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DOUBLE RESONANCE IN STURM-LIOUVILLE PLANAR
BOUNDARY VALUE PROBLEMS

Andrea Sfecci

Abstract. We provide some existence results for Sturm-Liouville bound-

ary value problems associated with the planar differential system Jz′ =
g(t, z) + r(t, z) where g is suitably controlled by the gradient of two posi-

tively homogeneous functions of degree 2 and r is sublinear with respect to

the variable z at infinity. We study the existence of solutions when a dou-
ble resonance phenomenon occurs by the introduction of Landesman-Lazer

type conditions. Applications to scalar second order differential equations

are given.

1. Introduction

For the scalar equation

(1.1) x′′ + f(t, x) = 0

with periodic, Neumann or Dirichlet boundary conditions there have been several
works concerning the existence of solutions under some nonresonance conditions.

The approach to resonance is a delicate problem and the most successful
condition has been introduced by Landesman and Lazer, where the nonlinearity
asymptotically lies between two eigenvalues of the linear differential equation,
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see [9, 10]. In the case of asymmetric nonlinearities we mention [6, 8] for the peri-
odic case and [15] for planar systems (see also [18, 19, 24] and the monograph [14]
for further informations on this topic).

Even though double resonance phenomenon has been studied dealing with
periodic boundary conditions, such a discussion has not been treated for Dirichlet
and Neumann boundary conditions yet. In this paper we are going to present
some existence results at double resonance for equation (1.1) when f satisfies

(1.2) 0 < ν1 ≤ lim inf
x→−∞

f(t, x)
x

≤ lim sup
x→−∞

f(t, x)
x

≤ ν2 ,

(1.3) 0 < µ1 ≤ lim inf
x→+∞

f(t, x)
x

≤ lim sup
x→+∞

f(t, x)
x

≤ µ2

(see Theorem 4.3 below).
In such a situation the nonlinearity f “mimes” an asymmetric oscillator

x′′ + µx+ − νx− = 0 ,

where x+ = (|x| + x)/2 and x− = (|x| − x)/2. The previous scalar differential
equation can be studied as a planar system of the type

(1.4) Jz′ = ∇V (z) , z ∈ R2 ,

where J =

(
0 −1
1 0

)
is the standard symplectic matrix and V : R2 → R is a

positively homogeneous C1-function of degree 2, i.e. such that

0 < V (λz) = λ2V (z) , for every λ > 0 , z 6= 0 .

For this reason, boundary value problems related to (1.4) present a particular
interest in literature, see [2, 13, 16, 27] and the references therein.

In relation with the scalar second order differential equation (1.1), the Dirich-
let boundary conditions x(0) = x(T ) = 0 (DBC), the Neumann boundary con-
ditions x′(0) = x′(T ) = 0 (NBC) and the mixed boundary conditions x′(0) =
x(T ) = 0 (MBC) can be collected all together in a unique class of problems when
we pass to consider planar systems as in (1.4). Indeed, we can ask a solution
z(t) = (x(t), y(t)) to start and arrive at some points belonging to two lines in
the plane:

(1.5) z(0) ∈ lS , z(T ) ∈ lA ,

where lS is the starting line and lA is the arrival line. In particular (DBC) is
equivalent to the case lS = lA = {z = (x, y) | x = 0}, (NBC) is equivalent to
the case lS = lA = {z = (x, y) | y = 0} and (MBC) is equivalent to the case
lS = {z = (x, y) | y = 0} and lA = {z = (x, y) | x = 0}.
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In [2, 16], the following class of problems, obtained as a perturbation of (1.4),
is treated:

(1.6)

Jz′ = ∇V (z) + p(t, z) ,

z(0) ∈ lS , z(T ) ∈ lA ,

where, for briefness, we say p is bounded and continuous.

Recalling that the unperturbed system (1.4) has an isochronous center of
minimal period τV , and borrowing the definition from [2], we say that the un-
perturbed problem

(1.7)

Jz′ = ∇V (z) ,

z(0) ∈ lS , z(T ) ∈ lA .

is resonant if it has at least one nontrivial solution. As in the periodic case,
if problem (1.7) is not resonant then a perturbed problem as in (1.6) admits a
solution, cf. [16]. Conversely, if the unperturbed problem (1.7) is resonant, then
the existence of a solution to problems as in (1.6) is ensured assuming an addi-
tional condition: in [2] the introduction of a Landesman-Lazer type assumptions
provides an existence result. In these notes we continue the study performed
in [2, 16] by Boscaggin, Fonda and Garrione. In particular, we are going to
consider the wider class of problems

(1.8)

Jz′ = g(t, z) + p(t, z) ,

z(0) ∈ lS , z(T ) ∈ lA ,

where the function g is controlled by two positively homogeneous functions of
degree 2, V1 ≤ V2: More precisely, g satisfies

g(t, z) =
(
1− γ(t, z)

)
∇V1(z) + γ(t, z)∇V2(z) ,

where γ : [0, T ]× R2 → R, with 0 ≤ γ ≤ 1 and p : [0, T ]× R2 → R2 is sublinear
with respect to the second variable. In Assumptions 2.1 and 3.1 below, concern-
ing the functions g and p, we will require a Carathéodory type of regularity, so
we will look for solutions of (1.8) belonging to the space H1([0, T ],R2) satisfying
the differential equation almost everywhere.

The study of existence of solutions to problem (1.8) is related to the study of
perturbed asymmetric oscillators, e.g. differential equations as x′′+µx+−νx−+
g(x) = e(t) where g and e are bounded continuous functions. In particular, (1.8)
includes the scalar differential equation (1.1) where f satisfies (1.2) and (1.3),
as a particular case. Such problems present a wide literature, see [3, 4, 5, 7,
8, 12, 13, 14, 20, 21, 22, 23] for a non exhaustive bibliography, apologizing for
unavoidable missing references.
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We recall that Drábek studied the possibility of introducing Landesman-
Lazer type assumptions for a class of boundary value problems in [6, Section 4],
focusing his attention on Dirichlet problems. In Section 4, we will present our
main result applied to Dirichlet problems with jumping nonlinearities in the
spirit of that paper.

Systems as in (1.8) have been investigated in [15] by Fonda and Garrione
dealing with periodic boundary conditions (see also [11, 17]). In the periodic
setting, the existence of solutions can be ensured if there exists a positive inte-
ger k such that

(1.9)
T

k + 1
≤ τV2 ≤ τV1 ≤

T

k
,

where τV1 and τV2 are the periods of the solutions of system (1.4) choosing
respectively V = V1 and V = V2.

In such a situation we can distinguish three situations: nonresonance, when
we have the strict inequalities in (1.9); simple resonance, when we have a strict
inequality and an equality in (1.9); double resonance, when two equalities hold
in (1.9). In the presence of resonance we need to add additional assumptions.
Landesman-Lazer type assumptions have been introduced in [15] (see also [8, 9,
10, 25, 26] for related results).

In this paper, dealing with system (1.8), we investigate all the three sit-
uations: nonresonance, simple resonance and double resonance. They will be
treated in Section 3. The situations differ depending on the position of the
value T in (1.8) with respect to a resonance set which will be introduced in (2.26).

The paper is organized as follows. In Section 2 we present some prelimi-
nary results: in Section 2.1 some properties of the autonomous system (1.4) are
listed borrowing some notations from [2, 16], then in Section 2.2 we add a first
perturbation presenting some properties of the solutions of system (1.8) in the
semi-autonomous case p ≡ 0. We present the main Theorems 3.2 (nonresonance),
3.8 (simple resonance) and 3.9 (double resonance) in the successive Sections 3.1,
3.2 and 3.3, respectively. Finally, in Section 4, we present the applications of our
theorems in the case of scalar equations (1.1) with an asymmetric nonlinearity,
cf. Theorem 4.3.

