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Gene switching rate determines 
response to extrinsic perturbations 
in the self-activation transcriptional 
network motif
Sebastiano de Franciscis1, Giulio Caravagna2,3, Giancarlo Mauri2 & Alberto d’Onofrio4

Gene switching dynamics is a major source of randomness in genetic networks, also in the case of large 
concentrations of the transcription factors. In this work, we consider a common network motif - the 
positive feedback of a transcription factor on its own synthesis - and assess its response to extrinsic 
noises perturbing gene deactivation in a variety of settings where the network might operate. These 
settings are representative of distinct cellular types, abundance of transcription factors and ratio 
between gene switching and protein synthesis rates. By investigating noise-induced transitions among 
the different network operative states, our results suggest that gene switching rates are key parameters 
to shape network response to external perturbations, and that such response depends on the particular 
biological setting, i.e. the characteristic time scales and protein abundance. These results might have 
implications on our understanding of irreversible transitions for noise-related phenomena such as 
cellular differentiation. In addition these evidences suggest to adopt the appropriate mathematical 
model of the network in order to analyze the system consistently to the reference biological setting.

Since the pioneering investigations by Ko1, Kepler and Elston2, Lipniacki and coworkers3, Karmakar and Bose4,5, 
and Mantzaris6 the fundamental role of stochastic gene activation and deactivation rates in driving transcriptional 
processes7–10 and, as recently stressed, determining drug pharmacodynamics11,12 is acknowledged. In this work, 
we investigate the relation between the statistical fluctuations of deactivation factors and other signals, and their 
effect on the dynamics of a basic network motif: the positive feedback of a transcription factor on its own produc-
tion. Unknown factors and signals are hereby modeled via realistic extrinsic noises acting on the gene deactivation 
mechanism of the network, whose activity is investigated in settings representative of different cellular types, gene 
switching rates, protein amounts, and noise properties.

However simple (and at large extent idealised) it may be, yet this motif accounts for some features essential 
to orchestrate complex heterogeneous dynamics: nonlinearity13, multi-stability14–21, feedbacks22,23 and intrinsic 
and extrinsic forms of stochasticity24–26. In addition, various settings of network’s functioning are considered by 
considering multiple scales for (i) gene switching rates (slow vs. fast time-scale), (ii) molecular counts (few vs. 
abundant copies of the transcription factor) and (iii) time-scales of external perturbations (small versus large 
autocorrelation times of the extrinsic noise). To identify the velocity and temporal scales of, respectively, gene 
switching and noise dynamics, we will adimensionalize the time by assuming average degradation time of the 
protein is the new time unit. With small noise autocorrelation time (NAT) we mean a time that is comparable 
with one; with large NAT we mean an autocorrelation time that is much larger than one. Moreover, we define 
a suitable scale parameter that tunes the switching rates. Thus, fast switching means that the scale parameter is 
much larger than one (in the ideal case it tends to infinity), whereas slow switching means that the scale param-
eter is comparable to one.

These scenarios are representative of specific biological systems; for instance this network was observed to 
operate in the transcriptional regulation in the yeast GAL1 promoter27, in galactose GAL3 signalling switch in 
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yeast cells28,29, in stochastic mRNA synthesis in mammalian cells30 and in human marrow stromal cells differenti-
ation, in response to BMP2 protein stimulation16. Also, abundance of transcription factors might be an important 
determinant of their regulatory activities for a certain function31. In the case of few copies copies of such factors, 
we also consider the network to operate within different volumes, mimicking bacteria versus eukaryotic nucleus 
systems. Similarly, gene switching rates might be related to trade-offs in metabolic cost associated to network 
functioning and noise in gene expression, as surrogated by the evidence that for any metabolic cost there is an 
optimal trade-off between noise and processing speed, which increases for higher cost32–34. Finally, extrinsic per-
turbations with different speeds model variable environmental situations for network activity, such as competing 
proteins inhibiting or enhancing the natural network feedback via oscillatory synthesis17.

As one might expect, the network’s functioning is intimately related to the complex interplay of its scales, 
suggesting that we should always account for the motif ’s operational setting. Our analysis also finds gene switch-
ing to shape its dynamics, consistently with earlier observations on the emergence of stochastic fluctuations, 
sometimes very large, related to that parameter2,9. This phenomenon drives stochasticity in many genetic network 
motifs, and by its interplay with nonlinearity it might induce new emergent behaviours2,3,7–10. For modelers, these 
evidences should suggest a paradigm-shift to adopt the appropriate mathematical representation of the network 
consistently to the reference biological setting.

Our work stresses the fundamental role of stochasticity for this type of network, consistently with experi-
mental observations of stochastic bursts of RNA production35, and randomness induced by transcription factors, 
proteins or mRNAs present in few copies36–39. Stochasticity can be both intrinsic and extrinsic to a network, 
and its synergistic effects should be considered to best exploit the predictive power of a model26. In fact, models 
accounting solely for intrinsic stochasticity in, e.g., gene on-off switching, are limited to forecast protein bursts. 
We believe that a crucial step towards a better understanding of regulatory networks requires to account for their 
interplay with other intracellular networks and random signals coming from the extracellular word. This, in 
practice, corresponds to a open-world interpretation of a phenomenon and can be achieved by including extrinsic 
forms of stochasticity in the model.

Modelling extrinsic perturbations and their effects is still matter of debate40,41, although it is clear that the 
biological scenario goes well beyond the existence of mono-stable noise-reducing networks42–46. Indeed, since 
the seventies Prigogine47, Haken48 and others49–52 have stressed that stochastic–sometimes even deterministic50–
biochemical systems that are homogeneous in space can exhibit first and second order “phase transitions”42, that 
are analogous to the classical “true” phase transitions observed in spatially extended systems53. In particular, 
Horsthemke and Lefever introduced the concept of “noise-induced-transitions” by observing that Gaussian 
extrinsic noises may allow nonlinear systems to reach multimodal equilibrium states, contradicting previous 
beliefs52. In the framework of bio-molecular networks this means that concentrations of chemicals in response to 
perturbations may fluctuate around multiple basins of attraction which can lead to novel equilibria43,44.

