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Abstract
One-dimensional models of exchange flows driven by horizontal density gradients are well known for performing poorly in
situations with weak turbulent mixing. The main issue with these models is that the horizontal density gradient is usually
imposed as a constant, leading to non-physically high stratification known as runaway stratification. Here, we propose
two new parametrizations of the horizontal density gradient leading to one-dimensional models able to tackle strongly
stratified exchange flows at high and low Schmidt number values. The models are extensively tested against results from
laminar two-dimensional simulations and are shown to outperform the models using the classical constant parametrization
for the horizontal density gradients. Four different flow regimes are found by exploring the parameter space defined by
the gravitational Reynolds number Reg, the Schmidt number Sc, and the aspect ratio of the channel �. For small values of
Reg�, when diffusion dominates, all models perform well. However, as Reg� increases, two clearly distinct regimes emerge
depending on the Sc value, with an equally clear distinction of the performance of the one-dimensional models.

Keywords Exchange flow · Estuarine circulation · One-dimensional water column models · Density stratification

1 Introduction

Gravity-driven exchange flows due to horizontal density
differences occur in many natural environmental situations,
for example, at the junction between two water bodies
with different densities, such as the ocean and a river.
A gravity-driven exchange flow or gravitational current,
broadly defined, is a flow in which denser water flows over
the bottom from the dense water body towards the less
dense water body, and lighter water flows at the surface
in the opposite direction. This type of exchange flows can
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take various forms, such as lock-exchange type of gravity
currents with an initial horizontal density step (Benjamin
1968; Shin et al. 2004), the gravitational circulation in
estuaries (Hansen and Rattray 1965; MacCready 2004;
Burchard and Hetland 2010; Burchard et al. 2011; Geyer
and MacCready 2014), natural convection in a closed cavity
with heated end walls (Cormack et al. 1974), exchange
flows in straits (Gregg et al. 1999; Gu and Lawrence 2005),
or exchange flows that are not confined to channels such
as the ones occurring in coastal areas close to river plumes
(Simpson et al. 1990).

Very often, these exchange flows strongly impact
the hydrodynamics of a large surrounding area due
to the density stratification they generate. Additionally,
strong (vertical) stratification limits vertical mixing in
the water column, and these exchange flows are known
for driving disproportionately large horizontal transport
of different substances such as pollutants, sediment, and
microorganisms (Geyer and MacCready 2014). These
properties make the understanding of exchange flows of the
utmost importance in coastal oceanography.

As a result, models have been developed to estimate
their properties, ranging from one-dimensional (1D) water
column models (Hansen and Rattray 1965; Blaise and
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Deleersnijder 2008; Burchard and Hetland 2010), to
two-layer models (Gu and Lawrence 2005; Shin et al.
2004) or idealized three-dimensional models with periodic
horizontal forcing (Li et al. 2008, 2010), called from
now on three-dimensional horizontally periodic models,
abbreviated as 3D-HP models. A common challenge of all
these models is to parametrize the driving force due to the
horizontal difference in density. In 1D or 3D-HP models,
the horizontal density differences are often parametrized
using an imposed, constant horizontal density gradient.
This choice allows to reformulate the governing equations
(i.e., those for momentum and transport of salinity or
density) in such a way that the mean velocity variable
and the mean density variable are independent of the
horizontal coordinate (an example of a reformulation is
given in Appendix A). This feature is crucial, particularly
in the 3D-HP models, for the consistency with periodic
boundary conditions and needs to be upheld throughout
a simulation. However, an inconvenience of imposing a
constant horizontal density gradient is that the steady state
is determined by the equilibrium between the imposed
gradient and diffusion of both momentum and density. This
equilibrium causes the stratification to grow out of bounds,
a phenomenon usually called “runaway stratification.”

The extent to which 1D models and 3D-HP models are
affected by runaway stratification differs. For example, in
early 1Dmodels of the gravitational circulation (Hansen and
Rattray 1965; Chatwin 1976), the stratification generated by
the density gradients was limited by turbulent mixing due to
tides, via the eddy viscosity and eddy diffusivity constants.
The magnitude of the exchange flow was assumed to be
proportional to the horizontal density gradient and the
mean eddy viscosity. The eddy viscosity coefficient was
then tuned to fit the measurements (Hansen and Rattray
1965; Chatwin 1976; MacCready and Geyer 2010). If
chosen sufficiently high, it was able to counterbalance the
increasing stratification. However, in estuaries characterized
by very weak tides, the magnitude of the required
eddy viscosity turned out to become unrealistically large
(Simpson et al. 1990). In 3D-HP models, adjusting the
eddy viscosity is not an option, since (a large part of) it
is directly resolved in the numerical computations (e.g., in
an LES) and can, therefore, not be imposed. Accordingly,
the value of the horizontal density gradient should be
kept low to avoid runaway stratification. This constraint
implies that only exchange flows driven by very weak
density gradients can be investigated with existing 3D-
HP models. An improved parametrization of the horizontal
density gradient is required to allow application of 3D-HP
models, and even 1D models, to zones of the parameter
space currently out of reach due to runaway stratification.
Application of new and improved parametrizations in these
3D-HP models requires conservation of the linearity of the

horizontal density gradient to properly satisfy the periodic
boundary conditions in the horizontal direction.

In the present study, we isolated the ingredients
generating environmental exchange flows (i.e., an initial
horizontal density gradient and a quasi-infinite source of
potential energy), and analyzed and modelled the resulting
flow. We first propose a two-dimensional (2D) numerical
setup to simulate idealized exchange flows inside a channel
for both the transient and the steady-state flow. This
setup is similar to those used in previous numerical and
experimental studies on idealized gravity-driven exchange
flow (see, e.g., Anati et al. 1977; Maderich et al. 1998; Hogg
et al. 2001). Subsequently, numerical simulations using this
setup are performed to characterize the stratification process
associated with horizontal density gradients as a function
of the parameters of the problem. The results of the 2D
model are then used to develop improved 1D models for
the cross-sectional velocity profile along the channel and
for the density profile at the center of the channel (with
respect to the inlet and outlet). The performance of the
models is discussed as a function of their suitability to be
incorporated in water column models and their suitability as
homogeneous forcing in 3D-HP models.

2 Two-dimensional asymptotic model
for exchange flows

2.1 Numerical setup

The numerical setup for the 2D simulations is displayed in
Fig. 1. The flow is described in a Cartesian reference frame
(x, z), in which x represents the along-channel direction and
z represents the vertical direction, with velocity vector u =
(u, w). Gravity acts in the negative z-direction. The setup,
which is inspired by different experimental configurations
(see, for example, Simpson and Linden 1989; Meyer and
Linden 2014; Lefauve et al. 2018), consists of two reservoirs
connected by a channel of height h and length L, with L �
h (implicitly assuming that end effects at x = ±L/2 can
be ignored). Each reservoir contains water with a different
initial salt concentration, denoted by the salinities s1 and
s2 in the left and right reservoirs, respectively. Initially, the
salinity s(x, z) in the channel is uniform in the vertical,
and the salinity gradient in the along-channel direction is
constant: ∂s/∂x = (s2 − s1)/L. The salt concentration is
the only physical quantity altering the fluid density in the
present setup.

