
Journal of Intelligent & Robotic Systems          (2021) 101:36 
https://doi.org/10.1007/s10846-020-01308-8

Crowded Environment Navigation with NEAT: Impact of Perception
Resolution on Controller Optimization

Stefano Seriani1 · Luca Marcini1 ·Matteo Caruso1 · Paolo Gallina1 · Eric Medvet1

Received: 30 April 2020 / Accepted: 30 December 2020
© The Author(s) 2021

Abstract
Crowd navigation with autonomous systems is a topic which has seen a rapid increase in interest recently. While it appears
natural to humans, being able to reach a target can prove difficult or impossible to a mobile robot because of the safety
issues related to collisions with people. In this work we propose an approach to control a robot in a crowded environment;
the method employs an Artificial Neural Network (ANN) that is trained with the NeuroEvolution of Augmented Topologies
(NEAT) method. Models for the kinematics, perception, and cognition of the robot are presented. In particular, perception
is based on a raycasting model which is tailored on the ANN. An in-depth analysis of a number of parameters of the
environment and the robot is performed and a comparative analysis is presented; finally, results of the performance of the
controller trained with NEAT are compared to those of a human driver who takes over the controller itself. Results show that
the intelligent controller is able to perform on par with the human, within the simulated environment.

Keywords Artificial neural networks · Evolutionary robotics · NEAT · Crowd navigation · Robot controller

1 Introduction and RelatedWork

In recent years, the concept of autonomous delivery has
begun to take hold, both in indoor environments [1–3] as
outdoors, i.e., in urban areas [4–7], following the great
investments in the field of autonomous driving [8]. One
of the most common problems which is found in both
fields is that of collision avoidance against pedestrians [5].
In particular, in an urban environment, automated delivery
needs to solve the problem of navigating places which might
be very crowded. On top of this, while traffic is regulated
by precise laws and rules that contribute to create a certain
structure in the behavior that an autonomous agent must
have [9], in crowds, navigation is less structured and more
related to courtesy and social norms. Humans navigate
crowds using a set of skills that are acquired over time and
are studied in the field of proxemics [10, 11]; furthermore,
occasional collisions are not cause for concern. Conversely,
autonomous robots do not have this prerogative and must
in no case hurt or collide with a person [12]. Therefore,
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where dense crowds are concerned, it could happen that
the robot becomes completely unable to move in order
to avoid potential collisions; this is called freezing robot
problem [13].

Trautman et al. [13] proposed an early statistical
model based on dependent output Gaussian processes that
estimates agents trajectories in a crowd and cooperatively
generates feasible trajectories. Using data from surveillance
cameras in public spaces, Luber et al. [14] approach the
issue as an unsupervised learning problem, as opposed to
proxemics-based methods. Building on previous studies on
human navigation in crowds, Guzzi et al. [11] develop a
fully-distributed algorithm for local navigation in densely
populated spaces. Trautman et al. [15–17] explore the
concept of navigation through cooperation between the
robot and the human agent and conclude that cooperation is
critical for dense human crowd navigation. This concept is
expanded by May et al. [18] and then by Shresta et al. [19,
20] with the notion of intent signaling, where the robot
actively employs visual cues to communicate with human
agents. A review on the main social-aware frameworks for
navigation is presented [21]. Narayanan et al. presented an
adaptive strategy for the approach phase in human-robot
interaction [22]. A human intent-aware strategy for safe and
efficient robotic crowd navigation were reported by Park
et al. [23]. A Low-cost approach is shown by Chatterjee
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that employs a vision system based on Microsoft’s Kinect
platform [24]. A considerably more complex approach is
presented by Bohorquez, that considers a bipedal robot [25].
Beomjoon et al. [26] present an inverse reinforcement
learning method used as an advance technique for crowd
navigation. A similar method is shown by Anirudh
et al. in [27]; a real-time based on Bayesian Learning and
Proxemics called SocioSense is presented in the same year
by Bera et al. [28].

More recently, Patle et al. [29] show an approach based
on fuzzy logic with a specially tuned algorithm for robot
navigation. For the same task, Alaraji et al. present a
brief comparative study between some optimization-based
algorithms [30]. Later, Das et al. in [31], present an
application of thee Gravitational Search Algorithm (GSA)
to the task of navigating cluttered unknown environments.
With a more experimental approach Chen et al. [32]
show a methodology for crowd navigation based on a
graph convolutional network which makes use of the gaze
information of the individuals in the crowd.

It is clear from the presented works that a collaborative
approach between the robot and humans is critical for
safe and efficient navigation of crowds; furthermore, intent
conveying and proxemics-aware robots that can deal with
social cues, both as receivers and transmitters, are of prime
importance [12, 14, 16, 18, 21–23].

In this work we will investigate the interaction of a robot
with a dense moving crowd without intent-signalling, in
order to define a baseline for future more advanced work.
The case-study environment is a corridor where the general
direction the people move is against the planned motion of
the robot. Our delivery robot will be a small hypothetical
autonomous vehicle equipped with a 2D laser scanner.
The cognition model of the robot is based on an ANN,
which can be used to control a robot to navigate a moving
crowd efficiently and safely [33–35]. It has been shown by
Dudarenko et al. that data from a laser scanner can be used
for navigation using a stochastic approach [36].