The biological potential of exploiting both internal and external noise sources to fluctuate around 
non-equilibrium configurations and switch among equilibria seem necessary for the emergence of functional 
heterogeneity in changing environments24,54–57. For example, phenotype variability in cellular populations, coor-
dination of gene expression across large regulons and, at a longer timescales, evolutionary transitions are probably 
the most important macroscopic effects of noise-induced phenomena58.

Related works
Investigations on the joint intrinsic/extrinsic stochastic effects for our reference network are dawning. The study 
by Swain and coworkers is a first attempt in this respect and (i) outlined the role of noise autocorrelation, and 
(ii) has stressed that–in this setting–classical white/coloured noises might induce biological artifacts59. Many 
previous works have indeed considered “white” and “coloured” extrinsic unbounded noises (i.e., without or with 
temporal correlation, see Supplementary Material). From a statistical physics perspective, it is nowadays accepted 
that in this and other settings, noises should preserve the positivity and boundedness of the parameters and sys-
tems they perturb25,60. For this reason, this work is mathematically grounded in a recent theory of intrinsically 
stochastic non-linear networks and extrinsic “bounded noises”61,62.

For each setting that we consider, we adopt different modeling strategies to describe the network (see 
Methods). A mean-field approach is appropriate for large number of proteins and absence of extrinsic influ-
ences, i.e. mimicking an eukaryotic cell with stable network’s environment. For more complex scenarios, we will 
switch to adopt approaches from the theory of hybrid Markov processes. The former scenario has been previously 
studied by other authors22,63. Consistently with our approach is, for instance, the work by Smolen, Baxter and 
Byrne64 which was used to investigate the differentiation of WB15-M cells in response to BMP2 stimulation 
in16. Interestingly, bimodal behaviour of cellular differentiation observed experimentally was reproduced with 
impulsive random changes of the transcription factor level: such phenomena emerges for certain settings of our 
network. Follow-up works made explicit the presence of various forms of intrinsic noise in this circuit55,65 as well, 
and allowed to observe its effect for cellular differentiation processes and lactose dynamics28. In the framework of 
continuous approximation of protein concentration (i.e., for abundant copies of the transcription factor), effects 
of certain extrinsic unbounded noises on protein production have been studied as well66,67. Also, the interplay 
between intrinsic and extrinsic unbounded noise affecting protein production in a self-transcription network 
with sharp and smooth positive feedback has been considered by Assaf et al.68. For the sake of comparison, and 
to outline the clear differences between these works and our approach, we provide a detailed commentary of this 
literature in §3.5 of the Supplementary Material.

Results
Our model is pictured in Fig. 1, and its mathematical definition is in Table 1. However, to make more general our 
results, we scaled time to be dimensionless by taking as time-unit 1/d, i.e. by setting d =​ 1. In that table, in line 
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with5,9, we defined a scale parameter h so that the key gene switching-related parameters are written as follows (c0, 
c2, b0) =​ h c c b( , , )0 2 0 . The scale utility parameter is set to h =​ 1 for modeling slow gene switching and h →​ ∞​ for 
fast gene switching . We parametrize the model by converting values previously suggested by Smolen, Baxter and 
Byrne64 and reported in Table 2. For our model we obtain non-dimensional values: s =​ 3.2, c2 =​ 1.6c0nM−2 and 
b0 =​ 15c0. By setting =c 100  (which implies =c 162  and =b 1500 ) one can easily verify that, in absence of pertur-
bations, the network operating with many proteins and quick gene switching (see Methods) is in its multi-stability 
region64. Namely, the unperturbed system has two stable equilibria at yL =​ 0.6268, yH =​ 4.28 and one unstable 
equilibrium at yU =​ 1.489. This is further clarified by visualizing b0 as a bifurcation variable in the hysteresis plot 
of Fig. 2, where bistability is observed in the (approximate) interval . ≤ ≤ .b140 5 174 50 . To identify each param-
eter value to use in this region we performed analytical investigations of this model for generic extrinsic noises. 
Also, we have performed sensitivity analysis to show that our conclusions are qualitatively invariant to other val-
ues of protein transcription rate (see §3.2, Supplementary Material). Finally note that in the scenarios with slow 
gene switching (where h =​ 1) to =c 100  it corresponds a value (c0 =​ 10) for the baseline activation rate that is in 
line with those adopted in the reference work by Jaruszewicz, Zuk and Lipniacki9.

Figure 1.  The transcriptional network and the modelling setting. (A) the network consists of a gene 
switching from active/inactive states, with a transcription factor acting with positive feedback on the activation. 
An extrinsic noise abstractly models the possible unknown interactions of the network with its environment. 
For instance, if noise has an oscillatory effect on the deactivation rate, its role is to model a certain - potentially 
unknown - protein synthesised in an oscillatory regime, which competes with the network protein making 
its deactivation rate oscillate. (B) We model the network under four realistic settings where it is observed to 
operate16,27–30, according to the gene on/off switching rate and the number of protein involved. When the gene 
switching is slow we also test variable volumetric settings mimicking different cell types hosting the network. 
For any of these settings we use the most suitable mathematical representation of the network, whose robustness 
is investigated under the effect of bounded extrinsic noises with different features. (C) The effect of random 
noise on the transition rates is that of making them fluctuate as a function of time. In noise-free system rates 
are constant in time, still being a function of the state values. For noisy system this is no more true, as noise 
affects the jump times of the process randomly. The difference between bounded and unbounded noise is in the 
interval spanned by such oscillations. The speed and amplitude of such variations depends on noise parameters.

