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Ptychography is now a well-established X-ray
microscopy tool for synchrotron end-stations
equipped with a scanning stage and a pixelated
detector. Ptychographic phasing algorithms use
information from coherent diffraction to deliver
quantitative images of the specimen at a resolution
higher than the scanning resolution. These algorithms
have traditionally been implemented in software
on a per-instrument basis in various degrees of
user-friendliness and sophistication. Here, we
present Ptypy, a ptychography software written with
the intention to serve as a framework across the
diverse sets of available instruments and usage
cases. A distinctive feature of the software is its
formalism, which provides a convenient abstraction
of the physical model, thus allowing for concise
algorithmic implementations and portability across
set-up geometries. We give an overview of the
supported usage cases, explain the abstraction layer
and design principles, and provide a step-by-step
guide describing how an algorithm may be realized
in a concise and readable manner. The software
capabilities are illustrated with reconstructions from
visible light and X-ray data.

1. Introduction
In the last decade, coherent diffractive imaging (CDI)
techniques have evolved as a promising dose-efficient
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and high-resolution complement to traditional, lens-based, X-ray microscopy [1–3]. Though they
vary in their implementation, CDI techniques share the essential characteristic that sample images
are taken indirectly, via the collection of diffraction patterns, thus avoiding potential signal
degradation caused by image-forming optics. However, this benefit comes at a cost: the image can
be recovered only by solving an inverse problem—most often a computationally demanding task.

Among CDI techniques, ptychography has been especially successful at delivering
quantitative images of extended specimens at diffraction-limited resolution. Originally developed
in the late 1960s for electron microscopy [4], ptychography combines multiple diffraction
patterns formed by a finite illumination while it is scanned over an extended specimen. The
technique saw an important revival when Faulkner & Rodenburg [5] demonstrated that iterative
algorithms used for other types of CDI techniques could be adapted to tackle the inverse problem
in ptychography.

An essential feature of ptychography is the imposition of self-consistency for illuminated areas
at adjacent scan points, often called the ‘overlap constraint’. It is now known that the resulting
redundancy in the acquired data is sufficient not only to recover simultaneously the illumination
profile and the specimen image [6,7], but also to overcome experimental limitations spanning
from inaccurate scanning positions [8,9] to diffraction data degradation effects [10] such as point-
spread-function and air scattering [11] or sample jitter [12]. Hence, unlike single-shot CDI [13,
14], ptychography can handle various sources of data degradation by adapting the propagation
models and without imposing a priori knowledge.

Beyond its far-field diffraction version, ptychography is now applied to other microscopy
techniques by including transverse scanning of the sample to generate data redundancy.
Ptychographic principles can be transferred to the holographic regime [15,16] or to Bragg
geometry [17,18], and have also been mapped to reciprocal space [19]. In addition, the
quantitative nature of the technique lends itself naturally to tomographic applications, thus
yielding quantitative volumetric information at the nanoscale [20,21].

Reconstruction algorithms form an essential part of ptychographic techniques. The last decade
has seen important progress in the way computer algorithms explore the high-dimensional phase
space of possible sample transmission and illumination functions in the search for a unique
solution. The first occurrence of an iterative algorithm was the ptychographic iterative engine
(PIE) [5], which addressed the ptychographic reconstruction problem through sequential updates
inspired by previous reconstruction approaches [1,22,23]. The technique is still widely used today
in one of its updated versions (ePIE [24], 3PIE [25]). Although the PIE family iteratively cycles
through the diffraction patterns, other algorithms act in a parallel manner, following a generalized
projection formalism. Notable examples are the difference map (DM) [7,26], the relaxed averaged
alternating reflections (RAAR) algorithm [27] and other similar formulations [28]. Other parallel
reconstruction techniques originate from cost–function optimization techniques [6] such as those
based on maximum likelihood (ML) principles [29].

Reconstruction techniques are still evolving at a rapid pace. A survey of the literature shows
that several independent implementations of these algorithms exist, most of them including
additional ad hoc capabilities depending on specific experimental conditions [8,12,30,31]. Up to
now only a few groups have made their code available to the wider scientific community:

(i) A set of MATLAB scripts implementing the difference map and ePIE algorithms and
developed at the cSAXS beamline of the Swiss Light Source in 2007–2009 [7,20,32] is
available for the users of the beamline.

(ii) The Sharp Camera package [33] was developed by the Center for Applied Mathematics for
Energy Research Applications (CAMERA) and is hosted at http://www.camera.lbl.gov/.
It features parallel reconstruction on multiple graphics processor units (GPUs) in far-
field geometry using RAAR as the reconstruction algorithm [34]. The package uses the
proprietary CUDA parallel computing toolkit for nVIDIA GPUs.

http://www.camera.lbl.gov/
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(iii) The software mentioned in [35] was briefly available online but is currently
unavailable [36,37]. It provides an implementation of ePIE and was implemented for
parallel reconstructions on multiple GPUs again for nVIDIA’s CUDA framework only.

The availability of stable reconstruction packages has clear benefits for the development of a
technique:

(i) It allows data from different set-ups to be compared, and results to be validated after
disclosure of data and reconstruction parameters.