The inhomogeneous initial horizontal salt distribution
leads to an unstable horizontal density gradient driving an
exchange flow and generating vertical stratification. The
steady state is reached once the driving mechanism (due
to the density difference between the two reservoirs) is
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Fig. 1 Side view of the 2D computational domain, with the initial dis-
tribution of salt. This sketch is not to scale as L � h and we assume
very large salt reservoirs. The salt concentration in the left reservoir is
denoted by the salinity s1 and will be kept constant (as we assume an

infinitely large reservoir). Similarly, the salt concentration in the right
reservoir is denoted s2 > s1 (and also kept constant). The acceleration
of the gravity g is in the negative z-direction

balanced by diffusion of both momentum and salt. Since
this setup represents environmental situations where the
availability of the fresher and saltier water can be considered
infinite, the reservoirs are much larger than the channel. In
this way, the salinity of each reservoir can be considered
constant and will not be influenced by the inflow of water
from the other reservoir. In our 2D computational model,
the size of a reservoir is equal to 6400h2, which is basically
a trade-off between available computational resources and
keeping the salinity in both reservoirs within an accepted
margin of their initial values.

The 2D numerical setup is implemented in COMSOL,
using the “laminar flow” and the “transport of diluted
species” modules (for details, see COMSOL multiphysics
reference manual, version 5.3.). The flow is governed by the
2D continuity and Navier-Stokes equations in Boussinesq
approximation for an incompressible fluid:

∂u

∂x
+ ∂w

∂z
= 0 , (1)

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= − 1

ρref

∂p

∂x
+ ν

(
∂2u

∂x2
+ ∂2u

∂z2

)
, (2)

∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z
= − 1

ρref

∂p

∂z
+ ν

(
∂2w

∂x2
+ ∂2w

∂z2

)

− 1

ρref
ρ̃g , (3)

where p denotes the pressure, and ρ̃ denotes the variable
part of the total density. The constant ν represents the
kinematic viscosity of the fluid (which is assumed to be
independent of the salinity). The density ρref is a reference
density, related to the total density ρ and to ρ̃ by ρ =
ρref + ρ̃, with ρref � ρ̃. The salinity s is governed by the
advection-diffusion equation:

∂s

∂t
+ u

∂s

∂x
+ w

∂s

∂z
= κ

(
∂2s

∂x2
+ ∂2s

∂z2

)
, (4)

in which κ is the diffusivity of salt. The density ρ depends
on the salinity s, via the equation of state ρ = ρ0 (1 + βs),
in which ρ0 is the density of fresh water and β ∼= 7.7 ×
10−4 (MacCready 2004; Geyer and MacCready 2014). The
salinity is expressed in the practical salinity scale (PSS). The
reference density is defined as ρref = ρ0[1+ 1

2β(s1+s2)] =
ρ0(1 + βsav), with sav = 1

2 (s1 + s2) the average salinity of
both reservoirs. The equation of state for the variable part of
the density is then

ρ̃ = ρ0β[s − 1

2
(s1 + s2)] = ρ0β(s − sav) . (5)

For simplicity, only exchange flows with constant
viscosity ν and salt diffusivity κ are considered, i.e., no
turbulence model is used. Furthermore, simulations are
stopped and results rejected for further analysis, once
shear instabilities start to develop at the quasi-horizontal
density interface, during the flow evolution for simulations
for high Reynolds number values. This justifies the use
of a 2D numerical setup instead of a 3D one, saving
computational time and allowing for a thorough exploration
of the parameter space. The use of a constant kinematic
viscosity and salt diffusivity for application to coastal flows
can be regarded as considering a constant effective turbulent
(or eddy) viscosity and diffusivity. This simplification is
common in classical studies of exchange flows (see, e.g.,
Geyer and MacCready 2014), and it is used here because it
allows for analytical solutions that further our understanding
of the system.

Initially, the fluid is at rest and the salinity in each
reservoir is uniform. In the channel, the salinity at initial
time t0 is given by

s(x, z; t0) = �s

L
x + sav for − 1

2
L ≤ x ≤ 1

2
L , (6)

where the initial salinity difference �s = s2 − s1 has
been introduced. As a result, the isopycnals at t = t0 are
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vertical and equidistant. The horizontal density gradient in
the center of the channel (x = 0) is given by

∂ρ̃

∂x
(x = 0, z; t0) = �ρ

L
, (7)

with �ρ = ρ0β�s the initial density difference. Subse-
quently, ρ̃ at x = 0 is equal to zero at t = t0 over the whole
depth.

At the solid walls of both reservoirs and the channel, no-
slip boundary conditions are applied for the fluid velocity
and no-flux boundary conditions for the salinity. This
choice of boundary conditions in the channel results in an
antisymmetric horizontal velocity profile with respect to
z = 0 at x = 0. Additionally, the profile of the variable
density ρ̃ and salinity s̃ are also antisymmetric with respect
to z = 0 at x = 0. The case with a no-slip boundary
condition for the fluid velocity at the bottom and a no-stress
boundary condition at the top of the channel is discussed in
Section 3.4.

The equations are solved in their non-dimensional form.
To make them dimensionless, the buoyancy velocity scale
Ug is introduced and linked to the previously defined �s:

Ug =
√

ρ0β�s

ρref
gh =

√
β�s

1 + βsav
gh . (8)

The spatial coordinates are scaled with h, time with a
buoyancy time scale h/Ug , the fluid velocities with Ug , the
pressure with ρrefU

2
g , the density with �ρ, and the salinity

with�s. By eliminating the density in Eqs. 3 using 5, the set
of Eqs. 1–4 are rewritten in non-dimensional form yielding

∂u∗

∂x∗ + ∂w∗

∂z∗ =0 , (9)

∂u∗

∂t∗
+ u∗ ∂u∗

∂x∗ + w∗ ∂u∗

∂z∗ =−∂p̃∗

∂x∗ + 1

Re g

(
∂2u∗

∂x∗2 + ∂2u∗

∂z∗2

)
, (10)

∂w∗

∂t∗
+ u∗ ∂w∗

∂x∗ + w∗ ∂w∗

∂z∗ =−∂p̃∗

∂z∗ + 1

Re g

(
∂2w∗

∂x∗2 + ∂2w∗

∂z∗2

)

−
(

s∗ − 1

2
s∗
av

)
, (11)

∂s∗

∂t∗
+ u∗ ∂s∗

∂x∗ + w∗ ∂s∗

∂z∗ = 1

RegSc

(
∂2s∗

∂x∗2 + ∂2s∗

∂z∗2

)
, (12)

where the asterisk (∗) denotes a non-dimensional variable.
In the case that the left reservoir contains fresh water, thus

with s1 = 0, s∗
av = s2/2 and Ug =

√
βghs2/(1 + 1

2βs2). In
these equations, there are two non-dimensional parameters:
the gravitational Reynolds number Reg = Ugh/ν and the
Schmidt number Sc = ν/κ . The last non-dimensional
number that we need to introduce is the aspect ratio � =
h/L, that does not appear explicitly in Eqs. 9–12 but plays
a role via the computational domain. Note that the Grashof
number Gr, which quantifies the ratio of the buoyancy

to viscous force, is related to the Reynolds number such
that Gr = Re2g. Both Gr and Reg are commonly used to
characterize density-driven flows governed by Eq. 12 (see,
e.g., Ottolenghi et al. 2016; Härtel et al. 2000). Here, we
will use the Reynolds number throughout.

The momentum equations are discretized using a first-
order finite-element method for the pressure and the
velocity. The equation for the transport of salt is discretized
using a quadratic method. The computational domain is
meshed with a triangular grid, using 62 elements over the
depth of the channel. The time-integration is performed with
an implicit backward-difference scheme (more details about
spatial discretization, grids, and time integration can be
found in COMSOL multiphysics reference manual, version
5.3). The grid in the reservoirs is coarser since these
reservoirs act just as a supply of water and salt, and the
details of the hydrodynamics in these reservoirs are not of
interest to us in the present investigation.

