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Homeostatic plasticity refers to the ability of neuronal networks to stabilize their
activity in the face of external perturbations. Most forms of homeostatic plasticity
ultimately depend on changes in the expression or activity of ion channels and
synaptic proteins, which may occur at the gene, transcript, or protein level. The most
extensively investigated homeostatic mechanisms entail adaptations in protein function
or localization following activity-dependent posttranslational modifications. Numerous
studies have also highlighted how homeostatic plasticity can be achieved by adjusting
local protein translation at synapses or transcription of specific genes in the nucleus. In
comparison, little attention has been devoted to whether and how alternative splicing
(AS) of pre-mRNAs underlies some forms of homeostatic plasticity. AS not only expands
proteome diversity but also contributes to the spatiotemporal dynamics of mRNA
transcripts. Prominent in the brain where it can be regulated by neuronal activity, it is
a flexible process, tightly controlled by a multitude of factors. Given its extensive use
and versatility in optimizing the function of ion channels and synaptic proteins, we argue
that AS is ideally suited to achieve homeostatic control of neuronal output. We support
this thesis by reviewing emerging evidence linking AS to various forms of homeostatic
plasticity: homeostatic intrinsic plasticity, synaptic scaling, and presynaptic homeostatic
plasticity. Further, we highlight the relevance of this connection for brain pathologies.

Keywords: alternative splicing, homeostatic plasticity, repressor element 1 silencing transcription factor (REST),
homer1, P/Q-type Ca2+ channels

Abbreviations: AMPAR, AMPA-type glutamate receptor; AS, alternative splicing; BDNF, brain-derived neurotrophic
factor; CDF, Ca2+-dependent facilitation; CTCF, CCCTC-binding factor; GPCR, G protein-coupled receptor; mEPSCs,
miniature excitatory postsynaptic currents; mGluR, metabotropic glutamate receptor; nSR100, Ser/Arg repeat-related
protein of 100 kDa; nt, nucleotides; REST, repressor element 1 silencing transcription factor; SNP, single-nucleotide
polymorphism; TTX, tetrodotoxin; UTR, untranslated region; VGCC, voltage-gated calcium channel.
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INTRODUCTION: FROM GENES TO
FUNCTION

Over the last two decades, a vast array of homeostatic plasticity
adaptations, which enable neuronal networks to stabilize their
activity in the face of external perturbations, have been identified.
These involve adjustments in synaptic strength by means of pre-
and postsynaptic mechanisms (homeostatic synaptic plasticity)
and in intrinsic excitability (homeostatic intrinsic plasticity).
Ultimately, both synaptic and intrinsic forms of homeostatic
plasticity depend on changes in expression or activity of ion
channels and synaptic proteins, which may occur at the gene,
transcript, or protein level (Figure 1).

By far, the most extensively investigated homeostatic
mechanisms involve changes in protein function or localization
by means of posttranslational modifications affecting
protein–protein interactions and trafficking (reviewed in
Turrigiano, 2011; Davis and Müller, 2015; Fernandes and
Carvalho, 2016; Cingolani et al., 2019).

Chronic changes in network activity can also be counteracted
by regulating protein translation. For example, increased
surface expression of the GluA1 subunit of AMPA-type
glutamate receptors (AMPARs) compensates blockade
of network activity within a few hours. This form of
homeostatic synaptic plasticity, known as synaptic upscaling,
requires local protein synthesis because it is prevented by
dendritic application of the protein synthesis inhibitors
anisomycin or emetine (Sutton et al., 2006), and it involves
downregulation of miR92a (Letellier et al., 2014; Dubes
et al., 2019). Further, the transcription of hundreds of genes
was recently shown to be up- or downregulated at early
(2 h) and late (24 h) stages of the homeostatic response
(Schanzenbächer et al., 2016, 2018).

FIGURE 1 | Genes to function in homeostatic plasticity.

