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1 Introduction

It has long been appreciated that symmetry principles play a major role in our under-

standing of physical systems. Symmetries involving transformations of space and time are

particularly powerful and lead to various constraints on the dynamics of quantum field

theories (QFTs). An important example is that of the conformal symmetry: in many in-

teresting cases, this symmetry provides a handle on the strongly coupled regime of QFTs,

leading to applications ranging from critical phenomena to string theory, see e.g., [1].

In the context of condensed matter theory, it is often the case that systems are governed

at long distances by emergent symmetries that are different from the symmetries of the

underlying microscopic theory. There is a-priori no reason why such effective symmetries

should be relativistic, i.e., why they should include the Lorentz symmetry group. As a

consequence, many models have been proposed for condensed matter systems which are

non-relativistic. In many cases we expect the system to be invariant under rotations, but

additional symmetries could further restrict the dynamics. In particular, at criticality the
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system is expected to gain a scaling symmetry, which can treat space and time differently

in the absence of a boost symmetry. For example, systems invariant under the Lifshitz

group including an anisotropic scaling of space and time t → λzt, xi → λxi, where z is

the dynamical critical exponent, were suggested as a potential explanation of the linear

resistivity of strange metallic phases, see, e.g., [2, 3].

A particularly interesting case is that of systems which besides rotations and scaling

(with z = 2) also enjoy an invariance under Galilean boosts and under a certain special

conformal transformation. This symmetry is called Schrödinger symmetry, and it can be

thought of as a non-relativistic analogue of the conformal symmetry [4–6]. Though less

powerful than its relativistic counterpart, this is arguably the most promising candidate to

provide a starting point for a non-relativistic bootstrap program, and some first steps in

that direction have been made in [6–10]. A notable example governed by the Schrödinger

symmetry is that of scattering of non-relativistic 3+1 dimensional spin-1/2 fermions in the

infinite S-wave scattering length limit, also known as fermions at unitarity, see, e.g., [5, 6,

11]. This model has applications ranging from scattering in nuclear physics (characterized

by an accidentally large scattering length) to experimentally-tunable ultra-cold atomic

systems (see, e.g., the introduction of [8] for a more detailed list of the relevant references).

Field-theoretic descriptions can be given in terms of Schrödinger scalar fields driven to

criticality by cubic or quartic interactions [12–14].

At low energies, not only can symmetries emerge, but even the effective field content

of theories can differ from that of the underlying microscopic constituents. In condensed

matter physics, one often encounters effective theories with emergent gauge fields. It is

therefore natural to ask whether it is possible to incorporate interactions with gauge fields in

non-relativistic effective field theories, and possibly find new fixed points with Schrödinger

symmetry. In 2+1 dimensions, an action for gauge fields with the right symmetry is

the Chern-Simons (CS) term. Indeed, another notable example of Schrödinger-invariant

quantum field theory, which describes anyons, is obtained by coupling a CS gauge field to

a Schrödinger scalar [6, 15–20].

A different type of Schrödinger-invariant gauge theory, that can be defined in any

number of space dimensions, has been proposed in the literature [21–23]. This theory can

be obtained from two different non-relativistic limits of Maxwell’s equations, known as

the electric and magnetic limits [21], combined in a Galilean-invariant Lagrangian using

auxiliary fields [22].1 It can also be derived from a non-relativistic limit of the theory of a

gauge field and a real scalar field, and from a null reduction of relativistic Maxwell theory

in one higher dimension [22, 23, 26]. We refer to this theory as Galilean electrodynamics

(GED). Previous studies of GED considered classical aspects of the theory, in particular

its spacetime symmetries. In this paper we initiate a study of the quantum mechanical

properties of GED coupled to a Schrödinger scalar. The goal of finding new non-relativistic

critical points motivates us to consider the case of 2+1 dimensions, in which the gauge

1In fact, the theory obtained in this way has a larger, infinite-dimensional spacetime symmetry group [23],

including independent time and space dilatations (for symmetries of the electric and magnetic limits see,

e.g., [24, 25]). However, in this paper we are interested in the theory of the gauge field coupled to a

Schrödinger matter field and that reduces the symmetry to the Schrödinger group.
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coupling is marginal according to the z = 2 scaling. We compute the beta functions of all

couplings involved, and study their zeroes, indeed finding novel examples of Schrödinger-

invariant quantum field theories.

The GED Lagrangian [22, 23] is constructed using the gauge field (at, ai) together with

an additional scalar field ϕ in the same Galilean multiplet, which is both dimensionless (in

an anisotropic z = 2 scaling sense) and inert under all the symmetries of the problem.2

Without coupling to matter this theory does not contain propagating degrees of freedom.

This is due to the fact that the velocity of light is infinite in non-relativistic theories.

Therefore, similarly to CS theories with non-relativistic matter [18], the gauge fields serve

as instantaneous mediators of interactions between the matter fields. To introduce prop-

agating degrees of freedom into the theory, we couple it to a scalar matter field σ with a

Schrödinger-like action. Together, the action reads3

S
(0)
sGED =

∫
dt d2x

{
1

2
ϕ̇2 + Ei∂iϕ−

1

4
f ijfij +

i

2

(
σDtσ − σDtσ

)
− 1

2M
DiσD

iσ

}
, (1.1)

where the spatial field-strength and electric field are defined as fij ≡ ∂iaj − ∂jai and

Ei ≡ ∂tai − ∂iat, respectively, and the covariant derivatives are Dt = ∂t − i e q at and Di =

∂i−i e q ai with e the gauge coupling and q = +1 (−1) the charge of σ (σ̄). The combination

M ≡ Ω− eϕ encodes the minimal coupling of the field ϕ to the matter field through a shift

of its mass parameter Ω. We will sometimes refer to the parameter M as the covariantized

mass/gap from reasons that will become clear in section 2.2 when we discuss the relation of

our model to null reduction. Here the coefficient of the scalar spatial kinetic term (2M)−1

should be understood as a series expansion in eϕ, encapsulating infinitely many couplings.

The existence of the dimensionless scalar ϕ allows to construct infinitely-many

classically-marginal operators, whose couplings turn out to have nonzero beta functions.

We add to the GED action (1.1) the following action

∆SsGED =

∫
dt d2x

{
J [M ] ∂iM∂iM σσ−λ

4
V[M ] (σσ)2−E [M ]

(
∂i∂

iM−e2 σσ
)
σσ

}
, (1.2)

including a subset of those couplings. Similarly to the matter kinetic term discussed above,

the couplings J [M ], V[M ] and E [M ] should be understood as a series expansion in eϕ,

e.g., J [M ] = J0 + eJ1ϕ+ e2J2ϕ
2 + . . .. This subset of marginal couplings is closed under

quantum corrections, namely, they mix among themselves but do not generate additional

marginal couplings. In the process of evaluating the beta functions, we discuss the regu-

larization of loop integrals in this non-relativistic setup.

We prove a set of non-renormalization theorems which allow us to deduce that the

electromagnetic coupling e does not run at any loop order. We explain how to consistently

evaluate the beta function(al)s for the infinitely many couplings J [M ], V[M ] and E [M ]

using a background-field method, similar to the calculation of the beta function in two-

2As we will show later, the additional scalar ϕ contributes to the Galilean boost transformations of the

other gauge field components.
3Here and in the following, we use the subscript sGED to denote GED coupled to a scalar field.
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dimensional σ-models, see e.g., [27], and obtain at the one-loop order

βJ [M ] =
e2

2π

(
J ′[M ] +

5

8M4

)
,

βλV[M ] =
e4

2π

(
4J [M ] +

5

8M3

)
+
λ e2

2π

(
2V ′[M ] +

V[M ]

2M

)
+
λ2

4π
MV[M ]2 ,

βE[M ] =
e2

2π

(
E ′[M ] +

1

4M3

)
.

(1.3)

Fixed-points of the theory can be obtained by setting to zero the beta function(al)s above.

These fixed point are only reliable when e is very small, since they were obtained at

one-loop, but their existence is robust and their location can be systematically corrected

order by order in perturbation theory (i.e., they are not due to beta functions identically

vanishing at leading order). We find that the theory has a manifold of fixed points labeled

by e and the constants of integration which appear when solving the differential equations

for the vanishing of the beta functionals (1.3). We demonstrate that the theories obtained

at these fixed points are Schrödinger invariant and discuss their properties.

The appearance of conformal manifolds, i.e., continuous families of fixed points

parametrized by exactly marginal couplings, is rather surprising. In the context of or-

dinary, relativistic CFTs, conformal manifolds are ubiquitous in the presence of supersym-

metry [28, 29], but it is much harder to find examples in non-supersymmetric theories in

more than two spacetime dimensions.4 Examples can be found by giving up unitarity,

e.g., in fishnet theories [34, 35], or by giving up locality, e.g., in the context of boundary

CFTs [36–38]. Another example was found recently in a certain large N vector model [39].

Here we see that giving up Lorentz symmetry can also lead to conformal manifolds of the

non-relativistic type, i.e., obeying Schrödinger symmetry. Another non-relativistic exam-

ple, albeit in a supersymmetric setup, appeared in [40], which found a line of fixed points

with exact Lifshitz scale invariance. Ultimately, the existence of the continuous family of

fixed points in our theory is due to the non-renormalization theorems, and it can be traced

back to the fact that only processes that conserve the particle number are allowed in the

non-relativistic limit, severely restricting the possible quantum corrections.

The paper is organized as follows. In section 2, we present basic facts about the

Schrödinger symmetry group as well as the action, equations of motion, symmetries and

currents for GED coupled to a scalar field. In section 3, we explain how our model gives

rise to non-renormalization theorems which prevent the running of certain couplings. In

section 4, we present the Feynman rules and perform the perturbative analysis. We con-

clude with a discussion of our results in section 5. In appendix A, we review how generators

of the Schrödinger group can be constructed from the stress tensor and particle number

current. In appendix B, we detail the technique we used to evaluate the integrals in our

calculation of Feynman diagrams. In appendix C, we list the results for the Feynman dia-

grams relevant for the calculations in section 4. Finally, in appendix D we clarify the role

played by the field redefinition presented in section 2 in the renormalization process.

4See [30–33] for a discussion of the constraints that need to be satisfied in order for a conformal manifold

to exist.
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2 Classical aspects and symmetries

In this section, we review a number of preliminary ingredients required for understanding

the analysis of this paper. We start by reviewing some basic facts about the Schrödinger

symmetry group. We then turn to the theory of Galilean electrodynamics (GED) coupled

to matter which we have chosen in this paper to be a single charged Schrödinger scalar

field with bosonic statistics.5 We refer to the theory with the scalar as scalar Galilean

electrodynamics (sGED). We systematically classify all the marginal interaction terms for

this theory and derive the equations of motion. The theory of sGED enjoys a Schrödinger

symmetry and we compute the associated conserved currents. The quantum properties of

sGED are explored later in sections 3 and 4.

2.1 Schrödinger symmetry

We work in d+ 1 spacetime dimensions, denoting time by t and spatial coordinates by x ,

with components xi, i = 1, . . . , d. The Schrödinger symmetry is a non-relativistic analogue

of the conformal symmetry obeyed, e.g., by the free Schrödinger equation. Its algebra

consists of time translations (infinitesimally δt = ξt), space translations (δxi = ξi), space

rotations (δxi = ωij x
j , with ωij anti-symmetric), Galilean boosts (δt = 0, δxi = vit),

anisotropic z = 2 dilatations (δt = 2λt, δxi = λxi) and special conformal transformations

(δt = −ct2, δxi = −ctxi), see, e.g., [5]. For later purposes it will be useful to also have the

transformation of the derivatives under Galilean boosts

∂t → ∂t − vi∂i , ∂i → ∂i . (2.1)

We assign to these various transformations the following set of generators

ξt : time translation H ,

ξi : space translations Pi ,

ωij : spatial rotations Jij ,

vi : Galilean boosts Gi ,

λ : dilatations D ,

c : special conformal transformations C .

The generators also admit a central extension in terms of a mass associated with an extra

generator N . This generator is related to particle number conservation (up to a constant

5There is no spin-statistics theorem for non-relativistic theories. Hence, the Schrödinger scalar could in

principle satisfy either bosonic or fermionic statistics. However, some of the interaction terms we include

below, e.g., (σ̄σ)2, would vanish for fermionic statistics. We comment further on this point in the discussion

in section 5.
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pre-factor). The generators satisfy the following algebra (see, e.g., [41])6

[Jij , Jkl] = δikJjl + δjlJik − δilJjk − δjkJil,
[Jij , Pk] = δikPj − δjkPi, [Jij , Gk] = δikGj − δjkGi,

[D,H ] = −2H, [D,Pi] = −Pi, [D,Gi] = Gi, [D,C] = 2C,

[Pi, Gj ] = −δijN, [H,C] = D, [H,Gi] = −Pi, [Pi, C] = −Gi.

