
Journal of

Marine Science 
and Engineering

Article

Exploring a Flooding-Sensors-Agnostic Prediction of the
Damage Consequences Based on Machine Learning

Luca Braidotti 1,2,* , Marko Valčić 1,3 and Jasna Prpić-Oršić 1
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Abstract: Recently, progressive flooding simulations have been applied onboard to support decisions
during emergencies based on the outcomes of flooding sensors. However, only a small part of the
existing fleet of passenger ships is equipped with flooding sensors. In order to ease the installation
of emergency decision support systems on older vessels, a flooding-sensor-agnostic solution is
advisable to reduce retrofit cost. In this work, the machine learning algorithms trained with databases
of progressive flooding simulations are employed to assess the main consequences of a damage
scenario (final fate, flooded compartments, time-to-flood). Among the others, several classification
techniques are here tested using as predictors only the time evolution of the ship floating position
(heel, trim and sinkage). The proposed method has been applied to a box-shaped barge showing
promising results. The promising results obtained applying the bagged decision trees and weighted
k-nearest neighbours suggests that this new approach can be the base for a new generation of onboard
decision support systems.

Keywords: damaged ship; progressive flooding; decision trees; KNN; SVM; decision support system

1. Introduction

In the last two decades, increasing attention has been given to the flooding of a
damaged ship. Several accidents occurred to RoPax and the disaster of the Costa Concordia
foster the development of flooding simulation codes while highlighting the need for
improving decision support during flooding casualties. Among other vessels types, large
cruise vessels are a very challenging environment [1]. The complex internal subdivision
together with the short freeboard at the bulkhead deck and short metacentric radius leads
to a difficult assessment of the consequences of a flooding scenario without the help of
proper tools. Moreover, passenger ships carry thousands of persons implying usually time-
consuming evacuation procedures [2]. Hence, to mitigate the consequences of a flooding
casualty on passengers and crew, it is essential to start evacuation as soon as possible after
damage if the ship will sink, capsize or anyway cannot be any more considered safe.

Several options are currently available on the market to provide decision support on
the bridge during a flooding emergency [3]. Besides mandatory onboard documentation,
almost all the passenger ships are equipped with loading computers capable to assess
the damage stability. Besides, at the final stage of flooding, several tools are available to
support damage control, based on data-bases [4,5] or optimisation [6]. However, these
tools do not account for the progressive flooding, which could lead to ship capsize before
reaching a stable final floating position. Moreover, loading computers cannot estimate
the time-to-flood and usually require manual input of the damaged rooms, which could
be unknown on aged vessels. To overcome these issues, a direct onbobard application of
progressive flooding simulation codes has been introduced. The so-called “emergency
computers” exploits flooding sensors to assess the damage position and dimension [7,8].
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Then, with such input, simulates the flooding process by means of fast algorithms. In order
to minimise the computational effort, quasistatic techniques are usually utilized [9–11].
Considering the dense nonwatertight subdivision, these simulation methods are considered
satisfactory for onboard application and even for time-domain investigations during ship
design [12].

At present, all these systems require the installation of flooding sensors capable to
measure the floodwater level in all the main compartments of the ship or at least in the
most critical [13]. However, flooding sensors are mandatory only for ships built after
1 July 2010 [14]. Hence, the large majority of the existing fleet of passenger ships cannot be
equipped with emergency computers without a costly retrofit to install a flooding detection
system. This could fundamentally hinder the widespread adoption of novel emergency
Decision Support Systems (DSS) and forced more safety-committed cruise companies to
seek alternatives requiring lower investments to improve the safety of existing vessels.
A viable option could be performing damage detection from the records of the floating
position. In such a case, the measurement of the ship lists and sinkage can suffice, reducing
the number and the cost of required sensors. An attempt in this direction has been already
done but needs a slow iteration on a very large database [15]. To reduce crew reaction time,
other solutions are then advisable.

The present paper explores the possibility to directly predict the consequences of a
side collision damage from the evolution of the ship floating position in the time domain.
To this end, machine learning has been employed. Namely, a quite large number of
classification/regression algorithms have been tested using as predictors the heel, trim
and sinkage recorded at equally spanned time instants. The classifiers are trained by
means of a database of progressive flooding simulations performed with a quasisteady
linearised code [16]. The proposed technique is here applied on a box-shaped barge with
five watertight compartments and several internal rooms connected with free openings.

2. Materials and Methods

When the hull integrity is compromised, the floating position of a ship changes due
to floodwater loaded onboard. First, the floodwater rushes through the hull breaches in
the damaged rooms and then usually spreads inside the ship through the nonwatertight
openings (e.g., fire doors, light joiner doors). The floodwater flowrate through the openings
is governed by the well-known hydraulic laws and can be predicted through flooding
simulation codes. These codes are also capable to forecast the outcome of a damage scenario.
This means, if the damaged ship will survive reaching a new equilibrium position or
whether it will sink or capsize due to insufficient buoyancy or residual stability respectively.

Thus, a predictable time evolution of the ship floating position and flooding con-
sequences will follow a specific damage and the process can be simulated in a design
environment. Hence, within a database of time-domain simulations of progressive flood-
ing, a link between the floating position records and the final consequences of the related
damage scenario can be searched. Here, it is proposed to break up the database damage
scenarios into classes and then, among the machine learning algorithms available in the
literature, to employ classification and regression learners explaining the relation between
a scenario and its main outcomes. In the present section, the adopted methodology is
presented, focusing on the studied problems and accuracy evaluation. Then, the tested
classification algorithms are briefly introduced.

2.1. Stated Problems

The proposed procedure is sketched in Figure 1. Here three main problems have been
studied aiming to identify the most relevant consequences of a single hull breach from
the evolution of the floating position defined by the heel angle ϕ, the trim angle θ and the
sinkage s, i.e., the difference between the actual mean draught TM(t) and the intact ship
one TM(0). The selected responses provided by the tested machine learning algorithms are:
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1. the final fate of the progressive flooding scenario: this is the most important informa-
tion required by the master during a flooding emergency, thus shall be included in
each onboard emergency DSS. The final fate is divided into the following classes: new
equilibrium, sink, capsize, excessive heeling (final floating positions with large heel
angles cannot be considered safe [17]);

2. the flooded watertight compartments involved in the progressive flooding: the knowl-
edge of the damaged main watertight compartments enable to immediately start
the damage control procedures, helping to avoid uncontrolled floodwater spreading.
The damage scenarios are mapped into a common response class if involve the same
set of watertight compartments;

3. the time-to-flood t f : this is the key information when the ship has to be abandoned.
Hence, in nonsurvival scenarios, it shall be provided to the crew by an emergency
DSS to enable proper planning of the ship evacuation.