In this paper, we will denote by | · | the Euclidean norm in R2 and we will
use the complex notation for polar coordinates in the plane: z = (x, y) = ρeiϑ =
(ρ cosϑ, ρ sinϑ). Moreover, in order to well define the angle ϑ when we pass to
polar coordinates, we will consider functions z : I → R2 such that z(t) 6= (0, 0)
for every t ∈ I. For briefness we call them never-zero functions.
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2. Preliminaries

2.1. An autonomous isochronous planar system. In this section we
recall some notations and contents from [2, 16]. Let us consider the planar
system

(2.1) Jz′ = ∇V (z) , z = (x, y) ∈ R2 ,

where J =

(
0 −1
1 0

)
is the standard symplectic matrix and V : R2 → R is a

C1-function which is positively homogeneous of degree 2, i.e.

(2.2) 0 < V (λz) = λ2V (z) , for every λ > 0 , z 6= 0 .

Let us recall the validity of the Euler’s formula: 〈∇V (z) | z 〉 = 2V (z) for every
z ∈ R2.

The origin is an isochronous center for system (2.1) of minimal period

(2.3) τV =
∫ 2π

0

dθ

2V (cos θ, sin θ)

and all the solutions have the form z(t) = CϕV (t+τ), with C ≥ 0 and τ ∈ [0, τV ),
where ϕV is a fixed nontrivial solution to (2.1). Without loss of generality we
assume V (ϕV (t)) ≡ 1

2 and ϕV (0) = (0, y0) with y0 > 0.
Let us consider the following boundary condition

(2.4) z(0) ∈ lS , z(T ) ∈ lA ,

where lS and lA (“S” stands for starting, “A” for arrival) are lines through
the origin of slope ζS and ζA, respectively. We mean that a line through the
origin has slope ζ ∈ (−π/2, π/2] if it can be parametrized as l : R → R2,
l(s) = s(cos ζ, sin ζ).

For later purpose, let us set

(2.5) ∆ζ =

ζS − ζA if ζS > ζA

ζS − ζA + π if ζS ≤ ζA ,

which is the smallest positive angle a solution covers moving from lS to lA, cf.
Figure 1 (remember that solutions rotate clockwise).

Denote by

• τ0,V the least nonnegative time such that ϕV (τ0,V ) ∈ lS ,
• τ1,V the least positive time such that ϕV (τ0,V + τ1,V ) ∈ lA,
• σ1,V the least nonnegative time such that ϕV (τ0,V + τ1,V + σ1,V ) ∈ lS ,
• τ2,V the least positive time such that ϕV (τ0,V + τ1,V +σ1,V + τ2,V ) ∈ lA,
• σ2,V the least nonnegative time such that ϕV (τ0,V + τ1,V +σ1,V + τ2,V +
σ2,V ) ∈ lS .
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Figure 1. The notation of Section 2.1, a sketch in the case ζA < ζS .

Notice that, by definition,

(2.6) τV = τ1,V + σ1,V + τ2,V + σ2,V

and in particular, as in (2.3), we have

(2.7)

τ1,V =
∫ ζS

ζS−∆ζ

dθ

2V (cos θ, sin θ)
, τ2,V =

∫ ζS+π

ζS+π−∆ζ

dθ

2V (cos θ, sin θ)
,

σ1,V =
∫ ζS−∆ζ

ζS−π

dθ

2V (cos θ, sin θ)
, σ2,V =

∫ ζS+π−∆ζ

ζS

dθ

2V (cos θ, sin θ)
,

As a consequence, if lS and lA coincide, then σ1,V = σ2,V = 0.
In order to distinguish the two rays which lA and lS consist of respectively,

we set (cf. Figure 1)

(2.8)
l1S 3 ϕV (τ0,V ) , l1A 3 ϕV (τ0,V + τ1,V ) ,

l2S 3 ϕV (τ0,V + τ1,V + σ1,V ) , l2A 3 ϕV (τ0,V + τ1,V + σ1,V + τ2,V ) .

The problem

(2.9)

Jz′ = ∇V (z) ,

z(0) ∈ lS , z(T ) ∈ lA ,
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is said to be resonant if it admits nontrivial solutions. Such a situation occurs if
and only if T satisfies any one of the following identities, for a certain k ∈ N,

T = kτV + τ1,V ,(2.10)

T = kτV + τ1,V + σ1,V + τ2,V ,(2.11)

T = kτV + τ2,V ,(2.12)

T = kτV + τ2,V + σ2,V + τ1,V ,(2.13)

and a nontrivial solution is given by

ϕV (t+ τ0,V ) if (2.10) or (2.11) holds,(2.14)

ϕV (t+ τ0,V + τ1,V + σ1,V ) if (2.12) or (2.13) holds.(2.15)

Indeed, concerning the solutions of a resonant problem (2.9), we can distinguish
different starting rays and arrival rays:

if (2.10) holds ⇒ the solution starts from l1S and arrives on l1A ,

if (2.11) holds ⇒ the solution starts from l1S and arrives on l2A ,

if (2.12) holds ⇒ the solution starts from l2S and arrives on l2A ,

if (2.13) holds ⇒ the solution starts from l2S and arrives on l1A .

2.2. Introducing a perturbation in the energy. We now focus our at-
tention on the qualitative properties of solutions to the boundary value problem

(2.16)

Jz′ = g(t, z) ,

z(0) ∈ lS , z(T ) ∈ lA ,

where the function g : [0, T ]×R2 → R2 is suitably controlled by two Hamiltonians
V1 and V2 as in the previous section. More precisely, we introduce the following.

Assumption 2.1. There exists a L2-Carathéodory function γ : [0, T ]×R2 →
[0, 1] such that

g(t, z) = (1− γ(t, z))∇V1(z) + γ(t, z)∇V2(z) ,

where V1 ≤ V2 are two positively homogeneous C1-functions as in (2.2).

As in (2.6), we define the values

τV2 = τ1,V2 + σ1,V2 + τ2,V2 + σ2,V2 ,

≤ ≤ ≤ ≤ ≤

τV1 = τ1,V1 + σ1,V1 + τ2,V1 + σ2,V1 .

(2.17)
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Introducing polar coordinates z = (x, y) = ρeiϑ, the angular velocity of a
never-zero solution of Jz′ = g(t, z) is given by

− ϑ′(t) =
〈 Jz′(t) | z(t) 〉

|z(t)|2

= (1− γ(t, z(t))
〈∇V1(z(t)) | z(t) 〉

|z(t)|2
+ γ(t, z(t))

〈∇V2(z(t)) | z(t) 〉
|z(t)|2

= 2(1− γ(t, z(t))V1(cosϑ(t), sinϑ(t)) + 2γ(t, z(t))V2(cosϑ(t), sinϑ(t)) ,

so that we obtain

(2.18) 0 < 2V1(cosϑ(t), sinϑ(t)) ≤ −ϑ′(t) ≤ 2V2(cosϑ(t), sinϑ(t)) .