Furthermore, it has been shown that the process of
differential evolution applied to neural networks, delivers
good results in a variety of reinforcement learning
problems [37–40].

In our case, we have implemented the automatic
design of the ANN through the NeuroEvolution of
Augmented Topologies (NEAT) methodology presented
by Stanley et al. [41]. This approach proved useful in
solving reinforcement learning problems. In a standard
Neuroevolution algorithm only the weights of the neural net
can be optimized while the topology of the net itself is fixed
during the process [38]. NEAT was devised to overcome this
limitation and is capable of optimizing both the weight and
the topology at the same time. The evolution of the ANN
is implemented through a specially tuned genetic algorithm,

similarly to other works, e.g., from Buk et al. [42] and
Caceres et al. [43] especially, where the implementation
allowed the navigation of a structured environment with
static obstacles.

Perception in the simulated environment is made to
closely mimick a 2D laser scanner (LiDAR) and does not
involve explicit mapping. It is based on a raycasting model
to perceive range and is able to perceive both at current time,
and in the past; we call this Past Range Perception (PRP).

In order to characterize the implemented approach, we
elected to explore part of the parameters-space of the
methodology, namely the number of rays in the raycasting
model, the PRP delay parameter and the speed and number
of individuals in the crowd.

Some of these parameters, especially the number of rays,
have a large impact on the complexity of the search for an
optimal solution; while they provide increased expressive
capability of the perception model, this comes at the cost of
an increased search space. However, the NEAT algorithm
is very appropriate to address this problem due to the fact
that it implements the complexification paradigm [42]: it
starts off with small and simple ANNs that are grown when
necessary. That is, the space of ANNs in which NEAT
performs the search is initially small and grows during the
optimization process.

To summarize, we implement a methodology based on
the NEAT algorithm to the problem of crowd navigation
via mobile robot, with perception based around a raycasting
model. We carry out an in-depth characterization on the
main parameters of the models, highlighting their influence
on the performance of the system. We compare numerical
results of the ANN-based system with a human driver acting
in the stead of the ANN. Finally, we implement a physical
perception methodology using LiDAR acquisitions of a
structured environment and compare these with perception
in the simulated environment.

The main contributions of this work with respect to the
state-of-the-art presented up to this point are:

– the development of a methodology to correctly state
the problem of crowd-navigation in order for it to be
approachable by ANN-based navigation such as NEAT,

– the characterization of the influence of perception
resolution in a population-based optimization algorithm
for crowd navigation,

– to analyze of the performance of NEAT against the
variability of the environment.

In Section 2 the problem statement is given along with
the description of the cognition and perception models;
in Section 3 the in-depth exploration of the parameters
space is performed; in Section 4 the experimental results
are shown for a set of different conditions including an
experimental validation of the crowd perception via LiDAR;
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finally, in Section 5 we conclude giving some insight in the
methodology limits and future work.

2Methodology

The description of a crowd-navigating robot use-case must
include at least 3 objects: a model of the environment, a
model of the crowd, and a functional model (i.e., including
the control system) of the robot. In this section, the use-case
will be broken down in these three main topics in order to
convey a complete description of the problem.

2.1 The Environment

The environment which is described in this section was
chosen carefully with the following perspective in mind:

– The environment should represent a crowd in a
repeatable and parametric way, i.e., the characteristics
of the crowd should be connected to few very influential
parameters,

– The environment boundaries should be as simple as
possible while at the same time providing some effect
to the robot; for example, a no-wall environment would
not provide any parameterizable effect on the robot,

– The environment should provide a baseline character-
ization of the problem, useful as a starting point for
further developments and refinements.

These guidelines are important to keep the number of
degrees of freedom of the simulated environment as low as
possible, while at the same time keeping a certain degree of
adherence to reality.

With these considerations in mind, as mentioned in
Section 1, the environment chosen for this use-case is that
of a rectangular corridor long L and wide W . The corridor,
illustrated in Fig. 1, is defined by 4 fixed walls. During the
simulation a virtual mobile wall is implemented to force the
mobile robot to move forward in the direction of the target
location.

The robots or agents are spawned at point G, which is
located at the far left end of the domain, as visible in Fig. 1.

The target location T is randomly assigned at the
beginning of a simulation: it is always in the right end
of the domain but not too close to the wall so that the
agent can detect incoming obstacles and react accordingly.
Figure 1 shows the position of the target spawn area within
the environment. The target is spawned according to the
following formal rule,

T = { (x, y) : x ∈ [
Tc,x − TL, Tc,x + TL

]
,

y ∈ [
Tc,y − TW , Tc,y + TW

] } (1)

where TL and TW are the length (along x) and width (along
y) of the spawn area. Hence, Tc,x = L − dw − TL/2 and
Tc,y = W −dw−TW/2 are the coordinates of its barycentre,
with dw the gap between walls and the spawn area.

