Fix 0 < a ≤ â and b ≤ b̂ with
a

R2
+ b ≥ 0 and (â, b̂) 6= (a, b). In case

a

R2
+ b = 0 we set u1 = 0.

In case
a

R2
+ b > 0 we observe that the function β = û satisfies the assumptions of Theorem 5.1 for

g defined by (5.4), hence there exists a minimum positive solution u1 of (5.3) with 0 � u1 < û. By
Theorem 5.4 we actually have u1 � û. We aim to prove the existence of a second solution u2 of (5.3);
this will be achieved in several steps. Since g is independent of x, for sake of simplicity we shall write
g(s, ξ) instead of g(x, s, ξ) from now on.

Step 1. Construction of a large lower solution of (5.3). We first consider the case b ≥ 0. Observe that,
for all s ∈ [0, R[ and ξ ∈ R, we have

g(s, ξ) ≥ a

(R− s)2
.

We set

M = max û < R ≤ 1

b̂

and choose c > 0 satisfying

R

2cr2
< 1, 2ac

( r4

R4

)
> 1, R− R2

4cr2
> M. (5.10)

We set

d = R− R2

4cr2
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and define

α(x) =


R
r x+R, if x ∈ [−r,− R

2cr [,

d− cx2, if x ∈ [− R
2cr ,

R
2cr ],

−Rr x+R, if x ∈] R2cr , r].

Note that α ∈ W 2,∞(−r, r), α(−r) = 0 and α(r) = 0 and, for all x ∈ [−r, r], (α(x), α′(x)) ∈ dom g, as

R ≤ 1
b̂
. For all x ∈ ]− R

2cr ,
R

2cr [, we have α(x) ≥ α(− R
2cr ) = R− R2

2cr2 > 0 and

g
(
α(x), α′(x)

)
≥ a(

R− α(x)
)2 ≥ a(2cr2

R2

)2

> 2c = −α′′(x).

Furthermore, if x ∈ [−r,− R
2cr [∪ ] R2cr , r], we also have

−α′′(x) = 0 < g(α(x), α′(x)).

Note that, for all x0 ∈ [−r, r], there exists ε > 0 such that, for a.e. x ∈ ]x0 − ε, x0 + ε[∩ [−r, r],
u ∈ [α(x), α(x) + ε], v ∈ [α′(x)− ε, α′(x) + ε] we have

−α′′(x) ≤ g(u, v).

Applying [16, Proposition III-2.3], we conclude that α is a strict lower solution of−u
′′ =

( a

(u−R)2
+

b√
1 + |u′|2

) (1 + u′2)
3
2

1− bu
, in ]− r, r[,

u(−r) = 0, u(r) = 0.

(5.11)

In case − a
R2 ≤ b < 0, we observe that, for all (s, ξ) ∈ [0, R[×R, we have

g(s, ξ) ≥
( a

(R− s)2
+ b
) 1

1 + |b|R
,

with strict inequality if ξ 6= 0 or s 6= 0. We set again M = max û < R. In this case we choose c > 0
such that

R

2cr2
< 1,

(
a
(2cr2

R2

)2

+ b
) 1

1 + |b|R
> 2c, R− R2

4cr2
> M. (5.12)

We define d and α as in case b ≥ 0 and, arguing as in the previous case, we conclude that α is a strict
lower solution of (5.11) as well.

Step 2. Construction of an upper solution β of (5.11) with β(x) > û(x) for all x ∈ [−r, r]. As â ≥ a

and b̂ ≥ b, with (â, b̂) 6= (a, b), possibly replacing (â, b̂) with some (ã, b̃) satisfying â ≥ ã ≥ a, b̂ ≥ b̃ ≥ b,
(â, b̂) 6= (ã, b̃) and (ã, b̃) 6= (a, b), by Proposition 5.6 we see that either û is not classical and û(−r) > 0,
or û is classical and û ∈ C2([−r, r]). In both cases we have, for all x ∈ [−r, r],

( â(
û(x)−R

)2 +
b̂√

1 + |û′(x)|2
) 1

1− b̂û(x)
>
( a(
û(x)−R

)2 +
b√

1 + |û′(x)|2
) 1

1− bû(x)
.

Take ε > 0 so small that, for all x ∈ [−r, r],

( â(
û(x)−R

)2 +
b̂√

1 + |û′(x)|2
) 1

1− b̂û(x)
>
( a(
û(x) + ε−R

)2 +
b√

1 + |û′(x)|2
) 1

1− b
(
û(x) + ε

) .
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Therefore βε = û+ ε is a strict upper solution of (5.11) (see [16, Proposition III-2.2]).