(ii) It furthers the development of standards, which is helpful for both a unified formalism and
quality control.

(iii) It lowers the entry barrier for new groups resulting in an expansion of the user base leading
to a wider acceptance for the method.

Considering that many high-resolution nano-probe beamlines are planning to support
ptychography as a standard, and that ptychographic algorithms have reached a sufficient level
of maturity, it has become clear that the community needs broader access to state-of-the-art
reconstruction software.

In this paper, we describe PtyPy, an open-source software framework for ptychography written
in Python. An essential design feature of PtyPy is the clear separation between representations
of physical experiments, the models, and the algorithmic implementations to solve the inverse
problem, the engines. Beyond basic design principles, this paper provides an overview of the
supported models and shows how the abstraction from the physical experiment is achieved. An
in-depth walk-through of a basic implementation of the difference map algorithm demonstrates
how such abstraction and the associated programming interface of PtyPy results in concise,
readable and intuitive reconstruction engines despite possible model complexity.

2. Ptychography
Coherent diffractive imaging is often described as a lensless technique as it lets an image
form naturally from coherent propagation (diffraction) contrast, without any optics between the
sample and the detector. The contrast mechanism is restrictive because it applies only to highly
coherent sources, but it is also inherently dose efficient because no photon exiting the sample is
absorbed or scattered by additional optics. Hence, CDI techniques are especially well suited to
making good use of the high-brilliance X-rays produced by third- and future fourth-generation
synchrotron sources.

Let x be a two-dimensional coordinate in the plane transverse to the incident radiation and
ψ(x) be the wavefield just behind the sample, the exit wave. In the model of CDI for a detector in
the far field, the intensity measured in the detector plane can be written as the squared modulus
of the Fourier transform of the exit wave

I(v) = |F{ψ(x)}(v)|2 =
∣∣∣∣
∫
R2
ψ(x) · e−2π ivx dx

∣∣∣∣2 , (2.1)

where the reciprocal-space coordinate v represents spatial frequencies in the real-space image and
is related to the detector coordinate s by the simple geometric relation

v = s
λz

, (2.2)

with λ the wavelength of the radiation and z the sample-to-detector propagation distance. Hence,
CDI is an indirect imaging technique, and the final image must be retrieved computationally.

In cases where sufficient holographic information from a pinhole or any other reference [38,39]
is encoded in the diffraction signal, the image retrieval may be as straightforward as an inverse
Fourier transform with an optional differential operator. However, without a structural reference,
the general CDI model (2.1) faces two important difficulties. First, collected data lack the phase
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part of the propagated exit wave ψ as only a time-averaged intensity signal is collected—this
is the phase problem. Second, even if it is known, the exit wave is itself a composite of incoming
illumination p and the sample transmission o which can be modelled as a product in the simplest
approximation (projection) but is in general more complex for a thick sample (see, for example,
the supporting online material of [7]).

The difficulty of CDI is further increased by other technical complications. For instance, the
high dynamic range in the diffraction signal sometimes extends beyond the limited dynamic
range of today’s linear detectors, resulting essentially in a clipping of the measurement, either
on the low side of the intensity range or on the high side. The former case generally leads to a loss
of resolution because of the natural decay of diffraction patterns towards high spatial frequencies,
whereas the latter may compromise quantitativeness [40].

Despite these challenges, CDI has proved to work for many experimental environments
mainly because of iterative algorithms that simulate the propagation and backpropagation
numerically while carefully applying constraints in the real space, e.g. the support constraint,
which eliminates many unknowns if the sample was isolated.

For ptychography, one scans a finite and coherent illumination, the probe p, across a sample
(object o), collecting a diffraction image I(v; y) at each transversal shift y between the probe and
object:

I(v; y) =
∣∣∣∣
∫
R2

p(x)o(x − y) · e−2π ivx dx
∣∣∣∣2 . (2.3)

In conventional scanning transmission microscopy (STM), the image is formed by integrating
the diffraction signal to form an image in real space: Image(y) = ∫

I(v, y) dv. This happens
automatically when the detector is a single pixel, e.g. a diode. The final resolution in the image is
limited by the size of the probe or (after deconvolution) by the step size �y = |yj+1 − yj| between
adjacent scan points.

Ptychography combines STM with a pixelated detector and thus samples the diffraction
signal and the position simultaneously. The large-angle diffraction signal holds interferometric
information about the sample and probe on a grid which is finer than the scanning grid if the
inverse of the maximum spatial frequency, vmax, is smaller than the distance of the adjacent scan
points �y. As the resolution no longer directly depends on the step size, ptychography is often
carried out with fewer samples but larger probes than STM and the continuous argument y is
replaced by the scan point index j,

Ij(v) =
∣∣∣∣
∫
R2

p(x)o(x − yj) · e−2π ivx dx
∣∣∣∣2 = |F{p(x)o(x − yj)}|2. (2.4)

Like single-shot CDI, ptychography uses an iterative approach to solve the phase problem. As
mentioned in the Introduction, the key to the success of ptychography is the self-consistency
of the sample transmission function for adjacent exposed areas. It reduces the number of
independent variables encoded in the spatial frequencies of the diffraction pattern, yielding an
overdetermined inverse problem—an effect similar to the support constraint of single-shot CDI,
but without restricting the field of view. The redundancy induced by this overlap constraint has
proved to be sufficiently robust for the illumination and object transmission to both be retrieved
simultaneously. It also allows ptychography to be applied to a diverse set of more complicated
models than (2.4) as we explain in the following section.