This approach was chosen because it promises to reduce
considerably the possibility of overfitting. Indeed, using
adaptive solutions based on evolution or optimization
generally increases the risk that the resulting model
becomes tailored to a specific case, rather than to a general
case [44, 45]. Changing frequently the location of the target
prevents the agent to find workarounds to reach the target.

2.2 The CrowdModel

Within the corridor environment boundaries, we can define
a set of points Qj with j = 1, ..., m that represent m

individuals in the crowd, i.e., persons. Based on the concept
of proxemics [10], each individual is modeled as a disk of
radius R that represents its personal space, rather than its
physical body geometry.

The velocity at which every person walks depends from
a variety of factors such as genre, age and height. To
express this variability, each j -th element in the simulation
is assigned with a constant average speed v̄ to which a
random fluctuation u is added or subtracted, as follows,

v = v̄ + u with u ∈
[
− v̄

4
,

v̄

4

]
. (2)

Each individuals moves in a straight line, parallel to
the top wall, towards the left wall, at the assigned speed
v and starting from a random position (x, y). During the
simulation, once the individual crosses the left wall, it
appears again at the right end of the domain at a new
random y coordinate. The combination of this two random
factors contribute in avoiding the risk of repetitions. Since
personal space is considered as opposed to the physical
body, collisions between individuals are ignored. Each
overlap can be interpreted as two or more people moving
together.

2.3 Model of the Robot

The model is based on a differential drive robot. The robot
geometry is defined as a disk of radius RR centered in
point P, with the local frame of reference

〈
x′, y′〉 aligned

with the x′ axis in the forward direction. The kinematics of
this kind of robot is simple: referring to Fig. 2, the non-
holonomic constraint is ẏ′ = 0, which allows the robot to
drive along the x′-axis, rotate in place and a combination
of these two motions; in other words, the robot is unable to
move sideways.

We define ϑ as the orientation of the robot, i.e., the angle
between x̂′ and x̂. Let ξ = [Px,Py, ϑ]T be the pose of the
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Fig. 1 Model of the environment, showing the robot on the left, in green, and the target point on the right, in blue. The white circles indicate the
individuals that constitute the crowd. Walls are shown enclosing the environment, and the mobile wall is indicated in red

robot with respect to the inertial frame of reference 〈x, y〉;
if we indicate with ϕ̇1 and ϕ̇2 respectively the right and left
wheel rotational speed, we can write the model as follows,

ξ̇ =
⎧
⎨

⎩

Ṗx

Ṗy

ϑ̇

⎫
⎬

⎭
= M−1(ϑ)ρ

⎡

⎣

ϕ̇1
2 + ϕ̇2

2
0
ϕ̇1
d

− ϕ̇2
d

⎤

⎦ , (3)

where M is a 2D homogeneous rotation matrix,

M =
⎡

⎣
cos ϑ − sin ϑ 0
sin ϑ cos ϑ 0
0 0 1

⎤

⎦ (4)

and ρ is the radius of the wheels; finally d is the offset of
each wheel along the y′ direction with respect to the x′ axis.

In order to control the robot, we can express the velocities
ϕ̇1 and ϕ̇2 in terms of the controlled variables Ṗ′

x and ϑ , as
follows,

ϕ̇1 = 1

ρ

(
Ṗ′

x + dϑ

2

)
, ϕ̇2 = 1

ρ

(
Ṗ′

x − dϑ

2

)
. (5)

2.4 Perception

Perception in the robot is implemented through a ray casting
algorithm that closely mimics the discrete nature of the
physical LiDAR present in many industrial robots. In Fig. 2
the model is described; a fixed number n of i = 1, ..., n
rays are cast uniformly outwards from the geometric center
P of the robot. Each ray is defined by a unit vector r̂i and
by the parameter Rrange, which is used to define the ray-
casting sensing range. A fixed number η of interconnected

walls limit the environment; each wall is indexed with h =
1, ..., η.

A LiDAR-based system perceives the environment
through range-finding in a straight line around the agent; a
ray casting algorithm is a very similar approach achievable
in a 2D virtual environment. In fact the agent does not work
with the position of the obstacle, but with its (discretized)
frontier created by the ray casting. In other words, the agent
is not aware of the position Qj of the individuals in the
crowd, rather it is only aware of the points determined by
the collision of each ray with the individuals’ bodies. This
methodology contributes in decreasing the reality gap when
it comes to the experimental phase.

To express the position of an obstacle in a 2D
environment, two coordinates are needed (ri , αi in a polar
system); we encode the LiDAR information as a fixed
number of n uniformly distributed rays with angle defined
by αi , and for which the range value ri is determined by the
ray casting collision algorithm.

Additionally, the ri , αi information is retained for a
certain number of steps in order to implement memory in
the controller; this process is called Past Range Perception
(PRP) and the distance of the lookback step is represented
by the parameter slb.