By the previous computation, recalling (2.3), (2.7) and (2.8), a never-zero
solution of Jz′ = g(t, z)

moving from l1S to l1A spends a time ∆t1 ∈ [τ1,V2 , τ1,V1 ] ,(2.19)

moving from l1A to l2S spends a time ∆t2 ∈ [σ1,V2 , σ1,V1 ] ,(2.20)

moving from l2S to l2A spends a time ∆t3 ∈ [τ2,V2 , τ2,V1 ] ,(2.21)

moving from l2A to l1S spends a time ∆t4 ∈ [σ2,V2 , σ2,V1 ] ,(2.22)

completes a rotation around the origin in a time ∆t ∈ [τV2 , τV1 ] .(2.23)

We now estimate the time spent by a solution of Jz′ = g(t, z) in order to
move from a point of liS (i = 1, 2) to a point of lA, once it has covered an angle
of at least jπ (j ∈ N). Such a time belongs to a certain interval [ai

j , b
i
j ], whose

values can be computed using (2.19)-(2.23). When we do not distinguish between
solutions departing from l1S and l2S the time belongs to a larger interval denoted
by Ij = [αj , βj ].

We list the constants ai
j , b

i
j , αj , βj (i = 1, 2 ; j ∈ N) here below:

(2.24)

α2k = min{a1
2k , a

2
2k} , a1

2k = kτV2 + τ1,V2 ,

a2
2k = kτV2 + τ2,V2 ;

β2k = max{b12k , b
2
2k} , b12k = kτV1 + τ1,V1 ,

b22k = kτV1 + τ2,V1 ;

α2k+1 = min{a1
2k+1 , a

2
2k+1} , a1

2k+1 = kτV2 + τ1,V2 + τ2,V2 + σ1,V2 ,

a2
2k+1 = kτV2 + τ1,V2 + τ2,V2 + σ2,V2 ;

β2k+1 = max{b12k+1 , b
2
2k+1} , b12k+1 = kτV1 + τ1,V1 + τ2,V1 + σ1,V1 ,

b22k+1 = kτV1 + τ1,V1 + τ2,V1 + σ2,V1 .

Clearly, all the intervals Ij = [αj , βj ] are well ordered in the following sense:
αj < αj+1 and βj < βj+1 for every j ∈ N. However, we can have αj+1 < βj :
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more precisely we have

β2k − α2k+1 ≥ k(τV1 − τV2)− τV2 , β2k+1 − α2k+2 ≥ k(τV1 − τV2)− 2τV2 ,

for every index k. So, if V1 6= V2, and in particular τV1 > τV2 , then there exists
an index j0 such that

(2.25) αj+1 < βj , for every j ≥ j0 .

We introduce the resonance set

(2.26) I =
⋃
j∈N

Ij =
⋃
j∈N

[αj , βj ] ,

the interior of I, denoted by
◦
I, and

(2.27) Ĩ =
⋃
j∈N

(αj , βj) .

Notice that Ĩ ⊆
◦
I ⊆ I and so ∂I ⊆ ∂Ĩ. Moreover, if V1 6= V2, by (2.25), the

resonance set I contains the unbounded interval [αj0 ,∞).
In this paper we are going to treat the following situations:

• Nonresonance: T /∈ I, that is ∃κ ∈ N such that βκ < T < ακ+1, or
T < α0.

• Simple resonance: T ∈ ∂I, that is ∃κ ∈ N such that T = ακ or T = βκ.
• Double resonance: T ∈ ∂Ĩ \∂I, that is ∃κ ∈ N such that T = βκ = ακ+1.

Let us now spend few words in order to explain how resonance occurs. For
example, let us assume g ≡ ∇V2 and T = ακ, for a certain integer κ. If T =
ακ = a1

κ then there exists an infinite number of solutions of (2.16) departing
from `1S . Conversely, if T = ακ = a2

κ, then there exists an infinite number of
solutions of (2.16) departing from `2S . In general one or both the situations can
arise. Hence, dealing with the resonance situations we will need to focus our
attention on the indices i = 1, 2 satisfying the identities ακ = ai

κ and βκ = biκ,
and, correspondingly, to solutions departing form the ray `iS .

3. Main results

3.1. Nonresonance. In this section we consider the boundary value prob-
lem

(3.1)

Jz′ = g(t, z) + p(t, z) ,

z(0) ∈ lS , z(T ) ∈ lA ,

where g : [0, T ] × R2 → R2 satisfies Assumption 2.1 and p has the following
property.



10 Andrea Sfecci

Assumption 3.1. The function p : [0, T ] × R2 → R2 is a Carathéodory
function such that, for every compact set K ⊂ R2, |p(t, z)| ≤ `K(t), for a.e.
t ∈ [0, T ] and z ∈ K, for a suitable `K ∈ L2([0, T ],R). Moreover,

(3.2) lim
|z|→∞

p(t, z)
|z|

= 0 ,

uniformly for almost every t ∈ [0, T ].

Denote by Φ : R× R2 → R2 the flux of system

(3.3) Jz′ = g(t, z) + p(t, z) ,

in particular Φ(·, z0) denotes the solution z of (3.3) such that z(0) = Φ(0, z0) =
z0. (1) We consider polar coordinates associated to never-zero solutions as fol-
lows. Let z = Φ(·, z0) : U → R2 be the solution of (3.3) such that z(0) =
Φ(0, z0) = z0 and assume that Φ(t, z0) 6= (0, 0) for every t ∈ U , then we can find
two continuous function R(·, z0) : U → R+ and Θ(·, z0) : U → R such that

(3.4) Φ(t, z0) = R(t, z0)
(
cos Θ(t, z0) , sinΘ(t, z0)

)
.

For definiteness, we choose the value Θ(0, z0) ∈ [0, 2π). In what follows, we shall
often use the covered-angle function

(3.5) ∆Θ(t, z0) = Θ(0, z0)−Θ(t, z0) ≥ 0 .

Our first result generalizes [16, Theorem 3.1]:

Theorem 3.2 Nonresonance. Consider problem (3.1), where g satisfies
Assumption 2.1 and p satisfies Assumption 3.1. Assume T /∈ I, where I is the
resonance set introduced in (2.26).

Then there exists at least one solution of (3.1).

Proof. If T /∈ I, then we have T ∈ (βj−1, αj) for a certain j ∈ N (set
β−1 = 0). In particular we can find a small ε0 > 0 such that

(3.6) T ∈
(
βj−1 + ε0, αj − ε0

)
.

Introducing polar coordinates z = ρeiϑ, the angular velocity of solutions of (3.3)
is given by

−ϑ′(t) =
〈 g(t, z(t)) + p(t, z(t)) | z(t) 〉

|z(t)|2
and we can compute

(3.7) 2V1(cosϑ(t), sinϑ(t)) + e(t) ≤ −ϑ′(t) ≤ 2V2(cosϑ(t), sinϑ(t)) + e(t) ,

(1) We can assume, without loss of generality, the uniqueness of the solutions to the

Cauchy problems. Indeed, by standard arguments, all the results in this paper can be obtained

with a limit procedure introducing a sequence of approximating nonlinearities having such a

uniqueness property.
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where

e(t) =
〈 p(t, z(t)) | z(t) 〉

|z(t)|2
.

Then, from (2.19)–(2.23), choosing ε > 0 sufficiently small to guarantee

(3.8) ε(2j + 1) < ε0 ,

we can find R1 > 0 such that a solution of (3.3), satisfying |z(t)| ≥ R1 for every
t ∈ [0, T ], rotates clockwise and

moving from l1S to l1A spends a time ∆t1 ∈ (τ1,V2 − ε , τ1,V1 + ε) ,(3.9)

moving from l1A to l2S spends a time ∆t2 ∈ (σ1,V2 − ε , σ1,V1 + ε) ,(3.10)

moving from l2S to l2A spends a time ∆t3 ∈ (τ2,V2 − ε , τ2,V1 + ε) ,(3.11)

moving from l2A to l1S spends a time ∆t4 ∈ (σ2,V2 − ε , σ2,V1 + ε) ,(3.12)

completes a rotation around the origin in(3.13)

a time ∆t ∈ (τV2 − 4ε , τV1 + 4ε) .