(2.2)

The various symmetry generators above can be expressed in terms of the energy density

T tt, the energy flux T it, the momentum density T ti, the momentum flux T ij , the U(1) mass

density J tm and the mass flux J im (also often referred to as the mass current). We summarize

these expressions for the symmetry generators in appendix A; also see [43, 44]. The stress

tensor and mass current satisfy a number of conditions following from the Schrödinger

symmetry (see also [17, 45] and appendix A of [43]). First, invariance under space and

time translations implies that the energy momentum tensor is conserved,

∂tT
t
t + ∂iT

i
t = 0, ∂tT

t
i + ∂jT

j
i = 0 . (2.3)

Invariance under spatial rotations implies that the spatial components of the stress ten-

sor are symmetric, i.e., T ij = T ji . Invariance under Galilean boosts implies that the

momentum density and mass flux are equal to each other

T ti = J im . (2.4)

Invariance under the global U(1) symmetry associated with the central extension N implies

that the associated current is conserved

∂tJ
t
m + ∂iJ

i
m = 0 . (2.5)

Finally, conformal invariance implies that the stress tensor can be improved such that7

2T tt + T ii = 0 . (2.6)

The above identities can be derived from the Noether theorem, or alternatively by placing

the theory on a curved background with a Newton-Cartan geometry and taking variations

with respect to the background fields, see, e.g., [45, 46].

2.2 Scalar Galilean electrodynamics

From now on, we will focus our attention on (2+1)-dimensions. The GED theory is defined

in terms of a U(1) gauge field, (at , ai), i ∈ {1, 2}, together with an additional scalar field

ϕ in the gauge multiplet. The field ϕ is invariant under both U(1) gauge transformations

6To obtain a Hermitian basis of generators, similar to those used in, e.g., [6, 42], we could redefine all

generators by a factor of −i.
7Invariance under dilatations only implies that 2T tt + T ii = ∂tS + ∂jW

j . See appendix A of [43] or

section 9 of [44] for further details.
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and Galilean boosts. Let us start by clarifying the role of this additional scalar ϕ. The

U(1) gauge transformations are given by

at → at + ∂tε , ai → ai + ∂iε , ϕ→ ϕ . (2.7)

At first sight, we expect the gauge fields to transform under boosts in a similar way to the

temporal and spatial derivatives, see eq. (2.1), i.e.,

a′t(t
′,x′) = at(t,x)− viai(t,x) ,

a′i(t
′,x′) = ai(t,x) ,

(2.8)

in such a way that covariant derivatives of charged matter fields will transform covariantly

under Galilean boosts.

Under the transformation rules (2.7) and (2.8), the only quadratic gauge and Galilean

boost-invariant action is a spatial Maxwell-like kinetic term of the form

SGM =

∫
dt d2x

(
−1

4
fijf

ij

)
, (2.9)

where here and in the following we define the gauge invariant field strengths as

Ei ≡ ∂tai − ∂iat , fij ≡ ∂iaj − ∂jai , (2.10)

and refer to Ei as the electric field and to fij as the magnetic field. The action (2.9)

depends only on the magnetic field. However, once the additional scalar ϕ is included, a

Galilean and gauge-invariant action can be constructed, which will involve both the electric

and magnetic fields.8

The theory obtained in this way is referred to as Galilean Electrodynamics (GED) and

was previously studied in [22, 23] as a Lagrangian constructed in order to combine the

electric and magnetic limits of Le Bellac and Lévy-Leblond [21]. The theory is described

by the following kinetic action for the gauge fields

SGED =

∫
dt d2x

(
1

2
ϕ̇2 + Ei∂iϕ−

1

4
f ijfij

)
, (2.11)

where the dot stands for a derivative with respect to the time coordinate.9 To make the

action (2.11) invariant under Galilean boosts, the Galilean boost transformations need to

8Note that in 2+1 dimensions there is also a parity-odd Galilean-invariant term that can be added to the

action (2.9), namely the Chern-Simons term εµνρaµ∂νaρ with µ, ν, ρ ∈ {t, 1, 2}. The spatial Maxwell+CS

gauge theory can then be coupled to a Schrödinger scalar with the quartic interaction λ(σ̄σ)2. Up to

equations of motion, however, the addition of the spatial Maxwell term is equivalent to a shift in the quartic

coupling. Therefore, this addition can be absorbed by a field redefinition, and the beta function for λ follows

straightforwardly from the calculation without the extra spatial Maxwell term. The theory of a CS gauge

field coupled to a Schrödinger scalar with quartic interaction is discussed in the context of anyons [6, 18].
9It turns out that the GED action is the unique quadratic action (at second order in derivatives) which

can be constructed with the addition of a gauge-invariant scalar field ϕ to the gauge multiplet, and which

is invariant under gauge, Galilean boosts and a z = 2 anisotropic scaling symmetry.
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be modified by ϕ-dependent terms and are given by [23]

a′t(t
′,x′) = at(t,x)− viai(t,x)− 1

2
vivi ϕ(t,x) ,

a′i(t
′,x′) = ai(t,x) + vi ϕ(t,x) ,

ϕ′(t′,x′) = ϕ(t,x) .

(2.12)

Note that the spatial Maxwell term (2.9) by itself is no longer invariant under the Galilean

boosts in eq. (2.12).10

The theory in eq. (2.11) was originally derived as a null-reduction of a relativistic

Maxwell theory in 3+1 dimensions [22, 23]. Explicitly, one reduces the Maxwell action along

the x+ null direction of the following coordinate system: ds2 = 2dx+dx−+(dxi)2, where the

four-dimensional gauge field A is related to the GED fields as follows: AI ≡ (A+,A−,Ai) =

(ϕ, at, ai). The gauge fields are taken to be independent of the x+ coordinate, while the x−

coordinate plays the role of the time t in the (2+1)-dimensional theory. The Schrödinger

scalar, which we couple to GED below, can also be obtained by null-reducing a relativistic

complex scalar field according to Φ(x+, x−, xi) = eiΩx
+
σ(x−, xi). In fact, this reduction

can be seen as the origin of the recurring combination M ≡ Ω − eϕ (see below), which is

simply the covariant derivative in the x+ direction.11

The theory (2.11) is invariant under anisotropic z = 2 scaling. In our analysis below,

it will be convenient to keep track of the anisotropic scaling dimensions of various fields

and coordinates:

[t] = −2 , [xi] = −1 , [at] = 2 , [ai] = 1 , [ϕ] = 0 , (2.13)

such that Lagrangian densities have a scaling dimension of [L] = d + 2 and actions are

dimensionless.

One may consider self-interactions in the gauge sector, around the fixed point defined

by the free theory in eq. (2.11). Up to integration by parts, the independent marginal

interactions are

G1[ϕ]ϕ

(
1

2
ϕ̇2 + Ei∂iϕ−

1

4
f ijfij

)
+ G2[ϕ]

(
∂iϕ∂iϕ

)2
+G3[ϕ]ϕ∂i∂jϕ∂i∂jϕ+ G4[ϕ] ∂i∂jϕ∂iϕ∂jϕ ,

(2.14)

where, Gi[ϕ] , i = 1, . . . , 4 are functions of ϕ, which should be understood as a Taylor expan-

sion in eϕ . In section 3, we prove a non-renormalization theorem which states that none

of the interaction terms in (2.14) will be generated along the renormalization group (RG)

flow at any loop order when we couple the free GED theory (2.11) to a Schrödinger scalar.

Therefore, we will focus on the minimal setup with the GED action defined in eq. (2.11).

10Similarly, the Chern-Simons term εµνρaµ∂νaρ is no longer invariant under Galilean boosts after the

addition of the ϕ dependent contributions to the transformation laws (2.12).
11Let us further note that applying the null reduction to the θ-term in Maxwell’s theory in four dimensions,

i.e., εµνρσFµνFρσ results in a (2 + 1)-dimensional action proportional to εij
(
2 ∂iϕEj − ∂tϕfij

)
. Unlike the

relativistic θ-term, this term is a total derivative of a gauge-invariant term and hence it can be ignored for

spacetime manifolds without boundaries.

– 8 –
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The theory (2.11) does not possess propagating degrees of freedom. This can be seen

by exploring the structure of the poles in the gauge field propagator, or alternatively by

a Dirac constraint analysis, see, e.g., [47].12 To introduce some propagating degrees of

freedom, we couple the GED theory to a Schrödinger scalar field σ. The Schrödinger field

transforms under U(1) gauge as

σ → σ eieε , (2.15)

and under Galilean boosts as

σ′(t′,x′) = exp

[
iΩ

(
1

2
v2t+ vix

i

)]
σ(t,x) , (2.16)

where Ω is a constant mass parameter. In the absence of the scalar field ϕ, the above

transformation laws leave the Schrödinger action

S(0)
σ =

∫
dt d2x

[
i

2

(
σDtσ − σDtσ

)
− 1

2Ω
DiσDiσ

]
(2.17)

invariant, where the covariant derivatives are defined as usual by

Dtσ =
(
∂t − ieat

)
σ , Diσ =

(
∂i − ieai

)
σ ,

Dtσ =
(
∂t + ieat

)
σ , Diσ =

(
∂i + ieai

)
σ .

(2.18)

With the addition of the scalar ϕ , however, the action (2.17) is no longer invariant. This

situation can be remedied by the following change [23]:

S
(0)
σ,GED =

∫
dt d2x

[
i

2

(
σDtσ − σDtσ

)
− 1

2M
DiσDiσ

]
, (2.19)

where the parameter

M ≡ Ω− eϕ (2.20)

“covariantizes” the mass parameter Ω in the denominator of the scalar spatial kinetic term

in eq. (2.17). This particular modification of the scalar action is required in order to

maintain boost invariance with the transformation rules in eq. (2.12). The coefficient of

the scalar spatial kinetic term involves a negative power of M and should be understood

as a series expansion in eϕ.13

The presence of the dimensionless scalar ϕ, which is inert under Galilean boosts and

gauge transformations, implies that the space of possible couplings allowed is actually

much larger than those encapsulated in the (2M)−1 term in equation (2.19). Keeping only

12We explicitly demonstrate this later in section 4 by showing that the pole in the gauge field propa-

gator does not have any frequency dependence. As a consequence, in position space, the propagator is

instantaneous in time.
13We could have started our analysis with the Lagrangian iM

(
σDtσ − σDtσ

)
− DiσDiσ which looks

simpler at the classical level because ϕ appears linearly. Even with this choice, however, infinitely many

quantum corrections will be generated, which together are equivalent to negative powers of M . This is

because the two Lagrangians are related by a field redefinition and they are equivalent at the quantum level.
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marginal terms, we consider the most general action given by

SsGED =

∫
dt d2x

{
1

2
ϕ̇2 + Ei∂iϕ−

1

4
f ijfij (2.21)

+ C[M ]

[
i

2

(
σDtσ − σDtσ

)
− 1

2M
DiσDiσ

]
− P [M,∂i]σσ −

1

4
λQ[M ] (σσ)2

}
.

The functions C[M ] and Q[M ] are power series in ϕ , which encode the kinetic term of the

matter scalar σ as well as various interaction terms. Similarly, P(M,∂i) is a power series

in M , ∂iM and ∂i∂
iM containing exactly two spatial derivatives. We may further simplify

the action (2.21) by performing a field redefinition,

σ → σ√
C[M ]

, (2.22)

which yields

SsGED =

∫
dt d2x

{
1

2
ϕ̇2 + Ei∂iϕ−

1

4
f ijfij +

i

2

(
σDtσ − σDtσ

)
− 1

2M
DiσD

iσ (2.23)

+ J [M ] ∂iM∂iM σσ − 1

4
λV[M ] (σσ)2 − E [M ]

(
∂i∂

iM − e2σσ
)
σσ

}
,

where the subscript sGED stands for scalar Galilean electrodynamics. Here, J [M ], V[M ]

and E [M ] are power series in eϕ that encode the infinitely many couplings of the theory.

As we show later in section 4, the inclusion of these couplings is forced upon us by the RG

flow. The action (2.23) is invariant under the full Schrödinger group as we demonstrate in

the next subsection.14 In appendix D, we show explicitly that the classical field redefini-

tion (2.22) does not affect the properties of the theory at the quantum mechanical level.