The intersections with the walls are performed following
the approach outlined by Antonio [46] in 1992. In this
regard, and taking into consideration Fig. 2e, we consider
a general ray ri and a general h-th wall WhWh+1. The ray
starts in point P and ends in point P + ri , while the wall
starts in point Wh and ends in Wh+1. The intersections are
labeled as Si .
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Fig. 2 Perception model through ray casting. In a) the robot is shown
in point P in the 〈x, y〉 frame of reference, with the rays r̂0, ..., r̂i ; in b)
the main variables of one ray are shown; in c) an individual is shown
as a grey disk, and the impact points S0 and S1 of the rays are shown

on the boundary of the obstacle; the dashed line shows the range limit
of the rays; in d), the geometry of the ray-casting detection is shown
for person Si

While the wall-detecting algorithm is fast, the process
of detecting individuals can be considerably slower. In
order to keep the computational complexity under control
a bounding-box approach is applied to the process. First, a
square bounding box is defined around the robot P of width
b = 2(Rrange + R). A subset �bb of individuals is then
determined based on the following equation:

�bb =
{
Qj : Qj,x ∈

[
Px − b

2
,Px + b

2

]
∧

Qj,y ∈
[
Py − b

2
,Py + b

2

]}
(6)

The set �bb is made by all points Qj which are contained
in the bounding box. If we indicate with k the index of an
element Qj within the bounding box, i.e., Qk ∈ �bb, then
for each of these individuals the following distance can be
calculated,

di,k = (Qk − P) •
(
M

(π

2

)
r̂1

)
(7)

It follows that, when di,k ≤ R (collision condition),
the i-th ray touches the boundary of the k-th individual
and point Si can be defined on the same boundary. In

case multiple instances of k-th individuals for which the
collision condition is true, the one with the smallest distance
‖Qk − P‖ is selected. In order to differentiate points which
are within range Rrange, the explicit calculation of the
euclidean distance ‖Si − P‖ is necessary at this point,

‖Si − P‖ = −r̂i

√
R2 − d2

i,j (8)

It is worth noting that all the points Si defined up to
this point are both related to collisions with individuals,
with walls, and with the perception range boundary. Some
rays r̂i may not touch any k-individual nor any walls,
especially considering the finite nature of range Rrange. This
being considered, we can define the perceived distance ri as
follows,

ri =
{

‖Si − P‖ if ‖Si − P‖ ≤ Rrange

Rrange if ‖Si − P‖ > Rrange
(9)

Collisions between individuals in the environment or
the walls and the robot are determined by evaluating the
distance between these elements. Specifically, in the case of
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a k-th individual, a collision occurs when the following is
true,

‖Qk − P‖ ≤ RR + R (10)

In case of a general h-th wall, a collision occurs when the
following condition is true,

(P − Wh) •
(
M

(π

2

)
ŵh

)
≤ RR (11)

with T the usual rotation matrix.

2.5 CognitionModel: Artificial Neural Network

The cognition model used to implement the control of the
agent is based on an Artificial Neural Network. This choice
is part of the methodology which involves the use of NEAT.
In order to apply the cognition model to the problem at hand,
we implement it in a discrete time simulation with a fixed
time-step t .

The inputs to the ANN are summarized as follows:

– Current (timestep t) robot position (Px(t),Py(t)),
– Position of the robot at the lookback step (Px(t −

slb),Py(t − slb)),
– Speed of the robot at the lookback step Ṗ(t − slb),
– Length of rays at the current step ri(t),
– Length of rays at the lookback step ri(t − slb),
– Position of the target point T .

The total number of input nodes in the ANN will thus be
ANNin = 2 + 2 + 2 + n + n + 2 = 2n + 8, where n is the
number of perception rays.

High-resolution perception of the environment necessar-
ily requires a large number of rays. Due to the fact that the
number of input neurons in the ANN is linked to the num-
ber of rays in the perception model, the higher this number
gets, the higher the complexity of the ANN becomes; in
turn, a functional ANN should have a high expressivity to
make meaningful use of the inputs. The main problem is
that the higher the expressivity of the network, the higher
the search space becomes for the optimization of the net.
Given these considerations, it is clear that the number of
rays impacts directly and heavily on the complexity, expres-
sivity and ultimately the ease-of-optimization of the ANN;
in the following sections, this aspect will be evaluated in
depth.

Since an input neuron can only process one information,
two of them would have to collaborate to establish the
position of an object, i.e., in a polar description, one for
the angle, one for the distance. By making the angle αi a
function of the line of sight number, we actually make it
a function of the number (or index) of the neuron itself,
which is therefore able to communicate two information
simultaneously in a natural way. Thanks to this implicit

variable the neurons number can be halved, speeding up
both optimization and calculation.

The output structure is much simpler. Since the robot
kinematics model has only 2-d.o.f., the number of output
nodes of the ANN is 2, as follows:

– Steering output, o1 ∈ [0, 1],
– Acceleration speed output, o2 ∈ [0, 1].

The next section will describe how the output nodes
values are translated in control signals to the motors.

2.6 Control and Life Cycle

The control system in our approach is represented by the
ANN which is the result of the optimization carried out by
the NEAT algorithm.