Synaptic upscaling following tetrodotoxin (TTX)-induced
suppression of network activity is dependent also on gene
transcription because the transcription inhibitor actinomycin
D (ActD) blocks effectively upscaling of miniature excitatory
postsynaptic currents (mEPSCs) and dendritic accumulation
of the AMPAR subunit GluA2 (Ibata et al., 2008). More
recently, chronic suppression of network activity was shown
to alter the transcription of tens of genes, including that
for the AMPAR clustering protein neuronal pentraxin-1
(Nptx1); Ca2+ entry via T-type voltage-gated Ca2+ channels
(VGCCs) appears essential for this signaling pathway
(Schaukowitch et al., 2017). Conversely, chronic augmentation
of network activity leads to Ca2+-dependent changes in the
expression of hundreds of genes (Flavell and Greenberg,
2008; Schaukowitch et al., 2017), some of which, such as
brain-derived neurotrophic factor (BDNF), calcineurin,
and MeCP2, are known players in homeostatic synaptic
plasticity (Fernandes and Carvalho, 2016). Neuronal activity
also increases the expression levels of immediate early genes,
such as Arc (aka Arg3.1), which induces a counterbalancing
internalization of AMPARs (Shepherd et al., 2006) and,
when localized in the nucleus, decreases transcription of the
AMPAR subunit GluA1, thereby reducing synaptic strength
(Korb et al., 2013).

In comparison to the above outlined molecular mechanisms,
little attention has thus far been devoted to whether and how
homeostatic adaptations are achieved at the level of alternative
splicing (AS) of pre-mRNAs (Figure 1). As detailed below, this
lack of attention may come as a surprise because some AS events
are well-known for being controlled by neuronal activity and
because AS is ideally suited to optimize protein function to new
challenges (Raj and Blencowe, 2015; Vuong et al., 2016; Baralle
and Giudice, 2017). Here, we review recent findings linking
homeostatic plasticity to AS and discuss the relevance of activity-
dependent AS to achieve homeostatic control of neuronal output
in health and diseased states.

ALTERNATIVE SPLICING

During RNAmaturation, intervening noncoding RNA sequences
(introns) are removed while coding sequences (exons) are joined
together, thus contributing to transforming a newly transcribed
mRNA (pre-mRNA) into a mature mRNA. RNA splicing is
performed by a multi-molecular RNA–protein complex, the
spliceosome, which binds to specific sequences on the pre-
mRNA. These include a donor site (5′ end of the excised intron),
an acceptor site (3′ end of the intron), and, upstream of the 3′

site, a polypyrimidine tract and a branch point. For some genes,
rather than being univocal, the splicing process creates a range
of mature mRNAs, each with a unique exon composition. If
translated, these mRNA splice isoforms will produce multiple
protein variants with potentially distinct functions. We talk
in this case of AS. AS is regulated by cis-acting elements
(regulatory RNA sequences), which act as splicing enhancers or
repressors by recruiting trans-acting splicing factors (proteins or
ribonucleoproteins) that favor or inhibit different steps of the
splicing reaction (Matera and Wang, 2014).
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In higher eukaryotes, AS has the potential to convert a
limited number of genes into an astounding variety of proteins
depending on developmental stage, brain region, and cell types.
For example, thousands of mRNA splicing isoforms were found
to be different between neurons and glial cells when comparing
purified brain cell populations (Zhang et al., 2014). Indeed, some
splicing factors display cell-type specific expression (Nguyen
et al., 2016; Furlanis and Scheiffele, 2018), while others regulate
specific splicing events during brain development (Norris and
Calarco, 2012). Transcriptomic and proteomic studies indicate
that more than 90% of mammalian genes undergo AS, with the
brain exhibiting the most complex repertoire of splice variants
(Pan et al., 2008; Wang et al., 2008; Kim et al., 2014; Schreiner
et al., 2015). In some cases, as for neurexins and calcium
channels, one single gene can give rise to potentially thousands of
different mRNA isoforms (Ullrich et al., 1995; Soong et al., 2002;
Lipscombe et al., 2013; Schreiner et al., 2014; Treutlein et al.,
2014), many of which have been identified at the protein level
(Kim et al., 2014; Schreiner et al., 2015). It should also be noted
that AS is not limited to diversifying the coding sequence of an
mRNA but can also modify the selection of 5’ and 3’ untranslated
regions (UTRs), thus affecting stability, subcellular localization
and translation of mRNAs (Hermey et al., 2017; Mauger and
Scheiffele, 2017).

In order to be instructive for homeostatic plasticity, AS needs
to fulfill two criteria: (i) it must be regulated by neuronal activity;
and (ii) the outcome of the splicing process must result in a
homeostatic compensation. We will explore the requirement of
AS in homeostatic plasticity in the next paragraphs following
three exemplary cases.