Step 3. A modified problem. Let (Rn)n be an increasing sequence converging to R and satisfying R1 > d
and let (Kn)n be an increasing divergent sequence satisfying K1 >

R
r . For all n and (s, ξ) ∈ R× R we

define

g̃n(s, ξ) =


g(0, ξ) if s < 0,

g(s, ξ) if 0 ≤ s ≤ Rn,
g(Rn, ξ) if s > Rn,

and

gn(s, ξ) =


min{g̃n(s, ξ), g̃n(s,−Kn)} if ξ < −Kn,

g̃n(s, ξ) if −Kn ≤ ξ ≤ Kn,

min{g̃n(s, ξ), g̃n(s,Kn)} if ξ > Kn.

Next we consider the problem {
−u′′ = gn(u, u′), in ]− r, r[,
u(−r) = 0, u(r) = 0.

(5.13)

We first observe that 0 is a lower solution of (5.13). Next, since Kn >
R
r and Rn > d, we note that

gn
(
α, α′

)
= g

(
α, α′

)
and α is still a strict lower solution of (5.13). Finally, if we choose ε ∈ ]0, d−M ],

then maxβε = M + ε ≤ d < R1 < Rn, and, for every x ∈ [−r, r],

−β′′ε (x) > g
(
βε(x), β′ε(x)

)
= g̃n(βε(x), β′ε(x)) ≥ gn

(
βε(x), β′ε(x)

)
.

By [16, Proposition III-2.2], we conclude that βε is a strict upper solution of (5.13).
Since maxα = d > maxβε and the function gn is bounded, by [17, Theorem 4.1], there exists a

positive solution vn ∈ C2([−r, r]) of (5.13), satisfying, for some x̂n, ŷn ∈ [−r, r], vn(x̂n) < α(x̂n) and
vn(ŷn) > βε(ŷn). Notice that, by Lemma 2.5, vn is even and concave. In particular, we may assume
that x̂n, ŷn ∈ [−r, 0].

Step 4. Estimates on vn in case b > 0. In this step we aim to show that vn(x) ≤ R − 7R2

32cr2 , for all
x ∈ [−r, r].

In case max vn = vn(0) ≤ R − R2

4cr2 = d, the result is proved. Therefore, let us suppose that
max vn = vn(0) > d.

Let −r < x1 < x2 < 0 be points where

vn(x1) = R− R2

2cr2
, vn(x2) = d.

Observe that, for all x ∈ [x1, x2], we have vn(x) ≤ d < Rn and hence, by the definition of gn,

gn(vn(x), v′n(x)) ≥ a(
R− vn(x)

)2 .
Therefore, using (5.10), we obtain, for x ∈ [x1, x2],

−v′′n(x) = gn
(
vn(x), v′n(x)

)
≥ a(

R− vn(x)
)2 ≥ a(

R− vn(x1)
)2 = a

(2cr2

R2

)2

> 2c. (5.14)

On the other hand, as Rn ≥ d = vn(x2), again by the definition of gn we have also, for all x ∈ [x2, 0],

−v′′n(x) = gn
(
vn(x), v′n(x)

)
≥ a(

R− vn(x2)
)2 = a

(4cr2

R2

)2

> 8c.
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Integrating −v′′n between x1 and x2 yields

v′n(x1)− v′n(x2) =

∫ x2

x1

−v′′n(t) dt > 2c(x2 − x1), (5.15)

while integrating −v′′n between x2 and 0 yields

v′n(x2) =

∫ 0

x2

−v′′n(t) dt > −8cx2. (5.16)

Case 1. v′n(x1) ≤ R
r . By concavity of vn, we have

R2

4cr2
= vn(x2)− vn(x1) =

∫ x2

x1

v′n(s) ds ≤ v′n(x1)(x2 − x1) ≤ R

r
(x2 − x1).

This implies that

x2 − x1 ≥
R

4cr

and, using (5.15), we obtain

v′n(x2) ≤ v′n(x1)− 2c(x2 − x1) ≤ R

r
− R

2r
=
R

2r
.

By (5.16), we have also

−x2 ≤
1

8c
v′n(x2) ≤ R

16cr
.

These two inequalities imply that

vn(0) = max vn = vn(x2) +

∫ 0

x2

v′n(s) ds ≤ R− R2

4cr2
+ v′n(x2)|x2| ≤ R−

R2

4cr2
+

R2

32cr2
= R− 7R2

32cr2
.