As discussed up to this point, the ANN produces 2
outputs which can have values between 0 and 1. One is
assigned to steering, and the other to forward acceleration.
The control approach works on a time-step dt basis, as
follows
{

v(t) = min ({v(t − 1) + (kaa
∗) dt , vmax})

ω(t) = kωω∗ (12)

where a∗ = 6m/s2 is the commanded acceleration
parameter, while ω∗ = 2π1/s is the commanded rotational
speed; ka and kω are the control coefficients which are
actually controlled by the ANN and are mapped as follows,
for o1,
⎧
⎨

⎩

o1 ≤ 0.333 then kω = 1
o1 ∈ ]0.333, 0.667[ then kω = 0
o1 ≥ 0.667 then kω = −1

(13)

and for o2,
⎧
⎨

⎩

o2 ≤ 0.333 then ka = 1
o2 ∈ ]0.333, 0.663[ then ka = 0
o2 ≥ 0.667 then ka = −1

(14)

It is clear from Eqs. 13 and 14, that a discretization is
applied to the control signals so that the values can either
be zero, or saturated in either sense (positive or negative).
This approach was selected to reduce noise and to provide a
comparable basis for the human driver experiment.

The life cycle of the general agent defined up to this point
starts with its creation in the spawn point, and continues
until either it collides with an obstacle or wall, or it reaches
the target T . When one of these conditions becomes true,
the agent is eliminated and dies.

2.7 Evolution

A classical NeuroEvolution problem consists in the
optimization of a given weights set, the topology of the net
is fixed and decided a-priori: usually an input layer, one
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or more hidden layers, and one output layer. The process
searches the space of the weights configuration of the
ANN to find the best performing individuals. The NEAT
method does the same but it also looks for the best possible
ANN topology [41] by adding or removing connections, as
illustrated in Fig. 3. In principle, this greatly enlarges the
space over which NEAT searches for the optimal ANN and
relieves the user from the burden of deciding in advance the
topology of the network (i.e., the number of hidden layers).
The latter consequence is particularly relevant in the case
considered in this work, since the number of perception rays
directly impact on the size of the ANN input layer, which in
turn likely impacts on the optimal topology of the ANNs.

NEAT employs a number of mechanisms to efficiently
perform the search in the space of ANNs with free topology:
we summarize here the key ones here and refer the reader
to [41] for a detailed description of the algorithm. Similar
topologies are grouped together (speciation) and compete
among themselves, giving time to optimize the weights of

promising individuals, before being released in the general
population.

Elitism is implemented by cloning the fittest individual
of each species in the past generation and by insertion in
the current generation. However, since the position of the
target T changes at each generation, the score of the elite
individuals may be lower than that of the same individuals
at the preceding generation.

Evolution was performed on a population of npop =
600 individuals with NEAT. This number was found to
provide a good balance between ease of computation and
population diversity; indeed, since the evolutionary method
we used implements speciation and elitism, diversity in
the population is paramount to reaching meaningful results.
A low number of individuals would mean that too many
species would become extinct in the selection and crossover
phases.

The number of generations ngen is either 100 or
1000, based on the investigation reported in the following

Fig. 3 Process of topological
modification of the ANN during
the optimization process of
NEAT. In a) the process of
addition of a connection
between two nodes is shown; in
b) the process of removal of a
connection is shown together
with the addition of a new node
in place of the removed link
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sections; specifically, the search of the parameter space has
been done with ngen = 100, while the convergence test has
been performed with ngen = 1000.

There are two separate fitness functions: one to evaluate
the agent that did not reach the target, the other to evaluate
those that were able to do so. In giving a score to agents that
died before reaching the goal the main factor to consider is:
how close were they?

f1 = C1 − dg (15)

where C1 = 3 × 103 is a positive constant to ensure that
f1 > 0, and dg is the distance from the goal at the moment
of death.

If the agent reaches the goal it gets evaluated by a
different function:

f2 = C2 − kaD − kbT (16)

where, D is the traveled distance, T the time alive, ka = 2
and kb = 3 are coefficients necessary to assign coherent
weight to time and distance in the fitness function. C2 is
a parameter that grants to an agent that reached the target
a higher fitness score than all those who did not; we set
C2 = 2 × 104.

At this point the fitness function f can be expressed as
follows,

f =
{

f1 if target not reached

f2 if target reached
(17)

This distinction is made to allow the algorithm to
characterize successful agents (those which reached the
goal) by considering the time and distance it took for these
to reach the target, as captured by Eq. 16; at the same time,
it should be noted that it is not possible to “score” non-
successful agents as well with the same approach, since both
D and T are not defined for non-successful agents. In this
regard, Eq. 15 characterizes non-successful agents in terms
of the “closeness” to target metric dg; it is worth noting that
for successful agents dg is always zero.

3 Numerical Evaluation

In order to better characterize the performance of the
approach presented in this work, we explore part of the
parameter-space. This allows to create a rough preliminary
map of the influence of the main parameters of the
simulation. These are:

– the number n of rays ri used by the robot;
– the PRP, i.e., how far back in terms of steps slb in the

past is perceived by the NN;
– the mean speed v̄ of the individuals in the environment;
– the number of individuals m in the environment.