Figure 1. Flowchart of the classification process.

The first two responses are classification problems that can be addressed by means
of classification learners. On the contrary, being t f a numeral, regression learners can be
employed to address the third problem.

Usually, as the damaged ship survives, the floating position reaches the new equi-
librium with a decreasing pace that can be modelled, to a first approximation, a limited
exponential trend [18]. Hence, in such cases, the accurate definition of t f is not an easy
task. In some preliminary evaluations was observed that the large uncertainty connected to
survival damage scenarios heavily affects the precision of the third problem. On the other
hand, since all the other possible fates occur at a well defined time instant, the time-to-flood
can be easily identified reducing the drawback on the regression accuracy. Hence, also con-
sidering that the time-to-flood is not essential in survival cases, only the lost-ship scenarios
(sink, capsize, excessive heeling) have been here considered studying the third problem.

In all the cases, the predictors are the values of heel angle, trim angle and sinkage,
recorded at constant time intervals dt. Hence, at each time t∗, multiple of dt, three specific
learners can be employed to forecast the damage scenario responses based on the past
information (values of heel angle, trim angle and sinkage recorded up to t∗). During a real
flooding scenario, the predictions are still valid during the next period. Then, another new
floating position point is recorder adding the related three predictors that are employed by
the next step learners to update the consequences predictions.

All the learners defined at each time instant are trained by means of a single database
of progressive flooding simulations. The damage cases included in the database can be
defined according to different methodologies, such as Monte Carlo (MC) sampling or a
parametric definition. The main goal is anyhow to maximise the classification accuracy,
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which can be tested through a second validation database, generated independently from
the training one.

2.2. Accuracy Evaluation

Considering a properly sized validation database, the accuracy of trained classifiers
can be estimated. The accuracy rate of a classification algorithm is usually defined as the
capability to assign a specific scenario from the validation database to the correct response
class. Namely, considering a specific time instant t∗, the accuracy of the related classifiers
can be defined as:

Acc(%) = 100
Nc

N
(1)

where Nc is the number of the correctly classified damage scenarios and N the total number
of the scenarios induced in the validation database.

Due to the particular nature of the problem, which aims to predict the outcomes of
the damage scenario, a so-called “ongoing accuracy” can be also defined excluding all the
damage scenarios that have already reached the final stage (t f < t∗):

Acc∗(%) = 100
N∗c
N∗

(2)

where N∗c is the number of the correctly classified ongoing damage scenarios and N∗ the
total number of the ongoing scenarios induced in the validation database. In addition to
the previously defined accuracy measures, also the confusion matrices have been here
employed to deepen the analysis of the results.

Regarding the regression problems, the accuracy can be checked by means of several
statistical indicators. Here, among the others the coefficient of determination R2 has
been employed:

R2 = 1− SSE
SStot

(3a)

SSE =
N

∑
i=1

(yi − y∗i )
2 (3b)

SStot =
N

∑
i=1

(yi − y)2 (3c)

where yi are the known responses, y their mean values and y∗i the responses predicted by
the model. Once again, an R2∗ ongoing coefficient of determination has been also defined
based only on the N∗ ongoing damage scenarios. Besides, the predicted-observed plot can
be also evaluated at each time instant t∗ for better study the regression results.

2.3. Tested Machine Learning Algorithms

In this work, a quite large set of classification/regression algorithms have been tested
to select the most effective one for the three studied problems. The tested methods can be
divided into three families: decision trees, k-nearest neighbour and support vector machine.
Hereinafter, they are briefly introduced.

2.3.1. Decision Trees

Decision Trees are well-known nonparametric supervised algorithms based on binary
decisions. Decision trees can be used to perform both classification and regression (provid-
ing a piecewise approximation of the response function). The decision process is shaped
like a tree, starting from a root and then moving node by node according to predictors
values up to the leaves, i.e., the predicted response. The typical structure of a decision tree
is reported in Figure 2. Starting from the route, the decisions are made among two possible
directions according to the value of a single predictor xj. A similar process is carried out in
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each passed node along with the tree structure, until, decision by decision, a leaf is reached,
corresponding to the response class.

x1

x2

x3 x1

x4

A B

C BA

C

x  ≥ a1x  < a1

x  ≥ b2x  < b2

x  < c3 x  ≥ c3

x  < e4 x  ≥ e4

x  < d1 x  ≥ d1

Figure 2. Sketch of a simple decision tree.

Decision trees are trained with a dataset providing the relation between predictors
and response, modelling the link between them. Here the following methods have been
tested for the proposed studied classification problems:

• Decision Trees (DT): classification is performed by a single decision tree, applying
Gini’s diversity index as impurity measure in the splitting criterion and testing all the
predictors at each node to select the one that maximises the split-criterion gain [19];

• Least Square Boosted Decision Trees (DTLSB): the method is applied for regression
problems employing a Least Squares (LS) boosting algorithm [20]. Here, 30 weak
learners have been utilised, fitting at each step a new learner to the difference between
the observed response and prediction coming from the already trained learners;

• Random Undersampling Boosted Decision Trees (DTRUSB): the method is applied
only on classification problems and utilises a hybrid sampling/boosting algorithm
to better deal with skewed training-data while assuring a limited computational
effort [21]. Considering the studied problems, the final fate can easily result in a
large majority of survival scenarios, leading to imbalanced training data. This is why,
among the boosting algorithms present in literature, the Random Undersampling one
has been here tested;

• Bagged Decision Trees (DTB): in this method, the problem is decomposed in a set of
tree predictors, i.e., the random forest, where each tree depends on the values of a
random and independently sampled vector with the same distribution for all trees
in the forest. The preferred response is then selected according to the vote given by
each tree in the forest. The method showed very good accuracy and robustness with
respect to noise [22]. Hence, due to the uncertainties affecting the progressive flooding
simulations [23,24], this method has been here considered.