2.2 Salinity distribution in the channel: flow regime
identification

Depending on the values of the parameters Reg, Sc,
and �, the initial situation evolves towards a steady
state governed by the competition between diffusive and
advective processes. In this section, we describe the
steady-state conditions of four distinct flow regimes:
the diffusion-dominated regime, the transition regime,
the high-advection/high-diffusion regime, and the high-
advection/low-diffusion regime. We show results for three
simulations with Sc = 300 and � = 1/60 for which
we varied the value of the gravitational Reynolds number,
and one simulation with Sc = 1, � = 1/60 and Reg =
5000. For these four simulations in the steady state, Fig. 2
shows the density field and the isopycnals, and Fig. 3 shows
the vertical profiles of density, of the horizontal density
gradient, and of the mean horizontal velocity for x = 0. The
results of a thorough exploration of the parameter space are
presented in Section 3.3.

In the diffusion-dominated regime, a steady state is
reached once the mechanism driving the exchange flow due
to the horizontal density gradient is balanced by momentum
diffusion, and when the vertical stratification process
is balanced by salt diffusion. Effectively, the advective
transport of salt from the saltier to the fresher reservoir
is fully counteracted. The isopycnals in the steady state
of the diffusion-dominated regime are no longer vertical
but are sigmoid functions of the depth and resemble the
typical lines of equal density observed in some estuaries
(MacCready and Geyer 2010), as can be seen in Fig. 2a.
The isopycnals are still equidistant close to the center of
the channel (around x = 0), suggesting a conservation
of the linearity of the initial horizontal density gradient.
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Fig. 2 The density distribution in the channel (not to scale as h � L)
for four simulations in the four different regimes: a the diffusion-
dominated regime (here with Reg = 50, Sc = 300 and � = 1/60),
b the transition regime (Reg = 200, Sc = 300 and � = 1/60), c the
high-advection/high-diffusion regime (Reg = 5000, Sc = 1 and � =
1/60), and d the high-advection/low-diffusion regime (Reg = 1000,
Sc = 300 and � = 1/60). Note that ρ̃/�ρ = s∗ − s∗

av. With s1 = 0
this implies s∗

av = 1
2 and 0 ≤ s∗ ≤ 1 and thus −0.5 ≤ ρ̃/�ρ ≤ 0.5

Additionally, ρ̃ at x = 0 is no longer constant and equal
to zero over the height of the channel, as seen in Fig. 3a.
The water column is now stratified close to z = 0, and very
weakly stratified close to the top and bottom boundaries due

Fig. 3 The profiles at x = 0 of the resolved density (a), the horizontal density gradient (b) , and the mean horizontal velocity (c) in the steady
state for the same four simulations used to describe the four regimes in Fig. 2. The solid black line represents the initial condition

to the no-flux boundary condition applied there. Finally, the
value of the horizontal density gradient at x = 0 has slightly
decreased with respect to its original value, but remains in
good approximation constant over the depth of the channel,
as seen in Fig. 3b.

In the transition regime, momentum and salt diffusion
are no longer strong enough to balance the force driving
the exchange flow and the formation of the stratification.
This means that net transport of salt from the saltier to
the fresher reservoir will occur. In the steady state, water
with salinity s1, flowing along the top wall of the channel,
reaches the saltier water reservoir, and water with salinity
s2, flowing over the bottom of the channel, reaches the fresh
water reservoir. This process can be observed in Fig. 2b,
where the lines of equal density for ρ̃/�ρ = 0 and
ρ̃/�ρ = ±0.2 span over the entire channel in the horizontal
direction between −L/2 ≤ x ≤ L/2. The lines of equal
density for ρ̃/�ρ = ±0.4 do not span the whole channel,
suggesting that diffusion of momentum and salt still plays a
role in the steady-state balance. The vertical density profile
ρ̃/�ρ at x = 0 in the transition regime has a similar
shape to the density profile in the diffusion-dominated
regime, but clearly, with a larger amplitude (Fig. 3a). A
clear stratification is present close to z = 0, and a very
weak stratification close to the top and bottom boundaries.
In comparison with the diffusion-dominated regime, the
amplitude of the density profile has increased and ρ̃/�ρ at
z = ±h/2 has reached its possible extreme values: ±1/2 at
z = ∓h/2.

In practice, this steady state is achieved already in a finite
time denoted by ts . The profiles of the horizontal density
gradient at x = 0 in the steady state (i.e., for t > ts) are
significantly different to those of the diffusion-dominated
regime, as seen in Fig. 3b. The horizontal density gradient is
no longer constant over the depth. Instead, it has decreased
towards zero at the top and bottom boundaries, and it has
increased around z = 0, taking the shape of a Gaussian
function.
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In the high-advection/high-diffusion regime, the density
distribution in the steady state is similar to the distribution
in the transition regime (see Fig. 2). In both cases, fluid
from each reservoir reaches the opposing reservoir, but there
is a diffuse interface separating them. Some differences
between these two regimes are mainly observed at the ends
of the channel. In fact, Fig. 3a shows that the density profile
at x = 0 for the simulations in these two regimes are almost
indistinguishable. However, the flow velocity (Fig. 3c) is
clearly much stronger for the simulation within the high-
advection/high-diffusion regime. This implies that in spite
of the strong advection by the flow, the interface is spread
out due to the high diffusion.

In the high-advection/low-diffusion regime, the steady
state is characterized by water from each reservoir being
able to reach unmixed the opposite reservoir. Diffusion of
both momentum and salt plays hardly a role in balancing
the force driving the exchange flow and the stratification.
This can be seen in Fig. 2d, where all the isopycnals span
over the entire channel length from x = −L/2 to x = L/2
and nearly collapse onto each other: diffusion is too small
to smoothen the sharp interface generated by the exchange
flow, an advective process. In Fig. 3a, it can be seen that
the thickness of the pycnocline decreases drastically and
that any vertical stratification is absent close to the channel
boundaries. The density in the upper layer is equal to
−�ρ/2 while the density in the lower layer is equal to
�ρ/2. The horizontal density gradient still takes the shape
of a Gaussian function but with a much narrower and much
higher peak (Fig. 3b). This observation suggests that as
advection becomes increasingly important while diffusion
is weak, the steady-state system converges towards a two-
layer system. At x = 0, each layer has a constant density
equal to �ρ/2 for z < 0 and −�ρ/2 for z > 0. As a result,
the density at the top and bottom boundaries in the steady
state is given by

ρ̃

(
x = 0, z = ∓1

2
h; t → ∞

)
= ±1

2
�ρ. (13)

It is relevant to mention that, although this relationship
must be satisfied in the high-advection/low-diffusion
regime, it already emerges in the transition regime and
might also occur in the high-advection/high-diffusion
regime. Similarly, the horizontal density gradient at those
boundaries is given by

∂ρ̃

∂x

(
x = 0, z = ∓1

2
h; t > ts

)
= 0. (14)

3 Proposals for one-dimensional models

Based on the characteristics of the different regimes and the
initial condition, it is possible to develop a parametrization

of the horizontal density gradient at the center of the
channel, x = 0. In this way, the time evolution of the
horizontal velocity profile at x = 0 is governed by a 1D
diffusion equation supplemented with a specific source term
containing information on the horizontal density gradient,
and the time evolution of the density profile at this location
is governed by a classical 1D advection-diffusion equation.