Table 1 Parameters space

Parameter Unit Values

Number of rays n 15, 30, 60, 90

Lookback steps slb 0, 2, 4, 6, 8, 10

Crowd mean speed ū ms−1 0.25, 0.50, 0.75, 1.00, 1.20, 1.50

Crowd size m 1, 5, 10, 15, 20, 25

vwall ms−1 0.15

L m 18

W m 8

R m 0.6

RR m 0.2

Rrange m 3

ngen 100

npop 600

Each run is performed by varying one parameter of the following. The
other parameters are kept at their respective default value (highlighted
in bold)

In the following, the findings are reported and discussed
for each parameter. Table 1 summarizes the parameter space
that was explored in the experimental campaign; the main
other parameters are shown in the table on the right.

We recall that NEAT, as most other evolutionary
algorithms, is a stochastic optimization method and hence
results exhibit some randomness. In the following, in order
to mitigate the effect of randomness on our conclusions,
we repeated the optimization several times by varying the
random seed and we analyzed the results using the proper
statistical tools as, for example, box plots and descriptive
statistics.

Fig. 4 Large number of generations test. Each generation averaged
best score is plotted together with the 1 and 2-σ confidence bands
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3.1 Convergence

Given the many unknowns related to the complexity and
convergence of the NEAT evolution approach, it was elected
to perform a preliminary set of tests that involve a great
number of generations (ngen = 1000).

In total, a number of 13 evolutionary runs were
performed, by varying the random seed, with the default
value for parameters described in Table 1. For each run the
calculation of the cumulative maximum was performed, i.e.,
the fitness score of the best individual at the λ-th generation,

fλ = max
({

fiλ : ih = 1, . . . , λ
})

(18)

where λ is the λ-th generation and fλ is the fitness function
score at generation λ.

Aggregate results from the 13 runs for a population of
npop = 600 are shown in Fig. 4, in terms of the best-score
development of each generation population.

It is apparent that the evolutionary process rapidly
increases in the first 100 generations approximately, to
finally reach a plateau around generation 500. The standard
deviation bands (1, 2-σ related to the distribution of
scores at each generation) show consistent thinning from
generation 200. Based on these observations, and taking into
account the CPU-time requested by a large number of runs
of the algorithm, it was decided to consider ngen = 100
as the threshold for the parameter exploration campaign

that follows; it is a compromise between a reasonable
convergence and computational resources requirements: the
maximum score at the 100-th generation reaches within
10% of the score at the 1000-th generation. Furthermore, in
order to contextualize these assumtions, it is important to
note that these thresholds are valid with the conditions of
this test; should the search difficulty increase, e.g., due to
an increase in the inputs of the ANN, then the thresholds
should be increased as well.

A set of example trajectories is shown in Fig. 5. It can be
seen that already at generation 40, the trained ANN allows
the robot to come within reach of the target. However, 20
generations later, the robot fails; at generation 80, the robot
finally is able to achieve its goal.

3.2 Number of Rays

The number n of rays r̂i used by the system to perceive the
surroundings, directly influences the resolution of the local
map used by the ANN as the basis of its decision process. In
order to explore how this influences the performance of the
navigation system, we performed an experiment consisting
in a number of evolutionary runs for each of a set of values
of n. At least 5 runs were performed for each value of n.

For each run the cumulative maximum was computed
according to Eq. 18. For each generation across the run
spectrum, the average was computed and plotted in Fig. 6a.

Fig. 5 Selection of best individuals for an evolution run with ū =
1.0ms−1, m = 20 at 20 generation intervals. The small gray circles
represent the crowd individuals Qj , the larger red circle represents the

robot P, while the blue asterisk indicates the target T location. Each
row represents a different generation, while each column shows the
trajectory of the best individual at different moments in time
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The plot shows small substantial variation between different
n runs when investigating the value at convergence. Indeed,
from Fig. 6e it can be seen that most values fall within a
similar interval in the last 20 generations. The lower score
obtained by n = 90 may be due to a lower than necessary
number of generations. No statistically significant effect
can be detected conclusively, given the comparatively low
number of runs.

However, it can be appreciated that the cumulative
maximum line for the case of n = 15 and n = 30 are
slower to reach convergence than the others. This will be
investigated in a later section.

3.3 Lookback Parameter

The lookback parameter slb gives to the cognition model
a certain knowledge of the past, hence of speed or rate

of change of a certain input. From results plotted in
Fig. 6b it seems that the evolution trajectory is generally
indistinguishable if slb > 0, where the case of slb is
that where there is no knowledge of past values. This last
case appears substantially lower in terms of convergence
speed performance. If one looks at the statistical aggregation
presented in Fig. 6f, relative to the last 20 generations,
it appears that slb does not influence the performance
significantly when non-null. Again, the plot demonstrate the
lower performance in terms of fitness score of the case of
slb = 0.