Model Rate† Proteins‡ Example biological setting SSH Suitable modeling approach*

1 slow few Transcriptional regulation in the yeast 
GAL1 promoter27 – Markov process for both genes and 

proteins

2 fast few Galactose GAL3 signalling switch in 
yeast cells28,29 G A differential equation for genes coupled 

with a Markov process for proteins

3 slow many Stochastic mRNA Synthesis in 
Mammalian Cells30 Y A Markov process for genes coupled with 

a differential equation for proteins

4 fast many
human marrow stromal cells 
(WB15-M) differentiation, in response 
to BMP2 protein stimulation16

G, Y Coupled differential equations for both 
genes and proteins

Table 1.   Modeling paradigm. We consider the network as operating in different scenarios, which are 
summarized in this table. Every of these settings is obtained once any of the characteristics scales of the 
network is fixed: these are the number of available transcription factors and the rates of genes switching among 
active and inactive states. A further scale is represented by cellular volume, and applies when a few proteins 
are available, and noise. Each of this settings require different mathematical approaches to describe network 
dynamis; the mathematical specification of each model is provided as Table 2. †Rate of gene-switching among 
active and inactive states. ‡Abundance of the number of copies of the transcription factor Y. *Any of these 
approaches is coupled with the bounded noise model61.
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Concerning noise, we test two approaches representative of phenomena with different “shapes” (bell ver-
sus horn, Supplementary Figure S1 and §1.1) which are called sine-Wiener and Cai-Lin noises69–72. In detail, 
these noises are discussed in §1.1. of the Supplementary Material; their amplitude, B, and autocorrelation time, 
τ (which can be considered as the characteristic time of a colored, bounded or not, noise73), are here ranged 
over plausible values to span different network’s operational settings. We stress that, in the settings that we con-
sider for this model, canonical unbounded approaches lack to re-produce the forecasts that we obtained with 
these bounded noise–hence introducing the problem of distinguishing modeling artifacts from realistic predic-
tions (Supplementary Figure S4 and §3.6)–and that the introduction of noise acting onto the activation rate does 
not allow different forecasts, but rather nullifies extrinsic effects (Supplementary Figure S2 and §3.3). Also, we 
remark that our results might change, quantitatively, according to the parametrization of the model and the type 
of boudned noise adopted. However, the qualitative nature of our predictions shall be consistent with a wide range 
of possible parametrizations.

By simulation ensembles, we provide an empirical estimation of the stationary probability density of the num-
ber of proteins (or their concentration, if more appropriate), as well as of derived summary statistics for their 
average and standard deviation. To avoid biases by analysing transient behaviour, we estimate these statistics in 
the long run by simulating the network activity in the interval [0, 104].

Network operating with large amount of proteins and fast gene switching.  An analytical study 
of the transient probability density of the number of proteins (§3.1, Supplementary Material) allows preliminary 
forecasts. This is the only case in which we were able to carry out an analytical study of the network dynamics, 
which we then validated via simulations.

We can indeed observe that, in this scenario, the network resists to extrinsic perturbations if these have small 
(but not infinitesimal) amplitude B. Namely, in such a case we showed that the system has two stationary attrac-
tors. As a consequence, the number of proteins is consistent with the basin of attraction in which the network 
starts functioning, for it being attractive towards the low or high equilibria. The more the strength of the noise 
increases, the more its effect on the network can be appreciated, mimicking a network response to perturbation. 
For intermediate and constant B an irreversible switch among equilibria (low to high, or viceversa) is observed. 
The higher gets B the less “irreversible” becomes such a transition, with the final forecast of the network oscillat-
ing among equilibria for large B. This suggests that the network can resist only to certain perturbation intensities, 
since first and second order phase transitions (as meant by42,47–52,73) emerge as noise increases53,50. The first-order 
transition encompasses a sudden increase of the average number of proteins, 〈​y〉​, the latter its smooth decrease; in 

Gene model Protein model

Small amount of proteins and slow gene switching (Markov process)

Effect Rate equation Effect Rate equation

  (deactiv.) G →​ G −​ 1 a1(z, t) =​ b0(t)G (transcr.) Y →​ Y +​ 1 a4(z, t) =​ sNAVG

  (activ.) G →​ G +​ 1 a2(z, ·) =​ c0[n −​ G] (degr.) Y →​ Y −​ 1 a5(z, t) =​ dY

  (feed.) G →​ G +​ 1 a3(z, ·) =​ (c2Y2[n −​ G])/((NAV)2)

Small amount of proteins and quick gene switching (continuous equation with a Markov process)

mean-field eq.

= +

+ +
G t( ) n c c y

b t c c y

[ 0 2
2]

0( ) 0 2
2

(transcr.) Y →​ Y +​ 1 a4(z, t) =​ sNAV〈​G(t)〉​

(degr.) Y →​ Y −​ 1 a5(z, ·) =​ dY

High amount of proteins and slow gene switching (differential equation with a Markov process)

  (deactiv.) G →​ G −​ 1 a1(z, t) =​ b0(t)G

= −y sG dy  (activ.) G →​ G +​ 1 a2(z, ·) =​ c0[n −​ G]

  (feed.) G →​ G +​ 1 a3(z, t) =​ c2y2(t)[n −​ G]

High amount of proteins and quick gene switching (coupled differential equations)

= +

+ +
G t( ) n c c y t

b t c c y t

[ 0 2
2 ( )]

0( ) 0 2
2 ( )

= −y s G t dy( )

Parameters

  Smolen-Baxter-Byrne64 conversion

  d =​ 1 min−1 Rb =​ 0.4 min−1 ns =​ Rb +​ Kf =c c h0 0

  Kd =​ 10 nM2 Kf =​ 6 min−1 b0 =​ c0Kf /Rb =c c b h c c b( , , ) ( , , )0 2 0 0 2 0

=
+

c c
Rb K f
KdRbas2 0 = = = +∞c h h10 1 or0

Table 2.   Mathematical models. Specification of each model as of Table 1. For every Markov process we write it 
in the usual birth-death notation, and write explicitly the rate function triggering any of its jumps. Every 
differential equation deriving from a Steady-State Hypotheses is written explicitly–for the case of genes 〈​G(t)〉​ 
denotes the average number of active genes. The system state is generally denoted as variable z, see Methods. 
Parameters are reported with comparison to the ones used by Smolen-Baxter-Byrne64,66–68, which we use as a 
base to set our parameter values. The utility parameter h is a scale parameter (see also5,9) set to h =​ 1 for slow 
gene switching and to h ≫​ 1 for fast gene switching. The value c0 has been set to 10 so that for slow gene 
switching (i.e. h =​ 1) it is c0 =​ 10, in line with the reference work by Jaruszewicz, Zuk and Lipniacki9.
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both cases, in the transition point, a widening of the standard deviation for y is observed. Note that the observed 
first order phase transition corresponds to the sudden passage of the system from a scenario with two distinct 
stochastic attractors to a scenario with one attractor (and vice-versa), as in classical phase transitions74,75.