(a) The models of ptychography
Important developments of ptychography hinge on the introduction of a new level of complexity
compared with the model (2.4). Here, we highlight many of the important model updates and
show how the model is incrementally adapted.

(i) Propagation distance: similar to single-shot CDI, ptychography uses a Fourier transform
to alternate between two different domains and apply appropriate constraints. Like
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some imaging methods in the holographic regime, ptychography is not limited to far-
field diffraction but may use any propagator that matches the experimental conditions.
A refined model is written as

Ij(s) = |Dλ,z{p(x)o(x − yj)}|2, (2.5)

where Dλ,z is the operator that would propagate an electromagnetic wave from the source
plane x to the detection plane s at a distance z. In the case of scalar diffraction theory, the
angular spectrum representation is most general. It describes the propagation as a linear
space-invariant filter [41]

ψ(s) =Dλ,z{ψ(x)} = F̂{F{ψ(x)} · exp(2π iz
√
λ−2 − v2)}, (2.6)

where Hλ,z(v) = exp(2π iz
√
λ−2 − v2) is the associated transfer function for free-space

propagation of a distance z for the wavelength λ. Applicability of such a modification
was proven for imaging regimes of high Fresnel numbers [15,16].

(ii) Sharing of diffraction data: it is sometimes advantageous to combine lateral ptychographic
scans as they share common information. Prominent examples are a common probe for a
series of scans in tomographic ptychography [42] or a common object for measurements
with and without beamstop or large segmented scans [43]. For each scan point index
j that spans over multiple scans, the diffraction data may result from a set of different
probe and object entities (pc and od). For example, the object index d may change, when
the sample is rotated, and the probe index c may change because of optics or sample
drifts. These changes may even occur within the same scan. We imply such changes with
the assignments c = c(j) and d = d(j). Similarly, the geometry may otherwise vary between
scans or scan points [31] and, consequently, we assume z = z(j). Hence, an improved
model with respect to (2.5) can be written as

Ij(s) = |Dλ,z(j){pc(j)(x) · od(j)(x − yj)}|2. (2.7)

Except for ambiguous cases we will omit the scan point index j in the expressions d(j), c(j)
and z(j).

(iii) State mixtures: it is rarely accurate to assume full coherence of the wavefield along the
imaging pathway. Apart from the obvious partial coherence in the source, effects like
signal spread in the detector or sample vibrations also yield the same common signature
of reduced speckle or fringe visibility. It was shown recently [10] that ptychography
can cope with all these experimental realities by introducing mixed states in the probe
and/or object. This development has found immediate use and delivered high-quality
reconstructions, e.g. for set-ups with a partially coherent source [10] (also in combination
with signal spread in the detector [11]), or for rapid sample movement [12,44]. According
to Thibault & Menzel [10], we extend the model in the following way:

Ij(s) =
∑
m,n

|Dλ,z{pc,m(x) · od,n(x − yj)}|2. (2.8)

The probe and object are composed of a finite number of coherent (pure) but mutually
incoherent states. If the physical reality of the set-up does not deviate far from a pure
state, the number of modes needed for convergence will be small. We have found that,
in practice, allowing for a minimum of two or three modes in the probe always helps to
reduce incoherence-related artefacts in the object [15].

(iv) Polychromatic illumination: traditionally, CDI experiments at synchrotron facilities are
carried out with monochromatic sources which require a high degree of spectral filtering.
For a single undulator harmonic of bandwidth �λ/λ≈ 10−2, a common double crystal
monochromator with bandwidth �λ/λ≈ 10−4 filters roughly 99% of the available
photons. While it has already been demonstrated that a monochromatic ptychographic
model works almost unimpaired for bandwidths of up to 2% [11], higher bandwidths
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may require a model that takes the polychromaticity of the source into account:

Ij(s) =
∫

|Dλ,z{p(λ, x) · o(λ, x − yj)}|2 dλ. (2.9)

Along with the obvious spectrum-dependent propagator, the object has a spectrally
dependent response o(λ, x) and the source spectrum can be included in the probe p(λ, x).
If the detector response is flat, equation (2.9) thus represents the polychromatic model
where all spectral contributions form an integral. If there is a small sensitivity threshold
for energy/wavelength or the source spectrum is comb-like, a discrete sum is also
appropriate. In combination with equation (2.8), we arrive at

Ij(s) =
∑
λ

∑
m,n

|Dλ,z{pc,m,λ(x) · od,n,λ(x − yj)}|2. (2.10)

(v) Masking of diffraction data: some pixels in the detector can yield bad data or no data at
all if they are either over- or under-responsive, part of a module gap or even blocked
by a central beam stop. Hence, a mask M is needed to disregard invalid pixels in the
reconstruction algorithms. In general, this mask can be different for each diffraction
pattern, for instance when pixels accidentally overexpose. The model thus becomes

Mj(s)Ij(s) = Mj(s)
∑
m,n

∑
λ

|Dλ,z{pc,m,λ(x) · od,n,λ(x − yj)}|2 (2.11)

= Mj(s)
∑
λ,m,n

|Dλ,z(j){ψj,λ,m,n(x)}|2. (2.12)

In this last step, we have introduced the elementary exit wave ψj,λ,m,n(x), which inherits all
indices from p and o, and as such represents a coherent monochromatic wave after interacting
with a single object mode.