3.4 Impact of Problem Parameters

The task of navigating the crowded environment intuitively
becomes harder the more individuals there are and the more
prevalent their motion is in relation to that of the robot. In

Fig. 6 Absolute best score over time (a-d), the distribution of the final
20 generations scores (e-h) and distribution of the speed of conver-
gence (i-l). In the first row, each line represents the mean value of the
overall best score of each underlying evolution run, averaged at each
generation, grouped based on the explored parameter value; in a) the
explored parameter is n, in b) is slb, in c) the speed ū, and in d) the size

of the crowd m. In the second row, the scores distribution of runs at
different values of the parameters are shown; in e) varying n, in f) slb,
in g) ū, and in h) the crowd size m. In the last row, the speed of con-
vergence to 75% of the best score (defined as that at generation 100)
is shown; in i, j, k, l varying respectively parameters n, slb, ū and m
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Fig. 7 The environment display for the user. In a) the full view is
shown, along with the main components; the dashed line, here used to
indicate the crowd, is not visible by the user. In b) a 30-lines case is

visible to the user, along with the target (in blue), and in c) the same
is shown for the 120-lines raycasting. Note that a) and b) are partial
views of the environment

the simulated environment, each individual is characterized
by a mean speed parameter ū described in Eq. 2. The
number of individuals in the crowd is m.

A series of runs was performed varying both of these
parameters in order to investigate their relation on the
performance of NEAT.

It is immediately apparent by looking at plots c), d), g)
and h) of Fig. 6 that these parameters have a great degree of
influence on both the speed of convergence and the ultimate
fitness score of the NEAT algorithm.

3.5 Speed of Convergence

In order to analyze in detail the speed at which convergence
is reached while exploring the parameter space, we define
a threshold fth = 0.75fc, where fc = fngen , which
corresponds to the best score of each run. At this point,
for each run, we can determine the first generation λc

for which fh ≥ fth. The plot in Fig. 6i-l shows
the distributions of λc for different values of the usual
parameters.

It is apparent (Fig. 6i) that for what regards the number
of rays n, it appears that a higher number helps in reaching
convergence sooner, as opposed to the case of n = 15
and especially n = 30 where convergence is slow. When
the lookback depth slb is considered, the main difference is
between slb = 0 and slb > 0, with the former delivering
a slower climb towards convergence. The influence of the
mean speed ū of the crowd is hard to analyze. It seems that
a peak exist at around ū = 0.75ms−1, where convergence is
especially slow; this probably indicates that there is a certain
ratio between the robot maneuverability and the crowd
speed for which best results are achieved. This finding
could be useful for deciding the speed of the robot as a
function of the average speed of the crowd. However, we

remark that other factors, namely the acceptance of a robot
by humans, might be considered while setting a value for
the robot speed. Investigating these factors is beyond the
scope of this paper. Finally, the number m of individuals
in the crowds has a rather large and predictable effect
on the speed of convergence of NEAT; a lower count of
persons allows convergence to be reached sooner, however
starting from 5–10 individuals, the variability increases and
results appear less consistent. This is nevertheless expected
behavior.

4 Experimental Evaluations

In this section, two distinct experiments are presented.
In order to give an additional measure to contextualise
the performance of the NEAT-controlled mobile robots,
in the first experiment, a set of runs were performed
by an untrained human. The second experiment, instead,
implements the perception method described in Section 2.4,
in a real physical environment.

4.1 Human Driver

The main purpose of this campaign is to develop an
experimental environment; as such, what follows has no
presumption to be an accurate and statistically relevant
analysis of the performance of a human driver. This being
said, in order to lay the foundation for a more accurate
campaign, 61 runs were executed by a single untrained
individual with each of the following configurations:

– n = 30 lines of sight,
– n = 120 lines of sight,
– full top view.
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In particular, in the first two modes, the user can see a
top-view of the environment with the location of the target
T and of the robot P. The perception of the environment is
conveyed solely through the rays ri and the points Si . The latter
mode, i.e., full top view, shows the user the entire environment
as illustrated in Fig. 1. The environment display is shown in
Fig. 7. The subject can give the robot the same inputs of
the neural net and it does it through the arrow keys while
viewing the domain and the current score on a 13” full-
HD screen. Each playing session consisted of 61 trials, the
duration was dependant from the ability of the player to stay
alive (every attempt could last from just a couple seconds up
to about 20s) and each session begun as the player felt ready
in order to maximize his comfort. The subject was 26 years
old and had experience in gaming but he had never tried this
simulation before the test.

Fig. 8 Distribution of the scores of the human driver. In a) a temporal
view of the distribution of performance results is shown for the human-
driven system; in b) a statistical aggregation is shown, compared to the
results from a large number of NEAT-controlled runs

In Fig. 8 the results of this preliminary experimental
campaign are shown, both in temporal and in aggregate
view.

The temporal view, in a), shows the full number of runs
performed by the human driver. While it does appear to be a
certain downward trend in the performance (i.e., the score),
especially with the 120 lines and full view cases, this appears
rather shallow and should, if confirmed, be ascribed mainly
to fatigue and boredom, given the large number of runs.
Furthermore, no learning appears to happen, since in neither
of the three cases an upward trend can be determined.

What is however immediately apparent from the box-
plot in b) is that the human driver performs rather poorly
when provided with low-n feedback, while its performance
increases considerably with higher resolution perception
(120-lines) and even more so with a “realistic” perception
of the environment (full view). Indeed, the human driver
could not reach the target in all but one case in the 30-
lines case (win ratio 1.61%). Conversely, the full view mode
allowed the driver to complete the task most of the times
(win ratio 58.1%). The 120-lines saw an intermediate win
ratio of 22.6%.