3.1 Mathematical formulation

The equations governing the 1D model at x = 0 are

∂u

∂t
= ν

∂2u

∂z2
+ g

ρref

∫ z

0

∂ρ̃

∂x
dẑ , (15)

∂ρ̃

∂t
= κ

∂2ρ̃

∂z2
− u

∂ρ̃

∂x
, (16)

in which ∂ρ̃/∂x is the term that needs to be parametrized.
For a derivation of the momentum equation, the reader
is referred to Appendix A. Based on the steady-state
horizontal density gradient profiles obtained in Section 2.2,
the parametrized horizontal density gradient needs to satisfy
three conditions. First, it should be constant over the vertical
in the absence of stratification. Second, it should decrease
at the boundaries with the onset of stratification. Third, it
should increase in the center of the channel once the flow
converges towards a two-layer system. We expect then that
the parametrized horizontal density gradient ∂ρ̃/∂x depends
on both ρ̃ and ∂ρ̃/∂z. A parametrization satisfying these
conditions is

∂ρ̃

∂x
= a0 + a1 |ρ̃| + a2

∣∣∣∣∂ρ̃

∂z

∣∣∣∣ , (17)

where a0, a1, and a2 are constants to be determined. Note
that, in the case a2 = 0, the parametrization resembles the
one proposed by Blaise and Deleersnijder (2008), while in
the case a1 = 0 and a2 = 0, the classical constant horizontal
density gradient parametrization is recovered.

To find a0, the initial condition at t = t0 in the channel
is used: ρ̃ = 0, ∂ρ̃/∂z = 0 and ∂ρ̃/∂x is given by Eq. 7.
Substituting these values in the density parametrization
given by Eq. 17 yields

a0 = �ρ

L
. (18)

To find a1, Eqs. 13 and 14, which are valid from the
transition regime, are used in combination with the no-flux
boundary condition at the top boundary of the channel, i.e.,
∂ρ̃/∂z = 0 at z = h/2 to obtain

a1 = − 2

L
. (19)

Finding a2 is more challenging and, to our current
knowledge, it cannot be obtained from the steady-state
conditions in the advection-dominated regime (Section 2.2).
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We will see in Section 3.2 that its value can be chosen equal
to �/3 for high Sc values, but we leave a2 for now.

Equations 15–17 are scaled as in Section 2, i.e., with h

for the spatial coordinates, h/Ug for the time, Ug for the
velocities, ρrefU

2
g for the pressure, and �ρ for the density.

This scaling results in

∂u∗

∂t∗
= 1

Reg

∂2u∗

∂z∗2 +
∫ z∗

0

∂ρ̃∗

∂x∗ dẑ∗, (20)

∂ρ̃∗

∂t∗
= 1

RegSc

∂2ρ̃∗

∂z∗2 − u∗ ∂ρ̃∗

∂x∗ , (21)

∂ρ̃∗

∂x∗ = �
(
1 − 2

∣∣ρ̃∗∣∣) + a2

∣∣∣∣∂ρ̃∗

∂z∗

∣∣∣∣ , (22)

where the asterisk (∗) denotes a non-dimensional variable.
The aspect ratio � was previously a parameter tunable
through the computational domain, but in the present 1D
model, it appears directly in the equations.

3.2 Limiting cases

The set of Eqs. 20–22 is a priori not integrable analytically.
However, by simplifying the equations, it is possible to have
an exact solution of the approximated problem, which can
in turn provide some scaling properties for the amplitudes
of the exchange flow and the stratification.

In the diffusion-dominated regime, the horizontal density
gradient is in good approximation constant over the depth,
i.e., ∂ρ̃∗/∂x∗ = �, such that the equations governing the
flow and the density distribution in a steady state become

0 = 1

Reg

∂2u∗

∂z∗2 + � z∗, (23a)

0 = 1

RegSc

∂2ρ̃∗

∂z∗2 − � u∗. (23b)

Using no-slip boundary conditions for the velocity and no-
flux boundary conditions for the density at the top and at the
bottom wall of the channel, we obtain ud,∞ and ρ̃d,∞, the
steady-state solutions for the velocity and the density in the
diffusion-dominated regime

ud,∞(z)

Ug

= Reg�

24

(
z

h
− 4

( z

h

)3)
, (24a)

ρ̃d,∞(z)

�ρ
= Re2g�

2Sc

24

(
− 1

16

( z

h

)
+ 1

6

( z

h

)3− 1

5

( z

h

)5)
.

(24b)

It is clear that ud,∞ depends on Reg� (this combination
of parameters is also known as the Simpson number)
while ρ̃d,∞ depends on Re2g�

2Sc so that only two
parameters govern the steady-state solutions. This solution
is commonly known as the viscous-advective-diffusive
(VAD) solution (Cormack et al. 1974; Hogg et al. 2001).

Notice, however, that it is valid for both low and high Sc
values.

As the value of Reg� increases, two distinct possibilities
emerge. For small Sc values, the flow will tend towards the
hydraulic limit (Hogg et al. 2001). In this limit, mixing,
viscosity, and friction are neglected, and the density and
velocity both have a two-layer configuration. In each of
these layers, the density and velocity can be considered
as uniform, and the non-dimensional volume flux becomes
independent of Reg�.

For large Sc values, the flow tends towards the high-
advection/low-diffusion regime and the density in the
channel also converges towards a two-layer system. In this
case, the horizontal density gradient reduces to ∂ρ̃∗/∂x∗ =
a2 |∂ρ̃∗/∂z∗| = −a2∂ρ̃∗/∂z∗ (as ∂ρ̃∗/∂z∗ ≤ 0 for − 1

2 ≤
z∗ ≤ 1

2 ) such that the equations governing the flow and the
density distribution become

0 = 1

Reg

∂2u∗

∂z∗2 − a2

∫ z∗

0

∂ρ̃∗

∂ẑ∗ dẑ∗ , (25a)

0 = 1

RegSc

∂2ρ̃∗

∂z∗2 + a2 u∗ ∂ρ̃∗

∂z∗ . (25b)

The last term in the first equation can be integrated, and in
the limit Sc → ∞, the system of Eq. 25a,b can be rewritten
as

∂2u∗

∂z∗2 = Rega2ρ̃
∗ , (26a)

a2 u∗ ∂ρ̃∗

∂z∗ = 0. (26b)

The non-trivial solution (i.e., with u∗ 
= 0) for Eq. 26b
is the steady-state solution for the density in the high-
advection/low-diffusion regime where ρ̃∗ is a constant.
However, this solution can have a jump at z = 0 since
u∗(z = 0) = 0 due to symmetry. This can be seen by
integrating (26b) from z = −ε to z = +ε (with ε a positive
real number) yielding

lim
ε↓0 u∗(z = 0)[ρ̃∗(z = +ε) − ρ̃∗(z = −ε)] = 0.

Since u∗(z = 0) = 0, [ρ̃∗(z = +ε) − ρ̃∗(z = −ε)] can
take any value. This means that the solution to Eq. 26b is a
piecewise constant function, and in agreement with Eq. 13,
we take

ρ̃a,∞(z)

�ρ
= 1

2
− H(z) , (27)

where H(z) is the Heavyside function which is defined as:
H(z > 0) = 1, H(z < 0) = 0, and H(z = 0) =
1/2. Moreover, dH(z)/dz = δ(z) with δ(z) the Dirac
delta function (which also satisfies

∫ +∞
−∞ δ(z) = 1 and
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∫ z

0 δ(z) = 1
2 ). The steady-state solution for the velocity in

the high-advection/low-diffusion regime, ua,∞, follows:

u(z)a,∞
Ug

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Rega2

[
1

8

z

h
+ 1

4

( z

h

)2]
for z ≤ 0,

Rega2

[
1

8

z

h
− 1

4

( z

h

)2]
for z ≥ 0.