2.3.2. K-Nearest Neighbour

K-nearest neighbour is a nonparametric family of learning algorithms where the
response is assigned according to votes given by its neighbours or the mean value of their
response for classification and regression problems respectively. The k parameter represents
the number of the nearest neighbours involved in the evaluation of class membership or
numerical response. This means that, if k = 1, the response related to a given set of
predictors is equal to the one of its nearest neighbour, i.e., the training data point having the
lower distance in the predictors’ space. The process is sketched in Figure 3 for a simple two-
dimensional predictors’ space. For such a family of algorithms, the training phase is limited
to storing and possibly standardise the training data, whereas the core of the algorithm
is how the distance among single data points defined by predictors’ values is evaluated.
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Given two data points identified by n× 1 predictors vectors x1 and x2 respectively, the
following different algorithms employing different metrics have been here tested:

• K-Nearest Neighbour (KNN2): employing the Euclidean distance defined as:

d =

√√√√ n

∑
j=1

(
x1j − x2j

)2
(4)

• Cubic K-Nearest Neighbour (KNN3): employing the third-degree Minkoswki distance
defined as:

d = 3

√√√√ n

∑
j=1

∣∣∣x1j − x2j

∣∣∣3 (5)

• Cosine K-Nearest Neighbour (KNNC): employing the cosine distance defined as:

d = 1− x1
′x2√

(x1
′x1)(x2′x2)

(6)

• Weighted K-Nearest Neighbour (KNNW): in this method, the Euclidean distance is
still employed but a different weight is applied to each neighbour response. The closer
is the neighbour the higher its response weight will be. Here, the applied weight is
the squared inverse of the Euclidean distance.

Class B

Class A

unknown
class

Class C

d

k = 7

Figure 3. Sketch of the behaviour of a K-Nearest Neighbour algorithm.

In all the tested methods, the k parameter is assumed to equal 10 and the training data
are standardised: for each predictor, the mean value and standard deviation are computed
for centring and scaling the training data respectively.

2.3.3. Support Vector Machine

Support Vector Machines (SVM) are supervised learners algorithms based on sta-
tistical learning frameworks. The SVMs can be employed in both classification and
regression problems.

Standard SVM classifiers are binary algorithms allowing to identifying the best hyper-
plane separating the elements belonging to two different classes. Considering a training
dataset, the closest data points to the hyperplane are called support vector and the hy-
perplane is selected in order to maximise the margin between the two classes (Figure 4a),
i.e., the distance between two parallel hyperplanes defining a region not containing any
data point [25].
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margin

a) b)

G(x , x )

support
vector

support
vector

support
vector

support
vector

support
vector

support
vector

margin

hyperplane

1 2

Figure 4. Sketch of a binary Support Vector Machine (SVM) highlighting the behaviour of the kernel
function mapping the space (b) to the (a) one.

Since SVMs classifiers are binary, a direct application to the studied classification
problems is not possible as they involve three or more classes. A viable solution to employ
binary classifiers in multiclass learning is the application of Error-Correcting Outputs Codes
(ECOC). An ECOC model reduces a multiclass problem to a set of binary classification
problems and it is based on a coding design and a decoding scheme. The coding design is
a matrix defining which classes are trained by a specific binary learner. On the other hand,
the decoding scheme aggregates the results of the single binary classifiers determining
the prediction of the multiclass problem. Here, a one-versus-one coding design has been
employed [26].

As mentioned, SVM can be employed also in regression problems [27]. In such a
case the hyperplane is defined as the one that best fits the training data. Its equation
f (x) = x′w + b is obtained minimising the norm value w′w provided that fore each data
point, all the prediction errors are inside an accepted error ε (feasible problem). Otherwise,
for infeasible problems, slack variables are added to deal with data points having error
greater than ε.

In certain problems, the separation among classes or the regression function cannot
be defined by a simple hyperplane. For instance, Figure 4b qualitatively shows this
problem for a binary classification problem. In such cases, the separating criterion can be
reconducted to a hyperplane by applying a proper kernel function G(x1, x2), mapping the
original space into a higher-dimensional space [28]. Here, in order to find which kernel
function best suits the studied classification problems, the following SVM algorithms have
been tested:

• Linear Support Vector Machine (SVM1): employing a linear kernel function defined
as:

G(x1, x2) = x1
′x2 (7)

• Quadratic Support Vector Machine (SVM2) employing a second order polynomial
kernel function defined as:

G(x1, x2) =
(
1 + x1

′x2
)2 (8)

• Cubic Support Vector Machine (SVM3): employing a second order polynomial kernel
function defined as:

G(x1, x2) =
(
1 + x1

′x2
)3 (9)

• Gaussian Support Vector Machine (SVMG): employing a radial basis function kernel
defined as:

G(x1, x2) = exp
(
−‖x1 − x2‖2

)
(10)
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As done for the K-nearest neighbour algorithms, the training data are here again
standardised.

3. Test Case

The proposed technique has been applied to a box-shaped barge in order to assess its
feasibility. In the present section, the test geometry is introduced. Besides, training and
validation databases of time-domain simulations of progressive flooding are also required.
Hence, besides the adopted progressive flooding simulation technique, the generation of
damage cases for the test geometry is presented to study the consequences of a ship-to-
ship collision.

3.1. Test Geometry

The test arrangement is a box-shaped barge having five watertight compartments and
three main decks. Table 1 provides the main particulars of the barge geometry and the
intact condition. Figure 5 shows the general arrangement of the test geometry. The internal
openings’ dimensions and location are provided in Table 2.

Table 1. Main particulars of test case arrangement.