NSR100, MICROEXONS, AND REST IN
HOMEOSTATIC PLASTICITY

Some splicing factors, such as Nova-1/2, Rbfox-1/2/3, Ptbp1/2,
and nSR100 are highly enriched in neurons. Among these,
the Ser/Arg repeat-related protein of 100 kDa (nSR100, aka
SRRM4) binds to intronic enhancer UGC elements close to the 3’
splice sites to promote microexon inclusion (Figure 2A; Raj and
Blencowe, 2015). Microexons are a class of cassette exons (exons
that can be included or not in the mature transcript) that tend to
be located in surface loops and intrinsically disordered regions.
They generally have a length of 9–21 nucleotides (nt), often
in multiples of three nt, hence leading to alternative versions
of a protein with altered functions, protein–protein interaction
motifs, or posttranslational modifications. Microexons are
especially important in the brain, where they constitute nearly
one third of all neural-regulated splicing events. They are
frequently misregulated in the brain of individuals with autism
spectrum disorder; this is likely due to increased neuronal
activity, often associated with autism spectrum disorder,
resulting in a rapid decrease in nSR100 expression and increased
skipping of microexons (Irimia et al., 2014; Quesnel-Vallières
et al., 2016).

Although generally frame preserving, microexon inclusion
promoted by nSR100 can also disrupt the reading frame of
a gene. For example, one well-known downstream target of

nSR100 is the transcriptional repressor REST (repressor element
1 silencing transcription factor; aka NRSF, neural restrictive
silencing factor), which silences a multitude of neural genes (Raj
et al., 2011). In this case, nSR100 promotes the inclusion of
a 16-nt-long microexon located between the third and fourth
exons, leading to a frameshift introducing a stop codon at the
beginning of the fourth exon. The resulting isoform, REST4,
is truncated and lacks the domains required for transcriptional
repression of target genes (Raj et al., 2011). When neuronal
activity increases, nSR100 expression is rapidly downregulated
(Quesnel-Vallières et al., 2016), resulting in skipping of the
16-nt-long microexon and production of the active isoform of
REST (Figure 2A). Accordingly, REST is upregulated in primary
neuronal cultures after 48–96 h of network hyperactivity, and
this decreases the expression of its targets, including the sodium
channel NaV1.2, the calcium channel CaV3.2, and various
presynaptic proteins (SNAP-25, Synapsin-1, Synaptotagmin-
2, and vGlut-1; van Loo et al., 2012; Pozzi et al., 2013).
Downregulation of NaV1.2 makes it more difficult for a neuron
to elicit action potentials, thus contributing to homeostatic
intrinsic plasticity (Pozzi et al., 2013). Decreased expression
of presynaptic proteins correlates with a reduction in the
number of docked synaptic vesicles and in the frequency of
mEPSCs, thus contributing to presynaptic homeostatic plasticity,
a prominent form of homeostatic synaptic plasticity (Figure 2A;
Pecoraro-Bisogni et al., 2018).

ALTERNATIVE SPLICE ISOFORMS OF
HOMER1 IN SYNAPTIC SCALING

The Homer1 gene generates long and short splice isoforms.
The major isoforms, Homer1b, Homer1c, and Homer1d, are
long, constitutively expressed, and act as scaffold proteins
at postsynaptic sites (Fagni et al., 2002; Shiraishi-Yamaguchi
and Furuichi, 2007). In response to various stimuli, such as
electroconvulsive seizures, cocaine, kainate or nicotine exposure,
two truncated isoforms of Homer1, Homer1a and Ania3, which
have all the characteristics of immediate early gene products, are
rapidly (1–4 h) induced (Brakeman et al., 1997; Kato et al., 1997;
Berke et al., 1998; Bottai et al., 2002). This is due to myocyte
enhancer factor 2 (MEF2) family transcription factors, which
boost transcription of the Homer1 gene and to a concomitant
termination of transcription within the large central intron
between exons 5 and 6, leading to use of alternative poly(A) sites.
Because of this coordinated increase in transcription rate and
premature transcription termination, only the short isoforms of
Homer1 are induced by neuronal activity (Figure 2B; Bottai et al.,
2002; Flavell et al., 2008).

