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Supplementary Figure 1: The ?op problems (image taken from [1]) as suggested by Davis
and Navin, which define three ways to infer cancer progression from single-cell data. The pop
(phylogenetic ordering problem), a classical phylogenetic inference problem where we display
input cells as leaves of a phylogenetic tree. The cop (clonal ordering problem), where we
identify a clonal lineage tree that models an ancestry-relation for a set of clones that we infer
from data. The mop (mutational ordering problem), where we find the order of mutations that
accumulate during cancer progression. In this paper, we focus on the mop problem.

1 A framework based on probabilistic causation

In Figure 1 of [1] Davis and Navin distinguish three different approaches to infer cancer progression
models from data of individual patients. We summarize them in Supplementary Supplementary
Figure 1 and call them ?op , mimicking the “?-ordering problem”. Different versions of the ?op
provide insights on the evolutionary aspects of cancer progression. In particular:

• when ? = p, we solve a classical phylogenetic inference problem (PHY) and aim at displaying a
set of input cells as leaves of a phylogenetic tree;

• when ? = c, we seek to identify a clonal lineage tree (CT) that models an ancestry-relation for
a set of clones that we infer from data;

• when ? = m, we seek to find the order of mutations that accumulate during progression (MO).

Hopefully, results from these approaches can be somehow reconciled, as the same data type is
used to approach the problem. For instance, we might argue that the order of accumulating
mutations should be consistent with the clonal lineage tree, which in turn should be consistent
with a phylogenetic tree of the corresponding cells that we sequence. The efforts to solve these
problems are ongoing, with different techniques and tools that are becoming popular to solve the
cop and the pop versions of the problem, see, e.g., [2–4]. We focus this paper on the mutational
version of the problem, consistently with earlier works of us [5–10].
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1.1 Preliminaries

We use Suppes’ framework of probabilistic causation as the core of our approach to cancer progres-
sion inference. We use it to derive algorithms that exploit optimal results from minimum spanning
tree reconstruction and Bayesian inference. These axioms provide a necessary but not sufficient set
of conditions to make causal claims [6–10]. In our earlier works [5–10] we considered data from
multiple patients, i.e., multiple observations of the tumor progressions, to disentangle genuine from
spurious causal relations. On the contrary, here we can quantify the statistical trends between
mutations with Suppes’ conditions, but we need to clarify that we are observing multiple mea-
surements from the same patient (not across different patients). Thus, our claims can not be of a
general causal nature, and we have to restrict to the estimation of the temporal progression in the
individual tumor. This is also reflected in the spanning tree assumption of our algorithms, which
implies that one unique predecessor is assigned to every considered mutation. For these reasons, the
depicted relations are valid temporal orderings, even if they might depict spurious causal relations.

Input data

We consider a binary-valued dataset D with n variables and m observations


x1 x2 · · · xn

z1 x1,1 x1,2 . . . x1,n
z2 x2,1 x2,2 . . . x2,n
...

...
...

. . .
...

zm xm,1 xm,2 . . . xm,n

 = D (1)

where the columns of D are the n variables X = {x1, . . . ,xn}, xi ∈ {0, 1}m, and z1, . . . , zm are
the m samples. Variables refer to genomic events detected by sequencing of cancer genomes (i.e.,
(epi)genomic alterations of various types such as, e.g., single nucleotide or structural variants, or
copy number alterations). Value xi,j = 1 means that event xj is detected in sample zi.

Assumptions. We require each event xi to measure a somatic alteration that is persistent during
tumor evolution, e.g., a mutation or a copy number variant. Epigenetic states of expression or
methylation could be used only if they fulfil this condition; this is to be verified and assessed
outside of our framework. A further technical assumption, not motivated by the phenomenon of
cancer progression, is that no columns of D are either all zeros, or ones, and that no two columns
exist that are indistinguishable. For this reason in our implementation D is reshaped appropriately
before applying our algorithms, as we discuss in the Main Text.

Output model

From D, we want to estimate a joint distribution p(·) over X so that we can sample genotypes
from our output model. In our formulation we use ideas from Bayesian Networks [11], a class of
Graphical Models based on directed acyclic graphs augmented with parameters θ.

A partially order set (poset) of a graph G over X is defined by a partial ordering v: if xi v xj

than edge xi → xj is in G. For G to be acyclic we also require the transitive closure of v to have
no path that start and end in the same xi. We turn G into a generator for a conditional probability
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distribution by defining the parameters

θxj
= p̂(xj | {xi | xi v xj}) (2)

where p̂ is a distribution conditioned to the incoming edges of xj , often called conditional probability
table [11]. |θxj

| is exponential in the number of edges incoming to xj , if variables are binary.
When we infer a model of cancer progression for a patient, our output model will be the most

likely tree (but in some cases it could be a forest, or a general graph), according to a measure of ti.
A graph G is a tree if (i) it has one root node x∗ with no incoming edges, and (ii) all other xj 6= x∗
have one incoming edge, i.e., |{xi | xi v xj}| = 1. Hence, for a tree, the parameters also simplify
to θxj

= p̂(xj | xi), i.e., they become linear in size. A graph G is a forest, if it can be partitioned
into a set of trees. Trees and forests are acyclic, by definition.

1.2 Weighted graphs with information theory

Suppes’ conditions as prior graph structure

We frame Suppes’ probabilistic causation [12] within cancer progression [5, 6], to create a partial
ordering vPF over X . We dub it prima facie, and we will use it to create the final output model’s
structure v. For any pair of variables xi and xj , we define

xi vPF xj ⇐⇒ p(xi) > p(xj) ∧ p(xj | xi) > p(xj | xi) . (3)

In general, vPF induces a cyclic graph. We interpret prima facie as a necessary condition for cancer
progression, along the lines of [6]. So, we consider vPF to provide us with a superset of the edges
that will appear in our output models; derivation of such edges is discussed in the next sections.

To include a pair of variables in vPF, we test two inequalities over distributions estimated from
D. A statistical model of those marginal and joint/ conditional distributions over X can be created
via non-parametric bootstrap [6]. Then, we can carry out a Mann-Whitney U test to compute
a p-value for the alternative hypothesis that the distributions have different means: xi vPF xj

when both inequalities have confidence below some desired p-value (e.g., p < 0.05). This testing/
bootstrap schema can support prior information of noise in the data. If we are informed that
D harbours false positives and negatives rates ε+ and ε−, we can correct the marginal bootstrap
estimates as

p(xi) =
ni − ε+

1− ε+ − ε−
, (4)

where ni =

∑
k xk,i
m

, and proceed similarly for the joint estimates as follows

p(xi,j) =
ni,j − ε+[ni + nj − ε+]

(1− ε+ − ε−)2
, (5)

where ni,j =

∑
k xk,ixk,j
m

. See Section 8 for the complete derivation of the error model.
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Information-theoretic measures for associations’ detection

The ordering vPF is a super set of the ordering that we want to return as output; we thus need to
subset vPF. To rank and select pairs in vPF we can use a score function. If we interpret each xi as
a random variable with binary outcomes, we can compute information-theoretic measures for the
detection of its degree of association to other variables [13]. For each xi vPF xj , we measure the
point-wise mutual-information (pmi)

pmi(xi = x,xj = y) = log

[
p(xi = x,xj = y)

p(xi = x)p(xj = y)

]
, (6)

that quantifies the discrepancy between xi and xj for their outcomes x and y. Here, to detect the
association between alterations that accumulate during progression, we set x = y = 1.

In some cases, we will also use the expected value of pmi over all the possible outcomes of xi

and xj , which is the mutual information (mi)

mi(xi,xj) =
∑
x,y

p(xi = x,xj = y)pmi(xi = x,xj = y) . (7)

These measures are standard [13], and could be used to derive alternative score functions (e.g.,
conditional pointwise or entropy). In this work, however, we limit our scope to pmi and pmi.

1.3 Strategies for structure selection and parameters’ learning

The prima facie ordering vPF induces a mapping to 2|vPF| potential models. Some of these are not
trees or might model the distribution of the data poorly. The problem of picking a particular v to
build G is hence non-trivial.

By combining vPF with a pmi/mi score we have obtained a weighted graph. Thus, we can
exploit algorithms that extract trees (or other types of models) with certain properties, from the

input graph. We denote with vpmi
PF and respectively with vmi

PF the graphs weighted with pmi or
mi. We group a number of algorithms for structure selection into two classes: (minimum) spanning
tree algorithms and Bayesian model selection methods.