Description Symb. Value Description Symb. Value

Length overall LOA 75 m Breadth B 20 m
Draught T 6 m Depth D 17.5 m

Hull Volume ∇ 7500 m3 Metacentric height GM 2.685 m

Table 2. Main characteristics of the test case openings. C = (XC, YC, ZC) is the centre of the opening
in ship-fixed reference system.

id h (m) w (m) XC (m) YC (m) ZC (m)

R11S-R13 1.5 1.5 10 −2 10
R11P-R13 1.5 1.5 10 2 10
R13-RA4 1.5 1.5 10 0 15
R21P-R22 1.5 1.5 25 2 5
R22-R23 1.5 1.5 25 0 10
R23-RA4 1.5 1.5 25 0 15
R31-R33 1.5 1.5 40 0 10
R33-RA4 1.5 1.5 40 0 15
R41-R42 1.5 1.5 55 0 5
R42-R43 1.5 1.5 55 0 10
R43-RA4 1.5 1.5 55 0 15
R51-R52 1.5 1.5 65 0 5

R52-R53S 1.5 1.5 65 −2 10
R53P-RA4 1.5 1.5 65 2 15
R21S-R21P 1.9 0.8 20 0 0.95
R53S-R53P 1.9 0.8 65 0 10.95

The barge has a quite complex internal subdivision: lower rooms in first and third
compartments extend across the lower deck and a partial longitudinal bulkhead is fitted
within the first, second and fifth compartments. The main compartments are considered
watertight up to the third deck fitted with a single room along the whole barge length.
All the rooms are considered fully vented and are modelled with nonstructured triangular
meshes to apply an in-house-build hydrostatic code based on pressure integration tech-
nique [29]. The internal openings as well as the breaches are also modelled with mashes
and have a constant discharge coefficient Cd = 0.6.
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Figure 5. General arrangement of the test geometry.

3.2. Progressive Flooding Simulation

In order to generate the training and validation databases a flooding simulation
technique is needed. Since this work aims at the prediction of damage consequences
to provide decision support, there is no interest in a detailed simulation of the damage
scenarios involving driving to a very fast capsize during the dynamic transient. In fact,
in such a case, the time will be insufficient to apply any countermeasure to mitigate/avoid
the consequences of the damage scenario. Hence, in this study, focus shall be made on the
progressive flooding of the ship, where the process can be considered quasistatic [30].

In this work, a quasistatic simulation method has been then applied to generate the
database, having also the advantage of a low computational load that enables a quite fast
generation of large databases. The adopted progressive flooding method consists of a main
simulation loop where the ship floating position is fixed over a variable integration time
step dt. Hence, considering an earth fixed reference system having origin on the sea free
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surface, the floodwater levels and the waterheads can be defined as shown in Figure 6.
The process is governed by the conservation of mass and the steady Bernoulli equation
which can be written as:

żiµiSi =
Oi

∑
j=1

Qji (11a)

Qji = Cdji Aji sgn
(
ẑj − ẑi

)√
2g|ẑj − ẑi| (11b)

ẑj = max
(
zj, zji,min

)
(11c)

where zi is the floodwater level in i-th room, µi and Si its permeability and free surface area
respectively, while Qji is the volume flowrate through the opening connecting the i-th and
j-th rooms having area Aji, discharge coefficient Cdji and distance of the lowest tip from
sea free surface zji,min. Combining the Equations (11a) and (11b) a differential algebraic
equation system can be obtained in the form:{

ż = f (z, ζ)
0 = g(z, ζ)

(12)

where the differential part refers to the partially filled rooms and the algebraic one to the
completely filled rooms having a waterhead ζ. The algebraic part can be linearised in order
to obtain an algebraic solution used to estimate the levels at the subsequent integration
time step [18]. The solution reads:

zi = z∗i +
n

∑
j=1

Vijvj

(
eDjj(t−t∗) − 1

)
Djj

(13a)

v = V−1 f (z∗) (13b)

J f (z
∗) = V×D×V−1 (13c)

where z∗ are the levels at the initial time instant and J f is the Jacobian matrix of the
differential part of the System 12. Once the dt = t− t∗ is defined according to an adaptive
procedure based on floodwater level derivatives [16], the algebraic part can be solved as
nonlinear equation system. Here, the Levenberg–Marquardt algorithm has been used [31].

Figure 6. Definition of the water levels z and waterheads ζ for partially and completely filled rooms
respectively [16].

3.3. Database Generation

Here, both the training and validation databases have been generated applying MC
sampling in compliance with SOLAS, to study collision damage scenarios. According
to SOLAS Ch.II, the damage is single, is assumed box-shaped and always crosses the
waterline. The box can be defined with five parameters:

• damage length ld;
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• the longitudinal position of the damage centre xd;
• damage penetration bd measured from shell side (B/2);
• height zmax of the higher tip of the damage above Base Line (BL);
• height zmin of the lower tip of the damage above BL;

Using the MC method, once a probability distribution is defined for these parameters,
it is possible to generate random damage scenarios accordingly [32]. SOLAS Ch.II pro-
vides the probability distributions for the first four parameters: ld, xd, b and zmax. SOLAS
does not define the probability distribution of zmin, since the current probabilistic damage
stability requirements use a worst-case-approach to deal with this parameter. However,
to apply MC generation, the zmin probability distribution necessary to define the lower
limit of the damage box. Here, the formulation proposed in [33] is assumed, being com-
plementary to the ones adopted by SOLAS. In fact, all the employed distributions have
been obtained from statistical analysis on a database of real collision accidents collected
by IMO. Hence, applying these probability distributions a SOLAS compliant database can
be generated. In this preliminary study, the damage penetration has not been considered.
Actually, only shell damages have been modelled assuming all internal structures as intact.