3. A computational framework for ptychography

(a) Design principles
It is apparent from (2.12) that developing reconstruction software for all models can be
cumbersome. The contributions of various modes, probes, objects and propagators have to be
accounted for in each algorithmic implementation by design or when an upgrade of existing code
becomes necessary. Building a software from a simple model to more complex ones may lead to
cluttered, unreadable code of monolithic structure with hidden switches, global parameters, etc.
Such software is hard to maintain and debug and even harder to read for a novice.

To alleviate these programming difficulties—experienced first hand by the authors—we have
decided to create PtyPy, an open-source ptychography software framework designed to achieve the
following principles.

(i) Wide algorithm support: while, in principle, any ptychographic algorithm is designed to
reach a solution, the convergence properties of each algorithm can vary [45]. In practice,
algorithms may converge at local minima (ePIE, ML) or explore the solution space
without a clear stopping criterion (DM). A numerical implementation of a reconstruction
algorithm together with a set of algorithm-specific parameters is called an engine in PtyPy.
One can easily chain different engines sequentially to reach a specific objective, be it
reaching the solution in the shortest computation time or pushing for the highest quality
of the reconstruction.

(ii) Wide model support: a core design of PtyPy is the separation between the models and the
engines in order to facilitate small and light-weight engine implementations that can be
extended easily. As different experimental set-ups result in different models, PtyPy aims to
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support as many models as possible. Currently, PtyPy supports all models mentioned in
the previous section and is ready to be adapted for new developments.

(iii) Modularity and documentation: providing a modular object-oriented implementation helps
to extend and to reuse parts of it—a crucial feature if the code is understood as a
continually developing project. For contributors, PtyPy is made of roughly 11 000 lines
of Python code with an additional 7000 lines of comments or documentation strings,
ensuring readability and a high degree of in-line documentation. For users, PtyPy is hosted
online as an open-source project at http://ptycho.github.io/ptypy and provides tutorials
and explanation along with documentation of all its classes and helper functions. In
addition to core algorithmic functionality PtyPy features a rich set of utilities from plotting
to parallel processing to common mathematical operations.

(iv) Speed: naturally, the ideal implementation finds the global solution in minimum time.
For many algorithms, computation speed comes directly at the cost of flexible modular
implementations. Fast implementations may require monolithic kernels to be built and
compiled in a low level-language. This may imply fixing the ptychographic model
and the engine algorithm to fit a specific problem while losing wide applicability in
combination with an added effort to write the code. As a compromise, PtyPy relies on
NumPy [46,47] for its calculations and thus benefits from optimized C-code for most
numerically intensive operations. Accelerated engines can also be embedded in the
same framework to keep the benefits of organization, storage and plotting purposes. A
GPU-based DM engine has been successfully tested with PtyPy.

(v) Wide end-user support: preparing and organizing the data prior to reconstruction marks
a major part of the implementation. The absence of standards means that the datasets
are organized differently for each end-user application. Up to now, no data format for
ptychographic datasets has been widely used, the hdf5-based [48] CXI-database [49]
format being the closest current standard. PtyPy stores and loads data from hdf5 files with
custom internal tree structures. It also provides an abstract base class for loading and
preparation from raw datasets, which can be easily adopted to fit to a new application or
data format.

(vi) Scalability, interactivity and online capacity: as for any other scanning method,
ptychographic data are acquired as a stream. Depending on the instrument, the total
acquisition time for a complete scan typically ranges from a few seconds to several
minutes. Hence it may be useful for online feedback to initiate a reconstruction while
data are streaming. The user should be able to oversee the reconstruction process in order
to take immediate measures: abort the scan, adjust the sample position, etc. Although
already achievable with current hardware, such dynamic ptychographic scans have not
been used until now, mostly because of the complete absence of software to support these
streams. PtyPy has been designed to provide such support: all internal storage containers
can adapt to a continuous data inflow, and the reconstruction process is ready to start
as soon as the first diffraction pattern is recorded. PtyPy is designed to run in parallel
on many processing units, on a single computer or in a cluster. Larger data quantities
may thus be analysed without compromise on processing time. The cluster of nodes
running a reconstruction can be polled asynchronously and an interactive control of the
reconstruction process following a client–server design is currently under development.
Figure 1 gives a schematic of the implementation of distributed computing in PtyPy.