Minimum spanning tree algorithms

These are a class of algorithms that aim at detecting the subset of pairs v that (i) minimize the
total output structure’s weight, and that (ii) display as a tree. The total weight is defined as the
summation of the weights of the pairs that are selected. This is a well-known problem in graph
theory, and we can exploit optimal solutions from the literature. The approaches are different
according to the graph that these algorithms are given as input.

We note that using “spanning tree” algorithms is a standard technique in the field [14,15]. Our
approach is not different in spirit, while we reuse these algorithms with a different weight structure
induced by Suppes’ causal ordering vPF.

Edmond: Edmonds’ optimum branching algorithm is a canonical solution to the task of inferring
a spanning tree of minimum weight from a weighted directed graph, given a root node in
input [16]. We use this algorithm with vpmi

PF as input, provided that we make it acyclic.
Cycles/ loops breaking is a hard computational problem, and we resort on the heuristic that
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Supplementary Figure 2: A. The input data is a binary matrix that store the presence/
absence of a variable in a sample. Some of this observations will be due to noise as false
positives and negatives. B. We estimate via bootstrap the prima facie ordering relation vPF

that satisfies Suppes’ conditions for probabilistic causation. This, in turn, induces a graph
over variables X . This graph can be weighted by measuring information-theoretic measures
for variables’ association. C. If we weighted the graph with pmi, we can use an heuristic
to make it acyclic, and use Edmonds’ optimal solution for minimum directed spanning tree
detection. D. If we weighted the graph with mi, we can disregard the edges’ orientation, and
use Prim’s optimal solution for minimum undirected spanning tree detection. Then, we can
orient by the marginals each edge. E. If we weighted the graph with pmi, we can use Gabow’s
optimal solution for path traversals of cyclic component and detect the best tree that makes
the structure acyclic. Then, we can again use Edmonds’ algorithm for spanning trees. F.
A Bayesian optimal mode-selection strategy can compute the Chow-Liu tree that induces the
distribution with minimum divergence from the true one. In this case, we weighted the graph
with mi and made it undirected.

is used by the CAPRI algorithm [6]. This heuristics breaks loops according their confidence,
defined as the combination of p-values for Suppes’ conditions: edges with small confidence
(i.e., high p-values) are deleted first to break loops. When vpmi

PF is made acyclic, to use
Edmonds’ algorithm and maximize our pmi scores, we can change their sign. The running
time of this algorithm is O(|X | · | vpmi

PF |), which can be optimized to O(|X | log(| vPF |)) for

sparse1 vpmi
PF [17].

1An ordering relation is sparse if its associated matrix over {0, 1}X×X is sparse.
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Prim: Prim’s algorithm is the equivalent of Edmonds’ for undirected tree structures [18]. We
can use Prim’s algorithms by disregarding the directionality of the edges in our prima facie
ordering, i.e., if for every pair xi vPF xj we also force the inclusion of xj vPF xi no matter
what the test statistics for Suppes’ conditions. If we want to use this search strategy, however,
we will use vmi

PF as input, as we need to use a measure that is symmetric and defined over all
the support of the random variables (i.e., pmi is not accounting for the cases xi = 1− xj = 1
and viceversa). The complexity of this algorithm, if it is implemented by using a binary heap
and an adjacency list for G, is the same as Edmonds’. The final tree returned by this strategy
is undirected, and so we orient it according to the marginal frequencies of the events. That
is, for every final pair xi vPF xj and xj vPF xi we select xi → xj if p(xi) > p(xj). For this
reason, the final model could contain confluent structures such as xi vPF xj and xk vPF xj –
i.e., a model with two edges confluent in xj : xi → xj and xk → xj . We observe that, when
this happen, the final model is not a tree as xj has more than one parent, but a multi-rooted
directed acyclic graph (DAG). The interpretation in terms of the induced distribution is still
that of a Bayesian Network.

Gabow: Cycles in vpmi
PF can be handled in another search schema by exploiting Gabow’s algorithm

[19], before using Edmond’s algorithm to maximize the weight of the final tree. Gabow’s
algorithm algorithm is optimal to detect the strongly connected components of the directed
graph vpmi

PF in time O(|X | + | vPF |) if the graph is represented as an adjacency list. If

vpmi
PF has cycles, we thus create, for each strongly connected component, all the possible trees

associated; then we select the tree at maximum weight for each such set of candidates. We can
optimize this procedure by separating acyclic sub-graphs, if any, in the very beginning. This
algorithm is optimal but more expensive than Edmond, and shall be seen as an alternative
way to deal with loops in the prima facie structure.

Bayesian model-selection strategies

Chow-Liu: This is an optimal method for constructing a second-order product approximation of
the joint probability distribution over X [20]. It is known that the resulting tree minimizes
the Kullback-Leibler distance to the actual joint distribution, and can be interpreted as a
Bayesian Network. For constructing the optimal tree, at each iteration the algorithm adds
the maximum mi pair to the tree. This algorithm returns an undirected structure when we run
it with vmi

PF as input; we transform it into a directed structure as we do with the Prim search
strategy. The similarity between the two algorithms is evident, also in terms of complexity.

Learning parameters θ

Given a graph (or, as a special case a tree), we can fit its parameters using a standard technique in
the Bayesian Networks approach, by maximum likelihood estimation from D [11].

Comparison with other algorithms

As motivated in the Main Text, SCITE and OncoNEM are at the state-of-the art for two orthogonal
problems in single-cell phylogenetic inference (mutational vs clonal ordering). In our simulations
we compared the different model search methods just listed against SCITE, since its mutational tree
is directly comparable to our models.
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We note that we were not able to test all the simulation scenarios we created with OncoNEM, as,
at the time of testing, its performance scaled poorly to carry out our large scale test. See for instance
Supplementary Supplementary Table 6 with some example timings to run these comparisons.

2 Testing the framework

2.1 Synthetic data and performance measures

Comparison among the algorithms is based on large synthetic tests for different combinations of
model type, size, number of samples, noise etc. We describe here the details of the approach, and
provide the user with its R implementation in the TRONCO tool which is available at

https : //sites.google.com/site/troncopackage

and on Bioconductor.
We devised a testing framework to gather information about the relative performance of TRaIT

in a number of different scenarios.

1. Sampling from Single-cells (SCs) sequencing data.

2. Sampling from Multi-region bulk sequencing data.

In each case we take care to explore the problems induced by the presence of noise in the data.

Sampling from Single-cell sequencing

Genotypes from single-cell sequencing are sampled by a phylogeny. We describe the simpler case
of sampling from a single tree, more general cases are trivial extensions. A cartoon is shown in
Supplementary Figure 3 that shows some possible single-cell genotypes.

The following recursive procedure visits a tree, starting from its root x∗ (i.e., we set x∗ = 1 in
the genotype), and outputs a sampled genotype according to its structure and parameters.

• If we are visiting a leaf xl (i.e., a node without outgoing edges) with incoming edge xi → xl,
then we sample xl = 1 (in the genotype) with probability θxl

= p(xl | xi), and 0 otherwise.

• if we are visiting a branching node xi (i.e., xi = 1 in the genotype) with children xi → xj and
xi → xk we either sample only one of the children and we proceed recursively, or we stop.
Notice that we forbid to sample a genotype with both children2, i.e., p(xj ,xk | xi) = 0, so

p(xj | xi) = p(xj ,xk | xi) + p(xj ,xk | xi) = p(xj ,xk | xi) (8)

p(xk | xi) = p(xj ,xk | xi) + p(xj ,xk | xi) = p(xj ,xk | xi) .

Thus, genotype with xi = xj = 1− xk has probability θxj
= p(xj | xi), while genotype with

xi = xk = 1 − xj has probability θxk
= p(xk | xi) and genotype xi = 1 − xj = 1 − xk has

probability 1− [p(xj | xi)+p(xk | xi)]. To have consistent cell genotypes for the whole model,
when we recursively proceed with xj (resp. xk) we set xk (resp. xj) and all its descendants
equal to 0.

2This is analogous of saying that, at the genotype level, every branching is interpreted as an exclusive branch. In
this case the truth table for xi, xk and xk resembles a xor-network when xi = 1.
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Notice that, by construction, genotypes are consistent with the phylogeny of the generative
model, as p(xj ,xk | xi) = p(xj ,xk | xi) = p(xj ,xk | xi) = 0 for any branching structure.