Numerical simulations are consistent with these predictions in Fig. 2, where the statistical aggregates for y are 
plot against noise parameters, for both sine-Wiener and Cai-Lin noises. In there, the transitions are found for two 
possible values of B (approx. 0.066 and 0.166). For noise intensity below the first threshold the equilibrium dis-
tribution is unimodal and peaked on the protein level corresponding to the initial protein count. Thus, the basins 
of attraction for high and low protein levels are separated by unstable fixed points. The first-order transition is 
also well characterised by the divergent variance around the transition point. Interestingly, the speed of noise’s 
variation determines where these phase-transitions are predicted. In particular, for autocorrelation greater than 
a certain threshold–here, empirically estimated to be 10 by comparing τ =​ 10 and τ =​ 100 in Fig. 2–the quan-
titative differences between predictions diminish. Nonetheless, there is a clear quantitative difference between 
predictions of values of 〈​y〉​ for τ =​ 1 and τ >​ 10; the qualitative trend is instead consistent across all the values of 
τ that we report in the figure. All in all, for a very quick perturbation regions get smaller while the variance of y 
significantly increases. This confirms that the second-order transition is characterised by stochastic oscillations 
with amplitude increasing with τ. Quite interestingly, these predictions are rather similar for both the types of 
noise that we considered (data not shown).

The effect of the noise amplitude on the stationary probability of proteins, along with some simulated time 
series, are shown in Fig. 3. As expected, for small noise amplitude proteins fluctuate around small values which 
gets higher for higher noise amplitude. Finally, for larger B a bimodal density is observed corresponding, in the 
time series, to oscillations between large and small protein amounts. These results could shed new lights on the 
relation between the strength of these interactions, the surrounding environment and the amount of produced 
proteins. In this specific context, we could speculate on the presence of a certain inhibitor, which either directly 
or indirectly inhibits RNA polymerase from transcribing protein y–thus silencing the activity of gene G. This 
inhibitor is produced by a certain network that we are not willing–or that we could not–model in this context. In 
this case, hence, B can be interpreted as the “magnitude of fluctuations in the density of this unknown inhibitor”, 
and τ (noise autocorrelation) can be interpreted as a (function of) the characteristics production and degradation 
times of the inhibitor.

Figure 2.  Phase diagrams when the gene switching is fast and many proteins are present. (A) Hysteresis 
plot: bifurcation diagram of the protein equilibrium density against the gene deactivation rate b0 in this model 
when noise is absent (B =​ 0). Here we set s =​ 3.2, = −c nM162

2 and =c 100 . Note that an interval where the 
system is bistable for b0 can be easily detected (approx. between the left/right values =b 140l  and =b 175r ).  
(B) Network dynamics perturbed by a Sine-Wiener noise with autocorrelation τ =​ 10. Each points correspond 
to a simulation realized with initial protein level, y(0), randomly sampled in the basin of attraction for the low-
level equilibrium, i.e., y(0) ∈​ [0, 1]. The first-order transition between low, 〈​y〉​ <​ 1, and high, 〈​y〉​ >​ 3, equilibrium 
values for proteins is obtained for very low noise intensity (B ≈​ 0.066), corresponding to b0(t) close to the lower 
bound of the hysteresis curve. (C,D) Different noise autocorrelation times, τ =​ 1, 10, 100, affect the average 
number of proteins and their variance in a different way. In both diagrams we have set =c 100 .
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Network operating with few proteins and slow gene switching.  We compare forecasts of protein 
dynamics obtained when the network operates in this setting against those obtained in the opposite case. In this 
case, we set a normalization constant to retrieve protein density as of a reasonable order of magnitude of protein 
numbers involved. To be realistic, since bacteria’s volume and eukaryotic cellular nucleus oscillate in the volumet-
ric range of 10:103 μm3, we explore values in . ⋅ −

N V nM6 022 [1:10 ]A
2 1 76,77. Moreover, to efficiently calculate 

phase diagrams for this model we approximated an exact algorithm by observing that the network and noise 
time-scales are very well separated61. To check the consistency of this approximation, the probability density of 
protein counts is double-checked with the one predicted by the exact algorithm.

In this setting the network seem to adapt differently to the presence of noise, and seem to behave differently 
according to volume it has available (see also §3.4, Supplementary Material). Note that our results gain interest as 
the discretization of a model (i.e., of Y) do not necessarily preserve the properties of its continuous counterpart 
(i.e., of y, see Supplementary Figure S3). In our case, in fact, no first-order transitions are observed in this case, 
and for low noise the predicted equilibrium depends on volume values via normalization; see Fig. 4. For large 
volumes representative of, e.g., eukaryotic nucleus, oscillations between equilibria are still observed. The protein 
density distribution and the time series in Fig. 5, reveal that in this operational setting the network residence in 
the equilibrium with large levels of transcription is very effective for weak noise. In the density distributions this 
results in a small residual peak for low protein numbers.