The long isoforms of Homer1 consist of two major
domains: (i) an N-terminal Enabled/Vasp homology 1 (EVH1)
domain, which binds to proline-rich sequences in Group
1 metabotropic glutamate receptors (mGluR1 and 5), inositol-
1,4,5-trisphosphate (IP3) receptors, ryanodine receptors,
TRPC1 ion channels, and the scaffold protein Shank; and
(ii) a C-terminal coiled-coil (CC) structure followed by leucine
zipper motifs, which favor oligomerization of homer proteins
(Szumlinski et al., 2006). The long isoforms of Homer1 are
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FIGURE 2 | Activity-dependent alternative splicing in homeostatic plasticity.
(A) A chronic increase in neuronal activity downregulates the expression of
the splicing factor nSR100, with consequent skipping of a 16-nt-long
microexon in the pre-mRNA of the transcriptional repressor REST (repressor
element 1 silencing transcription factor). The resulting REST protein is active
and reduces the expression of NaV1.2 and of presynaptic proteins. These two
effects contribute to homeostatic intrinsic plasticity and presynaptic
homeostatic plasticity, respectively. (*) Indicates a STOP codon. (B) The
selective induction of the short isoform Homer1a upon increase in neuronal
activity is mediated by the transcription factor myocyte enhancer factor 2
(MEF2), which promotes expression of the Homer1 gene, and by a
concomitant termination of transcription between exons 5 and 6. Homer1a
outcompetes the longer isoforms of Homer1, resulting in dispersion of group
1 mGluRs and dephosphorylation of AMPARs. This contributes to synaptic
downscaling. (C) Mutually exclusive splicing of P/Q-type Ca2+ channels in
presynaptic homeostatic plasticity. (Ca) Structural model of human
CaV2.1[EFb] (UniProt ID: O00555; Martinez-Ortiz and Cardozo, 2018),
highlighting the full C-terminus (green, cyan, blue), the part of the
EF-hand-like domain shared between CaV2.1[EFa] and CaV2.1[EFb] (E helix;
cyan) and the sequence specific to CaV2.1[EFb] (loop, F helix and
downstream residues; blue). (Cb) Phylogenetic tree of human CaV1 and

(Continued)

FIGURE 2 | Continued
CaV2 channels and of Cacophony and DmCa1D from Drosophila
melanogaster for the amino acidic region corresponding to exons 37 of
CaV2.1 (Clustal Omega www.ebi.ac.uk/Tools/msa/clustalo/, rendering using
TreeDyb, http://www.phylogeny.fr/one_task.cgi?tasktype=treedyn, Chevenet
et al., 2006); UniProt IDs: CaV1.1: Q13698, aa: 1414–1446; CaV1.2: Q13936,
aa: 1587–1589; CaV1.3: Q01668, aa: 1497–1529; CaV1.4: O60840, aa:
1474–1506; CaV2.1b: O00555, aa: 1843–1875; CaV2.2b: Q00975, aa:
1741–1773; CaV2.3b: Q15878, aa: 1756–1788; CaV2.1a: O00555-4, aa:
1844–1876; Cacophony: P1645, aa: 1370–1402; DmCa1D: Q24270, aa:
1959–1991; sequences for CaV2.2a and CaV2.3a are as in Thalhammer et al.
(2017). The three exons 37a cluster together as do the three exons 37b,
suggesting conservation of these mutually exclusive exons across
CaV2 channels; the corresponding region of Cacophony from
D. melanogaster is more tightly related to exon 37b. (Cc) The increased
expression of the isoform CaV2.1[EFa] upon chronic activity deprivation might
occur following demethylation of the exon 37a locus with consequent binding
of the chromatin organizer CCCTC-binding factor (CTCF) to it. CaV2.1[EFa]
localizes in close proximity to fuse-competent synaptic vesicles, thereby
supporting effectively vesicle release and presynaptic homeostatic plasticity.
Drawing of relative exon/intron length is to scale only in (Cc); numbers of
mRNAs and proteins are not intended to be quantitative.

therefore essential in cross-linking multiple postsynaptic
proteins. Conversely, the short isoforms of Homer1 lack the
C-terminal domain involved in oligomerization; once induced,
they act as dominant-negative regulators disrupting the binding
between Homer1 long isoforms and their effectors (Xiao et al.,
1998; Kammermeier and Worley, 2007).

Increasing network activity, therefore, upregulates transiently
the expression of Homer1a, which, among other things, disrupts
the protein–protein interactions clustering group 1 mGluRs at
perisynaptic sites. In addition, Homer1a acts as an endogenous
allosteric modulator of mGluR1/5; that is, it supports a
glutamate-independent activity of these mGluRs (Ango et al.,
2001). This is essential in promoting homeostatic downscaling
of synaptic AMPARs both in vitro and in vivo (Figure 2B; Hu
et al., 2010; Diering et al., 2017), as reviewed elsewhere in this
topic (Cingolani et al., 2019).