We observe that: (i) we can easily generalize this procedure to an arbitrary amount of children
per branching, and that (ii) this procedure generates only genotypes that correspond to cancer
cells (because we start with x∗ = 1). If required, we can a posteriori add wild-type genotypes to a
dataset to account for contamination of normal cells.

Sampling from Multi-region bulk sequencing

When we collect and sequence a bulk of tumor cells we get a signal that is a mixture of alterations
found in different tumor sub-populations.

In terms of induced distribution and the branching structures described in single-cell sequencing
sampling, this means that data will support p(xi = xj = xk) > 0 as the sequenced samples will
contain cells from both populations with signatures xi = xj = 1 − xk and xi = xk = 1 − xj . To
create such a signal there are different ways. On one hand, one can change the effect of branchings
on the induced distribution to account for p(xi = xj = xk) > 0, on the other one can emulate
a mixed signal by mixing a number of individual signals. The former approach requires more
parameters in the generative model to account for the conditional probabilities of both children,
given a parent node. We adopt the latter approach and sample c genotypes from a single-cell
sequencing experiment: let z1, . . ., zc be such samples, we create a sample

z∗ =
∨
i

zi (9)

where each component of z∗ is 1 if at least one zi is 1. Then, we repeat the procedure to produce
as many samples as we need, according to the number of regions that we want to simulate.

This approach requires only one more parameter, c. If one interprets the c samples as c cells,
one might be tempted to pick a very large c (e.g., c � 106). If one does so, however, all z∗ will
be similar, as for large c the proportions of the sampled genotypes will converge to the true ones.
Thus, our dataset would have small variance across samples, biasing the data. Thus, to have more
variance, we set c to be small (c < n) and interpret c as the probabilistic number of clones spread
across the regions that we sequence.

Adding noise to synthetic data

When we say that observed data are obtained by adding noise to sampled genotypes, we mean the
usual introduction of false positives and negatives with rates ε+ ≥ 0 and ε− ≥ 0, respectively [2,3,6].
Precisely, when we have sampled a dataset of samples D according either to (8) or (9), we apply to
D an independent point-wise process that flips the matrix’s entries according to the rates ε+/ε−.

To investigate the ideal performance of the algorithms we sometimes use noise-free data, that
is ε+ = ε− = 0. In more realistic setting, we use different models of noise according to the type of
simulate sequencing. Sequencing of single cells is characterized by distinct errors, which usually take
place in the DNA amplification phase: (i) allelic dropouts and (ii) false alleles, the former occurring
at a significantly higher rate, thus leading to higher rates of false negatives. Accordingly, in the
generation of noisy single-cell data we expect highly asymmetric noise parameters ε+ � ε−, that
we simulate by assuming one-order of magnitude in their difference. Multi-region bulk sequencing
data instead harbour more balanced noise effects, in that case we set ε+ = ε−.
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Performance measured

We want to measure the tendency to overfit or underfit of every algorithm, in particular circum-
stances of sample size, noise etc. Thus, the performances measured in each experiment are:

• the rate at which true model edges are inferred

sensitivity
TP

TP+FN
;

• the rate at which false model edges are discarded

specificity
TN

TN+FP
;

where TP, TN, FP, FN are the number of true (T)/ false (F) positives (P) and negatives (N).

Algorithms’ implementation

We used the official release of each tool.

• CAPRI, CAPRESE and the algorithms that we describe in this paper are available in TRONCO.

• SCITE was downloaded from its Github repository.

• OncoNEM was downloaded from its Bitbucket repository.

2.2 Working scenarios

We define four possible working scenarios, which represent distinct cancer evolution modes and
related phenomena (Supplementary Supplementary Figure 3).

Branching evolution
In this case different cancer subclones (with distinct lineages) diverge from a common ancestor
and are characterized by distinct accumulating alteration. This can be modelled via trees with
distinct branches describing the subclonal trajectories. Particular instances of this scenario
is linear evolution, in which alterations accumulate along a linear path, with no branches.

Confounding factors
In this case the generative models are phylogenetic trees, as above, but the observed data
also include uncorrelated random events. This is a handle to account for possible confounding
factors, i.e., (epi)genomic alterations that have no functional role in the progression, and that
we do not know a priori.

Multiple independent trajectories
In this case the generative topology are multiple independent trees, grouped as a forest. This
is a way to model tumors that originate from two or more cells, a phenomenon also known
as polyclonal tumor origin [21], or the possible presence of hidden events triggering tumor
development, but not annotated in the available data (e.g., methylations).

According these working scenarios, we perform a simple non-exhaustive test of the performance
of the algorithms, with single-cell and multi-region data.
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3 Preliminary tests

These tests are rather simple in size and variability of settings, and more detailed tests are carried
out in the next sections. However, they still give a general idea of the general performance trend.

3.1 Single-cell data

Experiment I.

We test a set of fixed topologies according to the scenarios in Supplementary Figure 3: (i) a tree
with n = 11 nodes (Branching evolution), (ii) which we then augment with the addition of 2
disconnected nodes (Confounding factors), (iii) a forest with two distinct trees that account for
n = 7 nodes (Multiple independent trajectories). . For each single test we generated 100 single-cell
datasets with m = 75 samples and a mild noise setting, ε+ = 0.005 ε− = 0.05.

Results: (Supplementary Figures 4, 5; Supplementary Tables 1, 2,

1. Branching evolution

The performances of all the algorithms are consistently similar and very good. Yet, Gabow
and Edmond with pmi reach highest performance, while SCITE displays a larger dispersion.
All algorithm but CAPRI have similar median sensitivity, suggesting a comparable capability
of inferring the true relations from data. Specificity scores, instead, suggest that SCITE tends
to overfit more than other approaches (i.e., lower true negative rate). CAPRI displays a very
high specificity, but that is possibly due its “regularization” approach that tends to return
sparse models (thus, trading specificity for sensitivity)3.

2. Confounding factors

A similar trend is observed also in this scenario, with SCITE displaying a very good sensitivity,
but also the lowest specificity among all. We can observe that the best algorithm in this case
seems to be Prim, as it displays the same sensitivity of SCITE, but higher specificity. CAPRI’s
very high specificity is still due to the regularization terms. We finally show in Supplementary
Table 1 that our approach is capable to model these progressions, with the confounding factor
consistently presenting a much lower trend of significance, compared to all the other events.

3. Multiple independent trajectories

In this case Gabow, Edmond and SCITE present an identical performance with median values
of both specificity and sensitivity equal to 100%, slightly outperforming the other algorithms.
In particular, by looking at Supplementary Table 2 one can notice that all the techniques are
able to retrieve the two distinct roots of the progression, with the exception of PRIM and
CAPRESE in a few cases.

3This is a general trend of this algorithm that we expect to observe in all the experiments. Thus, we omit from
commenting it any further.
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Example genotypes sampled from the models below
A single-cell : x1x2x3, x1x5, x1x5x6

multi-region: x1x2x3, x1x2x5 (e.g., x1x2/x1x5), x1x5x6x2x4 (e.g., x1x2x4/x1x5x6)
B single-cell : x1x2x3z1z2, x1x5z2, x1x5x6

multi-region: x1x2x5z1z2 (e.g., x1x2z1/x1x5z2 or x1x2z1z2/x1x5 or . . .)
C single-cell : x1x2x3, x7x8, x1, x7x8x9

multi-region: x1x2x5 (e.g., x1x2/x1x5), x1x2x5x7x8 (e.g., x1x2/x1x5/x7x8)

Observed data obtained by applying to noise to genotypes
In A, the single-cell genotype x1x2x3 might be observed as x1x3, when x2 is not detected
(false negative), or as x1x2x3x4 when x4 is wrongly detected (false positive).