(28)

From this solution, the constant a2 can be determined by
assuming that the shear at z = 0 is conserved from the
diffusion-dominated (obtained from Eq. 24a) regime to the
advection-dominated regime, which gives

a2 = 1

3
� . (29)

This also means that the magnitude of the velocity and the
volume flux still depend exclusively on Reg� as long as the
Sc value is large. We use the 2D simulations to test this
assumption. The resulting shear at z = 0 is displayed as a
function of Reg� in Fig. 4. Despite some small deviations,
there is a good agreement between our assumption and the
2D numerical data for high Schmidt number values where
the flow is dominated by the shear at the interface. Clearly,
this agreement is not as good for low Schmidt number
values and large values of Reg� (i.e., towards the high-
advection/high-diffusion regime and the hydraulic limit).
The difference between these two limiting cases is that
in the high-advection/low-diffusion regime, viscosity and
friction play a role close to the top and bottom boundaries
and at the interface so that the velocity is not uniform in
each of the layers.

The ability of the 1D model to reproduce correctly the
steady-state velocity profiles and density profiles in the
different regimes determines its validity. This ability is
investigated in the next section by comparing the results of
the new 1D model to results of the 2D model, and to results
from 1D models using more classical parametrizations of
the horizontal density gradient.

3.3 Numerical results: model comparison

The 1D set of non-dimensional Eqs. (20)–(22) is integrated
numerically using a centred finite-difference scheme for the
spatial derivatives, a trapezoidal numerical method for the
integral and an explicit upwind time integration scheme.
The numerical algorithm is, therefore, globally first-order
accurate in time and second-order accurate in space. The
steady-state results of the 1D model are compared with the
steady-state results (evaluated for t > ts) of the 2D model
in terms of four different quantities: (i) the amplitude of
the stratification �ρ̃ = ρ̃(− 1

2h) − ρ̃( 12h), (ii) the integral
over the channel cross section of the absolute value of the
density, (iii) the amplitude of the exchange flow �umax =
umax−umin, and (iv) the integral of the absolute value of the
velocity profile over the channel cross section.

We consider three versions of the 1D model: the 1D0
model, where a0 = �ρ/L and a1 = a2 = 0, which
corresponds to the classical parametrization with a constant,
uniform horizontal density gradient; the 1D1 model, where
a0 = �ρ/L, a1 = −2/L and a2 = 0, which is similar to
the parametrization suggested by Blaise and Deleersnijder
(2008); and the new 1D2 model, where a0 = �ρ/L, a1 =
−2/L, and a2 = �/3. In the present study, four different
values of the Schmidt number Sc are considered: 1, 50, 300,
and 1000, and three different values of the aspect ratio, � =
1/30, 1/60, and 1/120. The value of the Reynolds number
Reg is varied between 2 and 4000. For certain combinations
of Reg, � and Sc, the simulations show the emergence
of shear instabilities, such as the appearance of Kelvin-
Helmholtz billows. These simulations are not considered in
the analysis as they are outside the scope of the present
investigation.

In Fig. 5, the magnitude of the steady-state stratification
�ρ̃/�ρ and the steady-state exchange flow are first
analyzed only for the 2D model. The main objective of this
figure is to provide a first impression of the different trends
that the 1D models should be able to reproduce. When
plotting the magnitude of the steady-state stratification
�ρ̃/�ρ as a function of Reg�Sc1/2 (Fig. 5a), there is a clear
collapse of the data. This collapse indicates that Reg�Sc1/2

Fig. 4 Shear at mid-depth as a
function of Reg� spanning all
different flow regimes, from the
diffusion-dominated to the
high-advection/low-diffusion.
Low Schmidt number values
correspond to Sc = 1, and high
Schmidt number values
correspond to Sc = 50, 300, and
1000
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Fig. 5 Magnitude of the steady-state stratification (a) and the steady-
state exchange flow scaled with Sc1/2 (b) as a function of Reg�Sc1/2

as obtained from the 2D simulations. Different Schmidt number values
are displayed with different colors. The gray solid line represents the
analytical solution in the diffusion-dominated regime (i.e., the solution

to Eqs. 24b and 24a), and the gray dashed line represents the analytical
solution for the high-advection/low-diffusion regime (i.e., the solution
to Eqs. 27 and 28). Both of these solutions are derived in Appendix B.
The black vertical dashed line at Reg�Sc1/2 = 12

√
5 represents the

transition at which the two analytical solutions for �ρ̃/�ρ intersect

is the governing parameter for the stratification. For small
values of Reg�Sc1/2, �ρ̃/�ρ follows the theoretical
curve of the diffusion-dominated regime. For intermediate
values of Reg�Sc1/2, �ρ̃/�ρ deviates from this theoretical
curve as the increase in stratification slows down. In this
transition, the data points for Sc = 1 lie slightly under
the data points for other Sc values. For high values of
Reg�Sc1/2, �ρ̃/�ρ reaches its maximum possible value
when �ρ̃ = �ρ. This value corresponds to the initial
density difference between the reservoirs. It is possible to
define a transition point indicating the intersection between
the theoretical line of the diffusion-dominated regime and
the line given by �ρ̃/�ρ = 1. This transition occurs at
Reg�Sc1/2 = 12

√
5 ≈ 26.8.

The magnitude of the exchange flow obtained from
the reference 2D model shows a clearly distinct behavior
between high and low Schmidt number values (Fig. 5b).
This magnitude follows the theoretical line of the diffusion-
dominated regime for relatively small values of Reg�
for both low and high values of the Schmidt number.
Slightly before the transition point at Reg�Sc1/2 =
12

√
5, it deviates (in a rather subtle way) towards the

theoretical prediction for the high-advection/low-diffusion
regime (high Schmidt number values). However, for low
Schmidt number values, the deviation is more pronounced
since the solution tends towards the hydraulic limit, where
the velocity becomes independent of Reg�. Note, however,
that our simulations do not reach this limit since the
simulations with Sc = 1 go up to a value of Reg� ≈ 102,
while the hydraulic limit is reached for Reg� ≈ 103 (Hogg
et al. 2001).

The performance of the 1D models is tested through an
analysis of the magnitude of the steady-state stratification
in Fig. 6. A distinction is made between the results for
high Schmidt number values, Sc = 50, 300, 1000, shown

in Fig. 6a, b, and for low Schmidt number value, Sc = 1,
shown in Fig. 6c, d. The different 1D models reproduce the
results from the 2D model with different levels of accuracy.
The stratification predicted by the 1D0model grows linearly
with (Reg�Sc1/2)2, as given by Eq. 24b, even beyond the
transition point between the diffusion regime and the high-
advection regimes. This is a perfect illustration of runaway
stratification. Naturally, Reg�Sc1/2 = 12

√
5 is the limit of

applicability of the 1D0 model. In contrast, the 1D1 model
and the 1D2 model reproduce the trend of the 2D model for
all the values of Reg�Sc1/2 that were investigated, with the
data points of the 1D2 model being almost superimposed
on the data points of the 2D model. The relative errors
shown in Fig. 6b, d quantify the performances previously
observed. The relative error of the 1D0 model grows
indefinitely beyond the transition point, while the error of
the 1D1 model and the 1D2 model is maximum around this
transition point, before decreasing again. Globally, the 1D2
model performs better than the 1D1 model: their respective
maximum relative errors are approximately 10% and 30%
for high Schmidt number values and approximately 10%
and 20% for low Schmidt number values.

We have also evaluated the integral of |ρ̃/�ρ| over the
channel height, which is a measure of the stratification
in the channel. The dependence of this integral quantity
on the value of Reg�Sc1/2 (not shown) is similar to
that of �ρ̃/�ρ. In addition, the comparisons between the
2D model and the three 1D models give similar results,
with the trends in the errors being comparable with those
shown in Fig. 6. This proves that not only the steady-state
stratification is well predicted, but that the entire density
profile is well approximated over the channel height (around
x = 0) by the 1D1 and the 1D2 models.