The expression of Homer1a is increased in the CA1 region
of the hippocampus in schizophrenic patients (Matosin et al.,
2016) and up- or downregulated in different brain regions of
patients with either bipolar disorder or major depression (Leber
et al., 2017). Furthermore, in Fmr1 knockout mice, a model
for fragile X syndrome, mGluR5 is preferentially associated
to Homer1a, leading to an enhanced glutamate-independent
activation of this receptor and consequent neocortical circuit
dysfunctions and behavioral abnormalities. Some of these defects
are rescued by genetic deletion of Homer1a (Giuffrida et al.,
2005; Ronesi et al., 2012), which is consistent with brain function
being dependent on an appropriate ratio between short and long
isoforms of Homer1.

ALTERNATIVE SPLICING OF P/Q-TYPE
Ca2+ CHANNELS IN PRESYNAPTIC
HOMEOSTATIC PLASTICITY

Mutually exclusive splicing is a form of AS, whereby the splicing
of two or more exons is coordinated in such a way that

Frontiers in Cellular Neuroscience | www.frontiersin.org 4 May 2020 | Volume 14 | Article 104

http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.phylogeny.fr/one_task.cgi?tasktype=treedyn
https://www.frontiersin.org/journals/cellular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-neuroscience#articles


Thalhammer et al. Alternative Splicing in Homeostatic Plasticity

only one is retained while the others are spliced out from
the mature mRNA (Figure 2Cc). Mutually exclusive exons are
generally highly similar possibly because they originated from
exon duplication. However, far from being redundant, they
usually allow the formation of protein isoforms that differ in
the function of specific domains while preserving the overall
structure and size. Indeed, mutually exclusive splicing in many
genes is spatially and temporally regulated (Pohl et al., 2013).
Recent data indicate that mutually exclusive exons may be
much more frequent in mammals than previously thought
and that they are overrepresented in genes encoding for ion
channels (Hatje et al., 2017). Interestingly, the occurrence of
pathogenic single-nucleotide polymorphisms (SNPs) in mutually
exclusive and cassette exons is significantly higher than in
other types of exons, suggesting that these two forms of
AS are especially susceptible to pathogenic mutations. For
mutually exclusive splicing, the pathogenic SNPs tend to
be present in only one of the two possible exons. Thus,
the second mutually exclusive exon cannot normally replace
the defective one either because of functional diversification
or because of differential spatiotemporal expression patterns
(Hatje et al., 2017).

A well-characterized case of mutually exclusive exons occurs
in the proximal C-terminus of the pore-forming α1 subunit of
the CaV2 VGCCs (CaV2.1, CaV2.2, and CaV2.3; Bourinet et al.,
1999; Bell et al., 2004; Gray et al., 2007; Hatje et al., 2017), which
serve as primary Ca2+ entry for the release of synaptic vesicles at
most presynaptic terminals. The 97-nt-long mutually exclusive
exons 37a and 37b encode part of an EF-hand-like domain, thus
creating two variants of it (EFa and EFb; Figure 2Ca; Bourinet
et al., 1999; Chaudhuri et al., 2004; Thalhammer et al., 2017).
This motif is not specific to CaV2 channels but conserved across
Ca2+ and Na+ channels (Babitch, 1990; Ben-Johny et al., 2014);
in particular, exons 37a and 37b in CaV2 channels exhibit a high
level of similarity with the corresponding exons in CaV1 channels
(Figure 2Cb).

Which are the functions of the EF-hand-like domain and why
do CaV2 channels need two variants of it? Three major, not
mutually exclusive, functional differences have been proposed.
In N-type Ca2+ channels (CaV2.2), mutually exclusive splicing
at exons 37 has been shown to regulate sensitivity of the
channel to voltage-independent inhibition by G protein-coupled
receptors (GPCRs). That is, several GPCRs, including opioid
receptors, inhibit CaV2.2[EFa] but not CaV2.2[EFb] through
kinase phosphorylation of a tyrosine residue (Y1743) present
exclusively in the former isoform (Raingo et al., 2007; Andrade
et al., 2010). Because CaV2.2[EFa] is enriched in capsaicin-
responsive nociceptors of dorsal root ganglia (Bell et al., 2004),
this isoform-specific regulation mediates analgesia, for example,
by morphine (Andrade et al., 2010).