x1

x2

x3 x4

x5

x6

x1

x2

x3 x4

x5

x6

zi x1

x2

x3 x4

x5

x6

x7

x8

x9

A B C

Supplementary Figure 3: A. Branching evolution. This phylogenetic tree has 6 nodes (one for each
alteration xi), and a unique variant/cell of origin, x1. This is the most common case in which infer-
ence is carried out. B. Confounding factors. A phylogenetic model can be extended with spurious
variables zi that confound the inference problem. The inference is hindered because we have to detect
the spuriousness of the association between any zi and the true variants xi. C. Multiple independent
trajectories.A forest of phylogenetic models can describe the presence of multiple independent progres-
sions that start from different variants (x1 and x7), as it might happen with tumors that start from
different cells of origin, or with hidden/ not-annotated events triggering tumor development.
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Supplementary Figure 4: Experiment I.(SCS data). We test the CAPRESE (λ = 0.5), CAPRI
(with BIC regularization) and SCITE (default parameters) against our new algorithms, for model
inference from single-cell data with noise ε+/ε− = 0.005/0.05. We use Gabow and Edmond with
pointwise mutual information (pmi). The boxplots present sensitivity and specificity scores for
100 distinct datasets representing the working scenarios discussed in Section 2.2. Results are
discussed in Section 2.2. Parameters are reported in Section 6. A. Branching evolution. B.
Confounding factors. C. Multiple independent trajectories.14



x1

x2

x3 x4

x5

x4 x6

Supplementary Figure 5: Statistical complications due to convergent trajectories. Ex-
ample of evolution in a single patient with convergent trajectories; this model does not fulfill
the Infinite Sites Assumption (ISA) model. This specific case shows possible statistical issues
complicating the inference, and limitations of our approach. Specifically, let us focus on a
subset of 6 possible genotypes derived from the generative model above: x1x2, x1x2x3, x1x2x4,
x1x5, x1x5x4 and x1x5x6. We now focus on the nodes presenting confluent trajectories, i.e.,
x2 → x4 and x5 → x4, and consider the probabilities involved in estimating the prior graph
structure for these relations. Consider a fictitious dataset with 10 samples and assume that: (i)
genotypes x1x2x3 and x1x5x6 are very rare and never observed in our dataset, (i.e., with proba-
bility 0); (ii) genotypes x1x2x4 and x1x5x4 have 4 times the probability of being observed than
genotypes x1x2 and x1x5, (i.e., the former with probability 0.4 and the latter 0.1). We com-
pute the marginal and joint probabilities for all the variables of interest: p(x2) = p(x5) = 0.5,
p(x4) = 0.8, p(x2, x4) = p(x4, x5) = 0.4. We observe that in this scenario Suppes’ temporal
priority is reverted; in fact, being p(x4) = 0.8 > 0.5 = p(x2) = p(x5), x4 is estimated to be
earlier in time than x2 and x5. At the same time, the 3 events present perfect independence –
in fact, p(x2, x4) = p(x4, x5) = p(x2) · p(x4) = p(x4) · p(x5) = 0.4 – and for this reason also the
probability raising condition would be violated. Although what shown here is a pretty rare and
unfortunate configuration, we still point out that convergent trajectories especially in the case
of hard exclusivity among the parents (such as this one), may further complicate the inference.
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p-value poset p-value (Edmond) Edges (Edmond)
Node 1 0.05 1.20e-04 1.00
Node 2 0.09 1.00e-02 2.00
Node 3 0.12 5.06e-07 2.00
Node 4 0.13 2.37e-06 1.17
Node 5 0.11 2.00e-02 1.00
Node 6 0.12 5.25e-06 1.01
Node 7 (confounding) 0.44 4.00e-01 0.77

Supplementary Table 1: Experiment I (confounding factors.) Mean p-values for probability
raising, for each in/out-coming arcs in each node of Suppes’ poset, and in the topology inferred
by Edmond, for which we show the average number of arcs per node. The statistics are averaged
over 100 SCS datasets generated from the low polyclonal tree topology with 1 confounding
factor and n = 7 nodes (Supplementary Figure 7). We used a noise-free configuration and 100
samples.

3.2 Multi-region bulk sequencing data

Experiment I-MR

We reproduce Experiment I with multi-region data sampled from the same generative topologies of
Supplementary Figure 4. The parameters are identical to Experiment I, with the exception of the
number of samples (here biopsies, rather than cells), which is set to m = 20.

Results: (Supplementary Figure 6, Supplementary Tables 3)

1. Branching evolution. All the algorithms but CAPRI and SCITE display identical median values
of sensitivity and specificity, with Gabow slightly outperforming other techniques. However, all
the algorithms struggle in retrieving a large number of true relations, as the median sensitivity
ranges around 50% for most techniques. In this case, SCITE is the least accurate algorithm,
showing a poor efficacy in retrieving both true positives and true negatives, whereas CAPRI
displays high specificity and low sensitivity.

2. Confounding factors. The overall performance slightly worsens with confounders. In par-
ticular, the average sensitivity values are lower because the confounders introduces spurious
correlations. The general trend is however preserved, with Gabow and SCITE being the most
and least accurate algorithms.

3. Multiple independent trajectories. CAPRI, Prim and Chow-Liu show a slightly better trade-off
between sensitivity and specificity, while SCITE is less accurate with this mixed signal. More
in detail, most algorithms are unable to infer the two distinct roots of the progression, with
the exception of CAPRESE and CAPRI which succeed in around half of the cases (Supplemen-
tary Table 3). Edmond and Gabow display a slightly better performance than the remaining
techniques, yet remarkably worse than the SCS case.
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Supplementary Figure 6: Experiment I-MR (MR data). We perform the analogous of the test
shown in Supplementary Figure 4, but with multi-region data. A. Branching evolution (n = 11,
m = 20). B. Confounding factors. (n = 8, m = 20). C. Multiple independent trajectories.
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Roots
1 2 3

CAPRESE 0 98 2
CAPRI 0 100 0
CHOW-LIU 0 100 0
PRIM 0 83 17
GABOW 0 100 0
EDMONDS 0 100 0
SCITE 0 100 0

Supplementary Table 2: Experiment I (multiple independent trajectories). Number of inferred
models with 1, 2 or 3 distinct roots, from 100 different SCS as in Supplementary Figure 4C.

Roots
1 2 3 4 6

CAPRESE 34 51 11 4 0
CAPRI 7 43 35 12 3
CHOW-LIU 96 2 1 1 0
PRIM 96 2 1 1 0
GABOW 81 16 2 1 0
EDMONDS 82 15 2 1 0
SCITE 98 2 0 0 0

Supplementary Table 3: Experiment I-MR. (multiple independent trajectories). Number of
inferred models with 1 to 6 roots, from 100 different multi-region datasets generated from a
forest with 2 roots. Input models have n = 7 nodes, see Supplementary Figure 6C.

4 Detailed tests with single-cell data

We present results from a large-scale test with single-cell data generated (i) from biologically plau-
sible phylogenetic models, and (ii) from a large number of randomly generated topologies. We
consider three scenarios (branching evolution, confounding factors, and multiple independent tra-
jectories).

18



Polyclonal Trees

High (n=17)Low (n=6) Medium (n=11)
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Supplementary Figure 7: Polyclonal trees used to study the performance of BitPhylogeny in [22].
These have different number n of clones, which we classify as low, medium and high. We use
them to generate synthetic data for some tests, e.g., in Experiment II. The wild-type is a fake
node; in our models, we do not have it.

4.1 Branching evolution

Experiment II

We consider polyclonal tumors originating from a unique cell, in a single-cell sequencing experiment.
To generate data we fix the phylogenetic trees in Supplementary Figure 7 [22]. These trees have
variable number of clones (n = 6, 11, 17); we use them to sample different number of sequenced cells
(m = 10, 50, 100). Besides one ideal noise-free setting, we perturb data with plausible medium and
high asymmetric noise rates (ε+/ε−), in order to mimic characteristics errors in sampling cells and
calling mutations. We compare the performance with over 4000 independent tests.

Results (Supplementary Figure 8).

Reasonably, the overall performance of each algorithm is higher with lower levels of noise and larger
datasets. In the ideal cases of noise-free data and 100 sampled cells, for instance, all algorithms
converge to the true generative model. Noteworthy, in many realistic cases, median sensitivity and
specificity measures are above 90%. The overall performance trend depends on model size (n), the
smaller models being easier to infer as one might expect. For all algorithms, the ability to detect
true relations (sensitivity) clearly drops for pathological settings (e.g., we infer 20% of the true
edges for the 17-clones model, when we sequence 10 cells).