Case 2. v′n(x1) > R
r . Since v′n(x) > R

r in [−r, x1] and vn(x1) = R− R2

2cr2 , we obtain x1 < − R
2cr . On the

other hand, as α′(x) = R
r in [−r,− R

2cr ], v′n(x) > R
r in [−r, x1] and α(− R

2cr ) = R − R2

2cr2 = vn(x1), we
deduce that vn(x) > α(x) in ]− r, x1].

Recall that vn(x) > d = maxα in ]x2, 0] and vn(x̂n) < α(x̂n) at some point x̂n ∈] − r, 0]. Actually
this implies that x1 < x̂n < x2 and there must be points y1 and y2, with x1 < y1 < x̂n < y2 < x2,
satisfying

vn(y1) = α(y1) and v′n(y1) ≤ α′(y1)

and
vn(y2) = α(y2) and v′n(y2) ≥ α′(y2),

respectively. Observe that

α′(y1)− α′(y2) =

∫ y2

y1

−α′′(s) ds ≤ 2c(y2 − y1).

Then, recalling (5.14), we obtain the contradiction

2c(y2 − y1) =

∫ y2

y1

2c dt <

∫ y2

y1

−v′′n(t) dt = v′n(y1)− v′n(y2) ≤ α′(y1)− α′(y2) ≤ 2c(y2 − y1).
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Step 5. Estimates on vn in case − a
R2 < b < 0. In this step we aim to show that vn(x) ≤ R − R2

8cr2 , for
all x ∈ [−r, r].

In case max vn = vn(0) ≤ d, the result is proved. Therefore, let us suppose that max vn = vn(0) > d.
Let −r < x1 < x2 < 0 be points where

vn(x1) = R− R2

2cr2
, vn(x2) = d = R− R2

4cr2
.

Observe that, for all x ∈ [x1, x2], we have vn(x) ≤ d < Rn and hence, by the definition of gn,

gn
(
vn(x), v′n(x)

)
≥
( a(
R− vn(x)

)2 + b
) 1

1 + |b|R
.

Therefore, using (5.12), we obtain, for x ∈ [x1, x2],

−v′′n(x) = gn
(
vn(x), v′n(x)

)
≥
( a(
R− vn(x1)

)2 + b
) 1

1 + |b|R
≥
(
a
(2cr2

R2

)2

+ b
) 1

1 + |b|R
> 2c. (5.17)

On the other hand, as Rn ≥ d = vn(x2) and by the definition of gn, we have also, for all x ∈ [x2, 0],

−v′′n(x) ≥
( a(
R− vn(x2)

)2 + b
) 1

1 + |b|R
=
(
a
(2cr2

R2

)2

+ b
) 1

1 + |b|R
+ 12a

(cr2

R2

)2 1

1 + |b|R

> 2c+
12ac2r4

R4(1 + |b|R)
.

Integrating −v′′n between x1 and x2 yields

v′n(x1)− v′n(x2) =

∫ x2

x1

−v′′n(t) dt > 2c(x2 − x1), (5.18)

while integrating −v′′n between x2 and 0 yields

v′n(x2) =

∫ 0

x2

−v′′n(t) dt >

∫ 0

x2

(
2c+

12ac2r4

R4(1 + |b|R)

)
dt = −

(
2c+

12ac2r4

R4(1 + |b|R)

)
x2. (5.19)

Case 1. v′n(x1) ≤ R
r . By concavity of vn, we have

R2

4cr2
= vn(x2)− vn(x1) =

∫ x2

x1

v′n(s) ds ≤ v′n(x1)(x2 − x1) ≤ R

r
(x2 − x1).

This implies that

x2 − x1 ≥
R

4cr

and, using (5.18), we obtain

v′n(x2) ≤ v′n(x1)− 2c(x2 − x1) ≤ R

r
− R

2r
=
R

2r
.

By (5.19), we have also

−x2 ≤
1

2c+ 12ac2r4

R4(1+|b|R)

v′n(x2) ≤ 1

2c+ 12ac2r4

R4(1+|b|R)

R

2r
.
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These two inequalities imply that

vn(0) = max vn = vn(x2) +

∫ 0

x2

v′n(s) ds ≤ R− R2

4cr2
+ v′n(x2)|x2|

≤ R− R2

4cr2
+
(R

2r

)2 1

2c+ 12ac2r4

R4(1+|b|R)

< R− R2

8cr2
.

Case 2. v′n(x1) > R
r . This can be proved exactly as in Step 4, using (5.17) instead of (5.14).