For higher volume values, NAV ≥​ 60, the average value 〈​Y〉​ increases and the second-order transition to an 
oscillating state is predicted, see Fig. 4 panels (C,D,E,F). For some cases, this has a large ratio between variance 
and average protein values, σ/〈​Y〉​, and small 〈​Y〉​. Thus, the more proteins are present–as of normalization–the 
more separate and well distinguishable are the up/low protein states. Precisely, the second-order phase transition 
(as meant by42,47–52,73) emerges for sufficiently quick noise, i.e., high τ value. Indeed, for τ =​ 1 we can not find 
reasonable variance in y, compared to its mean. However, for τ =​ 10 the average protein count is 180 and the 
variance is about 120–observe also Fig. 5 for B =​ 0.9. Thus, we can speculate that there exist an optimal value for 
noise speed to define when the system switches from low to high equilibria of protein counts. For modelers, this 
confirms that it is crucial to use an exact modelling approach to track the correct number of proteins and make as 
precise as possible forecasts. The protein density distribution in Fig. 5 illustrates these results; for very small noise 

Figure 3.  Protein distribution when the gene switching is fast and many proteins are present.  
(A–C) Protein probability densities P(·) obtained when the network operates in the same setting of Fig. 2. 
Here we use different values for noise amplitude, B, to mimic the different intensity with which noise might 
interfere with the baseline gene deactivation rate. The first-order transition between low and up protein levels 
emerges with low noise intensity (B ≈​ 0.08), while a second-order one, between up level and oscillating up/low 
levels emerges for higher values, consistently with what is observed in Fig. 2 (parameter values set in the same 
way). (D) Example time-series of network dynamics for 1000 time units is shown with different values of B. 
Observe that for certain noise intensities (e.g., B =​ 0.4) the protein level oscillates consistently between its two 
equilibrium states.
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amplitude, B =​ 0.05, the network rarely switches off the large level of proteins, the density distribution is “quasi 
unimodal” and the residual peak at low protein numbers is small.

Noise correlation time, jointly with amplitude, contributes to shaping these probability densities as well. 
For τ ≤​ 10 amplitude enhances the peak corresponding to the low protein level and increase the high/low pro-
tein states gap, see Fig. 5(B,C). On the contrary, for low autocorrelation, τ =​ 1 in Fig. 4(A,B), B has the effect to 
enhance the peak corresponding to the high protein level, see Fig. 6.

Network operating with few proteins and fast gene switching.  In this setting the model behaviour 
strongly depends on the volumetric setting in which the network operates, NAV, and the speed of the extrinsic 
noise, τ (see Supplementary Figure S3). We adopt B as parameter to identify three different regimes which are 
shown in Figs 7 and 8: (i) for small volume the system oscillates, (ii) for intermediate volume a second-order tran-
sition form large to an increasingly oscillating behavior is observed; (iii) for sufficiently large volume we recover, 
as in the case of fast gene-switching and large number of proteins we observe first-order and second-order 
transitions.

Figure 4.  Phase diagrams when the gene switching is slow and few proteins are present. (A,B) Average 
number of proteins and standard deviation of protein density, when the network is perturbed by a Cai-Lin noise 
(z =​ −​0.5) with different speed of variation, τ =​ 1, 10, 100, low normalisation (NAV =​ 6.022, mimicking a small 
cellular volume), and 1000 initial proteins. The typical state is oscillating between high and low protein levels, 
and for low τ the protein equilibrium states become “fuzzy“, up to a point that it is not possible to distinguish 
among equilibria (see also Fig. 6). (C,D) We depict the same situation of panels a and b but with a tenfold 
volumetric value, and initial condition randomly sampled in Y(0) ∈​ [0, 100]. This allows to observe the emerge 
of the second-order transition between high protein level and the oscillating regime as noise intensity increases. 
(E,F) We here show that results shown in previous panels seem irrelevant of the type of considered noise. We 
indeed use in these figures a sine-Wiener noise, initial condition Y(0) ∈​ [0, 10 ×​ NAV/6.022] and compare the 
same volumetric settings used in the other panels.
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When noise amplitude is small, a re-entrant transition in normalised protein number Y/NAV emerges, and the 
normalised protein density distribution switches from bimodal/oscillating to unimodal/high level, and finally to 
unimodal/low level, see Figs 7(D) and 8(A). Important consequences on cell biochemical equilibrium could be 
deduced from this phenomenology, in particular regarding cell mitosis, when the cell volume increases and the 
disaggregation of cell nucleus and the final division in two daughter cells change dynamically the normalisation 
term. We reserve a deep analysis of the nature of this transition in future works (see Conclusions). Analogously 
to setting in which the network operates with a large amount of proteins and fast gene switching a lower noise 
autocorrelation time enhances the low protein region and increases the amplitude of oscillations, as depicted in 
Fig. 7(B,C). Thus gene-switching deeply influences the network activity in this case.

Network operating with large amount of proteins and slow gene switching.  When the switch-
ing times of the genes expressing the self-regulating transcription factor are of the same or lower order than the 
degradation time of the protein, the effects of the bounded noise are very similar to the ones for slow-switching 
and few proteins, in the limit of high volume. Thus the first-order transition for fast-switching and many proteins 
disappears, i.e. for low B values the equilibrium corresponds always to many proteins.

Analogously to the second-order transition we observe a transition from an unimodal (high protein level 
equilibrium) to a bimodal protein distribution with both sine-Wiener and Cai-Lin perturbations, in a specific 
range of noise intensity (B ≈​ [0.1, 0.3]), see Fig. 9. This transition has the same dependence from the type of noise 
and its autocorrelation time as is the case of the network operating with large amount of proteins and fast gene 
switching (compare Figs 2 and 9).

Figure 5.  Protein distribution with slow gene switching, few proteins and sine-Wiener noise. (A) When the 
network operates with low gene switching rates, few proteins, and volume is intermediate, NAV =​ 60.022, we still 
observe the usual second-order transition from high protein level to an oscillating state in response to a sine-
Wiener noise (with τ =​ 10). Observe that even with a very small bound value the system can rarely switch off the 
large protein level, resulting in a small left residual peak in the distribution. (B,C) Normalised protein density 
distributions,  Y N V( / )A , as a function of the available volume, NAV, and noise intensity. Noise amplitude B 
enhances the peak corresponding to the low protein level and increase the gaps between equilibria with many or 
few proteins. In all plots we set as protein initial condition Y(0) ∈​ [0, 10].