According to the presented assumptions, the following independently-generated
databases have been generated for the test geometry:

• MC01: including 1000 damage cases (173 nonsurvival cases);
• MC02: including 2500 damage cases (398 nonsurvival cases);
• MC05: including 5000 damage cases (768 nonsurvival cases);
• MC10: including 10,000 damage cases (1544 nonsurvival cases);
• MC15: including 15,000 damage cases (2286 nonsurvival cases);
• MC20: including 20,000 damage cases (173 nonsurvival cases);
• MC30: including 30,000 damage cases (4686 nonsurvival cases);
• MC40: including 40,000 damage cases (6263 nonsurvival cases);
• MC50a: including 50,000 damage cases (7886 nonsurvival cases);
• MC50b: including 50,000 damage cases (8059 nonsurvival cases);

All the damage cases leading to ship capsize or to overtake the safe heel angle thresh-
old are accounted beneath the nonsurvival ones. In all the databases, the simulations have
been carried out up to 2250 s, since it is sufficient to include the time-to-flood of the large
majority of the damage scenarios, as shown in Figure 7. In fact, for the test geometry,
about 0.6% of damages has a time-to-flood exceeding the assumed maximum simulation
time. Since, their final fate is unknown, these damage scenarios have been classified as
“time exceeded”. The maximum simulation time is quite limited due to the test geometry,
characterised by large volume rooms and wide free internal openings. Besides, applying
SOLAS, the probability to obtain considerably large damages is quite high, as shown in
Figure 8. Nevertheless, the maximum simulation time has been deemed sufficient to suit
the purpose of the present study.

As mentioned, the adopted progressive flooding simulations method employs an
adaptive time step [16]. Thus, the simulation results have been postprocessed to assess
the predictors for learners: the heel angle trim angle and sinkage have been evaluated by
interpolation assuming a constant time interval dt = 15 s.
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Figure 7. Comulative density function of the time-to-flood in the MC50b database for all damage
cases (a) and for nonsurvival ones (b).

Figure 8. Cumulative density functions of main damage characteristics in the MC50b database.

4. Results and Discussion

Before testing the different learning methods, the effect of the database dimension
on the accuracy of the classification/regression problems has been studied to select the
proper number of damage cases to be included in the training database. To this end, all the
generated databases (except for the MC50b) have been used as the training database,
while the database MC50b as been always employed for validation. As an example,
Figure 9 provides the results of such an analysis related to DTB method. Curves refer
to different time instants within the maximum simulation time. It can be noted that almost
all the curves converge to a maximum value of accuracy as the number of training damage
cases increases. According to the results, the database MC20 has been chosen as the best
training database, since only marginal gains on the ongoing accuracy of classification and
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regression results from higher N. Moreover, such gains can be obtained only at a high
computational cost: databases have been generated with an Intel® Xeon® CPU E5-2630
v4 (2.20 GHz) workstation requiring about 1 h to simulate 1000 damage cases (18 threads
running in parallel).

Figure 9. Accuracy evaluated at different time instant as function of number of damage cases in
the training database employing Bagged Decision Trees (DTB) classification technique. Validation:
MC50b.

Figure 10 shows the results obtained by applying the studied learners trained with
the database MC20 and again validated with the largest database MC50b. Both total and
ongoing accuracy have been computed for the prediction of final fate and damaged com-
partments, whereas the total and ongoing determination coefficient has been evaluated for
the time-to-flood regression. In general, the total accuracy of all the three problems is very
good: for t∗ > 500 s values converge to a practically constant maximum. Considering only
the results related to ongoing damage scenarios, the behaviour is slightly different: the Acc∗

and R2∗ increases constantly reaching a local maximum in an area defined by the number
N∗ of still ongoing damage scenarios included in the training database. It can be noted
that such an area spans within 40% < N∗ < 20%. Then, as the number of ongoing damage
scenarios becomes lower than 20%, the ongoing performances decay, slightly for the two
classification problems, more heavily for the time-to-flood regression. The considerations
above yields for all the applied techniques, which, nevertheless, show different accuracy
on the studied problems. In the following, they are discussed in more detail.
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Figure 10. Comparison of accuracy of different classification methods. Training: MC20;
validation: MC50b.

Considering the first classification problem (ship final fate), the best performances
have been obtained applying the DTB method that assures maximum accuracy of 99.8% and
98.6% for overall and ongoing, respectively, for the test geometry. Furthermore, the ongoing
accuracy decay is quite limited since values are always above to 95.0%. The other classifica-
tion algorithms show slightly lower performances and larger decay. The standard DT and
the boosted DTRUSB provide almost the same results, being about 1% less accurate than
the DTB. Regarding the K-nearest neighbours algorithms, all the tested metrics perform
quite well. Better results can be obtained applying the weighted euclidean metric (KNNW),
which has almost the same accuracy of the DT/DTRUSB techniques. About the support
vector machines, the linear kernel (SVM1) is not capable to deal with the first classification
problem. The best performances can be obtained with the quadratic (SVM2) and Gaussian
(SVMG) kernel functions, which are anyhow slightly less accurate than the K-nearest neigh-
bours algorithms. The SVM3 shows unstable behaviour for the studied problem. It is worth
noticing that the SVM algorithms are not usually high-performance with a large predictor
set. This problem has been so far observed here, compelling the reduction of predictors to
obtain the results shown in Figure 10: for all SVM methods, the floating position has been
recorded every 60 s instead of the 15 s time interval applied for all the other techniques.
For the studied geometry, this value is a good compromise between the maximum value
and the fast convergence of the accuracy to the constant maximum value.
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Besides, some additional considerations can be drawn about misclassification. For the
final fate problem, the most dangerous error (type I) is the selection of a survival scenario
in case of ship capsize or excessive heeling. In fact, in such a case, a DSS based on machine
learning might suggest the master not to evacuate the ship with imaginable consequences
on people safety. Softer concerns are related to all other errors (type II) including also
the misclassification of nonsurvival type. It has been observed that the type I error is a
fraction of the type II ones for the tested geometry. For instance, Tables 3 and 4 provide the
confusion matrices evaluated at t∗ = 250 s and t∗ = 500 s, respectively.

Table 3. Confusion matrix related to ship final fate evaluated at 250 s. Training: MC20;
validation: MC50b.

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded

Capsize 12.79 0.17 0.01 0.02
Equilibrium 0.07 82.97 - 0.12
Ex. Heeling 0.04 0.03 3.05 -

Time Exceeded 0.02 0.32 - 0.37

Table 4. Confusion matrix related to ship final fate evaluated at 500 s. Training: MC20;
validation: MC50b.