Step 6. Convergence to a solution. Let us set, by convenience of notation, R = R − R2

8cr2 . We proved

in Steps 4 and 5 that vn(x) ≤ R for all x ∈ [−r, r]. As ‖v′n‖L1 = 2‖vn‖∞ ≤ 2R, the sequence (vn)n
is bounded in W 1,1(−r, r). Therefore there exists a subsequence of (vn)n, we still denote by (vn)n,
converging in L1(−r, r) and a.e. in ]− r, r[ to a function u2 ∈ BV (−r, r).

Fix σ with 0 < σ < r. By concavity of vn we have |v′n(x)| ≤ R
σ , for all x ∈ [−r + σ, r − σ]. Suppose

n is so large that Rn > R and Kn >
R
σ and hence gn(vn, v

′
n) = g(vn, v

′
n) on [−r+ σ, r− σ]. Arguing as

in Step 1 and Step 2 of the proof of Theorem 5.1, we prove that u2 ∈ C2(]− r, r[) ∩ C0([−r, r]) and is
a solution of (5.3).

Step 7. u1 � u2. By Step 3 we know that, for each n, there exists ŷn ∈ [−r, 0] satisfying vn(ŷn) ≥ βε(ŷn).
As a consequence there exists y0 ∈ [−r, 0] satisfying u2(y0) ≥ βε(y0) = û(y0) + ε. Since u1 � û this
implies that u1 6= u2. The result then follows from Theorem 5.4.

Remark 5.7 Recall that, by Theorem 5.8, if problem (5.3) for a = â > 0 and b = b̂ > 0 has a solution,

then b̂ < b∗ ≤ b#, with b# the number defined in (3.15). Hence, the assumption b̂ ≤ 1
R is satisfied in

particular in case R ≤ r sinh(t#). On the other hand, in case R > r sinh(t#), according to Proposition
3.8, for all b ∈ ]b̃, b#[ there exists a# = a#(b) > 0 such that, for all a ∈ ]0, a#[, problem (5.3) has at
least two solutions u1, u2 ∈ C2([−r, r]), with ui � 0 for i = 1, 2. Observe that b̃ < R−1, as otherwise,
if b̃ ≥ R−1, by Remarks 3.4-(a) and 3.6, we get the contradiction

R = u2(0; b̃) <
1

b̃
≤ R.

Further, according to Remark 5.2, for R > r sinh(t#) we have b# = b∗. Hence, for all b ∈ ]R−1, b∗[, we
obtain, in particular, the existence of a# = a#(b) > 0 such that, for all a ∈ ]0, a#[, problem (5.3) has
at least two solutions u1, u2 ∈ C2([−r, r]), with ui � 0 for i = 1, 2.

Theorem 5.12. Assume (H1). Define b∗ and a∗(b) as in Theorem 5.8. Then, problem (5.3) has at
least two solutions u1 and u2, satisfying 0 ≤ u1 � u2, u1 being the minimum non-negative solution of
(5.3), in the following cases:

• 0 ≤ b < min{b∗, 1
R} and 0 < a < a∗(b),

• −R2 λ1 < b < 0 and −R2b ≤ a < a∗(b).

We have u1 � 0 in case a
R2 + b > 0 and u1 = 0 in case a

R2 + b = 0. Moreover, the solution u1 is
classical and u1 ∈ C2([−r, r]) in the following cases:

• 0 ≤ b < min{b∗, 1
R} and 0 < a < a∗(b),

• πR ≤ 4r, −R2 λ1 < b < 0 and −R2b ≤ a < a∗(b),
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Figure 5: Existence and multiplicity of positive solutions

• πR > 4r, − 2
R ≤ b < 0 and −R2b ≤ a < a∗(b),

• πR > 4r, −R2 λ1 < b < − 2
R and −R2b ≤ a ≤ a∗(− 2

R ).

Proof. Take â ∈ ]a, a∗(b)[ such that problem (5.3), for â and b, has a solution. By Theorem 5.11,
problem (5.3) has at least two solutions u1 and u2, satisfying u1 � u2, and u1 = 0 if a = −R2b, u1 is
the minimum among all positive solutions of (5.3) if a > −R2b. The regularity of u1 is already obtained
in Theorem 5.8.

Remark 5.8 The existence of multiple negative solutions has been discussed in Proposition 3.8.