A detailed description of the implementation of all these principles is beyond the scope of this
article but the reader is invited to browse the web page for documentation, or contact the authors
for a copy of the software and to try one of the tutorials. Here, we concentrate on the core design
of PtyPy, corresponding to elements (i) and (ii) above. For this purpose, PtyPy introduces a small
set of connected Python objects which mediate between the physical world and its numerical
representation, and organize the memory access to intuitively integrate algorithms as engines.

http://ptycho.github.io/ptypy
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storage server

compute node 0 compute node 1

CPU 0 CPU 1 CPU 2 CPU 3

client

MPI

load

ΔMQ

io
control

Figure 1. PtyPy relies on theMPI [50] protocol for parallel computation. Specifically, PtyPy distributes memory intensive data
buffers, e.g. for the diffraction data and for the exit waves. Data can be loaded from the storage server in parallel if needed.
Themaster node (here ‘CPU 0’) handles asynchronous communication with clients (e.g. for plotting), running a server based on
ZeroMQ [51] in a shared-memory thread. (Online version in colour.)

In the following, we describe PtyPy’s internal representation of the ptychographic model and
the purpose of the main Python objects present in the framework. This description is illustrated
with the implementation of a simple reconstruction engine.

(b) Storage abstraction: the POD object
Any algorithmic implementation of ptychography starts with the problem of representing
physical quantities as discrete memory buffers on the computer. The simplest solution is the
use of array classes (such as the numpy nd-array [46]) that map physical quantities to multi-
dimensional arrays, where each index represents one parametric dimension. For example, the
array representing the probe may be five-dimensional with axes {c, m, λ, x1, x2}, where (x1, x2)
is a suitable sampling of the spatial coordinate x. For the implementation of the model, the
programmer has to find effective means to loop through these indices and to select or disregard
the value of an index, depending on its physical meaning. One objective of PtyPy as a framework
is to avoid such loops over memory buffer indices, as the same memory access pattern usually
persists for all iterations of the engine. Instead, the engine is meant to loop over a single list of
objects in which access rules for all memory buffers are stored.

The exit wave introduced in equation (2.12) can be seen to be the most elementary element to
loop over as depicted in figure 2. In PtyPy, the information associated with a given exit wave is
stored in a light-weight class called Pod (for probe-object-diffraction). Each Pod instance (hereafter
simply referred to as pod) represents a unique combination of (j, λ, m, n), and thus stores access
rules (e.g. memory addresses or slicing coefficients) to the corresponding memory buffers as
described in table 1. In essence, a pod is equipped with everything to perform one coherent
propagation of the ptychographic model as illustrated by figure 3. By design, a collection of pods
alone suffices to calculate the forward model. The ‘Fourier modulus constraint’, imposed by the
measured diffraction data, can thus be implemented using only pod instances as we can see in the
following example.

(i) Example (Fourier projection in a difference map)

According to Thibault et al. [26], the Fourier constraint for a single wave φ propagation to the
far-field regime is given as

φit+1(x) = F̂
{
F

{
φit(x)

} √
I(v)

|F {
φit(x)

} |

}
= F̂

{
Fφit(v) · Υ (v)

}
, (3.1)

where Υ (v) is the correction factor for the Fourier modulus to comply with the measured
intensity data.
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data

exit

pod

probe object

pod pod pod

Figure 2. Schematic of PtyPy’s design principle. A ptychographic algorithm iterates over an assortment of objects called ‘pods’,
which are used as an abstraction layer between engine algorithms and the access to diffraction, probe and object array access.
(Online version in colour.)

Table 1. Attributes of a Pod instance (named pod) compared with their respective field representatives. In addition to
the exit wave buffer pod.exit, a pod keeps attributes to access probe and object buffers through pod.probe
and pod.object. It also carries access to diffraction data buffers (pod.diff) and the optional detector mask
(pod.mask). The reference to the forward and the backward propagator is held in two methods, pod.fw() and
pod.bw(), respectively.

pod attribute field representative

pod.probe pc(j),m,λ(x)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pod.object od(j),n,λ(x − yj). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pod.exit ψj,λ,m,n(x)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pod.diff Ij(s)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pod.mask Mj(s)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pod.fw Dλ,z(j)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

pod.bw D̂λ,z(j)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Within the difference map formalism with β = 1 [52], the Fourier modulus constraint is not
applied to the exit wave but rather to an expression involving the most recent updated probe, pit,
and object, oit, and the exit wave, ψ it−1

j , from the last iteration:

φit
j (x) = 2pit(x)oit(x − yj) − ψ it−1

j (x). (3.2)

The new set of exit waves is then

ψ it+1
j (x) =ψ it

j (x) + φit+1
j (x) − pit(x)oit(x − yj). (3.3)

For the most complex model (2.7), the input to the Fourier modulus constraint becomes