The magnitude of the velocity in the exchange flow
from the 1D models and the 2D model is displayed in
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Fig. 6 The magnitude of the
steady-state stratification for the
different models for high Sc
values (a) and for Sc = 1 (c),
and the corresponding errors
between the 2D model and the
1D models for high Sc values
(b) and for Sc = 1 (d). The gray
solid line represents the
analytical solution in the
diffusion-dominated regime
(i.e., the solution to Eqs. 24b
and 24a), and the gray dashed
line represents the analytical
solution for the high-
advection/low-diffusion regime
(i.e., the solution to Eqs. 27 and
28). Both of these solutions are
derived in Appendix B. The
black vertical dashed line at
Reg�Sc1/2 = 12

√
5 represents

the transition at which the two
analytical solutions intersect;
see panels (a) and (c)

Fig. 7. For this quantity, there is a strong Schmidt number
dependence that contrasts with the weak Schmidt-number
dependence of the reference stratification, discussed in
the previous paragraphs. This has a significant impact
on the accuracy of the 1D models in modeling the flow
velocity. As expected from the analytical derivation in
Section 3.2, all 1D models agree well with the theoretical
prediction and the 2Dmodel within the diffusion-dominated
regime independently of the Schmidt number value. Also

independently of the Schmidt number values, the relative
error of the 1D0 model increases drastically as the value of
Reg�Sc1/2 approaches the transition value of 12

√
5 and the

runaway stratification appears. The 1D1 and 1D2 models
perform significantly differently for high Schmidt number
values and low Schmidt number values. For high Schmidt
number values, the relative error of the 1D2 model peaks
approximately at a value of 25% around the transition point
Reg�Sc1/2 = 12

√
5 and decreases for larger values of

Fig. 7 Magnitude of the
steady-state exchange flow for
the different models for high Sc
in (a) and Sc = 1 in (c), and the
corresponding errors between
the 2D model and the 1D
models in (b) for high Sc and in
(d) for Sc = 1. The gray solid
and dashed lines display the
trends resulting from the
analytical solutions for �u/Ug ,
based on Eqs. 24a and 28, and
explicitly written in Appendix
B. The black vertical dashed line
represents the transition point at
Reg�Sc1/2 = 12

√
5
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Reg�Sc1/2. The relative error in the 1D1 model continues
increasing with increasing values of Reg�Sc1/2. Clearly, the
1D2 model gives the closest results to the 2Dmodel in terms
of exchange flow magnitude for high Schmidt numbers. For
low Schmidt number values, the trend in the magnitude of
the exchange flow predicted by the 2D model is, in contrast,
very well reproduced by the 1D1model (Fig. 7c) resulting in
almost no relative error (Fig. 7d). On the other hand, the 1D2
model strongly deviates from the results of the 2D model as
Reg�Sc1/2 approaches the transition values (Fig. 7c, d). The
error of the 1D2 model is, in fact, comparable with the error
of the 1D0 model (Fig. 7d). The 1D1 model outperforms the
1D2 model in predicting the exchange flow magnitude, for
the high-advection/high-diffusion regime, because the 1D2
model results in a large horizontal density gradient at the
interface that is not present in that regime; see Fig. 3b.

In analogy with the height-integrated density, the results
for the integral over the channel height of

∣∣u/Ug

∣∣ and
the associated relative error are almost identical to the
results for �u/Ug (not shown). The ability to reproduce the
magnitude of the exchange flow from the 2D model—or the
incapability to reproduce it—extends to the entire velocity
profile.

3.4 Extension to flows with a no-stress top boundary
condition

The previous results correspond to an exchange flow in the
plane channel flow configuration. This configuration, with a
no-slip boundary condition for the velocity at the lower and
upper walls of the channel, preserves the symmetry of the

flow. Although this symmetry was convenient for estimating
steady-state conditions, it is not realistic for environmental
exchange flows. An open-channel flow configuration, with
a no-stress boundary condition at the top wall of the channel
(or a free surface), would be a better approximation. In such
a case, the non-dimensional momentum equation for the
horizontal velocity (20) is slightly modified yielding

∂u∗

∂t∗
= 1

Reg

∂2u∗

∂z∗2 +τ ∗
w−

∫ 1
2

z∗
∂ρ̃∗

∂x∗ dẑ∗+
∫ 1

2

− 1
2

(ẑ∗+1

2
)
∂ρ̃∗

∂x∗ dẑ∗,

(30)

with the appearance of a new term:

τ ∗
w = 1

Reg

∂u∗

∂z∗

∣∣∣∣
z∗=− 1

2

, (31)

which represents the non-dimensional wall shear stress.
Results for the stratification in the open-channel flow

configuration are similar to those in the plane-channel
flow configuration. The magnitude of the stratification
�ρ̃/�ρ in the 2D model follows the theoretical solution
in the diffusion-dominated regime before the stratification
saturates at �ρ̃/�ρ = 1 (Fig. 8a, c). The 1D0 model
reproduces the 2D results within the diffusion-dominated
regime, but the error increases drastically towards the
transition to the advection-dominated regimes (Fig. 8b,
d). The 1D1 model and the 1D2 model reproduce the
stratification very well, with a maximum error near the
transition point of around 25% and 10% for the models
1D1 and 1D2, respectively. The results of the integral
over the channel height of |ρ̃/�ρ| confirm that the trends

Fig. 8 Magnitude of the
steady-state stratification for the
different models in the
open-channel configuration for
high Sc values (a) and Sc = 1
(c). The corresponding errors
between the 2D model and the
1D models are also shown for
high Sc values (b) and for
Sc = 1 (d). The gray solid and
dashed lines display the trends
resulting from the analytical
solutions for �ρ̃/�ρ, based on
Eqs. 49 and 27 for the diffusion
dominated and
high-advection/low-diffusion
flows, respectively, and
explicitly written in Appendix
C. The black vertical dashed line
represents the transition where
the two analytical solutions
intersect at Reg�Sc1/2 = 8

√
5
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observed in �ρ̃/�ρ are representative for the entire profile.
However, a major difference with respect to the plane-
channel configuration is the increase of the magnitude of
stratification as a function of Re2g�

2Sc. For the plane-

channel configuration, it increases as Re2g�
2Sc/720 while

for the open channel configuration, it increases much faster
as Re2g�

2Sc/320 due to the absence of friction at the top

boundary. As a result, the transition Reg�Sc1/2 = 8
√
5 ≈

17.9 occurs sooner in the open-channel configuration.
Again, the results of the 2D model show a clear differ-

ence in the magnitude of the velocities between the high
Schmidt number values (Fig. 9a), where �u/Ug deviates
only slightly from the theoretical line, and the low Schmidt
number value (Fig. 9c), where this deviation is much more
pronounced as it tends towards the hydraulic limit. The
1D2 reproduces the 2D results better in the high Schmidt
number regime, while the 1D1 model performs better for
low Schmidt number values. The analysis of the integral
over the channel height of

∣∣u/Ug

∣∣ confirms that the trend
observed for �u/Ug is representative for the entire profile.

4 Discussion

In laminar flows, the diffusion of salt is governed at a
molecular level with the Schmidt number of order 700.
In turbulent flows, the diffusion of salt at large scales is
governed by turbulent diffusion that can be represented
using a turbulent Schmidt number, which is usually of order
1. The results presented in the current paper imply then that

the choice of 1D model should be based on the regime of the
flow, i.e. the 1D2 model for laminar flows and the 1D1
for turbulent flows. In addition, if 3D-HP models are
implemented using direct numerical simulation (DNS) or
large-eddy simulation (LES) techniques, turbulent diffusion
is solved for rather than imposed or parametrized. From
a numerical point of view, such flows have high Schmidt
number values, but from a physical point of view, such
flows are governed by low Schmidt number values at the
large scales. These differences in Schmidt number values
can lead to inconsistencies when a 1D model is used as a
body force in 3D-HP models, such that the choice will have
to be carefully motivated.