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded

Capsize 12.89 0.09 - 0.01
Equilibrium 0.05 83.00 - 0.12
Ex. Heeling 0.01 0.02 3.05 -

Time Exceeded 0.02 0.17 - 0.52

Concerning the second classification problem (damaged watertight compartments),
most of the considerations applying to the final fate still yield. The best performances are
again obtained with DTB method, showing overall accuracy up to 98.4% and ongoing
one up to 99.0%, which does not decline below 98%. A gap larger than 1% separates the
accuracy of all the other techniques. With respect to the first problem, it shall be noticed
that the boosted trees perform very poorly to identify the damaged compartments. On the
contrary, the SVM2 method performs quite well, giving results comparable to the DT and
KNNW ones. Moreover, the SVMG does not provide good results, especially at the very
beginning of the flooding process. This suggests that the studied classification problem
cannot be described well by a radial basis kernel as well as by a linear one. Eventually,
higher instability has been found applying the cubic SVM3 method.

Regarding misclassification, the second problem has been proven to be somehow more
resilient than the first one, although the accuracy seems lower at a first glimpse. In fact,
as shown in Tables 5 and 6, the classification errors are not usually related to completely
wrong identification of the damaged compartments set but mostly to neglecting in an
initial flooding phase one of the damaged compartments. This likely happened when
the damage affecting one watertight compartment is considerably smaller than the one(s)
affecting the other damaged compartment(s). However, this kind of error tends to vanish as
a sufficiently large volume of floodwater is loaded, so as the effect of the initially neglected
compartments become more relevant.

The results of regression on the time-to-flood for nonsurvival scenarios presents some
relevant differences compared to the classification problems ones presented above. First,
the decay of ongoing accuracy is more pronounced, leading to null values of R2∗ when
ongoing damages are less than 2% of the total damage cases in the training database.
Moreover, due to the distribution of the time-to-flood in nonsurvival scenarios (Figure 7),
such a condition occurs at about t∗ = 800 s. Moreover, for the third problem, a clear
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preference for a method cannot be identified: both DTB and KNNW methods can be
employed providing the best performances in the initial and final phase of progressive
flooding, respectively. Both the methods reach a maximum value of the R2∗ at about 250 s
(corresponding to the 40% of ongoing damage cases in training database).

Table 5. Confusion matrix related to damaged compartments evaluated at 250 s. Training: MC20; validation: MC50b.

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.04 - - - - - - - - - - - -
2 - 13.37 - - - - 0.01 - - - - - 0.03
3 - - 13.62 - - - - - - - - - -
4 - - - 13.43 - - - 0.01 - - - - -
5 - - - - 16.53 - - - - - - - -

1,2 0.01 - - - - 1.53 - - - - - - 0.26
2,3 - 0.09 - - - - 5.67 - - - - - 0.01
3,4 - 0.01 - 0.06 0.02 - - 5.92 0.04 - - 0.01 0.05
4,5 - - - - 0.06 - - 0.01 4.56 - - 0.01 0.21

1,2,3 - - - - - - - - - 0.02 - - 0.02
2,3,4 - - - - - - 0.01 0.02 - - 0.07 - -
3,4,5 - - - - - - - 0.03 0.03 - - 0.01 -
all 0.02 0.04 - 0.01 0.04 0.28 0.02 0.20 0.36 0.01 0.01 0.02 6.18

Table 6. Confusion matrix related to damaged compartments evaluated at 500 s. Training: MC20; validation: MC50b.

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.04 - - - - - - - - - - - -
2 0.01 13.39 - - - - - - - - - - 0.01
3 - - 13.62 - - - - - - - - - -
4 - - - 13.42 - - - 0.01 - - - - -
5 - - - 0.01 16.52 - - - - - - - -

1,2 - - - - - 1.52 - - - - - - 0.28
2,3 - 0.06 - - - - 5.70 - - - - - 0.02
3,4 - - - 0.04 0.01 - - 5.96 0.03 - - 0.01 0.06
4,5 - 0.01 - - 0.03 - - 0.01 4.63 - - 0.01 0.16

1,2,3 - - - - - - - - - 0.03 - - 0.02
2,3,4 - - - - - - 0.01 0.02 - - 0.07 - 0.01
3,4,5 - - - - - - - 0.03 0.03 - - 0.01 -
all 0.01 0.04 - 0.01 0.03 0.26 0.01 0.19 0.37 0.01 0.01 0.02 6.23

However, the ongoing value of determination coefficient is much reduced compared
to the overall one: for DTB method the maximum values are R2 = 0.89 and R2∗ = 0.62
whereas the for KNNW R2 = 0.92 and R2∗ = 0.60. The other methods perform more poorly.
In particular, the SVM methods are very ineffective and only the Gaussian kernel shows a
limited forecast capability, showing that data cannot be effectively separated with linear,
quadratic or cubic kernel functions.

To better analyse the forecast capability of the two best algorithms the predicted-
observed plots evaluated at t∗ = 250 s and t∗ = 500 s are provided in Figures 11 and 12.
The coloured part of the diagrams relates to forecasting (t f > t∗) and it is divided into
a red region and a green one. In the former, the time-to-flood is overestimated whereas
in the latter is underestimated. Considering an onboard application for decision support
purposes, the time-to-flood overestimation is very dangerous, since it could lead to slow
down evacuation procedures. Hence, the latter could be not completed when the ship
capsizes or reaches an unsafe condition. On the other hand, underestimation might rush
the evacuation procedures, which can anyway imply a risk for passengers and crew but at
lower levels. The plots show that applying both best methods, the predictions tend to group
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nearby the diagonal as the time proceeds, assuring increased reliability. However, due to the
reduced number of damage cases having long duration included in the training database,
all the employed methods show large errors for the largest time-to-floods, affecting the R2∗
too. In particular, for the studied geometry, the DTB method, which provides a piecewise
approximated regression, does not predict any value over 1104 s. The KNNW has no
such a limitation. This is why it provides better results with less than 10% of ongoing
damage cases in the training database. However, the low density of damage cases in this
region cannot anyway assure high precision, leading to the R2∗ decay, although somehow
delayed. In conclusion, all the results obtained in this feasibility study pointed out that
the distribution of the time-to-flood in the training database has a strong influence on the
learners’ performances, in particular for the time-to-flood regression. To limit or avoid the
ongoing accuracy decay, the SOLAS probability distributions are not appropriate for the
studied geometry which shall be anyway used for validation purposes, being so far the
most representative of realistic collision damages.