φit
j,m,n,λ(x) = 2pit

c,m,λ(x) · oit
d,n,λ(x − xj) − ψ it−1

j,m,n,λ(x). (3.4)
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Figure 3. Main attributes of the pod object. (a) Elements of a typical diffraction set-up. (b) Corresponding attribute accesses of
the Python object along the path of propagation. (c) Numerical arrays storing the data (Storage instances). View access to the
data is indicated by blue squares of equal size.
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Figure 4. Overview of the most important classes in PtyPy and how they relate to each other. The Pod class is the highest
level object. In order to be able to create the forward model, it contains a (data)–View instance for each entity (three are
shown) and a reference to the scan’s geometry in order to use the appropriate propagator. The View class mediates between
‘physical’ wavefields and ‘numerical’ data buffers, and, when applied to a Storage instance, it yields the two-dimensional data
representing the region of interest of the view. The Container class instance manages views and storages and there is one
Container instantiated for each entity. The Geometry class contains the scan geometry, i.e. distance from the detector to object
and pixel size, resolution, etc. It provides the numerical propagator for coherent forward and backward propagation. (Online
version in colour.)
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Now, we can formulate the ‘Fourier update’ in a similar manner to that in [29] where we sum over
all (coherent) exit waves that contribute to the same (partially coherent) signal in order to find the
correction factor,

Υj(s) = 1 − Mj(s) +
Mj(s)

√
Ij(s)√∑

λ̃,m̃,ñ |Dλ,z{φit
j,λ̃,m̃,ñ

(x)}|2
. (3.5)

Finally, we replace the Fourier transform with an arbitrary propagator (2.6),

φit+1
j,m,n,λ(x) = D̂λ,z{Dλ,z{φit

j,m,n,λ(x)} · Υ (s)} (3.6)

and
ψ it+1

j,m,n,λ(x) =ψ it
j,m,n,λ(x) + φit+1

j,m,n,λ(x) − pit
j,m,λ(x) · oit

j,n,λ(x − xj). (3.7)

In the following, we show a possible implementation of the ‘Fourier’ modulus constraint using
the Pod class of PtyPy. The function fourier_update takes as input a Python dictionary of pods
that belong to the same scan point index (j). All these pods represent the mixed states and spectral
compositions of the experiment. The associated exit waves ψ it

j,λ,m,n are updated simultaneously as
the feedback factor Υ (s) from the Fourier update is the same for one diffraction pattern.

1 def fourier_update(pods):
2 pod = pods.values()[0]
3 # Get Magnitude and Mask.
4 mask = pod.mask
5 modulus = np.sqrt(np.abs(pod.diff))
6 # Create temporary buffers.
7 Imodel = np.zeros_like(pod.diff)
8 err = 0.
9 Dphi = {}

10 # Propagate the exit waves.
11 for gamma, pod in pods.iteritems():
12 Dphi[gamma] = pod.fw(2.*pod.probe*pod.object - 1.*pod.exit)
13 Imodel += Dphi[gamma] * Dphi[gamma].conj()
14 # Calculate common correction factor.
15 factor = (1-mask) + mask * modulus / (np.sqrt(Imodel) + 1e-10)
16 # Apply correction and propagate back.
17 for gamma, pod in pods.iteritems():
18 df = pod.bw(factor*Dphi[gamma]) - pod.probe*pod.object
19 pod.exit += df
20 err += np.mean(np.abs(df*df.conj()))
21 # Return difference map error on exit waves.
22 return err

(c) Data constructs and access
The Pod class is convenient when accessing data from the buffer arrays but these arrays also need
to be created, managed and contained by other objects. PtyPy provides three other basic classes for
data storage and access. For a compact overview, see figure 4.

View In numerical computations, we cannot work with infinitely extended wavefields, but
rather with compact rectangular regions. A View instance (hereafter view) stands for such
a region and is characterized by its extent and the physical position of its centre relative
to the wavefields coordinate origin. A pod therefore comprises a view for each of the five
entities probe, object, exit wave, diffraction data and mask. The number of views scales
with the number of scan points.

Storage A Storage instance (hereafter storage) is a numerical array associated with a physical
coordinate system. It represents a set of wavefields that share the same coordinate system.
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It can adapt its internal array size dynamically depending on those parts of the wave field
that are requested by views. The number of storages scales roughly with the number of scans
that are being organized by PtyPy. Applying a view to a storage yields the two-dimensional
array which is sliced from the storage’s data array and represents the numerical data for
the view’s physical extent:
storage[view] = data (2d)

Container A Container instance (hereafter container) holds all views and storages that belong to the same
entity in ptychography. In contrast to the View class and the Storage class, there are only five
base Container instances in PtyPy, one for each entity. The number of storages depends on the
number of scans and their sharing behaviour. Applying a view to its container is the same as
applying the view to its associated storage in the container:
container[view] = data (2d).

A container is also capable of creating copies of itself (clones) or performing basic mathematical
operations which it will relay to all its storages’ internal data buffers. The ability to clone is
important for algorithms to provide temporary data buffers that behave like one of the entities. In
addition to basic in-place maths operations, the container is also capable of communicating its data
among processes in the case where the same PtyPy reconstruction runs in parallel on many nodes
(figure 1).