The equations of motion for the action (2.23) are given by

∂i∂
iϕ+ e σσ = 0 , (2.24a)

∂jf
j
i − ∂i∂tϕ =

i e

2M

(
σDiσ − σDiσ

)
, (2.24b)

−∂2
t ϕ− ∂iEi =

e

2M2
DiσD

iσ − e

4
λV ′[M ]

(
σσ
)2 − e ∂i∂i(E [M ]σσ

)
(2.24c)

− e
[
∂iJ [M ]∂iM σσ + 2J [M ]∂i

(
∂iM σσ

)]
,

iDtσ +Di

(
1

2M
Diσ

)
= −J [M ]

(
∂iM∂iM

)
σ +

(
1

2
λV[M ]− e2E [M ]

)
(σσ)σ , (2.24d)

where we have used eq. (2.24a) to simplify some of the other equations of motion. Note that

the operator with the coupling E [M ] in the action (2.23) is proportional to the equation of

motion (2.24a). Such couplings do not contribute to the beta functions of other operators

which do not vanish on-shell, as is indeed apparent from eq. (1.3); see, e.g., the explanation

around eqs. (6.40)-(6.41) in [48]. As a consequence, our choice of basis for the marginal

operators in eq. (2.23) provides a significant simplification of the expressions for the running

of the coupling constants computed in section 4.

14Ref. [23] carried out an extensive analysis of the symmetries of Galilean electrodynamics (without

matter) in any dimension. However it was missed that in 2+1 dimensions the theory does enjoy a symmetry

under the special conformal transformation of the Schrödinger group. We thank N. Obers and J. Hartong

for discussions on this topic.
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2.3 Conserved currents

In this subsection, we demonstrate that the stress tensor and mass current associated with

the theory (2.23) obey the identities (2.3)–(2.6) and thus sGED is Schrödinger invariant

at the classical level for any value of the couplings J [M ], V[M ] and E [M ]. To find the

energy-momentum tensor, we use Noether’s theorem for a (global) infinitesimal spacetime

translation which acts on the fields of sGED as follows:

δξat = ξt∂tat + ξj∂jat , δξai = ξt∂tai + ξj∂jai ,

δξϕ = ξt∂tϕ+ ξj∂jϕ , δξσ = ξt∂tσ + ξi∂iσ .
(2.25)

These transformations are not gauge covariant, and therefore the associated energy-

momentum tensor (before improvements) will not be manifestly gauge invariant. Instead,

we can ensure gauge invariance of the energy-momentum tensor by defining it with respect

to a transformation which is a mixture of a translation and a U(1) gauge transformation,

i.e.,

δ̃ξat = δξat + ∂tε , δ̃ξai = δξai + ∂iε , δ̃ξϕ = δξϕ , δ̃ξσ = δξσ + ieεσ . (2.26)

Fixing ε = −ξtat − ξiai yields the following manifestly gauge covariant transformation

δ̃ξat = −ξiEi , δ̃ξai = ξtEi+ξ
jfji , δ̃ξϕ = ξt∂tϕ+ξi∂iϕ , δ̃ξσ = ξtDtσ+ξiDiσ . (2.27)

Using the Noether procedure for the transformation δ̃ξ in eq. (2.27), we find that the

energy-momentum tensor is given by

T̃ tt = ϕ̇2 + Ei∂
iϕ+

i

2

(
σDtσ − σDtσ

)
− ∂k(E [M ]∂kMσ̄σ)− L , (2.28a)

T̃ it = ϕ̇ Ei − Ejf ij −
1

2M

(
DtσD

iσ +DtσD
iσ
)

(2.28b)

+
[
∂iM ∂t + ∂tM ∂i

]
(E [M ]σσ) + 2J [M ] ∂iM ∂tM

(
σσ
)
,

T̃ ti = ϕ̇ ∂iϕ+ fij∂
jϕ+

i

2

(
σDiσ − σDiσ

)
, (2.28c)

T̃ ij =
(
Ej∂

iϕ+ Ei∂jϕ
)
− fjkf ik −

1

2M

(
DjσD

iσ +DiσDjσ
)

(2.28d)

+ 2J [M ] ∂iM ∂jM
(
σσ
)

+
[
∂iM ∂j + ∂jM ∂i

]
(E [M ]σσ)

− δij ∂k(E [M ]∂kMσ̄σ)− δijL ,

where L is the Lagrangian density associated with the action SsGED in (2.23). Of course,

these expressions satisfy the conservation (2.3) by construction. One can further verify

that the energy-momentum tensor (2.28) satisfies

2T̃ tt + T ii = 2∂iOi , (2.29)

where

Oi =
1

4M
∂i
(
σσ
)
− E [M ] ∂iM

(
σσ
)
. (2.30)

– 11 –
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The energy-momentum tensor can then be improved to satisfy the trace condition (2.6) by

redefining

T tt = T̃ tt − ∂iOi , T it = T̃ it + ∂tOi , T ti = T̃ ti , T ij = T̃ ij , (2.31)

and this redefinition does not affect its conservation.

We proceed with the mass current associated with the infinitesimal global transforma-

tion

δασ = iΩασ, δασ = −iΩασ, (2.32)

where we recall that Ω is the mass parameter which appears in the Galilean boost trans-

formation of σ, and α is a constant real parameter. The transformation (2.32) is a global

transformation and is not accompanied by a transformation of the gauge fields. To derive

the mass current associated with (2.32), we apply again the Noether procedure. As with

the previous derivation of the energy-momentum tensor, we mix this global U(1) trans-

formation with a gauge U(1) transformation, see eqs. (2.7) and (2.15), in this case with

parameter ε = −ϕα. Doing this will ensure that the spatial current J im associated with

this transformation equals T ti, as implied by Galilean boost invariance, see eq. (2.4). The

complete infinitesimal transformation is then given by

δ̃ασ = i(Ωα+e ε)σ = iMασ , δ̃αat = ∂tε = −α∂tϕ , δ̃αai = ∂iε = −α∂iϕ . (2.33)

The mass current associated with the transformation in eq. (2.33) is

J tm = − (∂iϕ)2 −M σσ , J im = ϕ̇ ∂iϕ+ fij∂
jϕ+

i

2

(
σDiσ − σDiσ

)
. (2.34)

Note that J tm and J im satisfy the conservation law (2.5) as well as the identity (2.4) following

from Galilean boost invariance. Using the equation of motion (2.24a), the mass density

J tm can be brought to the form of a total derivative J tm = 1
e∂i(M∂iϕ). Note that this is

the total derivative of a globally well-defined, gauge-invariant operator. As a consequence,

any gauge-invariant local operator must have vanishing central charge N = 0 and all local

correlation functions are forced to the N = 0 sector of the Schrödinger algebra. This can

be understood as a consequence of the fact that the U(1) number-conservation symmetry

of the Schrödinger scalar is being gauged by the coupling to GED.

3 Non-renormalization theorems

In this section, we prove a set of non-renormalization theorems, applicable to abelian gauge

theories coupled to a single Schrödinger scalar, in arbitrary dimension. The core of the

argument relies on the fact that, in many cases, oriented loops of the single Schrödinger

scalar vanish, see, e.g., [49, 50].15 We will show that, as a consequence, in the sGED model,

the electric coupling constant e does not run at any loop order.

15We thank Igal Arav and Avia Raviv-Moshe for discussions on this point.
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(a) In position space.
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2V1V

NV

nV

(b) In momentum space.

Figure 1. Illustration of a subdiagram consisting of a single scalar loop.

To understand this claim, let us examine the propagator of the Schrödinger scalar field.

The quadratic part of the Schrödinger action is given by

S(0)
σ =

∫
dt ddx

[
i

2

(
σ∂tσ − σ∂tσ

)
− 1

2Ω
∂iσ ∂iσ

]
, (3.1)

and so the propagator for the σ field reads

k

)k(σD=〉)k−(σ)¯k(σ〈= =
i

ω − k2

2Ω + iε
, (3.2)

where k ≡ (ω ,k). In what follows, we will use an arrow on the scalar line to indicate the

flow of charge and an additional thinner arrow on top of the line to indicate the flow of

momentum. In the above propagator, we are using the +iε prescription which indicates

that the propagator for the scalar will be time ordered, also allowing for a Wick rotation

in the momentum integrals ω = iωE . The single frequency pole implies that the position

space propagator is proportional to a Heaviside theta function

G(t− t′,x−x′) ≡
∫

dω ddk

(2π)d+1
e−iω(t−t′)+ik·(x−x′)Dσ(k) = θ(t− t′)GW (t− t′,x−x′), (3.3)

where GW(t− t′,x− x′) is the Wightman function defined by16

GW(t− t′,x− x′) = 〈0|σ(t,x)σ(t′,x′)|0〉 =

[
Ω

2πi(t− t′)

] d
2

exp

(
i

2

Ω|x− x′|2
t− t′

)
. (3.4)

Consider a Feynman diagram that contains a subdiagram Γ consisting of a scalar loop

with the charge flowing along the loop, as illustrated in figure 1a. We introduce insertions of

16The position space propagator is given by the time ordered expectation value G(t − t′,x − x′) =

〈0|T (σ(t,x)σ(t′,x′))|0〉 = θ(t − t′)〈0|σ(t,x)σ(t′,x′)|0〉 + θ(t′ − t)〈0|σ(t′,x′)σ(t,x)|0〉, where in Galilean

theories σ(t,x) is expanded only in terms of annihilation operators and therefore the second part of this

expression vanishes. For this reason we obtain that the time-ordered two-point function is proportional

to θ(t − t′). Stripping off the theta function then leads to the Wightman function GW (t − t′,x − x′) =

〈0|σ(t,x)σ(t′,x′)|0〉.
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N local vertices along the loop labeled Vn with n = 1 , · · · , N . This scalar loop contributes

the following factor to a Feynman diagram containing it,

Γ ∝
∫ N∏

n=1

dtn d
dxn V

(n)(tn,xn)G(tn − tn+1,xn − xn+1) , (3.5)

where it is understood that (tN+1,xN+1) ≡ (t1,x1) and the proportionality sign (rather

than equality) is there to account for possible symmetry factors. Using the propagator (3.3)

we obtain

Γ ∝
∫ N∏

n=1

dtn d
dxn θ(tn − tn+1)V (n)(tn,xn)GW (tn − tn+1,xn − xn+1) . (3.6)

The above integral vanishes for N ≥ 2 as long as the vertices do not contain time derivatives

acting on the σ and σ factors running in the loop. This is because the support of the

integrand above is restricted to be at t1 = . . . = tN , due to the θ functions. This support

has measure zero in the domain of integration for N 6= 1. On the other hand, when the

vertex factors contain time derivatives, one can perform integrations by parts such that the

time derivatives act on the θ functions, turning them into δ functions. In practice, each

time derivative essentially eliminates an integral and so the integrals above vanish as long

as the vertices (all together) contain no more than N − 2 time derivatives acting on the σ

and σ factors running in the loop.

It is instructive to re-examine the same argument in momentum space. An illustration

of the relevant scalar loop subdiagram Γ appears in figure 1b with the relevant momenta

indicated. This subdiagram in a Feynman diagram contributes the following factor:

Γ ∝
∫
dν

2π

ddq

(2π)d
V (1)(q,−q − k1)

i

ν + ω1 − |k+k1|2
2Ω + iε

× V (2)(q + k1,−q − k1 − k2) × . . .× V (N)(q − kN ,−q)
i

ν − |q|22Ω + iε
,

(3.7)

where we have used the explicit form of the propagator in momentum space (3.2) and

labeled the vertices by the (incoming) momenta on the scalar lines. Note that all the poles

are located in the lower half ν-plane. For N ≥ 2 , if the power of ν coming from the vertices

in the numerator of the integrand is no higher than N − 2 , then at large ν the integrand

decreases at least as fast as |ν|−2. We can then close the contour in the upper half-plane,

and the integral in (3.7) evaluates to zero.

The vanishing of oriented scalar loops discussed above has far-reaching implications

on the RG flow of sGED defined in eq. (2.23). First, note that sGED does not have any

self-interactions of the gauge fields such as those in eq. (2.14). In addition, the interaction

vertices do not contain frequency insertions, thanks to our field redefinition in eq. (2.22).