In P/Q-type Ca2+ channels (CaV2.1), the two isoforms have
been shown to differ in how elevations in intracellular Ca2+

regulate the activity of the channel. Specifically, activation of
CaV2.1[EFa], but not CaV2.1[EFb], is facilitated by preceding
Ca2+ entry (Ca2+-dependent facilitation, CDF; Chaudhuri et al.,
2004). This is in accordance with a large body of evidence
indicating that the EF-hand-like domain in the proximal

C-terminus of Ca2+ and Na+ channels, rather than binding
directly to Ca2+, represents a general transduction element for
the regulation of the channel by Ca2+-calmodulin (Peterson et al.,
2000; Ben-Johny et al., 2014; Gardill et al., 2018). Calmodulin
itself binds, in a Ca2+-independent manner, to downstream
domains in the C-terminus of Ca2+ and Na+ channels
(Peterson et al., 1999; Zuhlke et al., 1999; Mori et al., 2000;
Erickson et al., 2001).

More recently, experiments in native systems have revealed
that the two isoforms of CaV2.1 regulate neurotransmitter release
and short-term synaptic plasticity at hippocampal synapses in
opposite directions. While CaV2.1[EFa] promotes synaptic
efficacy and short-term synaptic depression, CaV2.1[EFb]
characterizes synapses with low release probability and
prominent short-term synaptic facilitation (Thalhammer
et al., 2017). This is contrary to what the isoform-specific CDF,
as characterized in non-neuronal cells, would have predicted
(Chaudhuri et al., 2004; Weyrer et al., 2019); it likely reflects
instead a differential spatial relationship of the two isoforms to
fuse-competent synaptic vesicles, with a tight and loose coupling
configuration for CaV2.1[EFa] and CaV2.1[EFb], respectively
(Figure 2Cc; Thalhammer et al., 2017). More in general, AS
of CaV2.1 might underlie most of the intra- and inter-synaptic
differences in nanoscale topographical arrangements of this
channel, as recently revealed (Holderith et al., 2012; Nakamura
et al., 2015; Rebola et al., 2019).

Whereas the expression of CaV2.1[EFb] remains relatively
constant throughout postnatal development, that of CaV2.1[EFa]
increases postnatally, in parallel with a tightening of the coupling
between VGCCs and the neurotransmitter release machinery. As
a result, both isoforms are expressed at similar levels in most
regions of the adult brain (Bourinet et al., 1999; Soong et al.,
2002; Vigues et al., 2002; Chaudhuri et al., 2004; Thalhammer
et al., 2017). The developmental upregulation of CaV2.1[EFa]
occurs in rodents between the second and third postnatal week,
the same period when ataxic symptoms become apparent in
CaV2.1−/− knockout mice (Mark et al., 2011). Further, four
point mutations associated with episodic ataxia type II have
been identified in the exon 37a of CACNA1A (the gene for
the α1 subunit of CaV2.1) in four unrelated families (Graves
et al., 2008; Mantuano et al., 2010), while none has been
found, to date, in exon 37b, suggesting that CaV2.1[EFa] might
be more relevant for the etiology of episodic ataxia type II
than CaV2.1[EFb].

At the cellular level, whilemost neurons express both isoforms
to various degrees, parvalbumin interneurons, which rely on
P/Q-type Ca2+ channels to form synapses characterized by
nanodomain coupling, high release probability, and short-term
synaptic depression (Eggermann et al., 2012), stand out for
expressing exclusively CaV2.1[EFa] (Huntley et al., 2020),
again pointing to functional synaptic specialization of the two
CaV2.1 splice isoforms.

Besides these differences in spatiotemporal expression
patterns, the relative synaptic abundance of the two isoforms
is regulated by network activity in a homeostatic fashion.
Specifically, hippocampal neurons increase exclusively the
synaptic expression of CaV2.1[EFa] in response to activity
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deprivation. Because this isoform is the more efficient of the
two in driving vesicle release, its higher expression levels appear
perfectly suited to counteract the decrease in network activity
(Figure 2Cc; Thalhammer et al., 2017). These findings provide
therefore a precise molecular basis for the involvement of
P/Q-type Ca2+ channels in presynaptic homeostatic plasticity
(Frank et al., 2006; Jakawich et al., 2010; Lazarevic et al.,
2011; Zhao et al., 2011; Jeans et al., 2017) and highlight
the importance of activity-dependent AS in homeostatic
synaptic plasticity.