Figure 11. Predicted over observed values of the time-to-flood computed at 250 s and 500 s from
damage occurrence according DTB method. Training: MC20; validation: MC50b.

Figure 12. Predicted over observed values of the time-to-flood computed at 250 s and 500 s from
damage occurrence according to KNNW method. Training: MC20; validation: MC50b.

5. Conclusions

This work presented a novel approach to predict the flooding consequences by em-
ploying machine learning. The results show that it is possible to forecast the ship final fate,
the damaged compartments set and roughly estimate the time to flood from the time evo-
lution of the damaged ship floating position. Such a solution is thus applicable onboard for
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decision support purposes, without requiring the costly installation of a flooding detection
system. Moreover, through the adoption of an independent validation database based on
SOLAS probability distribution, it is also possible to measure and study the prediction
accuracy that can be reported to the master.

The tested algorithms set does not pretend to thoroughly investigate all the classifi-
cation algorithms available in the literature. Other techniques might be tested in future
works trying to improve the present results. In particular, regarding time-to-flood, instead
regression learners, neural networks could be tested. However, the set of tested methods is
quite large and varied allowing to draw some preliminary conclusions about which are the
most promising methods for the prediction of progressive flooding consequences.

For the tested geometry and applying SOLAS probability distributions for database
generation, the best choice is represented by bagged decision trees, which shows very
good accuracy for the classification of ship final fate and in identifying the damaged
compartments. They can be employed also for time to flood regressions although the
forecast is not very reliable for large time-to-floods. For the time being, weighted K-nearest
neighbours should be preferred to address the latter problem, assuring a better accuracy
on the prediction of longest damage scenarios.

Although the results obtained in this first work are promising, it shall be noticed
that further study is still required on several aspects before onboard application. Namely,
it is advisable to study the effect of the application of different probability distribution
in the training database definition to prevent or reduce the decay of ongoing accuracy.
For instance, different types of uniform distributions could be tested as well as the ones
related to grounding damages, that are not currently considered within SOLAS. Further-
more, the method has been here tested on a barge geometry and should be tested on real
passenger ship, which can be considerably more challenging. In fact, in a real environment,
the flooding process can be affected by the uncertainty on several parameters, such as
the discharge coefficients, the permeabilities and the loading condition. These issues
have been not yet considered and should be addressed to increase the robustness of the
proposed methodology.

Author Contributions: Conceptualisation, M.V., J.P.-O. and L.B.; methodology, L.B. and M.V.; soft-
ware, L.B.; validation, L.B. and M.V.; formal analysis, L.B. and M.V.; investigation, L.B.; resources,
L.B.; data curation, L.B.; writing—original draft preparation, L.B.; writing—review and editing, J.P.-O.
and M.V.; visualisation, L.B., M.V. and J.P.-O.; supervision, J.P.-O. and M.V.; project administration,
J.P.-O.; funding acquisition, J.P.-O. All authors have read and agreed to the published version of
the manuscript.

Funding: This work has been fully supported by the Croatian Science Foundation under the project
IP-2018-01-3739.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: This work was also supported by the University of Rijeka (project no. uniri-
tehnic-18-18 1146 and uniri-tehnic-18-266 6469).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Braidotti, L.; Degan, G.; Bertagna, S.; Bucci, V.; Marinò, A. A Comparison of Different Linearized Formulations for Progressive

Flooding Simulations in Full-Scale. Procedia Comput. Sci. 2021, 180, 219–228. doi:10.1016/j.procs.2021.01.159.
2. Nasso, C.; Bertagna, S.; Mauro, F.; Marinò, A.; Bucci, V. Simplified and advanced approaches for evacuation analysis of passenger

ships in the early stage of design. Brodogradnja 2019, 70, 43–59, doi:10.21278/brod70303.

https://doi.org/https://doi.org/10.1016/j.procs.2021.01.159
https://doi.org/https://doi.org/10.21278/brod70303


J. Mar. Sci. Eng. 2021, 9, 271 19 of 20

3. Ruponen, P.; Pennanen, P.; Manderbacka, T. On the alternative approaches to stability analysisin decision support for damaged
passenger ships. WMU J. Marit. Aff. 2019, 18, 477–494, doi:10.1007/s13437-019-00186-8.

4. Ölçer, A.; Majumder, J. A Case-based Decision Support System for Flooding Crises Onboard Ships. Qual. Reliab. Eng. Int. 2006,
22, 59–78, doi:10.1002/qre.748.

5. Kang, H.; Choi, J.; Yim, G.; Ahn, H. Time Domain Decision-Making Support Based on Ship Behavior Monitoring and Flooding
Simulation Database for On-Board Damage Control. In Proceedings of the 27th International Ocean and Polar Engineering
Conference, San Francisco, CA, USA, 25–30 June 2017.

6. Hu, L.; Ma, K. Genetic algorithm-based counter-flooding decision support system for damaged surface warship. Int. Shipbuild.
Prog. 2008, 55, 301–315.

7. Varela, J.; Rodrigues, J.; Guedes Soares, C. On-board Decision Support System for Ship Flooding Emergency Response. Procedia
Comput. Sci. 2014, 29, 1688–1700. doi:10.1016/j.procs.2014.05.154.

8. Ruponen, P.; Pulkkinen, A.; Laaksonen, J. A method for breach assessment onboard a damaged passenger ship. Appl. Ocean Res.
2017, 64, 236–248, doi:10.1016/j.apor.2017.01.017.

9. Dankowski, H.; Krüger, S. A Fast, Direct Approach for the Simulation of Damage Scenarios in the Time Domain. In Proceedings
of the 11th International Marine Design Conference- IMDC 2012, Glasgow, Scotland, 11–14 June 2012.

10. Ruponen, P.; Larmela, M.; Pennanen, P. Flooding Prediction Onboard a Damage Ship. In Proceedings of the 11th International
Conference on the Stability of Ships and Ocean Vehicles, Athens, Greece, 23–28 September 2012; pp. 391–400.