Up to now, the results show that the new parametrization
of the density gradient leads to a significant improvement
in the ability of 1D models to reproduce the density
profiles obtained from numerical simulations of a 2D
reference model. However, despite this agreement, there
are still discrepancies between the 1D models in their
ability to reproduce the velocity profiles. To better analyze
the differences between the 1D1 and 1D2 models, the
steady-state vertical profiles of the horizontal density
gradient are displayed in Fig. 10 for different parameter
values covering the four distinct regimes (i.e., diffusion-
dominated, transition, high-advection/high-diffusion, and
high-advection/low-diffusion). Globally, the 1D models
reproduce the general evolution of the horizontal density
gradient of the 2D model quite well. For example, it is
seen that for the diffusion-dominated regime (Fig. 10a), the
nearly constant profile of the horizontal density gradients is
reproduced by all the models.

Fig. 9 Magnitude of the
steady-state exchange flow
velocities for the different
models in the open-channel
configuration for high Sc values
(a) and for Sc = 1 (c). The
corresponding errors between
the 2D model and the 1D model
are given for high Sc values (b)
and for Sc = 1 (d). The gray
solid lines in panels (a) and (c)
represent the trend resulting
from the analytical solution for
�u/Ug , based on Eq. 46 for the
diffusion-dominated flows and
derived in Appendix C. The
black vertical dashed line
represents the critical value
Reg�Sc1/2 = 8

√
5 for transition

between the diffusion and
advection-dominated regimes
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Fig. 10 Vertical profiles of the
horizontal density gradient for
the four cases representative of
the four regimes. The cases
correspond to the those in Fig. 2.
a Diffusion-dominated regime
(Reg = 50, Sc = 300), b
transition regime (Reg = 200,
Sc = 300), c high-
advection/high-diffusion regime
(Reg = 5000, Sc = 1), and d
high-advection/low-diffusion
regime (Reg = 1000, Sc = 300.
� = 60 for all four cases)

However, some features are not well reproduced by the
1D models. For all cases, the horizontal density gradient
resulting from the 1D1 model is limited to a maximum value
of unity, while the horizontal density gradient resulting from
the 2D simulation can reach values higher than unity (see,
e.g., Fig. 10a, b, d). On the other hand, the 1D2 model tends
to overestimate the value of the horizontal density gradient
around mid-depth. This is mostly observed in the high-
advection/high-diffusion regime (Fig. 10c), which explains
the large discrepancies between the 1D2 model and the
2D model for low Sc values. Nonetheless, in the high-
advection/low-diffusion regime, where the density profile
tends towards a two-layer configuration but the velocity
profile does not, there is a good agreement between the
2D and the 1D2 models, as expected from the analytical
solution in this limit (see Section 3.2).

The results of this study have implications for the
range of applicability of 1D water column models in
environmental exchange flows with external turbulent
mixing. In the case of the gravitational circulation, for
example, the traditional version of the 1D model (i.e., with
the constant density gradient or 1D0 model) can still be
used for well-mixed estuaries, in which the tidal turbulence
is strong enough to (partly) destroy the stratification in
agreement with Hansen and Rattray (1965) and Chatwin
(1976). However, with the new parametrization of the
horizontal density gradient, the estuarine circulation can
also be simulated in cases of week tidal flows, for which
runaway stratification would occur (Burchard et al. 2011)
or for which the eddy-viscosity was set to high (Simpson
et al. 1990). However, knowledge about the turbulent nature
of the flow is crucial to justify the choice between the
1D1 and 1D2 models. In turbulent estuaries, the flow is

likely to be governed by the turbulent Schmidt number
rather than the molecular Schmidt number such that the
use of the 1D1 model should be preferred (see Fig. 7c, d).
On the other hand, high-resolution numerical simulations
of the mixing processes in an exchange flow subjected
to instabilities (e.g., Salehipour et al. 2016) or relatively
small-scale experiments of exchange flows (e.g., Lefauve
et al. 2018) have to be performed in three-dimensional
domains. Note, however, that in earlier experimental work
on exchange flows through straits (Anati et al. 1977;
Maderich et al. 1998), temperature was used to generate the
density differences. In such a case, the Prandtl number (the
equivalent to the Schmidt number for heat) is approximately
equal to 7, which facilitated reaching the hydraulic limit.

Considering the turbulent viscosity and diffusivity as
constant and homogeneous is a first approximation for
the exchange flows in estuaries. Nonetheless, spatial and
temporal variability of the eddy viscosity can give rise to
more complex dynamics (see, e.g., Geyer and MacCready
2014). Of particular relevance here is the generation of a
more complex vertical flow structure in strongly stratified
situations due to eddy viscosity-shear covariance circulation
(ESCO circulation) (Cheng et al. 2013; Chen and de Swart
2018; Dijkstra et al. 2017). However, this dynamics should
emerge naturally when an appropriate one-dimensional
model for the horizontal density gradient is used to force the
flow.

5 Conclusion

In the present study, we introduce two new parametrizations
for the horizontal density gradient driving environmental
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exchange flows that can be incorporated in one-dimensional
water columnmodels. These one-dimensional models incor-
porate a feedback of the stratification on the driving
horizontal density gradient to limit the effect of run-
away stratification. The parametrizations have been exten-
sively tested by comparing their results of the 1D models
with the results of 2D numerical simulations of laminar
exchange flows, and with those of previous parametriza-
tions. Depending on the values of the gravitational Reynolds
number and the Schmidt number, four different regimes
are identified: (i) diffusion dominated, (ii) transition, (iii)
high-advection/high-diffusion, and (iv) high-advection/low-
diffusion. The classical model, which considers a con-
stant horizontal density gradient, only performs well in
the diffusion-dominated regime, where the stratification is
weak. The new 1D models outperform the classical model
in all other regimes, but they perform differently depending
on the Schmidt number. For low Schmidt number values,
the so-called 1D1 model should be preferred, for exam-
ple for models of turbulent gravitational flows in estuaries.
For high Schmidt number values, the so-called 1D2 model
should be preferred, for example for the simulation of lami-
nar exchange flows at laboratory scale. Both the 1D1 model
and the 1D2 model predict the steady-state stratification
very well. The new parametrizations were able to reproduce
the density profiles obtained with the 2D model within 10%
of accuracy, resolving the problem of runaway stratification.
They are also able to predict a reduction of the magnitude of
the exchange flow velocities observed in strongly stratified
situations.

The improvements in 1D models of exchange flow can
have a significant impact in the future research of these
types of flows. For example, it unlocks the possibility
to explore regions of the estuarine-circulation parameter
space characterized by strong stratification. Additionally,
the formulation of the model, which is independent of
the horizontal coordinates, also opens the traditional direct
numerical simulation setups with horizontally periodic
domains to the simulation of density-driven exchange flows.
The simulation of turbulent flows with lateral induced
stratification is now possible.
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Appendix A: Determination
of the barotropic pressure gradient

The equations of motion for a 1D water column model
located at x = 0 are obtained by assuming w(z) =
0. Substitution of this assumption in Eq. 1 for mass
conservation immediately implies ∂u/∂x = 0. Using both
expressions to simplify Eqs. 2 and 3 results in

∂u

∂t
= − 1

ρref

∂p̃

∂x
+ ν

∂2u

∂z2
, (32)

0 = −∂p̃

∂z
− ρ̃g . (33)

To determine the barotropic pressure gradient, Eq. 33 is
integrated between z and 1

2h, which gives

p̃(z) = g

∫ 1
2h

z

ρ̃dẑ + P̃ h
2
, (34)

where P̃ h
2
is the pressure at z = 1

2h. Then, Eq. 34 is

substituted into in Eq. 32 which results in

∂u

∂t
= ν

∂2u

∂z2
− g

ρref

∫ 1
2h

z

∂ρ̃

∂x
dẑ − 1

ρref

∂P̃ h
2

∂x
. (35)

The unknown quantity ∂P̃ h
2
/∂x can be evaluated by

imposing the no net-flow condition over the vertical:

∫ 1
2h

− 1
2h

u(z; t)dz = 0, (36)

such that integrating (35) over z between − 1
2h and 1

2h gives

h
∂P̃ h

2

∂x
=ρrefν

(
∂u

∂z

∣∣∣∣ 1
2h

− ∂u

∂z

∣∣∣∣− 1
2h

)
−g

∫ 1
2h

− 1
2h

∫ 1
2h

z

∂ρ̃

∂x
dẑdz.