We now focus our attention on the radial velocity of never-zero solutions.
The explicit formula is given by

ρ′(t) =
〈 z′(t) | z(t) 〉

|z(t)|

and, from Assumptions 2.1 and 3.1, we can find a function M ∈ L2([0, T ],R)
such that

(3.14)
|ρ′(t)| ≤ |g(t, z(t)) + p(t, z(t))|

≤ M(t)(1 + |z(t)|) = M(t)(1 + ρ(t)) .

We claim that, for every r1 > 0 there exists r2 > r1 such that, if a solution
z of (3.3) satisfies |z(t1)| = r1 for a certain t1 ∈ [0, T ], then |z(t)| < r2 for every
t ∈ [0, T ] (cf. [15, Lemma 2.2]).

Indeed, we can set

(3.15) r2 := 1 +
(
r1 +

√
T‖M‖2

)
e
√

T‖M‖2 ,

where M was introduced in (3.14). Let us consider a solution z of (3.3) as in
the claim and assume by contradiction that there exists t2 ∈ [0, T ] such that
|z(t2)| = r2 and r1 < |z(t)| < r2 for every t ∈ (t1, t2) (possibly with t2 < t1).
From (3.14), applying Gronwall’s Lemma, we get

|z(t)| ≤
(
r1 +

√
T‖M‖2

)
e
∣∣∣∫ t

t0
M(s) ds

∣∣∣
,

for every t ∈ (t1, t2). So |z(t2)| < r2, giving a contradiction. The claim is thus
proved.

The previous claim provides the validity of the following proposition as a
counterpart.
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Proposition 3.3. For every r1 > 0 there exists r2 > r1, defined as in (3.15),
such that if a solution of (3.3) satisfies |z(t̄)| ≥ r2 for a certain t̄ ∈ [0, T ], then
|z(t)| ≥ r1 for every t ∈ [0, T ].

When r1 is equal to R1 as defined after Equation (3.8), let R2 be the cor-
responding r2 value. In this way, any solution z of (3.3), with |z(t̄)| ≥ R2 for
a certain t̄ ∈ [0, T ], satisfies |z(t)| ≥ R1 for every t ∈ [0, T ], so that (3.9)-(3.13)
hold. In particular, if we want to estimate the time needed by such a solution in
order to cover a certain angle, we simply have to sum the values in (3.9)-(3.13).
So, recalling the definition of ai

j and bij given in (2.24), the previous computation
gives the following proposition.

Proposition 3.4. If z ∈ liS (i = 1, 2), with |z| ≥ R2, then the solution
Φ(·, z), in order to cover the angle j0π + ∆ζ, needs a time

τ ∈ (ai
j0 − (2j0 + 1)ε, bij0 + (2j0 + 1)ε) .

Hence, if (ai
j0
−(2j0+1)ε, bij0 +(2j0+1)ε)∩[0, T ] = ∅, then the angle j0π+∆ζ

cannot be covered by solutions departing from a point z ∈ liS , with |z| ≥ R2, in
the time interval [0, T ]. Conversely, if (ai

j0
− (2j0 +1)ε, bij0 +(2j0 +1)ε) ⊂ [0, T ],

then a solution departing from a point z ∈ liS , with |z| ≥ R2, must cover such
an angle, in the time interval [0, T ].

From the validity of (3.6), the choice of ε as in (3.8), and the definition of
βj−1 and αj given in (2.24), we have

bij−1 + (2j − 1)ε < T < ai
j − (2j + 1)ε , (i = 1, 2) .

Hence, we have the following proposition.

Proposition 3.5. For every R > R2, setting z1 = R(cos ζS , sin ζS) ∈ l1S and
z2 = −R(cos ζS , sin ζS) ∈ l2S, then the covered-angle function in (3.5) satisfies

∆Θ(T, z1) ∈
(
(j − 1)π + ∆ζ , jπ + ∆ζ

)
.

∆Θ(T, z2) ∈
(
(j − 1)π + ∆ζ , jπ + ∆ζ

)
.

In particular, Φ(T, z1) and Φ(T, z2) belongs to different connected components
of R2 \ lA.

By standard argument (cf. Figure 2) the curve η : [−R,R] → R2, with
R > R2, defined as η(σ) = Φ

(
T, σ(cos ζS , sin ζS)

)
intersects the line lA for a

certain σ̄ and this concludes the proof of Theorem 3.2.

3.2. Simple resonance. In this section we consider the case T ∈ ∂I,
where I was introduced in (2.26). In such a situation βj−1 < T = αj or
βj−1 = T < αj for a certain j ∈ N.

We can distinguish the following cases:

(R1) T = αj = a1
j < a2

j ,
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Figure 2. A sketch on Proposition 3.5 and an idea of the proof of Theorem 3.2.

(R2) T = αj = a2
j < a1

j ,

(R3) T = αj = a1
j = a2

j ,

(R4) T = βj−1 = b1j−1 > b2j−1 ,

(R5) T = βj−1 = b2j−1 > b1j−1 ,

(R6) T = βj−1 = b1j−1 = b2j−1 .

In order to obtain the existence of a solution to (3.1) we need to introduce a
Landesman-Lazer type condition. To this aim, let us define the functions

(3.16) Gi(t, z) = g(t, z) + p(t, z)−∇Vi(z) , (i = 1, 2)

and introduce the following hypotheses:

(F–): There exists η ∈ L1([0, T ],R) such that

〈 G1(t, λz) | z 〉 ≥ η(t) ,

for almost every t ∈ [0, T ], for every z ∈ R2 satisfying |z| ≤ 1 and for
every λ > 1.

(F+): There exists η ∈ L1([0, T ],R) such that

〈 G2(t, λz) | z 〉 ≤ η(t) ,

for almost every t ∈ [0, T ], for every z ∈ R2 satisfying |z| ≤ 1 and for
every λ > 1.
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The previous hypotheses are plainly satisfied if the function p is bounded.
Indeed, we can compute

〈 G1(t, λz) | z 〉 =
〈
γ(t, λz)

(
∇V2(λz)−∇V1(λz)

)
+ p(t, λz) | z

〉
= 2λγ(t, λz)

(
V2(z)− V1(z)

)
+ 〈 p(t, λz) | z 〉 ≥ −|p(t, λz)|

and

〈 G2(t, λz) | z 〉 =
〈 (

1− γ(t, λz)
)(
∇V1(λz)−∇V2(λz)

)
+ p(t, λz) | z

〉
= 2λ

(
1− γ(t, λz)

)(
V1(z)− V2(z)

)
+ 〈 p(t, λz) | z 〉 ≤ |p(t, λz)| ,

for a.e. t ∈ [0, T ], every z ∈ R2 satisfying |z| ≤ 1 and every λ > 1.
Finally, we introduce the functions

(3.17) J−(θ) =
∫ T

0

lim inf
(λ,ω)→(+∞,θ)

〈 G1(t, λϕV1(t+ ω)) | ϕV1(t+ ω) 〉 dt ,

(3.18) J +(θ) =
∫ T

0

lim sup
(λ,ω)→(+∞,θ)

〈 G2(t, λϕV2(t+ ω)) | ϕV2(t+ ω) 〉 dt .