This immediately implies that the interactions in eq. (2.14) are not generated along the RG

flow due to the fact that these corrections would be associated with 1PI diagrams in which

all external legs are gauge fields. Such diagrams necessarily contain at least one scalar loop

of the form in figure 1, which evaluates to zero. The same logic also implies that there

– 14 –
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is no wavefunction renormalization for the gauge fields. The familiar argument based on

gauge invariance fixes the beta function of the gauge coupling in terms of the wavefunction

renormalization. This then implies that the gauge coupling e does not renormalize. These

conclusions hold at any loop order.

4 RG in scalar Galilean electrodynamics

In this section we study the one-loop quantum corrections in the theory of scalar Galilean

electrodynamics (2.23). In particular, our goal is to evaluate the beta functions for the

infinitely-many couplings encoded in J [M ], V[M ] and E [M ]. We use a background-field

method, expanding the Lagrangian order by order in the field M — or equivalently ϕ

— around a constant value. To perform this expansion, we treat the covariantized gap

M ≡ Ω − eϕ as a field with a large classical background value and a small fluctuation of

the order of the perturbative coupling e, i.e., we define

M = M0 + δM , M0 = O(e0) , δM = O(e) . (4.1)

In terms of the ϕ field

M0 = Ω− eϕ0 ,

δM = −eδϕ .
(4.2)

Note that a constant ϕ = ϕ0 (together with all other fields vanishing) is a solution of the

equations of motion (2.24) for any choice of the functionals. This method allows us to

express the beta functions of J [M ], V[M ] and E [M ] in terms of these functionals and their

derivatives.

4.1 Feynman rules

Plugging (4.2) in the action (2.23) and expanding around the background, we find the

quadratic terms

Sfree =

∫
dtd2x

(
1

2
(∂tδϕ)2 + Ei∂iδϕ−

1

4
f ijfij −

1

2ξ
(∂tδϕ+ ∂iai)

2

+
i

2
(σ̄∂tσ − σ∂tσ̄)− 1

2M0
∂iσ̄∂iσ

)
,

(4.3)

where we have also included a Galilean-invariant gauge-fixing term. In the following, it

will be convenient to organize the gauge fields in a vector

AI ≡ (δϕ, at, ai), i ∈ {1, 2} , (4.4)
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whose indices are denoted by capital letters I, J,K, · · · ∈ {ϕ, t, 1, 2}. The resulting propa-

gators are (with k ≡ (ω,k))

k

)k(σD=〉)k−(σ)¯k(σ〈= ≡ i

ω − k2

2M0
+ iε

,

k

I J

)k(IJD=〉)k−(JA)k(I〈A=

≡ − i

k2


0 1 0

1 0 0

0 0 δij

− (1− ξ)
k2

0 0 0

0 ω2 −ωkj
0 −ωki kikj


 .

(4.5)

The interaction Lagrangian is given by

Lint = eatσ̄σ −
(

1

2M
− 1

2M0

)
∂iσ̄∂

iσ − 1

2M

[
ieai(σ̄∂

iσ − σ∂iσ̄) + e2aia
iσ̄σ
]

+ J [M ]∂iM∂iM σ̄σ − λ

4
V[M ] (σ̄σ)2 − E [M ](∂i∂

iM − e2σ̄σ)σσ .

(4.6)

As we will see below, the coefficient (2M)−1 in front of the spatial part of the kinetic term

does not run, which is a consequence of boost invariance.17 On the other hand, the coupling

functions J [M ] and V[M ] are unspecified functions of M , and we will see that they run.

We included in eq. (4.6) an additional operator that vanishes on-shell using the equation of

motion (2.24a) and whose coupling E [M ] is also an arbitrary function of M . Even though

such an operator does not contribute to any physical amplitude, it is important to include

it to compute correctly the running of the physical couplings J [M ] and V[M ] as we will

see below.

The expansion of eq. (4.6) in δϕ gives rise to infinitely many vertices, that are all

classically marginal, but since each additional power of δϕ comes with an additional power

of the coupling e, for a calculation at any finite order in e only a finite number of vertices

is needed. In particular, for the purpose of deriving the RG equations at leading order in

perturbation theory, we only need vertices with at most five external legs. The relevant

vertices with two scalar external legs are given by (with k1,2 ≡ (ω1,2,k1,2) and similarly for

17On the other hand one could also consider a rescaling of the full kinetic term as in eq. (2.21) but this

can be reabsorbed in a field redefinition as in (2.22) without changing the analysis of quantum corrections,

as we show in appendix D.
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p1,2)

1k 2k

I

)2, k1k(3
IV= , (4.7)

1k 2k

1p

I J

1p−2k−1k−=2p|)2, p1, p2, k1k(4
IJV= , (4.8)

1k 2k

1p

I
J

2p
K

2p−1p−2k−1k−=3p|)3, p2, p1, p2, k1k(5
IJKV= , (4.9)

where

V I
3 (k1, k2) = ie


1

2M2
0
k1 · k2 − E(M0)(k1 + k2)2

1
1

2M0
(k1 − k2)i

 , (4.10)

V4
IJ(k1, k2, p1, p2) =

ie2

M0


k1·k2

M2
0

0
(k1−k2)j

2M0

0 0 0
(k1−k2)i

2M0
0 −δij


+ ie2

(
E ′(M0)(p2

1 + p2
2)− 2J (M0)p1 · p2

)
δIϕδJϕ , (4.11)

V5
IJK ≡ 1

3

(
V IJ

5 δKϕ + V JK
5 δIϕ + V KI

5 δJϕ
)
, (4.12)

V IJ
5 (k1, k2, p1, p2, p3) =

3ie3

M2
0


k1·k2

M2
0

0
(k1−k2)j

2M0

0 0 0
(k1−k2)i

2M0
0 −δij

+ ie3
(
− E ′′(M0)(p2

1 + p2
2 + p2

3)

+ 2J ′(M0) (p1 · p2 + p2 · p3 + p3 · p1)
)
δIϕδJϕ . (4.13)
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We will also need the following vertices with four scalar external legs

Q= , (4.14)

I

g
IQ= , (4.15)

where

Q = −iλV(M0) + 4ie2 E(M0) , (4.16)

and the only non-zero entry of QIg is

Qϕg = iλ eV ′(M0)− 4ie3 E ′(M0) . (4.17)

4.2 Renormalization constants

Having obtained the Feynman rules, we can now proceed to derive the RG equations at

leading order. To this end, we evaluate 1PI correlation functions, expand them in external

momenta, and evaluate the left-over scale-independent integrals with a sharp UV cutoff Λ

and a sharp IR cutoff µ. Further details on the regularization of the integrals can be found

in appendix B. In writing the correlation functions, we use ellipses to denote terms that we

are neglecting because their order in the expansion in external momenta does not match

the tree level result. Some of these terms include IR divergences that need to cancel in any

physical observable, such as correlation functions of composite gauge-invariant operators.18

For the present purpose of renormalizing the 1PI correlation functions, we only retain

the coefficient of the log(Λ) UV divergence and ignore IR divergent terms. In most cases

the UV and IR divergences are neatly separated and canceling the log(Λ) is also sufficient

to make the amplitude UV finite. However, as we will see, there is an exception in the four-

point function of σ, where we also find a power-law IR and UV divergent contribution that

we ignore. This exception is only present if the scalar field has bosonic statistic, because

the quartic interaction vanishes in the case of fermionic statistics, while the renormalization

of the other couplings is identical to the bosonic case, see the discussion in section 5.

As this procedure of ignoring IR divergent terms might seem a bit ad-hoc, let us

comment on it further. Famously, in relativistic QED there are IR divergences which

are usually resolved by the inclusion of soft-photons. However, in our case there are no

asymptotic states associated to the gauge fields, and so it is unclear how to resolve the IR

18Note that 1PI correlation functions of σ and σ̄ are not physical observables, because the operator σ is not

gauge invariant, and in fact, we will see that the result depends explicitly on the gauge-fixing parameter ξ.
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k

Figure 2. Corrections to the scalar propagator.

divergences. Recall however that the theory of GED can be obtained both from a non-

relativistic limit with the addition of an extra real scalar or from a null reduction of four-

dimensional Maxwell theory coupled to matter. One might then hope that the resolution of

the IR problem in the parent theory, through the proper inclusion of soft photons, can be

used to shed light on the IR divergences in GED. A similar problem is often discussed when

studying scattering in non-relativistic effective field theory of QED, called NRQED in the

literature, see e.g., [51, 52]. There, the resolution is obtained by a matching procedure with

the relativistic theory. However, at the first few orders in perturbation theory a correct

result is obtained by simply ignoring the IR divergences, similarly to what we do here. It is

possible that also in GED a complete definition of the theory requires matching conditions

with the “UV theory” from which sGED can be obtained through the non-relativistic

limit.19 We plan to examine this problem in more detail in the future.

The integral expressions and final results for each individual diagram used in this

section are listed in appendix C. Here, we only present the result for each 1PI correlation

function, and for the corresponding renormalization constants. To start with, we compute

the one-loop correction to the propagator of the scalar, i.e., the one-loop 1PI two-point

function for the scalar field, given by the diagram in figure 2.20 We obtain

〈σB(k)σ̄B(−k)〉(1)
1PI =

e2

2π
(1− ξ)J0Dσ(k)−1 + . . . , (4.18)

where the superscript (1) indicates that this is the one-loop contribution, J0 is the power-

law divergent integral (see appendix B for more details)

J0 ≡
∫
dν

2π

∫
d|q|
|q|3 , (4.19)

and the subscript B is used to denote the bare fields and couplings. Note that since the

gauge-coupling does not run, as we have seen in section 3, we do not need to define a bare

and a renormalized e, so we do not use any subscript on e. Similarly the gauge fields do not

receive a wavefunction renormalization and therefore below we will not use the subscript

B for the gauge fields. Even though, as we just explained, we will only retain the log(Λ)

divergence of the correlation functions, it is still useful to subtract the power-law divergence

19Similar divergences are also encountered in the quantization of gauge theories in the Coulomb gauge,

and to solve this issue several authors have invoked the use of split dimensional regularization [53, 54] in

which both the dimensions of the temporal and the spatial sub-manifolds are analytically continued. This

regularization is often used also in the context of non-relativistic theories [55, 56]. With the use of this

technique also the divergence we find in the four-point function of σ would be cured.
20Here and in the following, various diagrams with gauge propagators starting and ending at the same

vertex do not contribute to the calculation.
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Figure 3. Corrections to the three-point function.

in (4.18) with the wavefunction renormalization

σB =
√
Zσ σ , σ̄B =

√
Zσ σ̄ , (4.20)

because this will allow us to check the cancellation of the gauge parameter ξ from the

remaining correlation functions, and because it will also cancel most of the contributions

proportional to J0, with the exception mentioned above, as we will see. Expanding Zσ =

1 + δZσ, we find that

δZσ =
e2

2π
(1− ξ)J0 , (4.21)

cancels the divergence in (4.18).

Next, we consider the one-loop correction to the cubic vertex (4.7), i.e., the one-loop

1PI three-point function of one gauge field and two scalars, given by the diagrams in

figure 3. We obtain

〈σB(k1)σ̄B(k2)AI(−k1 − k2)〉(1)
1PI = − e

2

2π
(1− ξ)J0 V

I
3 (k1, k2) (4.22)

+ i
e3

2π
δIϕ(k1 + k2)2

(
E ′B[M0] +

1

4M3
0

)
log

(
Λ

µ

)
+ . . . .

We define the renormalized coupling E [M ] by

− EB[M ](∂i∂
iM − e2σ̄BσB)σBσB = −(E [M ] + δE [M ])(∂i∂

iM − e2 Zσ σ̄σ)Zσ σσ . (4.23)

Requiring the cancellation of the UV divergences in eq. (4.22), we fix the counterterm to

be

δE [M ] =
e2

2π

(
E ′[M ] +

1

4M3

)
log

(
Λ

µ

)
. (4.24)

Note that all the ξ-dependent divergences in eq. (4.22) are subtracted by the renormal-

ization of the scalar external legs, and as a result the counterterm (4.24) for the vertex is

ξ-independent. This is expected because δE [M ] determines the running of a gauge-invariant

(set of) coupling(s), and it provides a nice consistency check of the calculation.