Gabow, Edmond and SCITE, display a similar superior ability to infer the true relations (i.e.,
high sensitivity). However, SCITE seems to overfit (i.e., with a 10% loss of specificity for the 17-
clones model, when we sequence 100 cells). This is particularly evident with small datasets and
models. It also persists with larger models, most likely because of the larger search space for its
MCMC heuristics. CAPRI, as expected, shows very high specificity but low sensitivity, due to BIC
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regularization.

Experiment III. We generalize Experiment II to 100 randomly sampled topologies with variable
number of nodes (n = 5, 10, 20). This shall avoid any bias induced by holding fixed the polyclonal
topologies in Supplementary Figure 7.

Results (Supplementary Figure 9): In general, the results partially reflect those of Experiment II.
All the algorithms display very good performances in most settings, in many cases converging to
the generative topologies (especially with small models, i.e., with n = 5, 10 nodes). A very similar
and optimal overall performance is that obtained by Gabow, Edmond, CAPRESE and SCITE, with
minor differences in the different parameter settings, yet with an evident tendency of SCITE in
inferring denser models with more false positives (i.e., highlighting a lower specificity). Also in this
case CAPRI show a very good specificity because of the regularization, but fails in capturing many
true positives.

Experiment IV. In order to assess the robustness of the inference with respect to different rates
of false positives and false negatives rates provided as input to the algorithms, we investigated the
variation of the performance of two selected algorithms, namely Gabow and SCITE, on a dataset
generated from the Medium phylogenetic tree in Supplementary Figure 7, with n = 11 nodes and
m = 75 samples, ε+ = 5 × 10−3 and ε− = 5 × 10−2, for the 25 possible combinations of input ε+
and ε− in the following ranges: ε+ = (3, 4, 5, 6, 7)× 10−3 and ε− = (3, 4, 5, 6, 7)× 10−2.

Results (Supplementary Table 4 and Supplementary Table 5): By looking at the performance
with respect to the different combinations of ε+ and ε− provided as input to the algorithms, we
unexpectedly do not observe noteworthy variations, for both the algorithms. This result indicates
that, if the value of noise provided as input to the algorithms is close to the real value (i.e., within
a reasonable range), the inference accuracy is not remarkably perturbed. As a consequence, one
might question about the usefulness of the usually computationally expensive techniques used for
the inference of noise models, as done, for instance, by SCITE. We leave some further comments on
this topic to the main text.

4.2 Confounding Factors

Here true variables are mixed to random 0/1 variables, totally unrelated to the progression. This
could be a simple model of uncertainty in the calling, where we over-call variants that are not true
related to the progression at a certain error rate.

Experiment V. We use data from Experiment II; to each dataset we add random binary columns.
A column is a repeated sampling of a biased coin, with bias uniformly sampled among the marginals
of all events. n× 10% random columns are inserted per dataset, where n is the true model size.

Results (Supplementary Figure 10): Surprisingly, the results of this experiment reflects those of
Experiment II, with minor differences in the performance of the various algorithms in the different
settings. The overall performance is good, at least with sufficiently large datasets and sufficiently
small levels of noise. Also in this case, SCITE tends to overfit, especially with larger models and
small datasets.
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Caprese Capri (BIC) Chow−Liu Edmonds (pmi) Gabow (pmi) PRIM SCITEExperiment II

S
e
n
s
it
iv
it
y

S
p
e
c
if
ic
it
y

●●

●

●

●●

●

●

●●

●

●

●

●

●●

●●●●● ●●●

●

●●

●●

●

0.00

0.25

0.50

0.75

1.00

●●●●●●●●●●●●●●●●●●●●●●●● ●

●

●●●●●●●●●●

●

●●●

●

●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●●●● ● ● ●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●

●●

●●●●

●●

●●

●

●●●●●●●●●

●

●

●●●●●●

●

●●

●

●●●●●

●●●

●

●●●●●

●●●●

●●●●●●●●●●●●

●

●●●

●

●●●●●

●●●●●●●●●● ●●● ●●●●

0.00

0.25

0.50

0.75

1.00

●● ●● ●●

● ●●●

●

●●●

●● ●

●●●●●● ●●●●

●

●●●

●●

●●

● ●

●

●

● ●●●●●●●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●

0.2

0.4

0.6

0.8

1.0

0,0 5e−03,5e−02 2e−02,2e−01

m=10

m=50

m=100

●

●●

●

●

●

●●●

●

●● ●

●●●●

0.0

0.2

0.4

0.6

0.8

●

●

●

●

●

●●

●●●

●●

●

●●

●

●

●●

●

●

●

●

●●●

0.00

0.25

0.50

0.75

1.00

●●●

●

●

●●

●

●● ●

●

●● ●●●

●

●

●●

●

●● ●

●

●● ●

●

●● ●●●

●

●

●●●●● ●

●

●

●●

●

●

●

●

●

●

●

●●●●●●

●●●●●●●●

●

●●●●●●●

●● ●●

●●

●

●

0.00

0.25

0.50

0.75

1.00

0,0 5e−03,5e−02 2e−02,2e−01

●

●

●

●

●

●●●●●●

●

●

●

●●●

● ●

●

●

●

●●

●

●

●

●●

● ●

●●● ● ●

●

●●●●●

●

●

●

●

●

●●●

●●

●

●

0.0

0.2

0.4

0.6

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0.0

0.2

0.4

0.6

0.8

●

● ●

0.25

0.50

0.75

0,0 5e−03,5e−02 2e−02,2e−01

n=6 (low) n=11 (medium) n=17 (high)

●●

●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

●

●●

●●●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●●●●

●

●●

●

●

●

●

●

●●●●●●●

●

●●●●●●●●●

●

●●●●●●

●

●

●● ● ●

●

●

●

●

●

●●

●●●

●

●

●

●●

●●

●●●

●●●

●

●

●●●●

●

●●●●

●●

●

●●●●

●

●●●●

●

0.7

0.8

0.9

1.0

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●

●●●●●●●●● ●●●●●●●●●●●●●

0.80

0.85

0.90

0.95

1.00

●● ●● ●● ● ●●●●●● ●●●●● ●●●●●● ●●●● ●●● ●●●●●● ●●●●

●

●●●●●●●●●●●●●●

●

●● ●●●

●

●●●●

●

●●●●●●●● ●●●●●●●

●

●●●●●●●●●●●●●●●●●

0.80

0.85

0.90

0.95

1.00

●

● ● ● ●●

●

●●

●

●

●●●

●

●●● ●●●

●

●●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●●

●●

●●

●●

●●

●●

●

●●●●

●●●

●●

●●

●●

●

●●●● ●●

●●

●●

●

●●●●

●●●

●●● ●

●

●

●● ●●●

●●●

●●

●●●

●●

●●●

●

●●●●●●●

●

●●●●●●●●● ●●●●●●●

●

●●●●●●●●● ●●●●●●●

●

●●●●●●●●

●●

● ●

●● ●

●

●●●● ● ●●●

●●●●

●●

0,0 5e−03,5e−02 2e−02,2e−01

False Positives, False Negatives (rates)
0,0 5e−03,5e−02 2e−02,2e−01 0,0 5e−03,5e−02 2e−02,2e−01

● ● ● ●

●●

●

●●●●

●

●●●●●●●●●●

●●●

●

●●

●●

●

●

●

●●●●

● ●● ●

●

●

●

●

●●●●●●

●

● ●

●

●

●

●

●●

●

●●●

●

●●

●●

●

●

●

●●

● ●

●●●

●

● ● ●

●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●

●●

●

●

●●

●●●

●

●●●

●

●

●●

●●●●

●

●●

●●

●●●

●●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●● ●

●

●●●

●

●

●

●

●

●●

●

●

●

●●●

●

●

●●●

●

●

●

●

●

●

●

●●●

● ●

●

●

●

●

●

●

●

Supplementary Figure 8: Experiment II, (branching evolution, fixed topologies, SCS data).
All the algorithms are tested on datasets generated from the phylogenetic trees shown in Sup-
plementary Figure 7. Three incremental level of unbalanced noise in the data are assumed:
ε+ = ε− = 0 (noise-free), ε+ = 5 · 10−3, ε− = 5 · 10−2 and ε+ = 2 · 10−2, ε− = 2 · 10−1. We test
distinct sample set sizes (n = 10, 50, 100) and 100 distinct datasets for each case, reporting the
distributions of sensitivity and specificity.
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Supplementary Figure 9: Experiment III. (branching evolution, random topologies, SCS data).
The algorithms are tested on SCS data generated from 100 random tree topologies, with n =
5, 10, 20 clones. As in Experiment II, three levels of noise (ε+, ε−) and three sample sizes (m)
are tested.
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Supplementary Figure 10: Experiment V. (confounding factors, fixed topologies, SCS data). We
add n×10% random (0/1) columns to the SCS data generated from the trees in Supplementary
Figure 7. We test three levels of noise (ε+ = ε− = 0, ε+ = 5 · 10−3, ε− = 5 · 10−2, ε+ = 2 · 10−2,
ε− = 2 · 10−1), and three sample sizes (m = 10, 50, 100).
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4.3 Multiple Independent Trajectories

In this case the signal that we detect in the data is composed from different true signals, one per
population of cells. So, we need to infer a forest with a number of trees equal to the number of
different progressions, which it seems reasonable to assume to be low, e.g., below 5.