The Landesman-Lazer type assumptions we need to require can be summa-
rized as follows.

Assumption 3.6 Landesman-Lazer type assumptions.

If (R1) holds, assume (F+) and J +(τ0,V2) < 0 ,

if (R2) holds, assume (F+) and J +(τ0,V2 + τ1,V2 + σ1,V2) < 0 ,

if (R3) holds, assume (F+) and both J +(τ0,V2) < 0 and

J +(τ0,V2 + τ1,V2 + σ1,V2) < 0 ;

if (R4) holds, assume (F–) and J−(τ0,V1) > 0 ,

if (R5) holds, assume (F–) and J−(τ0,V1 + τ1,V1 + σ1,V1) > 0 ,

if (R6) holds, assume (F–) and both J−(τ0,V1) > 0 and

J−(τ0,V1 + τ1,V1 + σ1,V1) > 0 .

In the case of simple resonance only one of the alternatives (R1)-(R6) is
satisfied, and so we need to check only one of the alternatives in Assumption 3.6.

Remark 3.7. In [2] the case V1 = V2 has been studied. In such a situation
ai

j = bij for every j ∈ N and i ∈ {1, 2}. In particular Theorem 2.1 and Theo-
rem 2.3-2 in [2] treat the case “j is even”, while Theorem 2.3-1 and Theorem 2.3-3
the case “j is odd”.

For example, in [2, Theorem 2.1] the situations (17),(18),(19) or (20) corre-
spond respectively to (R1), (R4), (R3) and (R6).
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Moreover, in [2] the function p is asked to be bounded. The weaker hypoth-
esis on p introduced in Assumption 3.1, forces us to introduce the additional
hypotheses (F±). This possibility was already suggested in [2], referring to [1].
Conditions (F±) are the natural extension to the case V1 6= V2 of the ones
suggested in [1, Proposition 4.1].

The existence result in the case of simple resonance is the following.

Theorem 3.8 Simple resonance. Consider problem (3.1), where p satisfies
Assumption 3.1 and g satisfies Assumption 2.1. Assume T ∈ ∂I, where I was
introduced in (2.26) and that Landesman-Lazer Assumption 3.6 is fulfilled.

Then there exists at least one solution of (3.1).

Proof. Let us start assuming that (R1) holds, in particular βj−1 < T = αj .
Let us consider z2 ∈ l2S and the solution Φ(·, z2) of (3.3). By Proposition 3.4,

if |z2| is sufficiently large then

(3.19) ∆Θ(T, z2) ∈
(
(j − 1)π + ∆ζ , jπ + ∆ζ

)
.

In fact, b2j−1 < T < a2
j holds.

Let us now consider z1 ∈ l1S and the solution Φ(·, z1) of (3.3). Arguing
similarly, if |z1| is sufficiently large then

(3.20) ∆Θ(T, z1) ∈
(
(j − 1)π + ∆ζ , (j + 1)π + ∆ζ

)
.

Notice that the interval is larger since b1j−1 < T = a1
j . We need to prove that the

situation ∆Θ(T, z1) ∈
[
jπ + ∆ζ , (j + 1)π + ∆ζ

)
is forbidden. Once this claim

is proved, we will obtain the existence of R > 0 with the property explained in
Proposition 3.5, thus permitting us to conclude the proof of the theorem as in
the previous section.

We argue by contradiction and suppose the existence of a sequence (z0
n)n ⊂

l1S , with |z0
n| → ∞, such that

(3.21) ∆Θ(T, z0
n) ∈

[
jπ + ∆ζ , (j + 1)π + ∆ζ

)
.

Set zn(t) = Φ(t, z0
n) (in particular ‖zn‖∞ →∞ as n→∞ by construction), and

introduce the sequence

(3.22) wn =
zn

‖zn‖∞
=

Φ(·, z0
n)

‖Φ(·, z0
n)‖∞

consisting of solutions to

(3.23)

Jw′n = (1− Γn(t))∇V1(wn) + Γn(t)∇V2(wn) + pn(t) ,

wn(0) ∈ l1S ,
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where Γn(t) := γ(t, wn(t)‖zn‖∞) and pn(t) :=
p(t, wn(t)‖zn‖∞)

‖zn‖∞
. Notice that

‖wn‖∞ = 1 and so ‖wn‖2 ≤
√
T . From Assumption 3.1, for every δ > 0, we can

find a function `δ ∈ L2([0, T ],R) such that

|p(t, z)| ≤ δ|z|+ `δ(t) .

In particular we have

(3.24) |pn(t)| ≤ δ|wn(t)|+ `δ(t)
‖zn‖∞

.

Since wn solves the differential equation in (3.23), then (w′n)n is bounded in
L2([0, T ],R2), thus giving us that (wn)n is bounded in H1([0, T ],R2).

Then, there exists a function w ∈ H1([0, T ],R2), such that (up to a subse-
quence) wn ⇀ w weakly in H1([0, T ],R2) and wn → w uniformly. In particular
w 6= 0 and w(0) ∈ l1S .

Moreover, the sequence (Γn)n is bounded in L2([0, T ],R) and converges
weakly to a certain Γ ∈ L2([0, T ],R), up to a subsequence. The sequence
(Γn)n is contained in the closed convex subset {q ∈ L2([0, T ],R) | 0 ≤ q(t) ≤
1 a.e. in [0, T ]}, so that we have also 0 ≤ Γ ≤ 1 a.e. in [0, T ].

Concerning the sequence (pn)n, from the validity of (3.24), we can prove that
lim supn ‖pn‖2 ≤ 2δ

√
T , for every δ > 0. So, we have pn → 0 in L2([0, T ],R2) .

Then, passing to the weak limit in (3.23) we get

(3.25)

Jw′ = (1− Γ(t))∇V1(w) + Γ(t)∇V2(w) ,

w(0) ∈ l1S .

We claim that Γ = 1 a.e. in [0, T ].

From (3.21), setting w0
n = wn(0) = z0

n

‖zn‖∞ and using polar coordinates wn =
%ne

iθn , we get θn(0)−θn(T ) ∈
[
jπ+∆ζ , (j+1)π+∆ζ

)
. Hence, setting w = %eiθ,

(3.26) θ(0)− θ(T ) ∈
[
jπ + ∆ζ , (j + 1)π + ∆ζ

]
,

so that there exists t̄ ∈ [0, T ] such that θ(0)−θ(t̄) = jπ+∆ζ. Hence, integrating

− θ′(t)
2V2(cos θ(t), sin θ(t))

≤ 1

in the interval [0, t̄] we get

(3.27)
∫ ζS

ζS−(jπ+∆ζ)

dθ

2V2(cos θ, sin θ)
= a1

j ≤ t̄ .

By hypothesis a1
j = T , hence t̄ = T holds.

We have proved that w(T ) ∈ lA and w covers the angle jπ + ∆ζ in the
interval [0, T ].
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Let us now parametrize w using the polar coordinates induced by ϕV2 :

(3.28) w(t) = r(t)ϕV2(t+ ω(t)) .

A standard computation provides

(3.29) r′(t) = −r(t)(1− Γ(t))
〈
∇V1(ϕV2(t+ ω(t))) | ϕ′V2

(t+ ω(t))
〉
,

(3.30) ω′(t) = (1− Γ(t))(2V1(ϕV2(t+ ω(t)))− 1) .

Notice that ω(0) = τ0,V2 and ω(T ) = τ0,V2 + a1
j − T = τ0,V2 , so

(3.31) 0 =
∫ T

0

ω′(t) dt =
∫ T

0

(1− Γ(t))(2V1(ϕV2(t+ ω(t)))− 1) dt .