Next, we consider the one-loop corrections to the 1PI four-point function of two scalars

and two gauge fields. The Feynman diagrams are shown in figure 4. Summing up the
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Figure 4. Corrections to the four-point function of two scalars and two gauge fields.

diagrams we find

〈σB(k1)σ̄B(k2)AI(p1)AJ(p2)〉(1)
1PI = − e

2

2π
(1− ξ)J0 V

IJ
4 (k1, k2, p1, p2) (4.25)

+ i
e4

2π
δIϕδJϕ

[
−(p2

1 + p2
2)

(
E ′′B[M0]− 3

4M4
0

)
+2 p1 · p2

(
J ′B[M0] +

5

8M4
0

)]
log

(
Λ

µ

)
+ . . . ,

where a momentum-conserving delta function is implicit, i.e., p2 = −k1 − k2 − p1. Com-

paring this expression to the ϕϕ entry of the quartic vertex in eq. (4.11), we observe that

the correction (4.24) to the function E [M ] is precisely what is needed to cancel the UV

divergence proportional to (p2
1 +p2

2) in eq. (4.25). We proceed by defining the renormalized

coupling J [M ] in terms of the bare quantities as follows

JB[M ]∂iM∂iM σ̄BσB = Zσ(J [M ] + δJ [M ])∂iM∂iM σ̄σ . (4.26)

Finally, requiring the cancellation of the UV divergence proportional to p1 · p2 we obtain

δJ [M ] =
e2

2π

(
J ′[M ] +

5

8M4

)
log

(
Λ

µ

)
. (4.27)

As above, all the ξ dependence has canceled using the wavefunction renormalization of the

σ field.

Finally, we consider the 1PI four-point function of four scalar fields required for the

renormalization of the (σ̄σ)2 coupling. The corresponding diagrams are shown in figure 5.
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Figure 5. Corrections to the four-point function of σ.

The result is

〈σBσ̄BσBσ̄B〉(1)
1PI

=

[
ie4

2π

(
−4E ′B[M0] + 4JB[M0]− 3

8M3
0

)
+
iλe2

2π

(
2V ′B[M0] +

VB[M0]

2M0

)
+
iλ2

4π
M0VB[M0]2

]
log

(
Λ

µ

)
− e2

π
(1− ξ)J0Q+

ie4

π

J0

M2
0

+ . . . .

(4.28)

The renormalized quartic coupling V[M ] is defined by

− λ

4
VB[M ] (σ̄BσB)2 = −λ

4
Z2
σ (V[M ] + δV[M ]) (σ̄σ)2 . (4.29)

Once again, the ξ dependence in (4.28) completely cancels with the wavefunction renor-

malization (4.21). As mentioned earlier, we see that there is also a leftover power-law UV

and IR divergent term proportional to J0 in the last line of (4.28). Here we will only reab-

sorb the more physical log(Λ) divergence in the renormalization of the quartic coupling for

the purpose of computing its beta function as explained at the beginning of the section.

Requiring the cancellation of the logarithmic UV divergence and using the counter term

for δE in eq. (4.24), we obtain

λδV[M ] =

[
e4

2π

(
4J [M ] +

5

8M3

)
+
λe2

2π

(
2V ′[M ] +

V[M ]

2M

)
+
λ2

4π
MV[M ]2

]
log

(
Λ

µ

)
.

(4.30)

– 22 –



J
H
E
P
1
0
(
2
0
2
0
)
1
9
5

4.3 RG equations and fixed points

From the renormalization constants computed in the previous section we obtain the beta

functions21

βJ [M ] =
e2

2π

(
J ′[M ] +

5

8M4

)
,

βλV[M ] =
e4

2π

(
4J [M ] +

5

8M3

)
+
λe2

2π

(
2V ′[M ] +

V[M ]

2M

)
+
λ2

4π
MV[M ]2 .

(4.31)

Similarly for the EOM-vanishing operator we have

βE[M ] =
e2

2π

(
E ′[M ] +

1

4M3

)
. (4.32)

Note that on general grounds the EOM-vanishing coupling should not enter the beta func-

tion of the physical couplings (see, e.g., the explanation around eqs. (6.40)-(6.41) in [48]),

and our calculation indeed confirms this. Besides these couplings there is also the gauge cou-

pling e, that according to the general arguments of section 3 has a vanishing beta function.

We now proceed to look for fixed points, i.e., zeroes of the full set of beta functions.

The coupling e is a free parameter because its beta function vanishes identically. We need to

keep this free parameter small in order for the one-loop calculation of the beta functions of

the other couplings to be reliable. In other words, we can only explore the existence of fixed

points in the perturbative region e� 1 of the parameter space. Setting the beta functions of

the couplings J and λV to zero leads to differential equations for J [M ] and λV[M ]. Rather

than writing down the most general solution to these differential equations, we observe that

a simple set of solutions is obtained by taking J and V to be proportional to powers of M :

J [M ] = j M−3 , V[M ] = vM−2 , (4.33)

where j and v are real constants (i.e., they are M -independent). Setting βJ [M ] = 0 simply

fixes

j = j∗ ≡
5

24
. (4.34)

Plugging this solution and the ansatz for V in βλV[M ] = 0, the wholeM -dependence becomes

just an overall factor of M−3 and we obtain an algebraic equation for the parameter v,

12λ2v2 − 84 e2λv + 35 e4 = 0 , (4.35)

with solutions

λv±∗ ≡
21± 4

√
21

6
e2 . (4.36)

Note that for both choices of sign λv is positive, ensuring that the quartic potential

for σ is stable. Similarly, a simple fixed-point solution for the EOM-vanishing operator

is found using the power-law ansatz E [M ] = εM−2. Plugging this ansatz in the beta

function (4.32) and requiring it to vanish fixes ε = ε∗ ≡ 1
8 .

21In our conventions, the beta function of a coupling g is defined to be βg = d δg
d log Λ

.
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More generally, we could allow for arbitrary integration constants when solving the

equations for the fixed point, e.g., J [M ] = j M−3 + J0 and similarly for E [M ] and

V[M ] (though the form of the general solution for V[M ] is more cumbersome due to

the nonlinearity of the equation). It might be useful to explain the origin of these pa-

rameters from the point of view of the infinite series of couplings. Upon expanding

J [M ] =
∑∞

n=0
(M−Ω)n

n! Jn, the integration constant J0 corresponds to the coupling with

the lowest power of M − Ω = −eϕ. Expressing the beta function of J [M ] in terms of the

component couplings, we see that the beta function of each Jn depends only on Jn+1, and

that J0 does not enter any beta function. Therefore, the coupling J0 remains as a free

parameter at the fixed point even after setting all the beta functions βJi = 0. Including

these integration constants in addition to the gauge coupling e2 gives us a four-parameter

space of exactly marginal couplings parameterizing a non-relativistic conformal manifold.

The solutions (4.33)–(4.36) for V[M ] and J [M ] were obtained by setting to zero the

beta functions at the lowest order in an expansion in the gauge-coupling e, so the position

of the fixed point will receive corrections at higher order in e. It can sometimes happen that

beta functions accidentally vanish identically at one-loop and this gives rise to an “approxi-

mate” manifold of fixed-points, which then disappears at the next loop order. However, we

would like to emphasize that the origin of the manifold of fixed-points in sGED is different

since none of the beta functions in eqs. (4.31)–(4.32) vanish at one loop. Rather, we found

non-trivial solutions for all the beta function equations. As a consequence, the manifold

of fixed-points persists to higher loop orders and the location of the fixed points can be

systematically corrected order-by-order in perturbation theory in the small parameter e.

It is interesting to examine the RG stability of the fixed points (4.33)–(4.36), i.e.,

whether the classically marginal couplings (other than those parameterizing the conformal

manifold) are marginally relevant or marginally irrelevant at the non-trivial fixed points.

With finitely many couplings, the RG stability is determined by the signs of the eigenvalues

of the matrix of derivatives of the beta functions ∼ ∂iβ
j , with i, j indices that run over

the set of classically marginal couplings. Hence the natural adaptation to our setting is

to consider functional variations of the beta functionals in eq. (4.31): we vary the beta

functionals with respect to the coupling functions, and look at the signs of the eigenvalues

of the operator obtained via this functional variation. Plugging J [M ] = j∗M
−3 + δJ [M ]

and V[M ] = v±∗ M
−2 + δV[M ] in eq. (4.31), and expanding to linear order in the variation,

we obtain the following eigenvalue equations:

δβJ [M ] ≡
e2

2π
δJ ′ = αδJ ,

δβλV[M ] ≡
2e4

π
δJ +

e2

π
λδV ′ + λ

4πM
(e2 + 2λv±∗ )δV = αλδV ,

(4.37)

from which we would like to determine the possible signs of the eigenvalues α. Unfor-

tunately, unlike the finite dimensional case, this question cannot be answered unless we

supplement the equations with boundary conditions, or equivalently unless we somehow

specify the space of functions on which the operators act. It is not clear to us how to deter-

mine these additional conditions from first principles. A possible requirement is that the
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variations do not blow up for large covariantized mass M . With these boundary conditions,

there is no solution for α > 0, while for any fixed value of α < 0, there is a two-dimensional

space of eigenfunctions, meaning that there are two relevant (functional) deformations of

the non-trivial fixed point.22 The case α = 0 corresponds to moving inside the manifold

of fixed points and it is special because for this value of α we only find a one-dimensional

space of eigenfunctions consistent with our boundary conditions. Therefore, contrary to

the expectation that the two integration constants give two independent directions on the

conformal manifold, postulating the above boundary condition implies that motion along

one of these directions is not allowed.

5 Discussion and outlook

In this paper we explored the quantum properties of Galilean electrodynamics [22, 23]

coupled to a Schrödinger scalar in 2+1 dimensions. The theory consists of temporal and

spatial gauge fields as well as an additional scalar ϕ. This scalar ϕ is dimensionless (in a

z = 2 anisotropic sense) and completely inert under all the symmetries of the problem. It

turns out that the theory generates an infinite series of quantum corrections proportional

to different powers of the field ϕ.

It is interesting to examine these corrections from the perspective of null reduction. Re-

call that the theory of Galilean electrodynamics can be obtained by considering a relativistic

Maxwell gauge field in 3 + 1 dimensions where the fields are assumed to be independent of

the null coordinate x+ and the other null coordinate x− takes the role of time in the non-

relativistic setup. The field ϕ is simply the A+ component of the higher dimensional gauge

field. Despite being disallowed in the higher dimensional parent theory, here couplings

proportional to ϕn are no longer forbidden by the gauge symmetry in the x+ direction.

We focused on a subset of the possible quantum corrections, represented by the La-

grangian in eq. (2.23), where the couplings were packed into three functions J [M ], V[M ]

and E [M ] (recall M ≡ Ω−eϕ), with different terms in the Taylor expansion around M = Ω

capturing interactions proportional to different powers of the field ϕ. We observed that the

electromagnetic coupling e does not run due to the non-renormalization theorem explained

in section 3. This result holds to all loop orders. We explained how to renormalize the

theory using diagrammatic techniques, by systematically expanding the coupling functions

around a fixed background value ϕ = ϕ0 in such a way that the vertices and propagators

depend on ϕ0. In this way, every Feynman diagram represents infinitely many diagrams

which arise when further expanding the vertices in terms of the background value.

Our analysis resulted in explicit expressions for the beta functions of the couplings

J [M ], V[M ] and E [M ] at one loop order, which we expressed in terms of the functions

themselves and their derivatives, see eqs. (4.31)–(4.32). The beta functions can be set to

zero in order to find fixed-points. The special fixed points (4.33)–(4.36) correspond to a

stable quartic potential V[M ](σ̄σ)2. The general solutions are characterized by integration

22By contrast, around the free theory e2 = 0, λ = 0 the coupling J [M ] is exactly marginal, because

its beta function vanishes identically for e2 = 0, while the quartic coupling V[M ] is marginally irrelevant

because the only term in the beta function for e2 = 0 is βλV[M ]|e2=0 = λ2

4π
MV[M ]2, which is positive definite.
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constants thus providing a four-parameter family of fixed points (including the electro-

magnetic coupling e).23 As explained in the introduction, the appearance of conformal

manifolds is rare and here it is associated with the non-relativistic nature of the theory.

Regarding possible applications of the theory, we note that the presence of the dimen-

sionless field ϕ implies that the fixed points have infinitely many relevant deformations, e.g.,

ϕnσ̄σ, which would need to be fine-tuned in order to reach criticality. It is therefore un-

likely that this theory in its current form will describe quantum critical points in real-world

condensed matter systems. Various natural extensions of sGED can be formulated, includ-

ing generalizations to non-abelian gauge groups, i.e., Galilean Yang-Mills theory along the

lines of [57, 58], supersymmetric extensions [59], and multi-flavored versions, with either

bosonic or fermionic statistics. It is an interesting direction for the future to see if one can

eliminate the unwanted relevant deformations in any of these extensions. In this respect,

we view our work as a first step in the exploration of the landscape of Schrödinger-invariant

QFTs. Moreover, the equations of motion for GED naturally emerge when studying non-

relativistic string theory,24 where the extra scalar mode ϕ appears as the Nambu-Goldstone

boson associated with the spontaneous breaking of the translational symmetry in the co-

ordinate transverse to a D-brane [58].