(i) Example (overlap projection in a difference map)

In its simplest form [26], the probe and object update can be written as

oit+1(x) =
∑

j[p
it(x + yj)]

∗ · ψ it(x + yj)∑
j |pit(x + yj)|2

(3.8)

and

pit+1(x) =
∑

j[o
it(x − yj)]

∗ · ψ it(x)∑
j |oit(x − yj)|2

. (3.9)

If we include the model mentioned in §2a, we have to sum also over shared data and other modes
of the probe and object. For one of the objects od, we have to restrict the update to those scan point
indices i that contribute to that object, i.e. i ∈ {j | d(j) = d}:

oit+1
d,n,λ(x) =

∑
i,m[pit

c(i),m,λ(x + yi)]
∗ · ψ it

i,m,n,λ(x + yi)∑
i,m |pit

c(i),m,λ(x + yi)|2
. (3.10)

The same holds true for the probes. For probe c, we pick the indices i ∈ {j | c(j) = c} and arrive at a
similar expression:

pit+1
c,m,λ(x) =

∑
i,n[oit

d(i),n,λ(x − yi)]
∗ · ψ it

i,m,n,λ(x)∑
i,n |oit

d(i),n,λ(x − yi)|2
. (3.11)

Other than the Fourier update (p. 11), the probe and object update require a copy of the same kind
as the probe and object in order to calculate the denominator in the equations above. Despite the
complexity in (3.10) and (3.11), the algorithmic implementation in PtyPy resembles very much (3.8)
and (3.9) regarding its simplicity.

24 def probe_update(probe, norm, pods, fill=0.):
25 probe *= fill
26 norm << fill + 1e-10
27 for name, pod in pods.iteritems():
28 if not pod.active: continue
29 probe[pod.pr_view] += pod.object.conj() * pod.exit
30 norm[pod.pr_view] += pod.object * pod.object.conj()
31 probe.allreduce() # MPI call
32 norm.allreduce() # MPI call
33 probe /= norm
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In addition to the probe container, the update functions require a container of similar shape which
is called norm here. Access to the data of that container happens through the probe-view as norm

was initially a copy of probe. As announced before, we note the in-place operation ‘*=’, ‘«’ and
‘/=’ in lines 25, 26 and 33, respectively, and the parallel reduction calls in lines 31 and 32 which
perform a sum (if no argument is given).

The object update is of a similar kind and benefits in its simplicity additionally from the
implicit shift of the object views.

35 def object_update(obj, norm, pods, fill=0.):
36 obj *= fill
37 norm << fill + 1e-10
38 for pod in pods.itervalues():
39 if not pod.active: continue
40 pod.object += pod.probe.conj() * pod.exit
41 norm[pod.ob_view] += pod.probe * pod.probe.conj()
42 obj.allreduce() # MPI call
43 norm.allreduce() # MPI call
44 obj /= norm

We observe that, although the model can be very complex, the algorithmic core stays compact
and simple. There is no ‘boilerplate code’ from nested loops and no indexing of memory buffers.
The functions are also compatible to parallel execution with MPI.

(d) A cross-referenced network
All instances of the basic classes defined in PtyPy are accessed through multiple cross-references.
The highest-level entry point is the object ptycho, which gives direct access to all pods
(ptycho.pods), the five Container instances for the five entities (ptycho.probe, ptycho.obj,
etc.) and the scan geometries. Other objects are accessed through a hierarchy of attributes.
For instance, ptycho.diff.views provides access to all diffraction data frames, while
view.owner refers to the container that holds the view.

(i) Example (a simple difference map algorithm)

Provided with a ptycho instance and the functions mentioned before, we are able to write a
simple reconstruction engine.

46 def iterate(ptycho, num):
47 # generate container copies
48 obj_norm = ptycho.obj.copy(fill=0.)
49 probe_norm = ptycho.probe.copy(fill=0.)
50 errors = []
51 for i in range(num):
52 err = 0
53 # fourier update
54 for di_view in ptycho.diff.V.itervalues():
55 if not di_view.active: continue
56 err += fourier_update(di_view.pods)
57 # object update
58 object_update(ptycho.obj, obj_norm, ptycho.pods,0.1)
59 # probe update
60 probe_update(ptycho.probe, probe_norm, ptycho.pods,0.0)
61 # print error
62 errors.append(err)
63 if i % 3==0: print i,err
64

65 # cleanup
66 ptycho.obj.delete_copy([obj_norm.ID])
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67 ptycho.probe.delete_copy([probe_norm.ID])
68 #return error
69 return errors

Certainly, the example engine iterate requires a compatibly-built Python object instance
ptycho to actually work. Depending on an extensive input parameter tree, PtyPy provides a
ptycho instance along with the pods and initialized storages for the probe and object. More
information on this initialization procedure can be found in the source code or the tutorials
provided in the electronic supplementary material.

4. Examples

(a) Visible light ptychography of a standard resolution target
As a first experimental demonstration of the package, we present a reconstruction from a simple
laser diffraction experiment using a set-up similar to one previously reported [53]. In this
experiment, an aperture and a sample are placed along the optical path between an LED laser
(650 nm wavelength) and a CCD. The aperture, a hole pierced in a piece of cardboard with a fine
needle, produces at the sample plane 11.5 mm downstream an illumination with high angular
diversity, as shown by its reconstruction in figure 5a. The back-propagated illumination at the
aperture plane is shown in figure 5b and a diameter of roughly 300 µm can be observed.