4.2 Perception Experimental Implementation

In order to conduct the experimental tests, the TurtleBot3
Waffle Pi mobile robot was selected. The robot is a small
differential drive platform which is equipped with a LDS-
01 LiDAR; the scanner main properties are summarized in
Table 2.

The mobile robot has been positioned in a indoor room
surrounded by a simulated crowd; a representation of the
mock crowd is shown in Fig. 9a. Due to the small scale of
the experiment, the LiDAR maximum range has been set to
2m.

The test was conducted by making use of the ROS (Robot
Operating System) network and its toolboxes available
in MATLAB in the Robotics Toolbox. The process has
been synthesized by developing a specialized application,
whose layout can be seen in Fig. 10. This enables the
communications process, and the analysis steps that take
place between getting the scan readings from the mobile

Table 2 Characteristics of the LDS-01 LiDAR range sensor

Properties Value Unit

Distance range 120–3500 mm

Angular range 2π rad

Accuracy on d.120499mm ±15 mm

Accuracy on d.5003500mm ±3.5 %

Angular speed 300 ± 10 min−1

Angular resolution 0.0175 rad
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Fig. 9 In a the environment setup with simulated legs for the experi-
mental raycasting; in b the Lidar Readings and its next enlargement in
order to create a logical pixel map; in c the clusters, representing the
single person, and their centroids as result of the clustering process; in

d the ideal persons recreated around the clusters centroids; in e the ray-
casting done with 30 rays on the map representing the ideal persons;
in f the same done with 120 rays

robot and the final ray casting. A brief description of the
workflow is given below:

– (Positioning) The robot reaches its intended position by
driving,

– (Scanning) A number of scan readings from the LiDAR
sensor are taken. The data obtained for each reading
in the form of distances and angles, is encoded in a
2D occupancy matrix, which represents the map of the
environment. An inflation operation is performed to
the matrix in order to represent the robot safety radius
(Fig. 9b). Note that the map coordinate system and the
one of the mobile robot are coincident.

– (Clustering) In order to classify pixels based on their
association with the objects in the environment, the
occupied points of the map have been clustered by
using a DBSCAN algorithm (Density-Based Spatial
Clustering of Applications with Noise). As Fig. 9c

shows, in our experiment five different clusters
have been successfully found that represent the five
simulated persons.

– (Obstacle representation) The centroid is computed for
each cluster. A synthetic circular obstacle is generated
at each centroid, with a radius representing the ideal
person as seen by the robot, including a safety distance.
The result of this operation is shown in Fig. 9d.

– (Raycasting) The raycasting is performed following the
method presented in Section 2.4; two representative sets
are reported, 30 and 120 rays, respectively in Fig. 9e
and f.

As can be seen the mobile robot is capable of detecting
the obstacles around it, subsequently recreate the ideal
representation of the person and then finally compute the
raycasting with 30 and 120 rays. In the tests done with
both rays densities, the robot was capable to find each
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Fig. 10 Screenshot of the
MATLAB application developed
to get the LiDAR Readings of
the Turtlebot3 Waffle Pi, build
the environment map, recreate
the ideal person and compute
the raycasting

person with at least 2 rays. It is clear that with 30 rays,
information about a certain obstacle is low; on the other
hand it is noteworthy that the closer an obstacle is to
the robot, the more rays detect it, thus increasing it is
relative importance. Escalating the number of rays (e.g.,
120) greatly increases resolution and obstacle representation
potential, as expected.

5 Concluding Remarks

The task of navigating promiscuous environment where
robots coexist with people is one which is coming ever
more into focus in recent times. With door-to-door robotic
delivery, autonomous cars and tele-presence, this field is
rapidly evolving.

In this paper we build on the state-of-the-art with the
implementation of a controller for a mobile robot, based
on artificial neural networks that are optimized with NEAT.
This approach is especially appropriate to confront this
problem due to the fact that NEAT implements successfully
the complexification paradigm to ANNs; the procedure
starts with simple and small ANNs, which are grown
when the need arises. This promises to provide good
performance in tasks which involve complex perception
capabilities for navigating a crowded environment to reach a
target.

Perception in the robot is implemented with a raycasting
model that mimicks and can be easily implemented in an
industrial LiDAR-equipped robot. The system perceives
both current time objects and has memory of past perception
(lookback).
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In order to better characterize this approach, we
performed a thorough exploration of the parameter space,
investigating the influence of crowd size, its average speed
and the characteristics of the perception model both in time
and in resolution.

Results show that the controller is able to converge
to a feasible solution in a comparatively low number of
generations.

Finally, the difference between the simulation and a
physical implementation (reality-gap) has been analyzed
through an experiment consisting in the detection of persons
via LiDAR, in a mock environment. Results show that the
methodology is feasible.

Future developments will see the implementation of the
NEAT controller in a physical mobile robot; in this context,
the performance of the approach will be evaluated in a real
crowd environment, in controlled conditions. Results will be
compared to those presented in this work.
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