Due to the absence of a spin-statistics theorem in non-relativistic theories, a

Schrödinger scalar could also have fermionic statistics. Therefore it is interesting to ask

how our analysis is modified if we take fermionic statistics for the scalar coupled to GED.

The calculations of the one-loop corrections follow closely those in this paper, with the fol-

lowing changes: the operator (σ̄σ)2 now vanishes so we cannot write down the coupling(s)

V[M ], and we need to include additional minus signs due to the fermionic statistics when

summing over permutations of the external legs (due to the non-renormalization theorem,

we never encounter closed fermionic loops). The result of these modifications is that the

beta function of V[M ] vanishes automatically as expected, because the associated diagrams

do not depend on external momenta and therefore they vanish when anti-symmetrizing in

the external legs, while the other beta functions are not modified. Note that the fermionic

quartic coupling would not vanish identically if we allow for Nf > 1 copies of the matter

fields, namely in the theory with flavor symmetry, and this case deserves a separate analysis

that we leave for the future.

One might worry that some of the couplings that parametrize the manifold of fixed

points can be absorbed in a field redefinition, in which case they would be unphysical. In or-

der to exclude this possibility, we need to see how they enter in physical observables. As an

example, we can consider the 2-to-2 scattering amplitude of σ particles in sGED. This analy-

sis follows closely the one of [18] for the theory of a Schrödinger scalar coupled to the Chern-

Simons term in 2+1 dimensions. At tree level, working in the center of mass frame we obtain

iMtree = −iλV [M0]− ie2

2M2
0

· 1 + 3 cos2 θ

sin2 θ
. (5.1)

23See, however, the comments at the end of section 4.3.
24See [60–62] for the original works on non-relativistic string theory as well as [63] and references therein

for a review of recent progress.
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Note that only the charge-to-mass ratio e/M0 appears in the part of the amplitude that

depends on the scattering angle θ, while the 4-point coupling λV[M0] only appears in the

constant piece. Therefore, the 4-point coupling λV[M0] and the charge-to-mass ratio e/M0

are bona-fide observable parameters and their physical values can be extracted from a 2-

to-2 scattering experiment. It would be interesting to further study the scattering-problem

at one-loop (in which case the coupling J [M ] should come into play), and understand the

cancellation of IR divergences along the lines discussed in section 4.2.

Finally, an interesting task for the future is to clarify the nature of the non-relativistic

quantum mechanics associated to the sGED quantum field theory. In order to study

this problem, one needs to derive the Schrödinger equation for a certain fixed number of σ

particles and in particular determine the form of their potential, induced by the interactions

mediated by the GED gauge fields. Note that the gauge fields couple precisely to the U(1)

current associated to the number conservation symmetry, implying that N > 0 states

always include a flux for the gauge fields at infinity. It would be interesting to clarify how

this affects the map to the quantum-mechanical problem.
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A Schrödinger symmetry generators

The currents for the Schrödinger symmetry can be written in terms of the energy-

momentum tensor and U(1) current as follows, see e.g., [44]:

N t = −J tm, N i = −J im, (A.1a)

Ht = T tt, Hi = T it, (A.1b)

Pti = T ti, Pj i = T j i, (A.1c)

J tij = −xiT tj + xjT
t
i, J kij = −xiT kj + xjT

k
i, (A.1d)

Gti = −t T ti + xiJ
t
m, Gj i = −t T j i + xiT

tj , (A.1e)

Dt = 2t T tt + xiT ti, Di = 2t T it + xjT ij , (A.1f)

Ct = t2T tt + txiT ti −
1

2
x2J tm, Ci = t2T it + txjT ij −

1

2
x2T ti. (A.1g)

Using the conservation of the energy-momentum tensor (2.3) and U(1) current (2.5), as well

as the identity (2.4), the trace condition (2.6), and the symmetry of the spatial components

of the energy-momentum tensor, Tij = Tji, one can show that each one of the above

currents is conserved. It is understood that these currents are evaluated using the energy

momentum tensor which has been improved to satisfy the trace condition 2T tt + T ii = 0 .

The generators themselves are simply the charges associated with these currents:{
N,H,Pi, Jij , Gi, D,C

}
=

∫
ddx

{
N t,Ht,Pt,J tij ,Gti,Dt, Ct

}
. (A.2)

These generators form the Schrödinger algebra in eq. (2.2).

B Integrals and regularization

In this appendix, we collect results for the integrals used in section 4, which can always be

brought to the form

In,m ≡
∫
dν

2π

d2q

(2π)2

ν2n−m−2 |q|2m
(ν2 + |q|4)n

, n = 0 , 1 , 2 , . . . and m ∈ Z , (B.1)

where the variable ν is the frequency, Wick rotated to Euclidean signature. The Wick

rotation is consistent with the +iε prescription which we used to define our propagator (4.5).

In order to obtain the form (B.1) we have symmetrized the integrands in ν → −ν. This

is allowed given that we are using a regularization that preserves the symmetry ν → −ν.

This also implies that when m is odd this integral vanishes identically. When m = 2m′ is

even, we write

ν2(n−m′−1) =
[
(ν2 + |q|4)− |q|4

]n−m′−1
, (B.2)

and then take a binomial expansion. It follows that

In,2m′ =
1

2π

n−m′−1∑
`=0

(−1)`
(n−m′ − 1)!

(n−m′ − `− 1)! `!
Jm′+`+1 , (B.3)
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where we have defined

Jn ≡ 2π

∫
dν

2π

d2q

(2π)2

|q|4(n−1)

(ν2 + |q|4)n
, n = 0 , 1 , 2 , . . . . (B.4)

Next, let us evaluate the integrals (B.4). When n = 0 , we find

J0 =

∫
dν

2π

∫
d|q|
|q|3 . (B.5)

The integral J0 is superficially log-divergent by an anisotropic z = 2 power-counting. How-

ever, due to the singular behavior of the momentum pole in eq. (B.5), which does not

depends on the frequency, J0 does not contain any log divergences. Instead, it depends

crucially on how one regulates it in the UV, which suggests that it should not contain

any universal information about beta functions. For example, using the sharp cutoff reg-

ularization (µ ≤ |q| ≤ Λ and 0 ≤ a2|ν| ≤ Λ2, where a simply parametrizes the possible

discrepancy in the temporal and spatial cutoffs), one finds a power law divergence in J0

that depends on the ratio of UV and IR cutoffs. As we explain below, for n ≥ 1 , we find

Jn =
1

2
√
π

Γ(n− 1
2)

Γ(n)
log

(
Λ

µ

)
+ finite , (B.6)

where Λ is a UV momentum cutoff and µ is an IR regulator. Note that in the limit n→ 0 ,

the log divergence in eq. (B.6) becomes zero, which is indeed consistent with eq. (B.5) not

being log divergent. Substituting eq. (B.6) into eq. (B.3), we find

In,m =
1

4π2

Γ(m+1
2 ) Γ(n− m+1

2 )

Γ(n)
log

(
Λ

µ

)
+ finite, n = 1, 2, . . . , and m even. (B.7)

Now, we return to the derivation of the log divergence (B.6) using a number of different

sharp cutoff regularizations. Unlike for relativistic quantum field theories, where one often

chooses a spherical regularization in Euclidean frequency-momentum space, here we can

select different shapes of the cutoff surface in frequency-momentum space, all invariant

under spatial rotations. It was argued in [64], that the log divergence in the integrals Jn
above is independent of the shape of the cutoff surface for a certain class of “star-shaped”

cutoff surfaces (in frequency-momentum space).25 In particular, this claim was proven in

appendix A of [64] for the case of n = 2. In the following, we apply the same procedure

to study the integrals Jn with n ≥ 1 , and show that the result in (B.6) is independent

of the shape of the cutoff for a large family of cutoff surfaces. We start by considering a

simple oval-shaped cutoff surface as a warm-up, see “method 1” below. Then, we discuss

the proof for bounded “star-shaped” cutoff surfaces, see “method 2”. Finally, we consider

another natural (unbounded) choice of cutoff, see “methods 3” below.

25Though [64] focuses on Lifshitz fixed points with z = 3, this claim is valid for any value of the critical

exponent z.
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Method 1. We first consider the following cutoff surface

V1 =
{

(|ν|, |q|) : µ4 ≤ a4ν2 + |q|4 ≤ Λ4
}
, (B.8)

and take the change of variables from (|ν| , |q|) to (r , θ) ,

|ν| = Λ2

a2
r sin θ , |q|2 = Λ2 r cos θ , (B.9)

where Λ plays the role of a UV cutoff, µ plays the role of an IR cutoff and a is an arbitrary

constant fixing the ovality of the cutoff surface in frequency-momentum space. Note that

this shape of the cutoff surface nicely fits with anisotropic z = 2 dimensional analysis with

[Λ] = [µ] = 1. In terms of the variables (B.9), the domain of integration becomes

V1 =
{

(r, θ) : 0 ≤ θ ≤ π/2, µ2/Λ2 ≤ r ≤ 1
}
, (B.10)

and the integrals Jn in eq. (B.4) can be rewritten as26

Jn =
1

π

∫
V1

d|ν| d|q| |q|4n−3

(ν2 + |q|4)n
=

1

2π

∫
V1

dr dθ
a4n−2

r

(cos θ)2(n−1)(
a4 cos2 θ + sin2 θ

)n . (B.11)

Performing the θ and r integrals explicitly yields,

Jn =
1

2
√
π

Γ
(
n− 1

2

)
Γ (n)

log

(
Λ

µ

)
. (B.12)

Method 2. Now we follow closely the procedure outlined in [64] and study a more general

class of cutoff surfaces, generalizing the surface considered above in “method 1”. As in [64],

we regularize the integral in the star-shaped domain

V2 =
{

(r, θ) : 0 ≤ θ ≤ π/2, g(θ)µ2/Λ2 ≤ r ≤ f(θ)
}
, (B.13)

given in terms of the variables (B.9), where f(θ) and g(θ) are two arbitrary functions

parameterizing the shape of the cutoff surface in the UV and IR, respectively. We will

further assume that these functions are order one, positive and bounded and satisfy µ g(θ) <

Λf(θ) for all values of θ.27 The functions define the shape of the cutoff surface in the positive

quadrant of the integration plane 0 ≤ θ ≤ π/2. The integrals Jn in eq. (B.11) become

Jn =
a4n−2

2π

∫ π
2

0

(cos θ)2(n−1)dθ(
a2 cos2 θ + sin2 θ

)n ∫ f(θ)

g(θ) µ
2

Λ2

dr

r

=
a4n−2

2π

∫ π
2

0

(cos θ)2(n−1)dθ(
a2 cos2 θ + sin2 θ

)n [2 log

(
Λ

µ

)
+ log

(
f(θ)

g(θ)

)]
=

1

2
√
π

Γ(n− 1
2)

Γ(n)
log

(
Λ

µ

)
+ finite .

(B.14)

Note that f(θ) and g(θ) influence only the scheme-dependent finite part of the result.

Hence, we demonstrated that the coefficient of the log divergence in eq. (B.6) is independent

of the detailed choice of the cutoff surface.
26Note that here the |ν| integral only runs over the positive real axis.
27We assume that these functions are order one so that the IR cutoff remains small and the UV cutoff

remains large. More formally, we assume that f(θ) and g(θ) are such that the integral over the term that

contains log(f(θ)/g(θ)) in eq. (B.14) gives a finite contribution.
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Method 3. So far, we only considered compact integration domains. Next, we consider

an unbounded integration domain in frequencies given by

V3 =
{

(|ν|, |q|) : 0 ≤ |ν| <∞ , µ ≤ |q| ≤ Λ
}
, (B.15)

in which case we obtain once again

Jn =
1

π

∫ Λ

µ
d|q|

∫ ∞
0

d|ν| |q|4n−3

(ν2 + |q|4)n
=

1

2
√
π

Γ
(
n− 1

2

)
Γ(n)

log

(
Λ

µ

)
. (B.16)

C Feynman diagrams

In this appendix we list the explicit results for the one-loop diagrams that are used in

section 4 (see figures 2–5) to compute the β functions in sGED. It should be understood

that each figure represents the sum of the set of diagrams obtained by permutations of the

identical external legs and/or by charge conjugation.