Recalling that V1 ≤ V2, we get 2V1(ϕV2)− 1 ≤ 2V2(ϕV2)− 1 = 0 so

(1− Γ(t))(2V1(ϕV2(t+ ω(t)))− 1) ≤ 0 a.e. in [0, T ] .

Hence, from (3.31), we necessarily have

(3.32) (1− Γ(t))(2V1(ϕV2(t+ ω(t)))− 1) = 0 a.e. in [0, T ] ,

in particular, using (3.30), ω = τ0,V2 a.e. in [0, T ].
Let us now focus our attention on the radial velocity formula (3.29). We are

going to prove that r′ = 0 almost everywhere in [0, T ].
Let us consider t0 ∈ [0, T ] such that Γ(t0) < 1 (the situation is trivial if

Γ(t0) = 1). By (3.32) we necessarily have 2V1(ϕV2(t0 + ω(t0))) = 1. Recalling
that V2 ≥ V1 and 2V2(ϕV2) ≡ 1, we find that t0 is a minimum of the func-
tion V(t) = V2(ϕV2(t + ω(t))) − V1(ϕV2(t + ω(t))), precisely V(t0) = 0, so that
V ′(t0) = 0. Since V2 is constant along ϕV2 we get d

dtV1(ϕV2(·+ ω))
∣∣
t=t0

= 0 and
consequently

〈
∇V1(ϕV2(t0 + ω(t0))) | ϕ′V2

(t0 + ω(t0))
〉

= 0, giving r′(t0) = 0.

We have proved that w = CϕV2(t + τ0,V2) for a certain constant C > 0, so
that Γ = 1 a.e. in [0, T ].

Let us consider again the sequence (wn)n introduced in (3.22) and the polar
coordinates wn = %ne

iθn . We have

(3.33)
∫ θn(0)

θn(T )

dθ

2V2(cos θ, sin θ)
≥ T ,

for large indices n by the validity of (3.21): indeed, the integral provides the
time spent by a solution of the system Jz′ = ∇V2(z) to cover the angular sector
between θn(0) = ζS and θn(T ) ≤ ζS − (jπ + ∆ζ), while T is the time spent to
cover the (not larger) angular sector between ζS and ζS − (jπ + ∆ζ).
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The angular speed of wn is given by

−θ′n(t) =
〈 Jw′n(t) | wn(t) 〉

|wn(t)|2
=
〈 Jz′n(t) | zn(t) 〉

|zn(t)|2

= 2V2(cos θn(t), sin θn(t))

+
〈 g(t, zn(t)) + p(t, zn(t))−∇V2(zn(t)) | zn(t) 〉

|zn(t)|2
,

thus giving∫ θn(0)

θn(T )

dθ

2V2(cos θ, sin θ)
= T +

∫ T

0

〈 G2(t, zn(t)) | zn(t) 〉
2V2(zn(t))

dt ,

where G2(t, z) = g(t, z) + p(t, z)−∇V2(z). By (3.33), we obtain

Xn :=
∫ T

0

〈 G2(t, zn(t)) | zn(t) 〉
2V2(zn(t))

≥ 0

for sufficiently large indices n. We parametrize the solutions zn in the polar
coordinates induced by ϕV2 :

zn(t) = rn(t)ϕV2(t+ ωn(t)) .

So, we obtain

Xn =
∫ T

0

〈
G2

(
t, rn(t)ϕV2(t+ ωn(t))

)
| ϕV2(t+ ωn(t))

〉
rn(t)

.

From (3.22) and recalling that wn → w = CϕV2(t + τ0,V2) uniformly, we have
rn(t)
‖zn‖∞ → C and ωn → τ0,V2 . Then

0 ≤ lim sup
n→+∞

‖zn‖∞Xn

≤
∫ T

0

lim sup
n→+∞

〈 G2(t, rn(t)ϕV2(t+ ωn(t))) | ϕV2(t+ ωn(t)) 〉
rn(t)
‖zn‖∞

dt

≤ 1
C

∫ T

0

lim sup
(λ,ω)→(+∞,τ0,V2 )

〈 G2(t, λϕV2(t+ ω)) | ϕV2(t+ ω) 〉 dt

(we can apply Fatou’s lemma since (F+) holds).
The last inequality, using (3.18), can be rewritten as J +(τ0,V2) ≥ 0 which

contradicts Assumption 3.6.

We have proved the theorem if (R1) holds.

Let us now spend few words in order to explain how to adapt the proof in
the other situations.

Assume (R2). In such a situation the role of l1S and l2S is switched. So, the
“good estimate” in (3.19) is easily obtained for z1 ∈ l1S , with |z1| sufficiently
large, while the “bad estimate” (3.20) occurs treating z2 ∈ l2S . In this case, we
assume by contradiction the existence of a sequence (z0

n)n ⊂ l2S , with |z0
n| → ∞,
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satisfying (3.21). The proof can be plainly adapted, but we underline the main
differences: the starting angle Θ(0, z0

n) = ζS is replaced by Θ(0, z0
n) = ζS + π

and the constant a1
j is replaced by a2

j . In particular, (3.27) becomes∫ ζS+π

ζS+π−(jπ+∆ζ)

dθ

2V2(cos θ, sin θ)
= a2

j ≤ t̄ .

Finally, the limit function is now w(t) = CϕV2(t+ τ0,V2 + τ1,V2 + σ1,V2).

Assume now (R3). Under this hypothesis, we get the “bad estimate” (3.20)
both for z0 ∈ l1S and z0 ∈ l2S with |z0| large. So, the proof is a gluing of cases (R1)
and (R2). The same reasoning holds for (R6): the proof will follow by the ones
of cases (R4) and (R5) we are going to provide.

Let us consider (R4). The validity of (3.19) is given when we treat solutions
Φ(·, z0) of (3.3) with z0 ∈ l2S with |z0| sufficiently large. However, solutions
Φ(·, z0) of (3.3) with z0 ∈ l1S satisfies (no more (3.20), but)

(3.34) ∆Θ(T, z0) ∈
(
(j − 2)π + ∆ζ , jπ + ∆ζ

)
.

and we need to forbid the situation ∆Θ(T, z0) ∈
(
(j−2)π+∆ζ , (j−1)π+∆ζ

]
.

Arguing as above, we can consider a diverging sequence (z0
n)n ⊂ `1S such that

∆Θ(T, z0
n) ∈

(
(j − 2)π + ∆ζ , (j − 1)π + ∆ζ

]
.

We introduce similarly the sequence (wn)n, and prove that it converges to a
solution w of (3.25). Now, we claim that Γ = 0, a.e. in [0, T ]. In this case (3.26)
is replaced by

(3.35) θ(0)− θ(T ) ∈
[
(j − 2)π + ∆ζ , (j − 1)π + ∆ζ

]
.

Then, we introduce t̄ > T such that θ(0) − θ(t̄) = (j − 1)π + ∆ζ and compute,
since − θ′(t)

2V1(cos θ(t),sin θ(t)) ≥ 1, the validity of∫ ζS

ζS−((j−1)π+∆ζ)

dθ

2V1(cos θ, sin θ)
= b1j ≥ t̄

bringing us to the conclusion T = b1j ≥ t̄ ≥ T , hence T = t̄.
Once proved that w cover the angle (j − 1)π + ∆ζ in the interval [0, T ], we

can introduce the polar coordinates induced by ϕV1 :

(3.36) w(t) = r(t)ϕV1(t+ ω(t)) .