Figure 6.  Protein distributions and corresponding time series with slow gene switching and few proteins. 
(A) We test here response to a very slow noise, τ =​ 1, when the network has low gene switching rates and few 
proteins. Here we consider the case of a small volume available being NAV =​ 6.022 and the protein initial 
condition Y(0) ∈​ [0, 6.022]. (B) One can observe that in this case B enhances the peak corresponding to the 
high level of proteins. In this case it is also possible to appreciate the intrinsic stochasticity of the small protein 
numbers; this indeed mixes down the protein states, up to a point in which the two distinguish equlibria can not 
be clearly separated anymore.
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Discussion
We performed an exhaustive computational analysis of a minimal transcriptional network (i.e., a motif) dynam-
ics and its response to the effects of realistic stochastic perturbations hitting gene deactivation rate. Of course, 
extrinsic perturbations can virtually act on subprocess constituting the motif in study. In particular, on the acti-
vation (§3.3, Supplementary Material) and the degradation rates, where the presence of noise is also proxy of the 
binding of the TF with other chemicals. Thus, on the one hand the present work is meant as a first step of a more 
long-range research, where the co-presence of such noises has to be taken into the account, and where mutual 
correlations between extrinsic noises will very likely play an important role. On the other hand, we believe that 
our results are of interest since one of key features of theoretical models in biology (and elsewhere) is the capabil-
ity of disentangling single phenomena, which is much more difficult and often impossible in the wet experiments.

The network functioning was assessed in different experimental settings where it might operate, possibly 
collecting settings representative of distinct cellular types, abundance of transcription factors and ratio between 
gene switching and protein synthesis rates16,27–30. In all settings it was excluded that the predicitons were trivial or 
dependent on modeling artifacts; sensitivity analysis was also carried out to show that our conclusions are quali-
tatively invariant to other values of protein transcription rate. Results suggest that, in general, gene-switching rate 
is the key parameter to modulate network’s response to external perturbations. In some specific situations, such 
as when the network operates with a small amount of proteins available, response seem to be largely dependent 
from cellular volume, which suggests us that the very same network might exhibit different quantitative dynamics 
when hosted by different organisms, or when operating in different locations of the same organism.

Concerning extrinsic noises, of course, it would be important to get experimental information on the statisti-
cal properties of extrinsic noises affecting specific types of cells, and specific transcription networks. In absence 
of such information, and in a generic cell setting, we tested two different types of perturbations - one with asymp-
totic bell-shaped distribution, another with horn-alike shape. For both, we tested different strengths and speed of 
variation in their effect on the network, possibly mirroring different settings of perturbation. Quite surprisingly, 
results suggest that little can be imputed to their different distributions, while much of response is imputable to 
how strong noise hits on the gene deactivation rate. In particular, as noise increases a cascade of phase transitions 
is observed, from first to second-order, with predictions slightly different according to the operational setting for 
the network. Indeed, these transitions among equilibria - from hight to low and viceversa, with possible situations 
of irreversibility and persistent oscillations - are clearly observable when the network gene switching is fast and a 
large number of proteins is available. In this case predictions suggest that once the protein concentration switches 

Figure 7.  Phase diagrams when the switching rate is fast and few proteins are present. (A–C) For a sine-
Wiener noise with different autocorrelation values we test network’s response as a function of the available 
volume by spanning NAV over three orders of magnitude. This allows to observe that a low noise autocorrelation 
τ has double effect: it increases the amplitude of the oscillating state, and enlarges parameters space attracting 
the dynamics to a low equilibrium value for Y. (D) We test if noise speed plays a role in this phenomena, as a 
function of volume. Here we use the same noise with τ =​ 10 and show the normalised distribution of proteins 
 Y N V( / )A . When noise amplitude is small, a re-entrant transition in the normalised mean number of proteins 
emerges. In all panels we set Y(0) =​ 〈​G(0)〉​ =​ 0.
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from low to high values, or viceversa, there is no backward switch unless noise amplitude is further increased. 
This type of “irreversible” response seems imputable to gene switching rate, since no fist-order transitions were 
observed for low rate values. Interestingly, this same dynamics is observed even when few proteins are availa-
ble provided cellular volume being large. The autocorrelation time characteristic of the extrinsic noise was also 
studied, mimicking for instance the presence of inhibiting proteins competing for the same transcription sites 
of the gene, and synthesised at different velocities. Apparently, autocorrelation affects solely the second-order 
(smooth) transitions by amplifying the probability to observe few proteins, and leading the network to an oscilla-
tory dynamics where proteins span between high and low values periodically.

To obtain these results we applied careful considerations on the physics of this network to adopt suitable 
mathematical representations of our model. These were based on steady-state hypotheses of either gene or pro-
tein dynamics, and required to adopt–and sometimes adapt–state-of-the-art techniques for biophysical simula-
tion of intrinsic/extrinsic stochastic systems. On one side, our results should stress the importance of adopting 

Figure 8.  Protein distribution with fast gene switching and few proteins. (A–C) In this case we test response 
to a sine-Wiener noise with different strength when the network operates with different volumetric settings. We 
test here different noise amplitudes. For B =​ 0.02 there is a re-entrant transition in the normalised protein 
number, Y/NAV, and protein density distribution Y N V( / )A  switches from bimodal/oscillating to unimodal/
high level, and finally to unimodal/low level. (D) Example time series when volume is very large, NAV =​ 602.2. 
In all panels we set τ =​ 10 and the initial conditions are Y(0) =​ 〈​G(0)〉​ =​ 0.

Figure 9.  Phase diagrams with slow gene switching and many proteins. (A,B) We use here a Cai-Lin noise 
with z =​ +​0.5. Analogously to the second-order transition, predicted for high volume values when few proteins 
are available, we observe a transition from an high protein level equilibrium, with a unimodal distribution, to an 
oscillating state, characterised by a bimodal protein distribution. See also Figs 4 and 5.
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the appropriate mathematical network’s representation, consistently to the reference biological setting where it 
operates. When this aspect is underestimated, mathematical forecasts might be artefacts induced by unsuitable 
modeling approaches, as already noted in previous works78.