〈σ(k)σ(−k)〉 :

Figure 2 =
e2

2π
J0(1− ξ)(Dσ(k))−1 . (C.1)

〈σ(k1)σ(k2)AI(−k1 − k2)〉 :

Figure 3a = −e
2(1− ξ)J0

2π
V I

3 (k1, k2) +
ie3(1− ξ)δIϕ log

(
Λ
µ

)
8πM2

0

(
ω1 − ω2 −

k2
1 + k2

2

2M0

)
,

Figure 3b =
ie3δIϕ log

(
Λ
µ

)
2πM2

0

[
M2

0

(
E ′[M0] +

1

4M3
0

)
(k1 + k2)2 (C.2)

−(1− ξ)
4

(
ω1 − ω2 −

k2
1 + k2

2

2M0

)]
.

〈σ(k1)σ(k2)AI(p1)AJ(p2 = −k1 − k2 − p1)〉 :

Figure 4a = −
ie4(1− ξ) log

(
Λ
µ

)
4πM2

0


3k1·k2−p1·p2

M2
0

1
3(k1−k2)j

2M0

1 0 0
3(k1−k2)i

2M0
0 −2δij


+
ie4(1− ξ) log

(
Λ
µ

)
4πM2

0

(
E [M0] +

3

4M2
0

)
(p2

1 + p2
2)δIϕδJϕ ,

Figure 4b =
ie4(1− ξ) log

(
Λ
µ

)
4πM2

0


2k1·k2− 3

4
p1·p2

M2
0

1
(k1−k2)j

M0

1 0 0
(k1−k2)i

M0
0 −δij


−
ie4(1− ξ) log

(
Λ
µ

)
4πM2

0

(
E [M0] +

1

2M2
0

)
(p2

1 + p2
2)δIϕδJϕ ,
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Figure 4c = −
ie4(1 + ξ) log

(
Λ
µ

)
4πM2

0


k1·k2− 1

4
(p1·p2+p2

1+p2
2)

M2
0

0
(k1−k2)j

2M0

0 0 0
(k1−k2)i

2M0
0 −δij

 , (C.3)

Figure 4d =
ie4 log

(
Λ
µ

)
4πM2

0


(1+ξ)k1·k2−(1−ξ)M0(ω1−ω2)

M2
0

0
(k1−k2)j

M0

0 0 0
(k1−k2)i

M0
0 −2δij


+
ie4 log

(
Λ
µ

)
4π

[(
4J ′[M0] +

3− ξ
M4

0

)
p1 · p2

− 2

(
E ′′[M0]− 3− ξ

4M4
0

)
(p2

1 + p2
2)

]
δIϕδJϕ ,

Figure 4e =
ie4(1− ξ) log

(
Λ
µ

)
4πM2

0


k1·k2− 1

2
(p1+p2)2+M0(ω1−ω2)

M2
0

0 0

0 0 0

0 0 0


− e2(1− ξ)J0

2π
V IJ

4 (k1, k2, p1, p2) .

〈σ σσσ̄〉 :

Figure 5a = 0 ,

Figure 5b =
i

4π
log

(
Λ

µ

)
M0(λV[M0]−4e2E [M0])2 ,

Figure 5c =
4ie4

π
M0

(
E [M0]+

1

8M2
0

)[
log

(
Λ

µ

)(
E [M0]+

1

8M2
0

)
− (1−ξ)J0

M0

]
,

Figure 5d =
4ie4(1−ξ)

π
J0

(
E [M0]− ξ

8M2
0

)
,

Figure 5e =
2ie4

π

[
log

(
Λ

µ

)(
E ′[M0]+J [M0]− 1

8M3
0

)
+

(1−ξ2)J0

2M2
0

]
, (C.4)

Figure 5f =
ie4

2π

(1+ξ2)J0

M2
0

,

Figure 5g =
2ie2

π
(λV[M0]−4e2E [M0])(1−ξ)J0 ,

Figure 5h =
2ie2

π
M0(λV[M0]−4e2E [M0])

[
log

(
Λ

µ

)(
E [M0]+

1

8M2
0

)
− (1−ξ)J0

2M0

]
,

Figure 5i =
ie2

π
log

(
Λ

µ

)
(λV ′[M0]−4e2E ′[M0]) .

D Arbitrary scalar normalization

In section 2.2, we introduced the following field redefinition (2.22) of σ (and σ),

σ → σ√
C[M]

, (D.1)
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which eliminates C[M ] in the sGED action (2.21). This procedure allowed us to focus

on the running of the couplings J [M ] , λV[M ] and E [M ] in the action (2.23). In this

appendix, we revisit this field redefinition and calculate the running of C[M ] . Moreover,

we will confirm that the running of C[M ] does not affect the beta functions or the family of

fixed points we found in section 4.3, and thus further justify the classical field redefinition

taken in eq. (D.1).

Consider the action (with a gauge fixing term),28

SsGED =

∫
dt d2x

{
1

2
ϕ̇2 + Ei∂iϕ−

1

4
f ijfij −

1

2ξ
(ϕ̇+ ∂iai)

2

+ C[M ]

[
i

2

(
σDtσ − σDtσ

)
− 1

2M
DiσD

iσ

]
(D.2)

+ J̃ [M ] ∂iM∂iM σσ − 1

4
λ Ṽ[M ] (σσ)2 − Ẽ [M ]

(
∂i∂

iM − e2 C[M ]σσ
)
σσ

}
,

which is related to the action (2.23) used in the bulk of the paper by the field redefini-

tion (D.1), with the couplings J̃ [M ] , λ Ṽ[M ] and Ẽ [M ] related to J [M ] , λV[M ] and E [M ]

in (2.23) according to

J [M ] =
J̃ [M ]

C[M ]
− 1

8M

(C′[M ]

C[M ]

)2

− 1

4

( C′[M ]

MC[M ]

)′
,

λV[M ] =
λṼ[M ]

C2[M ]
+
e2

M

C′[M ]

C[M ]
, E [M ] =

Ẽ [M ]

C[M ]
+

1

4M

C′[M ]

C[M ]
.

(D.3)

Starting with the action (D.2) and following the same procedure presented in section 4, we

find that the one-loop beta function of C[M ] is

βC[M ] =
e2

4π
C′[M ] . (D.4)

This result requires choosing the same wavefunction renormalization as in eq. (4.21).29

The beta functions of J̃ [M ] , λṼ [M ] and Ẽ [M ] can also be obtained by following the proce-

dure outlined in section 4. These expressions are a bit lengthy and we will not write them

explicitly here. However, there is a significant simplification after applying the change of ba-

sis (D.3) to change the variables from J̃ [M ] , λṼ [M ] and Ẽ [M ] to J [M ] , λV[M ] and E [M ].

As one may expect, it turns out that the beta functions for the couplings J [M ] , λV[M ] and

E [M ] are the same as those given in eqs. (4.31) and (4.32). At the fixed point, where βC[M ] =

28We chose the form of the Ẽ [M ] term such that also for the action (D.2) it is proportional to an equation

of motion operator obtained by varying the action with respect to at. This choice simplifies some of the

calculations described below, but does not imply any loss of generality.
29One may also set the running of C[M ] to zero by introducing a wavefunction renormalization that is

different from (4.21),

δZσ =
e2

2π

[
(1− ξ)J0 +

C′[M ]

2 C[M ]
log

Λ

µ

]
, (D.5)

which absorbs the running of C[M ] completely. This is why the classical field redefinition (D.3) is justified

quantum mechanically. The freedom to divide the quantum corrections between δZσ and C[M ] is analogous

to choosing a particular set of coordinates in the target space of nonlinear sigma models.
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0, we find that C[M ] is a constant. In this case the redefinition in eqs. (D.1) and (D.3) be-

comes a constant rescaling of the Schrödinger field and couplings. Of course, after perform-

ing the rescaling, we obtain the family of fixed points which were discussed in section 4.3.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] D. Poland, S. Rychkov and A. Vichi, The conformal bootstrap: theory, numerical techniques

and applications, Rev. Mod. Phys. 91 (2019) 015002 [arXiv:1805.04405] [INSPIRE].

[2] J. McGreevy, In pursuit of a nameless metal, APS Physics 3 (2010) 83 [INSPIRE].

[3] S.A. Hartnoll, J. Polchinski, E. Silverstein and D. Tong, Towards strange metallic

holography, JHEP 04 (2010) 120 [arXiv:0912.1061] [INSPIRE].

[4] C.R. Hagen, Scale and conformal transformations in galilean-covariant field theory, Phys.

Rev. D 5 (1972) 377 [INSPIRE].

[5] T. Mehen, I.W. Stewart and M.B. Wise, Conformal invariance for nonrelativistic field

theory, Phys. Lett. B 474 (2000) 145 [hep-th/9910025] [INSPIRE].

[6] Y. Nishida and D.T. Son, Nonrelativistic conformal field theories, Phys. Rev. D 76 (2007)

086004 [arXiv:0706.3746] [INSPIRE].

[7] S. Golkar and D.T. Son, Operator product expansion and conservation laws in

non-relativistic conformal field theories, JHEP 12 (2014) 063 [arXiv:1408.3629] [INSPIRE].

[8] W.D. Goldberger, Z.U. Khandker and S. Prabhu, OPE convergence in non-relativistic

conformal field theories, JHEP 12 (2015) 048 [arXiv:1412.8507] [INSPIRE].

[9] S. Pal, Unitarity and universality in nonrelativistic conformal field theory, Phys. Rev. D 97

(2018) 105031 [arXiv:1802.02262] [INSPIRE].

[10] P. Gubler, N. Yamamoto, T. Hatsuda and Y. Nishida, Single-particle spectral density of the

unitary Fermi gas: novel approach based on the operator product expansion, sum rules and

the maximum entropy method, Annals Phys. 356 (2015) 467 [arXiv:1501.06053] [INSPIRE].

[11] D.T. Son and M. Wingate, General coordinate invariance and conformal invariance in

nonrelativistic physics: unitary Fermi gas, Annals Phys. 321 (2006) 197 [cond-mat/0509786]

[INSPIRE].

[12] Y. Nishida and D.T. Son, An ε-expansion for Fermi gas at infinite scattering length, Phys.

Rev. Lett. 97 (2006) 050403 [cond-mat/0604500] [INSPIRE].

[13] Y. Nishida and D.T. Son, Fermi gas near unitarity around four and two spatial dimensions,

Phys. Rev. A 75 (2007) 063617 [cond-mat/0607835] [INSPIRE].

[14] P. Nikolic and S. Sachdev, Renormalization-group fixed points, universal phase diagram, and

1/N expansion for quantum liquids with interactions near the unitarity limit, Phys. Rev. A

75 (2007) 033608 [cond-mat/0609106] [INSPIRE].

[15] C.R. Hagen, A new gauge theory without an elementary photon, Annals Phys. 157 (1984)

342 [INSPIRE].

– 34 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1103/RevModPhys.91.015002
https://arxiv.org/abs/1805.04405
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.04405
https://doi.org/10.1103/Physics.3.83
https://inspirehep.net/search?p=find+J%20%22APS Physics%2C3%2C83%22
https://doi.org/10.1007/JHEP04(2010)120
https://arxiv.org/abs/0912.1061
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0912.1061
https://doi.org/10.1103/PhysRevD.5.377
https://doi.org/10.1103/PhysRevD.5.377
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD5%2C377%22
https://doi.org/10.1016/S0370-2693(00)00006-X
https://arxiv.org/abs/hep-th/9910025
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9910025
https://doi.org/10.1103/PhysRevD.76.086004
https://doi.org/10.1103/PhysRevD.76.086004
https://arxiv.org/abs/0706.3746
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0706.3746
https://doi.org/10.1007/JHEP12(2014)063
https://arxiv.org/abs/1408.3629
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.3629
https://doi.org/10.1007/JHEP12(2015)048
https://arxiv.org/abs/1412.8507
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.8507
https://doi.org/10.1103/PhysRevD.97.105031
https://doi.org/10.1103/PhysRevD.97.105031
https://arxiv.org/abs/1802.02262
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1802.02262
https://doi.org/10.1016/j.aop.2015.03.007
https://arxiv.org/abs/1501.06053
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1501.06053
https://doi.org/10.1016/j.aop.2005.11.001
https://arxiv.org/abs/cond-mat/0509786
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F0509786
https://doi.org/10.1103/PhysRevLett.97.050403
https://doi.org/10.1103/PhysRevLett.97.050403
https://arxiv.org/abs/cond-mat/0604500
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F0604500
https://doi.org/10.1103/PhysRevA.75.063617
https://arxiv.org/abs/cond-mat/0607835
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F0607835
https://doi.org/10.1103/PhysRevA.75.033608
https://doi.org/10.1103/PhysRevA.75.033608
https://arxiv.org/abs/cond-mat/0609106
https://inspirehep.net/search?p=find+EPRINT%2Bcond-mat%2F0609106
https://doi.org/10.1016/0003-4916(84)90064-2
https://doi.org/10.1016/0003-4916(84)90064-2
https://inspirehep.net/search?p=find+J%20%22Annals%20Phys.%2C157%2C342%22


J
H
E
P
1
0
(
2
0
2
0
)
1
9
5

[16] C.R. Hagen, A galilean invariant gauge theory, Phys. Rev. D 31 (1985) 848 [INSPIRE].