A Addendum

In this Addendum, we provide a few details about the differentiability properties and the expressions of some partial
derivatives of the operator F : V → Lp(Ω), where p > N is fixed and F and V are respectively defined by (3.4)
and (3.3). Indeed, by combining [43, Chapter II, Section 4] with the continuity, from W 1,p(Ω) to Lp(Ω), of the linear
operators mapping u onto div u and u onto ∇u, we infer that F is of class C∞. Moreover, for all (u, a, b) ∈ V and

v, w, z ∈W 2,p(Ω) ∩W 1,p
0 (Ω), elementary, but tedious, calculations yield:

∂uF(u, a, b)[v] = div
( ∇v√

1 + |∇u|2
−

∇u · ∇v(√
1 + |∇u|2

)3∇u)− ( 2av

(u−R)3
+

b∇u · ∇v(√
1 + |∇u|2

)3 ) 1

1− bu

+
( a

(u−R)2
+

b√
1 + |∇u|2

) bv

(1− bu)2
,

∂uuF(u, a, b)[v][w] = div
(
−

∇u · ∇w
(
√

1 + |∇u|2)3
∇v −

∇w · ∇v
(
√

1 + |∇u|2)3
∇u−

∇u · ∇v
(
√

1 + |∇u|2)3
∇w + 3

(∇u · ∇v) (∇u · ∇w)

(
√

1 + |∇u|2)5
∇u
)

+
( 6 a v w

(u−R)4
−

b∇w · ∇v
(
√

1 + |∇u|2)3
+ 3b

(∇u · ∇v) (∇u · ∇w)

(
√

1 + |∇u|2)5

) 1

1− bu

−
( 2a v

(u−R)3
+

b∇u · ∇v
(
√

1 + |∇u|2)3

) bw

(1− bu)2
−
( 2aw

(u−R)3
+

b∇u · ∇w
(
√

1 + |∇u|2)3

) bv

(1− bu)2

+
( a

(u−R)2
+

b√
1 + |∇u|2

) 2b2v w

(1− bu)3
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and

∂uuuF(u, a, b)[v][w][z] = div
(
−

∇z · ∇w
(
√

1 + |∇u|2)3
∇v + 3

(∇u · ∇z) (∇u · ∇w)

(
√

1 + |∇u|2)5
∇v −

∇w · ∇v
(
√

1 + |∇u|2)3
∇z

+ 3
(∇w · ∇v) (∇z · ∇u)

(
√

1 + |∇u|2)5
∇u−

∇z · ∇v
(
√

1 + |∇u|2)3
∇w + 3

(∇u · ∇v) (∇u · ∇z)

(
√

1 + |∇u|2)5
∇w

+ 3
(∇z · ∇v) (∇u · ∇w)

(
√

1 + |∇u|2)5
∇u + 3

(∇u · ∇v) (∇z · ∇w)

(
√

1 + |∇u|2)5
∇u + 3

(∇u · ∇v) (∇u · ∇w)

(
√

1 + |∇u|2)5
∇z

− 15
(∇u · ∇v) (∇u · ∇w) (∇u · ∇z)

(
√

1 + |∇u|2)7
∇u
)

−
( 24a v w z

(u−R)5
− 3b

(∇w · ∇v) (∇u · ∇z)

(
√

1 + |∇u|2)5
− 3b

(∇z · ∇v) (∇u · ∇w)

(
√

1 + |∇u|2)5

− 3b
(∇u · ∇v) (∇z · ∇w)

(
√

1 + |∇u|2)5
+ 15b

(∇u · ∇v) (∇u · ∇w) (∇u · ∇z)

(
√

1 + |∇u|2)7

) 1

1− bu

+
( 6a v w

(u−R)4
−

b∇w · ∇v
(
√

1 + |∇u|2)3
+ 3b

(∇u · ∇v) (∇u · ∇w)

(
√

1 + |∇u|2)5

) b z

(1− bu)2

+
( 6a v z

(u−R)4
−

b∇z · ∇v
(
√

1 + |∇u|2)3
+ 3b

(∇u · ∇v) (∇u · ∇z)

(
√

1 + |∇u|2)5

) bw

(1− bu)2

−
( 2a v

(u−R)3
+

b∇u · ∇v
(
√

1 + |∇u|2)3

) 2b2wz

(1− bu)3

+
( 6aw z

(u−R)4
−

b∇z · ∇w
(
√

1 + |∇u|2)3
+ 3b

(∇u · ∇w) (∇u · ∇z)

(
√

1 + |∇u|2)5

) b v

(1− bu)2

−
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(u−R)3
+

b∇u · ∇w
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√
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.
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