Although it is not known how network activity regulates
this splicing event, it has recently been proposed that inclusion
of exon 37a or 37b in CaV2.2 is consequent to differences in
chromatin structure and transcription rates, rather than being
directly regulated at the mRNA level (Javier et al., 2019; Lopez
Soto and Lipscombe, 2020). Because splicing occurs mostly
co-transcriptionally (Luco et al., 2011), rapid transcription of
Cacna1b (the gene for the α1 subunit of CaV2.2) would lead
to simultaneous availability to the splicing machinery of the
two mutually exclusive exons. Direct competition between
them would results in inclusion of the downstream stronger
exon 37b. Conversely, a slow transcription rate would favor
recruitment of the splicing machinery to the first upstream
exon 37a, thus leading to inclusion of this weaker exon into
the final transcript. Indeed, the zinc finger DNA-binding
protein CCCTC-binding factor (CTCF), a well-known organizer
of chromatin architecture, binds to the exon 37a locus of
Cacna1b to promote inclusion of this exon (Javier et al.,
2019; Lopez Soto and Lipscombe, 2020). This is likely because
CTCF favors the formation of intragenic chromatin loops
and slows down the elongation rate of the RNA polymerase
II (Pol II; Shukla et al., 2011; Ruiz-Velasco et al., 2017).
Importantly, CTCF binding is not constitutive but prevented
by methylation of the Cacna1b exon 37a locus, which
consequently leads to exon 37a exclusion (Javier et al., 2019;
Lopez Soto and Lipscombe, 2020).

Because the methylation level of chromosomal DNA is
key to both memory formation and homeostatic synaptic
plasticity (Day and Sweatt, 2010; Meadows et al., 2015),
it is conceivable that activity-dependent methylation and
demethylation might regulate also the inclusion of exon 37a in
Cacna1a during presynaptic homeostatic plasticity. According
to databases of chromatin immunoprecipitation followed by
sequencing (ChIP-seq1, ENCODE Project Consortium, 2012),
CTCF binds indeed also to the Cacna1a exon 37a locus
(Figure 2Cc).

1https://screen.wenglab.org/search/?q=CACNa1A&uuid=0&assembly=GRCh38

DISCUSSION: IMPLICATIONS OF
ACTIVITY-DEPENDENT ALTERNATIVE
SPLICING FOR BRAIN DISORDERS

Genome-wide transcriptomic studies indicate that AS is more
prominent in the brain than in other tissues (Yeo et al.,
2004; Pan et al., 2008). Accordingly, defects in AS have been
implicated in neurological and neurodegenerative disorders (Raj
and Blencowe, 2015; Furlanis and Scheiffele, 2018; Montes et al.,
2019). AS defects can originate from mutations that alter either
cis-acting elements on specific genes or trans-acting splicing
factors affecting the splicing of multiple transcripts. As discussed
briefly in this minireview article, the former mutations are
prominent in mutually exclusive and cassette exons involved
mostly in monogenic brain pathologies such as episodic ataxia
type II, the latter are especially critical for multifactorial brain
disorders, for example, for autism spectrum disorder (Gehman
et al., 2011; Voineagu et al., 2011; Irimia et al., 2014; Quesnel-
Vallières et al., 2016; Gonatopoulos-Pournatzis et al., 2018).

In both cases, to fully understand how defective AS alters
circuit and brain function, it is important to consider that some
AS events in the brain are regulated by network activity and
that the outcome of the splicing process can in turn compensate
for changes in activity levels, thus establishing negative feedback
loops that make brain function especially resilient to damage.
Rather than being direct, the effects of defective AS on brain
function are therefore likely to be indirectlymediated by deficient
or aberrant homeostatic plasticity mechanisms.

Elucidating the interplay between activity-dependent AS and
homeostatic plasticity, as well as implementing new technologies,
such as genome editing approaches aimed at correcting
pathogenic mutations interfering with AS or at rebalancing splice
isoform levels (Gapinske et al., 2018; Konermann et al., 2018;
Thalhammer et al., 2018; Yuan et al., 2018), will help us to
develop new and improved splicing therapies for brain disorders.
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