Experiment VI. We extend the sampling strategy in Experiment III to account for forests with fixed
total number of nodes, i.e., n = 20. We perform the same procedure of that experiment.

Results (Supplementary Figure 11): All the algorithms display a very low sensitivity with small
datasets (with 20% median value with m = 10 samples), remarkably increasing the performance
with larger datasets (median values around 75% with m = 100 samples in the noise-free case).
Gabow, Edmond and CAPRESE show a good tradeoff between sensitivity and specificity, displaying
a good and similar performance, whereas SCITE confirms the tendency to overfit for small datasets,
yet being the most robust algorithm against noise in the data.

4.4 Inference with missing data

In addition to the false positives/negatives introduced in the data via allelic dropouts and false
alleles, unobserved or missing data points represent another major problem when dealing with
single-cell sequencing data. In the early works, around 60% of the data were missing due to the
low quality of the sequencing technique. Even though the technology has remarkably improved
during the last few years, leading to more reliable and usable data, we here investigate the influence
of missing data on the inference, with respect to the considered algorithms. In particular, we
performed simulated experiments with a specific generative topology and with different amounts of
missing data, ranging from 10% to 40%, analyzing the variation in the inference accuracy.

Experiment VII In order to evaluate the impact of missing data on the inference accuracy, we
chose 20 benchmark single-cell datasets generated from the Medium phylogenetic tree in Supple-
mentary Figure 7, with n = 11 nodes and m = 75 samples. 10 of these datasets were generated
with ε+ = ε− = 0, and the remaining 10 datasets with (ii) ε+ = 0.005, ε− = 0.05. For each of the
20 datasets we generated 5 further datasets, with the following ratio of randomly included missing
entries: r = (0, 0.1, 0.2, 0.3, 0.4), for a total of 100 distinct datasets. As SCITE naturally deals
with datasets with missing data, we performed the inference with no further parameters. Instead,
in order to perform the reconstruction with the remaining algorithms, we followed this procedure.
For each one of the 80 datasets with missing data (we did not consider the case with r = 100), we
filled the missing entries via a classical Expectation Maximization (EM) algorithm, and we repeated
this step to create 100 complete datasets (for each incomplete datasets). We then performed the
inference with all the algorithms on all the 100 datasets in each case, selecting the model with the
best likelihood score, which was then used in the performance assessment.

Results (Supplementary Figure 12): As one can see in Supplementary Figure 12, the performance
of all the algorithms is profoundly affected by the presence of missing data, both in the noisy and
in the noise-free cases. SCITE displays an overall more robust sensitivity than the other techniques,
yet in spite of a worse specificity, which would point at a tendency toward overfitting also in this
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Supplementary Figure 11: Experiment VI. (multiple independent trajectories, SCS data).
Single-cell datasets are generated from a large number (i.e., 100 for each case) of random
forest topologies, with n = 20 distinct clones. Three levels of noise (ε+ = ε− = 0, ε+ = 5 ·10−3,
ε− = 5 · 10−2, ε+ = 2 · 10−2, ε− = 2 · 10−1), and three sample sizes (m = 10, 50, 100) are tested.
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scenario. As expected, the performance of all the techniques is significantly better in the noise-
free case and, in general, is maintained at acceptable levels up to values of missing data around
20%/30% according to the cases.

5 Detailed tests with multi-region bulk-sequencing data

As we did for SCS data, we here present the results of detailed comparative tests of with multi-region
sequencing data. The analyses are organized as for SCS data.

5.1 Branching evolution

Experiment II-MR Here we reproduce Experiment II in the case of multi-region data, and sample
the polyclonal topologies shown in Supplementary Figure 7, with symmetric noise rates (ε− = ε+).
We compare the boxplot performance from 100 tests.

Results (Supplementary Figure 13): The accuracy of most algorithms is good in all the scenarios.
They all reach high values of specificity, whereas satisfactory values of sensitivity are observed only
with combination of sufficiently large datasets and sufficiently low noise. As expected, the overall
performance worsens with larger and more complex generative models.

In this case Gabow and Edmond display the best efficiency in retrieving both the true positives
and negatives, Edmond being slightly better in a certain number of parameter settings. Conversely,
SCITE shows the worst performance, especially with small datasets and low levels of noise, yet
proving a certain robustness to the increase in the noise level. CAPRI displays very good values of
specificity even with these data type, yet most likely due to its regularization.

Experiment III-MR This experiment reproduces Experiment III with multi-region data, hence sam-
pling the datasets from 100 randomly generated topologies with variable number of nodes.

Results (Supplementary Figure 14): The results of this experiment resemble Experiment III: over-
all good performance is observed, yet with low sensitivity with small datasets and noisy data.
Gabow and Edmond consistently display optimal and very similar trends, with Edmond showing a
better performance in a sightly larger number of settings. SCITE confirms to be less accurate with
multi-region data, especially with small datasets, even when the level of noise is low. We remark
that we did not include an experiment analogous to Experiment IV because with symmetrical noise
rates we do not expect significant differences in accuracy.

5.2 Confounding factors

Experiment V-MR We reproduce Experiment V with multi-region data augmented with n × 10%
random columns. We use the three topologies shown in Supplementary Figure 7.

Results (Supplementary Figure 15): The results are in accordance with those of the analogous
SCS experiment, with an expected overall decrease of accuracy due to the introduction of spuriously
correlated events. Edmond is the most accurate algorithm, slightly improving over Gabow; SCITE
seems less efficient in retrieving both the true and the false relations, especially with small datasets
and/ or low noise levels.
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Supplementary Figure 12: Experiment VII. (missing data, SCS data). Sensitivity and specificity
for with different proportions of missing entries, i.e., r = (0, 0.1, 0.2, 0.3, 0.4), and different levels
of noise: (i) ε+ = ε− = 0 and (ii) ε+ = 0.005, ε− = 0.05. The original dataset is generated
from the medium tree in Supplementary Figure 7, with n = 11 nodes and m = 75 samples.

27



Supplementary Figure 13: Experiment II-MR. (branching evolution, fixed topologies, MR
data). All algorithms are tested on datasets generated from the phylogenetic trees shown
in Supplementary Figure 7, where we simulate multi-region data. Three levels of noise
(ε+ = ε− = 0.0, 0.05, 0.2), and three sample sizes (m = 5, 10, 20) are tested.
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Supplementary Figure 14: Experiment III-MR (branching evolution, random topologies, MR
data). The algorithms are tested on multi-region datasets generated from a number of random
tree topologies, with n = 5, 10, 20 clones (100 distinct topologies for each case). Three levels of
noise (ε+ = ε− = 0.0, 0.05, 0.2), and three sample sizes (m = 5, 10, 20) are tested.
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Supplementary Figure 15: Experiment V-MR. (confounding factors, fixed topologies, MR data).
n×10% random (0/1) columns are added to the multi-region datasets generated from the trees
shown in Supplementary Figure 7. Three levels of noise and sample size are tested.
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5.3 Multiple Independent Trajectories

Experiment VI-MR We reproduce Experiment VI with multi-region data, and with datasets sampled
from random forests (see Supplementary Figure 3).

Results (Supplementary Figure 16): Gabow, Edmond and CAPRESE appear to be the most ac-
curate algorithms in this scenario. The former achieves the best sensitivity and specificity in most
settings. Prim is very efficient in retrieving the true relations in many cases, especially with low
levels of noise, yet presenting a certain tendency toward overfitting. SCITE seems less accurate in
most settings.