11. Rodrigues, J.; Guedes Soares, C. A generalized adaptive mesh pressure integration technique applied to progressive flooding of
floating bodies in still water. Ocean Eng. 2015, 110, 140–151, doi:10.1016/j.oceaneng.2015.10.002.

12. Ruponen, R.; Lindroth, D.; Routi, A.; Aartovaara, M. Simulation-based analysis method for damage survivability of passenger
ships. Ship Technol. Res. 2019, 66, 180–192, doi:10.1080/09377255.2019.1598629.

13. Karolius, K.; Cichowicz, J.; Vassalos, D. Risk-based positioning of Flooding Sensors to reduce prediction uncertanty of damage
survivability. In Proceedings of the 13th International Conference on the Stability of Ships and Ocean Vehicles-STAB 2018, Kobe,
Japan, 16–21 September 2018; pp. 627–637.

14. IMO. MSC.1/Circ.1291 Guidelines for Flooding Detection Systems on Passenger Ships; International Maritime Organisation: London,
UK, 2008.

15. Trincas, G.; Braidotti, L.; De Francesco, L. Risk-Based System to Control Safety Level of Flooded Passenger Ship. Brodogradnja
2017, 68, 31–60, doi:10.21278/brod68103.

16. Braidotti, L.; Mauro, F. A Fast Algorithm for Onboard Progressive Flooding Simulation. J. Marit. Sci. Eng. 2020, 8, 369,
doi:10.3390/jmse8050369.

17. IMO. SOLAS 2018 Consolidated Edition; International Maritime Organisation: London, UK, 2018; Chapter Ch.II-1 Part B Subdivision
and stability.

18. Braidotti, L.; Mauro, F. A New Calculation Technique for Onboard Progressive Flooding Simulation. Ship Technol. Res. 2019,
66, 150–162, doi:10.1080/09377255.2018.1558564.

19. Breiman, L.; Friedman, J.; Olshen, R.; C.J., Stone; R.A., Olshen. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA,
1984.

20. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning, 2nd ed.; Springer: New York, NY, USA, 2008.
21. Seiffert, C.; Khoshgoftaar, T.; Hulse, J.; A., N. RUSBoost: Improving clasification performance when training data is skewed.

In Proceedings of the 19th International Conference on Pattern Recognition, Tampa, FL, USA, 8–11 December 2008; pp. 1–4.
22. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32.
23. Rodrigues, J.; Lavrov, A.; Hinostroza, M.; Guedes Soares, C. Experimental and numerical investigation of the partial flooding of a

barge model. Ocean Eng. 2018, 169, 586–603, doi:10.1016/j.oceaneng.2018.09.042.
24. Braidotti, L.; Marinò, A.; Bucci, V. On the Effect of Uncertainties on Onboard Progressive Flooding Simulation. In Proceedings of

The 3rd International Conference on Nautical and Maritime Culture-CNM 2019, Naples, Italy, 14–15 November 2019; pp. 21–30,
doi:10.3233/PMST190004.

25. Christianini, N.; Shawe-Taylor, J. An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods; Cambridge
University Press: Cambridge, UK, 2000.

26. Escalera, S.; Pujol, O.; Radeva, P. Separability of ternary codes for sparse designs of error-correcting output codes. Pattern
Recognit. Lett. 2009, 30, 285–297.

27. Vapnik, V. The Nature of Statistical Learning Theory; Springer: New York, NY, USA, 1995.
28. Scholkopf, B.; Smola, A. Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond, Adaptive

Computation and Machine Learning; The MIT Press: Cambridge, MA, USA, 2002.
29. Braidotti, L.; Trincas, G.; Bucci, V. Analysis of the Influence of Pressure Field on Accuracy for Onboard Stability Codes. In

Proceedings of The 19th International Conference on Ships and Maritime Research-NAV 2018, Trieste, Italy, 20–22 June 2018;
pp. 80–87, doi:10.3233/978-1-61499-870-9-80.

30. Ruponen, P. Progressive Flooding of a Damaged Passenger Ship. Ph.D. Thesis, Helsinki University of Technology, Helsinki,
Finland, 2007.

31. Hansen, P.; Pereyra, V.; Scherer, G. Least Squares Data Fitting with Applications; Johns Hopkins University Press: Baltimore, MD,
USA, 2013.

https://doi.org/10.1007/s13437-019-00186-8
https://doi.org/https://doi.org/10.1002/qre.748
https://doi.org/https://doi.org/10.1016/j.procs.2014.05.154
https://doi.org/https://doi.org/10.1016/j.apor.2017.01.017
https://doi.org/https://doi.org/10.1016/j.oceaneng.2015.10.002
https://doi.org/10.1080/09377255.2019.1598629
https://doi.org/https://doi.org/10.21278/brod68103
https://doi.org/10.3390/jmse8050369
https://doi.org/10.1080/09377255.2018.1558564
https://doi.org/https://doi.org/10.1016/j.oceaneng.2018.09.042
https://doi.org/10.3233/PMST190004
https://doi.org/10.3233/978-1-61499-870-9-80


J. Mar. Sci. Eng. 2021, 9, 271 20 of 20

32. Kruger, S.; Dankowsky, H. A Monte Carlo based simulation method for damage stability problems. In Proceedings of the 38th
International Conference on Ocean, Offshore and Arctic Engineering-OMAE 2019, Glasgow, Scotland, UK, 9–14 June 2019.

33. Bulian, G.; Cardinale, M.; Francescutto, A.; Zaraphonitis, G. Complementing SOLAS damage ship stability framework
with a probabilistic description for the extent of collision damage below the waterline. Ocean Eng. 2019, 186, 106073,
doi:10.1016/j.oceaneng.2019.05.055.

https://doi.org/https://doi.org/10.1016/j.oceaneng.2019.05.055

	Introduction
	Materials and Methods
	Stated Problems
	Accuracy Evaluation
	Tested Machine Learning Algorithms
	Decision Trees
	K-Nearest Neighbour
	Support Vector Machine


	Test Case
	Test Geometry
	Progressive Flooding Simulation
	Database Generation

	Results and Discussion
	Conclusions
	References