The detector, a Fingerlakes P1001 monochrome CCD camera, is placed 145 mm behind the
sample plane. An additional neutral density filter upstream of the camera is used to match
the laser intensity with the minimal CCD exposure time to avoid overexposure. The diffraction
images are binned by 3 × 3, creating effective detector pixels of 72 × 72 µm area. In total, 201
diffraction images were acquired on a non-periodic grid in a square area of 2 mm side length.
The resolution of roughly 100 mm−1 and a total photon count of roughly 2.38 × 109 results
in about 104 photons per reconstruction pixel. After acquisition, the diffraction data were
processed into PtyPy’s hdf data format as described in the electronic supplementary material
(http://ptycho.github.io/ptypy/rst/data_management.html#ptyd-file).

The ptychographic reconstruction of a USAF optical resolution target is shown in figure 5c.
For this reconstruction, we used the code snippets presented in the previous section of this
manuscript. The remaining part of the reconstruction script is given below.

71 ## Reconstruction script starts here ##
72 import numpy as np
73 from ptypy import utils as u
74 from ptypy.core import Ptycho
75

76 # Create input parameter tree.
77 p = u.Param()
78 p.verbose_level = 3
79 p.data_type = "single"
80 p.scan = u.Param()
81 p.scans = u.Param()
82

83 # Describe data source.
84 p.scans.usaf = u.Param()
85 p.scans.usaf.data = u.Param()
86 p.scans.usaf.data.source = ’file’
87 p.scans.usaf.data.dfile = ’test_pattern_roi.ptyd’ # same directory
88

89 # Describe initial guess for illumination
90 p.scans.usaf.illumination = u.Param()
91 p.scans.usaf.illumination.aperture = u.Param()

http://ptycho.github.io/ptypy/rst/data_management.html#ptyd-file
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92 p.scans.usaf.illumination.aperture.size = 300e-6
93

94 # Pass input parameters to Ptycho instance, level=2 will create the pods.
95 P = Ptycho(p, level=2)
96

97 # Run reconstruction.
98 errors = iterate(P,120)
99

100 # Save reconstruction.
101 P.save_run(’test_pattern_DM120.ptyr’)

The noise visible in the object reconstruction originates from the absence of any
corrective measures in the algorithm such as a Fourier relaxation threshold [54] or gradient
regularization [29]. However, noise correction was left out on purpose to not misdirect the reader
from the core principles by filling the presented code with non-essential instructions. The full
capabilities of the mature reconstruction engines are demonstrated in the next section.

(b) X-ray ptychography of a zone plate at a synchrotron facility
A ptychographic dataset of a zone plate was acquired on a rectangular raster grid pattern with
100 nm step size at a photon energy of 6.8 keV. The probe was a cone beam formed from a pinhole
aperture in front of a focusing zone plate optic. A photon counting detector of 172 µm pixel size
recorded diffraction images 2.19 m downstream behind the zone plate specimen. These data were
originally published in [7]. We refer to that publication for more details.

Here, a 7 × 7 µm region of the original data is reconstructed with PtyPy using 300 iterations of
DM with a subsequent ML refinement of 300 iterations. Five probe modes are allowed to account
for possible decoherence effects.

We notice that the object transmission can be recovered in fine detail as shown by figure 6a,b.
More specifically, the reconstruction quality is higher than the original as emphasized by panels
(i)–(n), which compare selected regions with the original and the new reconstruction. It is a
surprising result as only 25% (i.e. 35 × 35 of 70 × 70 scan points) of the available diffraction
patterns are used in this reconstruction. One reason that may have prevented the original
algorithm from resolving the specimen with fine detail can be found in the mode decomposition
(figure 6c–e) of the probe: a significant amount of energy (35%) is accumulated in secondary
modes indicating that the illumination onto the pinhole was not entirely coherent.

5. Conclusion
In this paper, we have shown that many different models of ptychography may be unified into
a single model. We showed how a small set of abstract Python classes can be used to capture
this model in a cross-referencing network. The references (API) exposed by the network were
used to demonstrate how algorithms may be written in a way that is agnostic of the underlying
physical geometry—an important trait for decoupling the algorithmic implementation from
experimental specifications. We showed that many of today’s applications are included in the
formalism presented here, and it is our opinion that many future problems of ptychography may
be rephrased in a similar manner to extend the scope of our framework.

PtyPy currently provides parallel computation of distributed data, an abstract loading class to
accommodate different instruments and storage environments, and a defined structure for raw
and reconstructed data. As a framework, it exposes all its functions and classes to the user for
free adaptation and provides a rich set of utility functions of practical use for many aspects of
ptychography. The future roadmap includes GPU accelerated algorithms, on-the-fly adaptation
and control of engine parameters as well as additional plug-ins for beamlines or other instruments
that wish to use PtyPy for ptychographic reconstructions.
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