Besides these evidences representing general caveats for modelers, the biological interpretation of our fore-
casts seem even more appealing. The noise-induced irreversible first-order transitions among protein levels of 
the transcription factor could be cautiously read as a mechanism, employed by bi-potent cells where the factor 
is abundant and the gene switching is very fast, for the choice of a permanent cellular fate. Indeed, for these cells, 
as the amount of proteins is high, the fate-choice imputable their intrinsic stochasticity seems irrelevant. Thus, 
heterogeneity of fates in such a cellular population might originate by the interplay of noisy circuits with a certain 
minimum strength of influence one another; in this case noise amplitude could be seen as a “static” random varia-
ble. Of course, these arguments are quite speculative and they would require further theoretical and experimental 
investigations to be supported.

Finally, for the case of large number of molecules and fast gene switching, we note that, thanks to the bound-
edness of the perturbation, for small (but non infinitesimal) amplitude of noise the system (and its associated 
Fokker Plank equation, of course) exhibits two distinct stochastic attractors (two distinct phases), in agreement 
with the biological intuition. The observed first order phase transition corresponds thus to the sudden passage of 
the system from this scenario to a scenario with one attractor, and vice-versa. These phenomena are an hallmark 
of classical phase transitions75 (as discussed in depth in74), and are rarely observed in non-spatial systems. This 
makes the observed first-order transition quite similar to classical phase transitions.

More in general, it is important to stress that the network we study is quite abstract and generic. Of course, 
a more realistic description of the gene-switching process might lead to other biological predictions of interest. 
For instance, our model neglects some important macroscopic features such as the explicit presence of mRNAs 
and the spatial distribution of molecules57,65. Similarly, accounting for potential delays in the transcription and 
degradation processes might lead to interesting predictions as well, and could be done at a low effort by employ-
ing known simulation techniques for non-Markovian processes79,80. Also, in this work we focused on parameter 
settings for which the network dynamics is predicted to be bistable, at least when a large amount of proteins is 
present and gene switching is quick. Clearly, this was done to highlight the potential emergence of first-order 
phase-transitions. As a future investigation, however, a more canonical investigation of the parametric regions 
inducing monostability might be amenable. Such an analysis would allow to exhaustively study the role of noise in 
determining bimodal protein dynamics. Notice that we can however exclude that adding other sources of noise, 
in the current formulation, could have led to more interesting predictions, as the extrinsic effects on the network 
dynamics vanish (Supplementary Figure S2).

All of the above considerations depict a complex scenario, and motivate at least three, more substantial, issues 
worth further investigations. The first concerns the behaviour of the network in cycling cells: indeed, since in 
the case of few proteins cellular volume plays a relevant role, it is natural to ask what might happen in cycling 
cells when this parameter varies in time, due to mitosis. The second issue is related to the dichotomy between 
physiological and abnormal cells. Here we investigated normal cells where the number of genes, 2, is conserved 
through time. Abnormal cells, which might have more/less copies of the gene, might allow to observe phase tran-
sitions which are hereby unobservable. Along this line, first-order transitions might be observed concomitant 
with genetic amplifications and a mean-field behaviour of gene-switching could emerge also when this process is 
slow. A positive answer to this question might lead to further investigations on the correlation of this phenomena 
with proteins which are over-expressed in cancer cells. As far as cancer as well as physiological cellular popula-
tions are concerned, it would be of interest to assess the impact of realistic extrinsic noises affecting single cells 
at the population level, by suitably extending the approach proposed by6. Finally, experimental evidences showed 
that the “on-off ” two-states gene switching is often an oversimplification81–83. Exploring multi-state and more 
complex mechanisms of gene dynamics is thus an important further issue. In particular, it is of interest the elegant 
model of a self-activating transcription factor proposed by Karmakar and Bose5, where the binding of the gene to 
a dimer does not imply the immediate genic activation. The introduction of such mechanisms might lead to an 
additional variability, similar to those we hypothesized for gene amplification.

Methods
A transcriptional network with positive feedback.  We consider a simple transcriptional network con-
stituted of a gene G and its protein product, a transcription factor with positive feedback on its own gene. We also 
assume that the deactivation rate of the gene is under the influence of bounded extrinsic perturbations which 
affect the deactivation rate. The network is pictured in Fig. 1.

The protein numbers will be denoted as Y, and its concentration as y =​ Y/NAV, where V is the cell volume and 
NA Avogadro’s number. Proteins degrade at rate d. In our applications we consider the the transcription factor to 
be produced by two copies of G (diploid case, n =​ 2). However, in pathological cases more/less gene copies might 
be needed: e.g., due to gene heterozygous loss it may be n =​ 184, while in tumour cells it may be n >​ 2, due to, e.g., 
poliploidity85.

In the above network a single gene copy switches among being either active and producing its transcript 
with rate s, or silent. Thus, at each time instant we model the generic i-th gene as a binary variable where Gi =​ 1 
and Gi =​ 0 correspond to the former and the latter situation. Notice that since the transcript protein positively 
feedbacks just on its own production, it does not act in the process of gene deactivation. Thus at time t, the total 
number of activated genes is: G(t) =​ G1(t) +​ G2(t), with G(t) ∈​ {0, 1, 2}.

Gene activation and deactivation rates are function of the number of protein performing feedback and the 
intensity of the extrinsic perturbation, respectively. The former is c(y) =​ c0 +​ c2y2 with baseline value c0 and posi-
tive feedback modelled by the additive term c2y2. The latter has form
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ξ= +b t b t( ) [1 ( )], (1)0 0

where b0 is its baseline value and 1 +​ ξ(t) is the model of the extrinsic perturbation, which varies in time. Here, 
ξ(t) is a bounded extrinsic noise varying at most in the interval [−​1, 1] and with average value 0. Thus, it fulfils two 
conditions: the deactivation rate is always positive, b0(t) 0, and its average value is the baseline rate, 〈​b0(t)〉​ =​ b0, 
ensuring a non-bias situation towards certain values of b0(t)61.