(37)

The pressure gradient ∂P̃ h
2
/∂x then depends on the

boundary conditions for the velocity. If a no-slip boundary
condition is used both at the bottom wall and at the top wall,
the solution for the horizontal velocity u(z) is antisymmetric
with respect to z = 0, and one can easily show that
∂u/∂z|−h/2 = ∂u/∂z|+h/2. By partial integration and
employing the fact that ∂ρ̃/∂x is an even function of z (at
x = 0) (see Fig. 3b), we finally obtain

h
∂P̃ h

2

∂x
= −g

∫ 1
2h

− 1
2h

∫ 1
2h

z

∂ρ̃

∂x
dẑdz = −gh

∫ 1
2h

0

∂ρ̃

∂x
dẑ. (38)

Substitution of this expression in Eq. 35 gives

∂u

∂t
= ν

∂2u

∂z2
+ g

ρref

∫ z

0

∂ρ̃

∂x
dẑ, (39)

which is the expression for the momentum (15).
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Appendix B: Maximum velocities and
density differences

In the diffusion-dominated regime,
∣∣ud,∞/Ug

∣∣ is maximum
at z

h
= ± 1

6

√
3 and

(�ud,∞)max

Ug

=
√
3

108
Reg� , (40a)

(�ρd,∞)max

�ρ
= 1

720
Re2g�

2Sc, (40b)

∫ 1
2

− 1
2

∣∣∣∣�ud,∞
Ug

∣∣∣∣ dz∗ = Reg�

192
, (40c)

∫ 1
2

− 1
2

∣∣∣∣�ρ̃d,∞
�ρ

∣∣∣∣ dz∗ = 11

23040
Re2g�

2Sc. (40d)

In the high-advection/low-diffusion regime,
∣∣ua,∞/Ug

∣∣ is
maximum for z

h
= ± 1

4 , and the magnitude of the velocity
and density profiles is then

(�ua,∞)max

Ug

= 1

96
Reg�, (41a)

(�ρd,∞)max

�ρ
= 1 , (41b)

∫ 1
2

− 1
2

∣∣∣∣�ua,∞
Ug

∣∣∣∣ dz∗ = Reg�

288
, (41c)

∫ 1
2

− 1
2

∣∣∣∣�ρ̃d,∞
�ρ

∣∣∣∣ dz∗ = 1

2
. (41d)

Appendix C: Open-channel flow in the
diffusion-dominated regime

In environmental flows, the pressure at the upper boundary
is obviously constant and equal to the atmospheric pressure.
In addition, one key assumption for the exchange flow is
that the there is no net flow over the vertical. In other
words, the integral of the velocity is zero over the vertical.
However, the pressure induced by the horizontal density
gradient varies linearly with distance from the surface, but
does not change sign over the depth. Therefore, a small
slope in the water surface is required, in order to generate
a constant pressure gradient with opposite sign to the
baroclinic pressure gradient. The sum of the two pressure
gradients leads to a pressure gradient that depends linearly
on the depth and changes sign, driving the typical exchange
flow.

In our numerical setup, this slope in the surface is not
possible, since we have a rigid lid and just apply a no-stress
condition. However, conservation of mass still applies and
the integral of the velocity over the channel height should be
zero. The only way to realize this is to have a non-constant

pressure at the top boundary:

∂P̃ 1
2h

∂x

= 0 . (42)

The derivation of Eq. 30 is similar as outlined in Appendix
A but with a stress-free boundary condition for the flow at
the top of the channel. Additionally, we need to take into
account that for the open-channel flow ∂ρ̃/∂x is not an even
function with respect to z = 0, in contrast to the derivation
in Appendix A.

In the diffusion-dominated regime, Eq. 30 reduces to

∂u∗

∂t∗
= 1

Reg

∂2u∗

∂z∗2 + � z + τ ∗
w. (43)

After integration, using a no-slip boundary condition at
z∗ = − 1

2 and a no-stress condition at z∗ = 1
2 , the

steady-state solution ud,∞ is

ud,∞(z)

Ug

= Reg�

24

[
3

z

h
− 4

( z

h

)3 + 1

]

+Regτ ∗
w

24

[
12

z

h
− 12

( z

h

)2 + 9

]
. (44)

By setting the integral over the depth of Eq. 44 equal to zero,
the unknown τ ∗

w can be determined and is found to be equal
to − 1

8�. Thus, finally

ud,∞(z)

Ug

= Reg�

192

[
12

z

h
+ 12

( z

h

)2 − 32
( z

h

)3 − 1

]
.

(45)

In the diffusion-dominated regime, ud,∞/Ug is maximum
at z/h = 1

2 and minimum z/h = − 1
4 , thus

(
�ud,∞

)
max

Ug

= 27

768
Reg�. (46)

In the diffusion-dominated regime, ud,∞/Ug is negative
for −1/2 ≤ z∗ ≤ (7 − √

33)/16, and positive for (7 −√
33)/16 ≤ z∗ ≤ 1/2 (with (7 − √

33)/16 ≈ 0.078). As a
result, the magnitude of the exchange flow is

∫ 1
2

− 1
2

∣∣∣∣�ud,∞
Ug

∣∣∣∣ dz∗ = 39 + 55
√
33

32768
Reg� ≈ 0.011Reg� .

(47)

The evolution of the density in the diffusion-dominated
regime still satisfies

∂ρ̃∗

∂t
= 1

RegSc

∂2ρ̃∗

∂z∗2 − � u∗. (48)
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The steady-state solution of this equation, using to no-flux
conditions at z = ± 1

2h,

�ρ̃

�ρ
= Re2g�

2Sc

1920

[
−10

z

h
−5

( z

h

)2+20
( z

h

)3 + 10
( z

h

)4

−16
( z

h

)5 + A1

]
. (49)

If one of the two no-flux boundary conditions is satisfied,
the polynomial given by Eq. 49 automatically satisfies the
other no-flux boundary condition, such that one integration
constant, A1, remains undetermined. This constant can be
found by integrating (48) between z = − 1

2h and z = 1
2h

and using

∂

∂t

∫ 1
2

− 1
2

ρ̃dz∗ = 0. (50)

Since initially ρ̃ = 0, it follows that A1 = 7/24. The
steady-state stratification will become

(�ρd,∞)max

�ρ
= 1

320
Re2g�

2Sc. (51)

Since the solution �ρ̃/�ρ is a fifth-order polynomial,
there is no general solution to find its roots analytically.
Numerically, it is found that the only root, �ρ̃/�ρ = 0, for
−0.5 ≤ z ≤ 0.5 is z = 2.88 × 10−2, such that∫ 1

2

− 1
2

∣∣∣∣�ρ̃d,∞
�ρ

∣∣∣∣ dz∗ ≈ 1.02 × 10−3Re2g�
2Sc. (52)
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