6 Parameters settings, computation time and scalability

6.1 Parameter Settings

n : number of nodes (i.e, genomic alterations/ clones).
We use

n = 5, 10, 15, 20

when we sample random models. In random tests, 100 trees are generated for each configu-
ration of n and m (see below), and one dataset per tree is sampled. In some tests, we fix n
to 6, 11 and 17 (Supplementary Figure 7); we specify in the experiment description if that is
the case.

m : number of samples (i.e., cells, or regions sequenced).
When we perform a single-cell sampling, we scan the values

m = 10, 25, 50, 75, 100 .

When we perform a multi-region sampling, we scan values in line with a reasonable number
of biopsies that could be extracted from a solid tumor

m = 5, 7, 10, 20, 50 .

c : number of signals from single-clones in a multi-region experiment.
When we perform a multi-region sampling, we set the values

c = 3, 5, 8 .

for the fixed topologies in Supplementary Figure 7, and

c =
n

2

otherwise.
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Supplementary Figure 16: Experiment VI-MR. (multiple independent trajectories, MR data).
Multi-region datasets are generated from a number (i.e., 100 for each case) of random forest
topologies, with n = 20 distinct clones. Tthree levels of noise (ε+ = ε− = 0, 0.05, 0.2) and three
sample sizes (m = 5, 10, 20) are tested, recording sensitivity and specificity.
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ε+/ε− : rates of FPs/FNs in data, for the observed genotypes.
In single-cell sequencing we assume these to be

(ε+, ε−) = (0, 5, 10, 15, 20, 25, 30, 35)× (10−3, 10−2) .

This corresponds to pairs of equal value that differ for an order of magnitude, e.g., (ε+ =
0.015, ε− = 0.15), consistently with the observation that false negative rates in single-cell data
are much higher than false positives ones. Such values correspond to an overall error rate
that is 2× ε+ and 2× ε−. For multi-region sequencing, these errors are symmetric

(ε+, ε−) = (0, 5, 10, 15, 20, 25, 30, 35)× (10−2, 10−2) .

topology : model structure used according to the working scenarios (Supplementary Figure 3).
This is either a tree, a forest or a DAG.

probabilities : conditional probability tables (CPTs), and marginals of a model.
When these are sampled at random we impose the constraint that for any pair of variables
X and Y it holds

p(X | Y ) ∈ [0.6, 0.9],

and for any marginal p(X) > 0.001. These values seem reasonable to avoid the introduction
of biases in the sampling process. In some cases we assigned fixed values to the CPTs, which
we report in the corresponding figures (e.g., in Supplementary Figure 7).

p? = 0.05 : α-level of the Mann-Whitney test (p-value).

6.2 Computation time and scalability

To assess and compare the computation time of the distinct techniques we used the Medium phylo-
genetic tree in Supplementary Figure 7 as generative topology, with n = 11 nodes, m = 75 samples,
ε+ = 0.005, ε− = 0.05, and we repeated the inference for 100 distinct experiments, on a single core
of a Lenovo Thinkpad t430s with an Intel i7 3520M 4-core 2.90GHz and 16Gb Ram.

In Supplementary Table 6 we see that CAPRESE is the fastest algorithm, because it does not
bootstrap the data. It is followed by Prim, Gabow, Edmond, CAPRI and Chow-Liu, with almost
identical running time (7× slower than CAPRESE). SCITE is remarkably slower (i.e., 25× slower
than CAPRESE and more than 3× slower than the group of PRIM), whereas OncoNEM has the worst
performance (i.e., 300× slower than CAPRESE, around 40× slower than CAPRI, and 12× slower
than SCITE). For these reasons, we could not include also OncoNEM in more extensive experiments.

In order to assess TRaIT’s scalability with increasingly larger single-cell datasets, we gener-
ated 100 random branching evolution topologies (as in Experiment III and Supplementary Fig-
ure 9), with n = 20 nodes, ε+ = 0.005, ε− = 0.05 and different values of sample size: m ∈
(100, 500, 1000, 5000, 10000, 15000, 20000). We then timed both EDMONDS and CHOW-LIU, and
evaluated performance. In Supplementary Table 7 we show median values and standard deviation
for each distinct experimental settings. Simulations were performed on a Quad Core pc with Intel
i7 - 8 thread 3.5 GHz and 16Gb Ram. As one can can see from the table, CHOW-LIU displays better
median sensitivity with smaller sample size than EDMONDS, which in turn shows better median
specificity. Both the algorithms display an approximately linear increase of the computational time
with respect to the number of samples, and even for extremely large datasets (i.e., 20000 single
cells) the median execution time is around 22 seconds per experiment.
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7 Case studies

In addition to the Main Text, we show in Supplementary Figures 17 and 18 the inference from the
triple-negative breast cancer SCS data, and in Supplementary Figure 20 the same for the colorectal
cancer data. In Supplementary Figure 21 we show the fit with SCITE .

8 Noise model

Derivation of the noise model for both marginal and joint probabilities.

Marginal Probabilities

Let us call ε+ the probability of observing 1 when we had 0 (false positive) and ε− the other way
around (false negative). We remark that we assume these probability to be strictly in [0, 0.5) with
value 0.5 representing totally random entries. Then, for any event xi, we can write the expectation
of the probability of observing it (here with the notation ni), given its theoretical probability p(xi)
as follow.

ni = p(xi) · [1− ε−] + [1− p(xi)] · ε+ ,

and with some rearrangements,

ni = p(xi)− p(xi) · ε− + ε+ − p(xi) · ε+ ,
ni = p(xi) · [1− ε+ − ε−] + ε+ ,

from which, with (ε+, ε−) ∈ [0, 0.5),

p(xi) =
ni − ε+

1− ε+ − ε−
.

Joint probabilities

Let us now consider the theoretical joint probability p(xi,j) (in what follow also called p(xi,xj) to
make the elements of the probability explicit) of any two pair of events and the respective observed
marginal and joint probabilitis ni, nj and ni,j . Then, the expectation of ni,j can be written as
follow.

ni,j = p(xi,xj) · [1− ε−] · [1− ε−]

+ p(xi,xj) · [1− ε−] · ε+
+ p(xi,xj) · ε+ · [1− ε−]

+ p(xi,xj) · ε+ · ε+ ,

and being,

p(xi,xj) = p(xi)− p(xi,xj) ,

p(xi,xj) = p(xj)− p(xi,xj) ,

p(xi,xj) = 1− p(xi)− p(xj) + p(xi,xj) ,
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Supplementary Figure 17: Analysis of the data from [23] (single-nucleus exome sequencing of
16 tumor cells from a triple-negative breast cancer) with CAPRI, CAPRESE and Edmond.

35



Supplementary Figure 18: Analysis of the data from [23] (single-nucleus exome sequencing of
16 tumor cells from a triple-negative breast cancer) with Gabow, Chow-Liu and PRIM.

with some rearrangements,

ni,j = p(xi,xj) · (1 + ε2+ + ε2− + 2 · ε+ · ε− − 2 · ε+ − 2 · ε−)

+ [p(xi) + p(xj)] · ε+ · [1− ε+ − ε−] + ε2+ ,

ni,j = p(xi,xj) · (1− ε+ − ε−)2 + [p(xi) + p(xj)] · ε+ · [1− ε+ − ε−] + ε2+ ,

ni,j = p(xi,xj) · (1− ε+ − ε−)2 +
ni + nj − 2 · ε+

1− ε+ − ε−
· ε+ · [1− ε+ − ε−] + ε2+ ,

ni,j = p(xi,xj) · (1− ε+ − ε−)2 + (ni + nj) · ε+ − 2 · ε2+ + ε2+ ,
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Supplementary Figure 19: Analysis of the data from [23] (single-nucleus exome sequencing of 16
tumor cells from a triple-negative breast cancer) with SCITE. False discovery rate of 1.26×10−6

and allelic dropout of 9.73 × 10−2 are provided as input parameters. Posterior estimates are
computed with 900.000 Montecarlo steps, and 10000 equivalent-scoring trees returned. Here
we show one of the top-scoring.