A standard computation provides

(3.37) r′(t) = −r(t)Γ(t)
〈
∇V2(ϕV1(t+ ω(t))) | ϕ′V1

(t+ ω(t))
〉
,

(3.38) ω′(t) = Γ(t)(2V2(ϕV1(t+ ω(t)))− 1) .
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Again ω(0) = ω(T ) = τ0,V1 and we can similarly conclude that Γ = 0 al-
most everywhere in [0, T ], thus obtaining w(t) = CϕV1(t + τ0,V1) for a suit-
able positive constant C. Then, introducing standard polar coordinates for the
sequence (wn)n, we can prove that∫ θn(0)

θn(T )

dθ

2V1(cos θ, sin θ)
≤ T

for large indices n. Similarly as above we can compute∫ θn(0)

θn(T )

dθ

2V1(cos θ, sin θ)
= T +

∫ T

0

〈 G1(t, zn(t)) | zn(t) 〉
2V1(zn(t))

=: T + Xn ,

where G1(t, z) = g(t, z) + p(t, z) − ∇V1(z) and Xn ≤ 0 for sufficiently large
indices n. Parameterizing the solutions zn in the polar coordinates induced by
ϕV1 , i.e. zn(t) = rn(t)ϕV1(t+ ωn(t)) we obtain

0 ≥ lim inf
n→+∞

‖zn‖∞Xn

≥
∫ T

0

lim inf
n→+∞

〈 G1(t, rn(t)ϕV1(t+ ωn(t))) | ϕV1(t+ ωn(t)) 〉
rn(t)
‖zn‖∞

dt

≥ 1
C

∫ T

0

lim inf
(λ,ω)→(+∞,τ0,V1 )

〈 G1(t, λϕV1(t+ ω)) | ϕV1(t+ ω) 〉 dt .

(we can apply Fatou’s lemma since (F–) holds).
Finally, the last inequality, using (3.17), can be rewritten as J−(τ0,V2) ≤ 0

which contradicts Assumption 3.6.

This prove the case (R4).

The modification needed to prove the case (R5) from the previous situation,
are similar to the ones provided when (R2) holds.

3.3. Double resonance. In this section we consider the case T ∈ ∂Ĩ \ ∂I,
where I and Ĩ were introduced in (2.26) and (2.27). In particular, T = βj−1 = αj

for a certain j ∈ N.
In such a situation one among the alternatives (R1)–(R3) is fulfilled and one

among (R4)–(R6). We thus need to introduce a double Landesman-Lazer type
condition in order to find solutions to (3.1). Roughly speaking, the validity of
two of the requirements in Assumption 3.6 is necessary.

Theorem 3.9 Double resonance. Consider the problem (3.3), where g
satisfies Assumption 2.1 and p satisfies Assumption 3.1. Assume T ∈ ∂Ĩ \ ∂I
and that Landesman-Lazer Assumptions 3.6 are fulfilled.

Then there exists at least one solution of (3.1).
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Proof. We focus our attention on the situation which presents all the dif-
ficulties: we thus assume that both (R3) and (R6) hold.

Let us consider z0 ∈ lS = l1S ∪ l2S and the solution Φ(·, z0) of (3.3). If |z0| is
sufficiently large, we have (no more (3.20) or (3.34), but)

(3.39) ∆Θ(T, z0) ∈
(
(j − 2)π + ∆ζ , (j + 1)π + ∆ζ

)
.

We need to avoid the situation

∆Θ(T, z0) ∈
(
(j − 2)π + ∆ζ , (j − 1)π + ∆ζ

]
∪
[
jπ + ∆ζ , (j + 1)π + ∆ζ

)
.

for every z0 ∈ lS such that |z0| is sufficiently large.
We assume the existence of four diverging sequences: (z0

n,1)n ⊂ `1S , (z0
n,2)n ⊂

`1S , (z0
n,3)n ⊂ `2S , (z0

n,4)n ⊂ `2S , such that, for every n ∈ N,

∆Θ(T, z0
n,1) ∈

(
(j − 2)π + ∆ζ , (j − 1)π + ∆ζ

]
,

∆Θ(T, z0
n,2) ∈

[
jπ + ∆ζ , (j + 1)π + ∆ζ

)
,

∆Θ(T, z0
n,3) ∈

(
(j − 2)π + ∆ζ , (j − 1)π + ∆ζ

]
,

∆Θ(T, z0
n,4) ∈

[
jπ + ∆ζ , (j + 1)π + ∆ζ

)
.

For all the four sequences, thanks to the validity of the Landesman-Lazer As-
sumption 3.6, adapting the proof of Theorem 3.8 we will get a contradiction.

In this way, we obtain the existence of R > 0 such that, if z0 ∈ l2S ∪ l1S and
|z0| > R then the solution Φ(·, z0) of (3.3) satisfies

∆Θ(T, z0) ∈
(
(j − 1)π + ∆ζ , jπ + ∆ζ

)
.

Hence, we are in the situation of Proposition 3.5 and we can conclude as in the
proof of Theorem 3.2.

4. Applications to asymmetric nonlinearities

In this section we focus our attention on scalar differential equations

(4.1) x′′ + f(t, x) = 0 ,

where f is a continuous function satisfying

(4.2) 0 < ν1 ≤ lim inf
x→−∞

f(t, x)
x

≤ lim sup
x→−∞

f(t, x)
x

≤ ν2 ,

(4.3) 0 < µ1 ≤ lim inf
x→+∞

f(t, x)
x

≤ lim sup
x→+∞

f(t, x)
x

≤ µ2 ,

uniformly with respect to t (we assume f to be continuous just to simplify the
argument).

We refer to [2, Section 3] for a comparison with the case ν = ν1 = ν2,
µ = µ1 = µ2. In this section we extend the results presented there. In par-
ticular, we will focus our attention only on the Dirichlet problems. The case
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of problems with Neumann boundary conditions or mixed boundary conditions
x′(0) = x(T ) = 0, which are treated in [2] too, is left to the reader as an exercise,
for briefness.

Setting z(t) = (x(t), x′(t)), we can write equation (4.1) in the form of a
planar system as in (1.8) where 2Vi = x′(t)2 + µi(x+(t))2 + νi(x−(t))2. The
planar system Jz′ = ∇Vi(z), is nothing else but the asymmetric oscillator

x′′ + µix
+ − νix

− = 0 ,

and admits periodic solutions of period τVi =
π
√
µi

+
π
√
νi

of the form z(t) =

(x(t), x′(t)) with x(t) = Cφµi,νi
(t+ t0) where C ∈ R+, t0 ∈ R and

φµi,νi(t) :=



1
√
µi

sin (
√
µit) t ∈

[
0,

π
√
µi

]
,

1
√
νi

sin
(
√
νi

(
π
√
µi
− t

))
t ∈
[
π
√
µi
,
π
√
µi

+
π
√
νi

]
.

Concerning the problem with Dirichlet boundary conditions, we can compute
the constants introduced in Section 2.1:

τ0,Vi
= σ1,Vi

= σ2,Vi
= 0 , τ1,Vi

=
π
√
µ

i

, τ2,Vi
=

π√
νi

.