Every noise is a random process (extrinsic stochasticity) characterized by (at least) two parameters: an ampli-
tude - sometimes called also “intensity” −​B ∈​ [0, 1], and an autocorrelation time τ 0. For example, this could be 
the following Sine-Wiener model of noise
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Example of effects of noise on rates is in Fig. 1. Roughly, B determines how much ξ spans over the interval 
[−​1, 1] by reducing it to [−​B, B], while τ sets the noise speed in changing values over time. In the Supplementary 
Material, §1.1, we provide a detailed description of both the Sine-Wiener and the Cai Lin noise that we use in this 
paper. From a modelling perspective, this is an attempt at considering an abstract representation of the possible 
unknown interactions of the network with its environment. For instance, when ξ(t) is randomly fluctuating we 
are modelling an unknown proteins synthesized in an oscillatory regime, which compete with the transcription 
factor making its gene deactivation rate stochastically fluctuate. Notice that parameters choice for ξ(t) should 
be consistent with its biological interpretation, and that this approach could be extended to test noise effects on 
all network’s components. However, we restrict our analysis to its effects on deactivation, and postpone further 
investigations to future works.

Biological settings of network’s functioning.  As mentioned in the Introduction, we want to consider 
this network as operating in different biological settings according to its characteristics “scales”, pictured in Fig. 1. 
Four different experimental settings emerg from two, out of the three possible, involved scales, namely: (i) the 
slow, respectively fast, rate of gene switching among active/inactive states and (ii) the small, respectively large, number 
of transcription factors. Then, in each of those settings we will assess the network response to extrinsic bounded 
noise with different features. This makes the network a simple - but powerful - multi-scale system where both tem-
poral and numerical scales coexist. Some separate contributions in the literature exist which studied this network 
in specific scenarios: deterministic63,65, intrinsically stochastic9,65 and under the effect of unbounded white and 
coloured Gaussian perturbations66–68. We provide a detailed commentary of some of these works in §3.5 of the 
Supplementary Material; however, to the best of our knowledge, a thorough combination of these experimental 
settings augmented with extrinsic noises was not studied before.

From a modeling perspective every setting allows us to adopt different mathematical techniques to represent 
and simulate network dynamics, the point being to investigate if setting-dependent forecasts of different chemical 
concentrations can be produced. In principle, the Markov processes modeling approach introduced by Gillespie 
could be implemented in all settings38. This would lead to count explicitly the number of proteins and states of the 
genes in the network (exact model), with scalability issues emerging from the presence of non-homogenous scales 
(§1.2, Supplementary Material). Since this approach would turn out to be impractical to carry out exhaustive 
analyses, we apply careful mathematical considerations on the physics of this network to adopt suitable approxi-
mated mathematical representations based on Steady-State Hypotheses (SSHs) of either genes or proteins.

Our methodological approach is in line with the recent important analytical work by Jaruszewicz et al.9 on the 
impact of unperturbed intrinsic gene switching, with the fundamental exceptions that we include extrinsic noise 
and more than one gene, and reproducing the analytical investigation of that work in presence of realistic extrin-
sic noises was unfeasible. The modelling techniques that we employ are, in order of decreasing complexity, chosen 
according to the paradigm shown in Table 1 and each model instance is shown in Table 2. Further discussions 
on the derivation of the models are in §2 of the Supplementary Material. In general, these approaches result is a 
series of models of decreasing complexity both in terms of mathematical representation and cost of simulation, 
which we now describe.

Model with slow gene switching and small number of proteins.  Here we account explicitly for the 
internal states of each gene, G, and the amount of transcribed proteins, Y, via a Markov process with discrete state 
Z(t) =​ (G, Y). Coupled with noise, this is a time-inhomogeneous birth-death process because of the effect of noise 
on the deactivation rate, i.e., b0(t) which contains the noise term ξ(t). We used the notation G →​ G +​ 1, i.e. a gene 
switches to activity, to denote a birth event for G in the time interval (t, t +​ dt); similarly, we denoted a death event 
such as protein degradation with Y →​ Y −​ 1.

This exact network representation can be simulated efficiently only when a few hundreds of proteins are pres-
ent and the time-scales of the involved events are homogenous; if this is this case, an exact algorithm can be 
used25,61. If one sets noise intensity to B =​ 0, then this process becomes time-homogeneous86.

Model with fast gene switching and few proteins.  We consider the case of a switching rate of the gene 
to be fast enough to satisfy c d0  and b t d( )0 , namely baseline activation and deactivation rates being higher 
than protein degradation. This is equivalent to assume h ≫​ 1, i.e. in the idealized case h →​ ∞​. In this case gene 
switching is very quick, so we can track just the average number of active genes, G(t) ≈​ 〈​G(t)〉​2,9, which yields
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From which follows the equation by considering protein density y(t). Here the network state is Z(t) =​ (G(t), Y) 
and aggregates the effects of deactivation, activation and feedback events in a unique mean-field approximation 
of 〈​G(t)〉​, a continuous component. Protein counts are tracked explicitly and the resulting process coupled with 
noise is simulated by extending the technique introduced in61 to a stochastic hybrid system, in a natural way.

Model with slow gene switching and large number of proteins.  With low gene-switching rate and 
large number of molecules, we can replace the protein rate equations with the following mean-field model for 
protein density y(t), and introduce a differential equation for y which depends on the number of active genes, G. 
Thus, we are here considering a model state Z(t) =​ (G, y(t)), and we are aggregating the effects of transcription and 
degradation in y(t), resulting in both deactivation and feedback events to become time-inhomogeneous. This case 
is symmetrical to B, is again a hybrid process and is simulated in the same way.

Model with fast gene switching and many proteins.  A double approximation of G and Y combines 
approaches used in B and C, yielding one differential equation augmented with the equation defining the noise. 
Here, the equation for protein density binds y to 〈​G(t)〉​; in the noise-free case this results in the well-known ordi-
nary differential equation introduced by Smolen-Baxter-Byrne64,66–68; a commentary on the differences between 
this model and our approach is provided in §3.5 of the Supplementary Material.
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