37



Supplementary Figure 20: Analysis by TRaIT’s algorithm of the colorectal cancer MR data
from [24].
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Supplementary Figure 21: Analysis by SCITE of the colorectal cancer MR data from [24]. The
events occurring in the same group of samples are indistinguishable in our framework. SCITE
retrieves from them a long linear chain of consecutive events, whose ordering is not unique.
The posterior is in fact multi-modal, as shown via an heatmap of top-scoring models. There
each column is a model, each row an event, an teh parents are coloured. Roots are white. The
presence of non-uniform colours shows the posterior uncertainty for to the linear chain of events
that cannot be distinguished.
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A – Original input matrix B – Reshaped matrix C – Model

Supplementary Figure 22: Back mutation example. A. The input matrix includes 6 single cells
and 4 genomic events: mutation of gene X, deletion of a region including X, and mutations of
Y and Z. In this scenario cells 4 - 6 are evolutionary subsequent cells 1–3, and suffer a back
mutation on X. B. The input matrix is reshaped by merging the mutation and deletion of X,
creating a new event. C. The output model will include such aggregate event as root, prior to
mutations of Y and Z, hence preserving the overall temporal coherence.

from which, with (ε+, ε−) ∈ [0, 0.5),

p(xi,xj) =
ni,j − ε+ · (ni + nj − ε+)

(1− ε+ − ε−)2
.

9 Modeling back mutations

Our framework does not explicitly account for back mutations. These confound the inference when
a previously acquired genomic alteration is lost during the evolutionary history of a tumor, due,
e.g., to loss of heterozygosity or general chromosomal deletions. In phylogenetic jargon this is a
violation of the no-back mutation assumption, and cannot be handled in general cases.

However, when both SNVs and CNAs data are provided, one can attempt at merging the events
in a pre-processing phase. Consider for instance a mutation on a gene X acting as a tumour sup-
pressor, and a chromosomal deletion spanning through the mutated gene (or a wider chromosomal
region including it). If one cane phase the deletion to the strand where X is mutated, a single-
cell dataset could look as in Supplementary Figure 22. If there is a lineage relation between cells
(samples 1–3 are ancestral to 4–6, which we do not know), and we merge the two distinct events
before performing the inference, then we can retrieve a progression model where we time the event
“inactivation of X”. In more general scenarios of aneuploidy, or when cells are siblings and the
events are not phased, creating a merged events is not a solution to the back-mutation problem.
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Error Rates Specificity Sensitivity
ε+ ε− Average SD Average SD

0.003 0.07 0.984 0.020 0.729 0.172
0.004 0.07 0.984 0.020 0.725 0.179
0.005 0.07 0.985 0.020 0.730 0.176
0.006 0.07 0.984 0.020 0.723 0.179
0.007 0.07 0.984 0.020 0.724 0.175
0.003 0.06 0.984 0.020 0.729 0.172
0.004 0.06 0.984 0.020 0.725 0.179
0.005 0.06 0.985 0.020 0.730 0.176
0.006 0.06 0.984 0.020 0.725 0.178
0.007 0.06 0.984 0.020 0.726 0.175
0.003 0.05 0.984 0.020 0.729 0.172
0.004 0.05 0.984 0.020 0.725 0.179
0.005 0.05 0.985 0.020 0.730 0.176
0.006 0.05 0.985 0.020 0.727 0.178
0.007 0.05 0.984 0.020 0.726 0.175
0.003 0.04 0.984 0.020 0.729 0.172
0.004 0.04 0.984 0.020 0.726 0.178
0.005 0.04 0.985 0.020 0.730 0.176
0.006 0.04 0.985 0.020 0.727 0.178
0.007 0.04 0.984 0.020 0.726 0.175
0.003 0.03 0.984 0.020 0.729 0.172
0.004 0.03 0.984 0.020 0.726 0.178
0.005 0.03 0.985 0.020 0.730 0.176
0.006 0.03 0.985 0.020 0.727 0.178
0.007 0.03 0.984 0.020 0.726 0.175

Supplementary Table 4: Experiment IV. (noise-robustness). Average sensitivity and specificity
(and standard deviation) of Gabow on datasets generated from the medium phylogenetic tree in
Supplementary Figure 7, with ε+ = 5×10−3 and ε− = 5×10−2. We test combinations of input
for ε+ and ε− in the following ranges: ε+ = (3, 4, 5, 6, 7)× 10−3 and ε− = (3, 4, 5, 6, 7)× 10−2.
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Error Rates Specificity Sensitivity
ε+ ε− Average SD Average SD

0.003 0.07 0.959 0.030 0.708 0.181
0.004 0.07 0.958 0.032 0.696 0.202
0.005 0.07 0.960 0.029 0.702 0.188
0.006 0.07 0.962 0.027 0.709 0.175
0.007 0.07 0.958 0.031 0.693 0.197
0.003 0.06 0.959 0.030 0.699 0.180
0.004 0.06 0.957 0.032 0.692 0.203
0.005 0.06 0.962 0.028 0.707 0.182
0.006 0.06 0.959 0.030 0.696 0.190
0.007 0.06 0.958 0.030 0.691 0.198
0.003 0.05 0.957 0.029 0.696 0.174
0.004 0.05 0.955 0.032 0.686 0.201
0.005 0.05 0.962 0.027 0.710 0.181
0.006 0.05 0.960 0.029 0.698 0.183
0.007 0.05 0.958 0.031 0.682 0.207
0.003 0.04 0.956 0.029 0.698 0.183
0.004 0.04 0.954 0.031 0.680 0.203
0.005 0.04 0.962 0.027 0.718 0.177
0.006 0.04 0.960 0.030 0.701 0.187
0.007 0.04 0.958 0.030 0.684 0.194
0.003 0.03 0.956 0.029 0.691 0.195
0.004 0.03 0.956 0.030 0.693 0.192
0.005 0.03 0.960 0.027 0.703 0.184
0.006 0.03 0.961 0.028 0.703 0.179
0.007 0.03 0.956 0.031 0.672 0.195

Supplementary Table 5: Experiment IV. (noise-robustness). Average sensitivity and specificity
(and standard deviation) of SCITE on datasets generated from the medium phylogenetic tree in
Supplementary Figure 7, with ε+ = 5×10−3 and ε− = 5×10−2. We test combinations of input
for ε+ and ε− in the following ranges: ε+ = (3, 4, 5, 6, 7)× 10−3 and ε− = (3, 4, 5, 6, 7)× 10−2.
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Average execution time
Total execution time

(100 experiments)
CAPRESE 0.03s 19.67s

PRIM 1.35s 150.12s
GABOW 1.36s 151.56s

EDMONDS 1.36s 152.30s
CAPRI 1.36s 153.70s

CHOW-LIU 1.39s 154.34s
SCITE 4.43s 505.70s

OncoNEM 59.23s 6037.22s

Supplementary Table 6: Average and total execution times for 100 distinct experiments, with
the parameters described in Section 6.
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Sensitivity
CHOW-LIU EDMONDS

Sample Size (m) Median St. Dev. Median St. Dev.
100 0.78 0.27 0.6 0.2
500 1 0.16 0.74 0.25
1000 1 0.07 0.89 0.15
5000 1 0.17 1 0.18
10000 1 0.14 1 0.14
15000 1 0.17 1 0.17
20000 1 0.22 1 0.22

Specificity
CHOW-LIU EDMONDS

Sample Size (m) Median St. Dev. Median St. Dev.
100 0.97 0.04 0.98 0.01
500 0.95 0.12 0.99 0.01
1000 0.96 0.12 0.99 0.01
5000 0.97 0.17 1 0
10000 0.98 0.13 1 0
15000 0.99 0.15 1 0
20000 0.98 0.14 1 0

Computation time (sec)
CHOW-LIU EDMONDS

Sample Size (m) Median St. Dev. Median St. Dev.
100 2.35 0.42 2.29 0.41
500 1.89 0.68 1.85 0.59
1000 2.21 1.34 2.19 0.82
5000 6.76 2.78 6.78 0.59
10000 12.22 2.54 12.43 0.94
15000 16.79 2.45 16.94 0.17
20000 22.08 2.61 22.24 0.21

Supplementary Table 7: Median sensitivity, specificity and computation time, along with the
corresponding standard deviation, for CHOW-LIU and EDMONDS. We used 100 distinct ex-
periments of SCS data, with the following parameter settings: n = 20 nodes, ε+ = 0.005,
ε− = 0.05, m ∈ (100, 500, 1000, 5000, 10000, 15000, 20000).

.
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