In particular, the scalar problem

(4.4)

x′′ + µix
+ − νix

− = 0 ,

x(0) = 0 = x(T ) ,

has nontrivial solutions if one of the following identities holds for a certain k ∈ N:

T = αi,k := π

[
(k + 1)

1
√
µi

+ k
1
√
νi

]
,(4.5)

T = βi,k := π

[
k

1
√
µi

+ (k + 1)
1
√
νi

]
,(4.6)

T = γi,k := π(k + 1)
[

1
√
µi

+
1
√
νi

]
.(4.7)

They are indeed equivalent to (2.10)-(2.13). In particular, φµi,νi solves (4.4)
when (4.5) or (4.7) holds, while

ψµi,νi(t) := φµi,νi (t+ π/
√
µi)

solves it when (4.6) or (4.7) holds.
Let us now focus our attention on the Dirichlet problem

(4.8)

x′′ + f(t, x) = 0 ,

x(0) = 0 = x(T ) ,
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Figure 3. The Dancer-Fuč́ık spectrum for the Dirichlet problem. The open

rectangle R = (µ1, µ2)× (ν1, ν2) cannot intersect the forbidden regions in

gray and the spectrum lines Ca,b. However, the vertices of R can intersect
the spectrum (resonance situation).

where f satisfies (4.2) and (4.3). The resonance set I in (2.26) is now

I =
⋃
k≥0

[min{α2,k, β2,k},max{α1,k, β1,k}] ∪ [γ2,k, γ1,k] .

The resonance set I is useful when we want to investigate resonance phenomena
when T varies and the constants µ1, µ2, ν1, ν2 are fixed a priori. On the contrary,
fixing T , we can study resonance when the other constants change using the
set ΣD known as the Dancer-Fuč́ık spectrum associated to (4.4). We recall
that, for a fixed T , the set ΣD collects all the couples (µ, ν) in the first quadrant
Q = (R+)2 satisfying one among (4.5)-(4.7), and it consists of an infinite number
of curves, see Figure 3,

Ca,b =
{

(µ, ν) ∈ Q | a
√
µ

+
b√
ν

=
T

π

}
,

where

(a, b) ∈ Γ := {(a, b) ∈ N2 | a+ b > 0 , |a− b| ≤ 1}

= {(0, 1), (1, 0), (1, 1), (1, 2), (2, 1), (2, 2), . . .} .

Notice that the curves Ck,k+1 and Ck+1,k intersect in the point (λk, λk), with
λk = (π(2k + 1)/T )2. We can write

ΣD =
⋃

(a,b)∈Γ

Ca,b .
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Let us introduce the sets

A0 = {(µ, ν) ∈ Q | µ ≥ ν , π > T
√
µ }

and, for every integer j ≥ 1,

A2j−1 =
{

(µ, ν) ∈ Q
∣∣∣µ ≥ ν ; j

(
π
√
µ

+
π√
ν

)
− π
√
µ
< T < j

(
π
√
µ

+
π√
ν

)}
,

A2j =
{

(µ, ν) ∈ Q
∣∣∣µ ≥ ν ; j

(
π
√
µ

+
π√
ν

)
< T < j

(
π
√
µ

+
π√
ν

)
+

π
√
µ

}
.

Then we define A†k = {(µ, ν) ∈ Q | (ν, µ) ∈ Ak}, which is the reflection of Ak

with respect to the line µ = ν. Finally, define Bk = Ak ∪A†k and B =
⋃

k≥0Bk,
see Figure 3.

Concerning the resonance phenomenon, we can summarize the possible sit-
uations by checking the position of the open rectangle R = (µ1, µ2) × (ν1, ν2)
with respect to the Dancer-Fuč́ık spectrum as follows:

• Nonresonance: R ⊂ B,
• Resonance: R ⊂ B and R∩ ΣD 6= ∅. In particular, in such a situation,

one (simple resonance) or both (double resonance) the points (µ1, ν1)
and (µ2, ν2) belong to ΣD.

In particular, we need to avoid the situation “R intersects Q\(B∪ΣD)” (roughly
speaking, R cannot intersect the gray-colored region in Figure 3).

Let us here recall the results by Drábek in [6] for a comparison. There,
equation (4.1) is treated assuming (4.2) and (4.3); a double resonance situation
is considered but introducing a single Landesman-Lazer condition: indeed the
author asked the validity of both (4.2) and (4.3) with strict inequality on one
side in a set of positive measure, thus “escaping from resonance” from that side.

We now focus our attention on the Landesman-Lazer conditions we need to
introduce. Hypotheses (F+) and (F–) becomes (cf. [1, Corollary 4.1]):

(f–): There exists η ∈ L1([0, T ],R) such that

sgn(x)
(
f(t, x)− µ1x

+ + ν1x
−) ≥ η(t) ,

for every t ∈ [0, T ], and every x ∈ R.
(f+): There exists η ∈ L1([0, T ],R) such that

sgn(x)
(
f(t, x)− µ2x

+ + ν2x
−) ≤ η(t) ,

for every t ∈ [0, T ], and every x ∈ R.
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Then, we define the values

A−(ζ) :=
∫
{ζ>0}

(
lim inf
x→+∞

f(t, x)− µ1x

)
ζ(t) dt+∫

{ζ<0}

(
lim sup
x→−∞

f(t, x)− ν1x

)
ζ(t) dt ,

A+(ζ) :=
∫
{ζ>0}

(
lim sup
x→+∞

f(t, x)− µ2x

)
ζ(t) dt+∫

{ζ<0}

(
lim inf
x→−∞

f(t, x)− ν2x

)
ζ(t) dt .

Collecting all the possible situations in a single statement we can summarize
the Landesman-Lazer Assumption 3.6 for the Dirichlet problem (4.8) as follows.

Assumption 4.1. Assume R ⊂ B and

if (µ1, ν1) ∈ Ch,h+1 let (f–) holds and A−(ψµ1,ν1) > 0 ,

if (µ1, ν1) ∈ Ch+1,h let (f–) holds and A−(φµ1,ν1) > 0 ,

if (µ1, ν1) ∈ Ch,h let (f–) holds and both

A−(φµ1,ν1) > 0 and A−(ψµ1,ν1) > 0 ,

if (µ2, ν2) ∈ Ck,k+1 let (f+) holds and A+(ψµ2,ν2) < 0 ,

if (µ2, ν2) ∈ Ck+1,k let (f+) holds and A+(φµ2,ν2) < 0 ,

if (µ2, ν2) ∈ Ck,k let (f+) holds and both

A+(φµ2,ν2) < 0 and A+(ψµ2,ν2) < 0 .

Remark 4.2. Concerning the previous assumption, if R ⊂ B2j for a positive
integer j then only the case (µ1, ν1) ∈ Cj,j can hold, and similarly we can have
(µ2, ν2) ∈ Cj,j+1 if µ ≤ ν or (µ2, ν2) ∈ Cj+1,j if µ ≥ ν. On the other hand, if
R ⊂ B2j−1 for a positive integer j then only the case (µ2, ν2) ∈ Cj,j can hold,
and similarly we can have (µ1, ν1) ∈ Cj,j−1 if µ ≤ ν or (µ1, ν1) ∈ Cj−1,j if µ ≥ ν.

Let us conclude this paper with the existence theorem for the Dirichlet prob-
lem.

Theorem 4.3. Consider the problem (4.8) where the continuous function f

satisfies (4.2) and (4.3).
If Assumption 4.1 holds, then there exists at least one solution of (4.8).



26 Andrea Sfecci

Acknowledgements

The author thanks Alessandro Fonda and Maurizio Garrione for the useful
suggestions and discussions. Moreover, he thanks the referees for the careful
reading of the paper and their worthy suggestions, improving the quality of the
paper.

References

[1] A. Boscaggin and M. Garrione, Resonance and rotation numbers for planar Hamiltonian

systems: Multiplicity results via the Poincaré-Birkhoff theorem, Nonlinear Anal. 74 (2011),
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