[17] R. Jackiw and S.-Y. Pi, Classical and quantal nonrelativistic Chern-Simons theory, Phys.

Rev. D 42 (1990) 3500 [Erratum ibid. 48 (1993) 3929] [INSPIRE].

[18] O. Bergman and G. Lozano, Aharonov-Bohm scattering, contact interactions and scale

invariance, Annals Phys. 229 (1994) 416 [hep-th/9302116] [INSPIRE].

[19] N. Doroud, D. Tong and C. Turner, On superconformal anyons, JHEP 01 (2016) 138

[arXiv:1511.01491] [INSPIRE].

[20] N. Doroud, D. Tong and C. Turner, The conformal spectrum of non-Abelian anyons, SciPost

Phys. 4 (2018) 022 [arXiv:1611.05848] [INSPIRE].
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[34] Ö. Gürdoğan and V. Kazakov, New integrable 4D quantum field theories from strongly

deformed planar N = 4 supersymmetric Yang-Mills theory, Phys. Rev. Lett. 117 (2016)

201602 [Addendum ibid. 117 (2016) 259903] [arXiv:1512.06704] [INSPIRE].

[35] D. Grabner, N. Gromov, V. Kazakov and G. Korchemsky, Strongly γ-deformed N = 4

supersymmetric Yang-Mills theory as an integrable conformal field theory, Phys. Rev. Lett.

120 (2018) 111601 [arXiv:1711.04786] [INSPIRE].

– 35 –

https://doi.org/10.1103/PhysRevD.31.848
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD31%2C848%22
https://doi.org/10.1103/PhysRevD.42.3500
https://doi.org/10.1103/PhysRevD.42.3500
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD42%2C3500%22
https://doi.org/10.1006/aphy.1994.1013
https://arxiv.org/abs/hep-th/9302116
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9302116
https://doi.org/10.1007/JHEP01(2016)138
https://arxiv.org/abs/1511.01491
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1511.01491
https://doi.org/10.21468/SciPostPhys.4.4.022
https://doi.org/10.21468/SciPostPhys.4.4.022
https://arxiv.org/abs/1611.05848
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.05848
https://doi.org/10.1007/bf02895715
https://doi.org/10.1088/0305-4470/37/41/011
https://inspirehep.net/search?p=find+J%20%22J.Phys.%2CA37%2C9771%22
https://doi.org/10.1007/JHEP11(2016)037
https://arxiv.org/abs/1607.01753
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.01753
https://doi.org/10.1007/JHEP11(2014)061
https://arxiv.org/abs/1408.0810
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.0810
https://doi.org/10.1088/1751-8113/42/46/465206
https://arxiv.org/abs/0904.0531
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0904.0531
https://doi.org/10.1088/0264-9381/33/17/175010
https://arxiv.org/abs/1512.06064
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06064
https://doi.org/10.1007/978-3-662-04192-5
https://doi.org/10.1016/0550-3213(95)00261-P
https://arxiv.org/abs/hep-th/9503121
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9503121
https://doi.org/10.1007/JHEP06(2010)106
https://arxiv.org/abs/1005.3546
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1005.3546
https://doi.org/10.1007/JHEP11(2017)167
https://arxiv.org/abs/1709.01749
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.01749
https://doi.org/10.1007/JHEP03(2018)127
https://arxiv.org/abs/1709.03967
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1709.03967
https://doi.org/10.1016/j.nuclphysb.2017.11.013
https://arxiv.org/abs/1710.05601
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1710.05601
https://arxiv.org/abs/1711.05947
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.05947
https://doi.org/10.1103/PhysRevLett.117.201602
https://doi.org/10.1103/PhysRevLett.117.201602
https://arxiv.org/abs/1512.06704
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1512.06704
https://doi.org/10.1103/PhysRevLett.120.111601
https://doi.org/10.1103/PhysRevLett.120.111601
https://arxiv.org/abs/1711.04786
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1711.04786


J
H
E
P
1
0
(
2
0
2
0
)
1
9
5

[36] C.P. Herzog and K.-W. Huang, Boundary conformal field theory and a boundary central

charge, JHEP 10 (2017) 189 [arXiv:1707.06224] [INSPIRE].

[37] L. Di Pietro, D. Gaiotto, E. Lauria and J. Wu, 3d Abelian gauge theories at the boundary,

JHEP 05 (2019) 091 [arXiv:1902.09567] [INSPIRE].

[38] C.P. Herzog and I. Shamir, On marginal operators in boundary conformal field theory, JHEP

10 (2019) 088 [arXiv:1906.11281] [INSPIRE].

[39] N. Chai, S. Chaudhuri, C. Choi, Z. Komargodski, E. Rabinovici and M. Smolkin, Thermal

order in conformal theories, Phys. Rev. D 102 (2020) 065014 [arXiv:2005.03676] [INSPIRE].

[40] I. Arav, Y. Oz and A. Raviv-Moshe, Holomorphic structure and quantum critical points in

supersymmetric Lifshitz field theories, JHEP 11 (2019) 064 [arXiv:1908.03220] [INSPIRE].

[41] K. Jensen, On the coupling of Galilean-invariant field theories to curved spacetime, SciPost

Phys. 5 (2018) 011 [arXiv:1408.6855] [INSPIRE].

[42] D.T. Son, Toward an AdS/cold atoms correspondence: a geometric realization of the

Schrödinger symmetry, Phys. Rev. D 78 (2008) 046003 [arXiv:0804.3972] [INSPIRE].

[43] Y. Nakayama, Gravity dual for Reggeon field theory and non-linear quantum finance, Int. J.

Mod. Phys. A 24 (2009) 6197 [arXiv:0906.4112] [INSPIRE].

[44] Y. Nakayama, Scale invariance vs. conformal invariance, Phys. Rept. 569 (2015) 1

[arXiv:1302.0884] [INSPIRE].

[45] I. Arav, S. Chapman and Y. Oz, Non-relativistic scale anomalies, JHEP 06 (2016) 158

[arXiv:1601.06795] [INSPIRE].

[46] K. Jensen and A. Karch, Revisiting non-relativistic limits, JHEP 04 (2015) 155

[arXiv:1412.2738] [INSPIRE].

[47] K. Banerjee, R. Basu and A. Mohan, Uniqueness of galilean conformal electrodynamics and

its dynamical structure, JHEP 11 (2019) 041 [arXiv:1909.11993] [INSPIRE].

[48] A.V. Manohar, Introduction to effective field theories, Les Houches Lect. Notes 108 (2020)

[arXiv:1804.05863] [INSPIRE].

[49] O. Bergman, Nonrelativistic field theoretic scale anomaly, Phys. Rev. D 46 (1992) 5474

[INSPIRE].

[50] T. Klose and K. Zarembo, Bethe ansatz in stringy σ-models, J. Stat. Mech. 0605 (2006)

P05006 [hep-th/0603039] [INSPIRE].

[51] W.E. Caswell and G.P. Lepage, Effective Lagrangians for bound state problems in QED,

QCD, and other field theories, Phys. Lett. B 167 (1986) 437 [INSPIRE].

[52] P. Labelle, Effective field theories for QED bound states: extending nonrelativistic QED to

study retardation effects, Phys. Rev. D 58 (1998) 093013 [hep-ph/9608491] [INSPIRE].

[53] G. Leibbrandt and J. Williams, Split dimensional regularization for the Coulomb gauge,

Nucl. Phys. B 475 (1996) 469 [hep-th/9601046] [INSPIRE].

[54] G. Leibbrandt, The three point function in split dimensional regularization in the Coulomb

gauge, Nucl. Phys. B 521 (1998) 383 [hep-th/9804109] [INSPIRE].

[55] D. Anselmi and M. Halat, Renormalization of Lorentz violating theories, Phys. Rev. D 76

(2007) 125011 [arXiv:0707.2480] [INSPIRE].

– 36 –

https://doi.org/10.1007/JHEP10(2017)189
https://arxiv.org/abs/1707.06224
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.06224
https://doi.org/10.1007/JHEP05(2019)091
https://arxiv.org/abs/1902.09567
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.09567
https://doi.org/10.1007/JHEP10(2019)088
https://doi.org/10.1007/JHEP10(2019)088
https://arxiv.org/abs/1906.11281
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.11281
https://doi.org/10.1103/PhysRevD.102.065014
https://arxiv.org/abs/2005.03676
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2005.03676
https://doi.org/10.1007/JHEP11(2019)064
https://arxiv.org/abs/1908.03220
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.03220
https://doi.org/10.21468/SciPostPhys.5.1.011
https://doi.org/10.21468/SciPostPhys.5.1.011
https://arxiv.org/abs/1408.6855
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1408.6855
https://doi.org/10.1103/PhysRevD.78.046003
https://arxiv.org/abs/0804.3972
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0804.3972
https://doi.org/10.1142/S0217751X09047594
https://doi.org/10.1142/S0217751X09047594
https://arxiv.org/abs/0906.4112
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.4112
https://doi.org/10.1016/j.physrep.2014.12.003
https://arxiv.org/abs/1302.0884
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1302.0884
https://doi.org/10.1007/JHEP06(2016)158
https://arxiv.org/abs/1601.06795
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1601.06795
https://doi.org/10.1007/JHEP04(2015)155
https://arxiv.org/abs/1412.2738
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1412.2738
https://doi.org/10.1007/JHEP11(2019)041
https://arxiv.org/abs/1909.11993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1909.11993
https://doi.org/10.1093/oso/9780198855743.003.0002
https://arxiv.org/abs/1804.05863
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1804.05863
https://doi.org/10.1103/PhysRevD.46.5474
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD46%2C5474%22
https://doi.org/10.1088/1742-5468/2006/05/P05006
https://doi.org/10.1088/1742-5468/2006/05/P05006
https://arxiv.org/abs/hep-th/0603039
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0603039
https://doi.org/10.1016/0370-2693(86)91297-9
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB167%2C437%22
https://doi.org/10.1103/PhysRevD.58.093013
https://arxiv.org/abs/hep-ph/9608491
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9608491
https://doi.org/10.1016/0550-3213(96)00299-4
https://arxiv.org/abs/hep-th/9601046
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9601046
https://doi.org/10.1016/S0550-3213(98)00211-9
https://arxiv.org/abs/hep-th/9804109
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9804109
https://doi.org/10.1103/PhysRevD.76.125011
https://doi.org/10.1103/PhysRevD.76.125011
https://arxiv.org/abs/0707.2480
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.2480


J
H
E
P
1
0
(
2
0
2
0
)
1
9
5

[56] I. Arav, Y. Oz and A. Raviv-Moshe, Lifshitz anomalies, Ward identities and split

dimensional regularization, JHEP 03 (2017) 088 [arXiv:1612.03500] [INSPIRE].

[57] A. Bagchi, R. Basu, A. Kakkar and A. Mehra, Galilean Yang-Mills theory, JHEP 04 (2016)

051 [arXiv:1512.08375] [INSPIRE].

[58] J. Gomis, Z. Yan and M. Yu, Nonrelativistic open string and Yang-Mills theory,

arXiv:2007.01886 [INSPIRE].

[59] S. Chapman, Y. Oz and A. Raviv-Moshe, Supersymmetric galilean electrodynamics, in

progress.

[60] J. Gomis and H. Ooguri, Nonrelativistic closed string theory, J. Math. Phys. 42 (2001) 3127

[hep-th/0009181] [INSPIRE].

[61] U.H. Danielsson, A. Guijosa and M. Kruczenski, IIA/B, wound and wrapped, JHEP 10

(2000) 020 [hep-th/0009182] [INSPIRE].

[62] U.H. Danielsson, A. Guijosa and M. Kruczenski, Newtonian gravitons and D-brane collective

coordinates in wound string theory, JHEP 03 (2001) 041 [hep-th/0012183] [INSPIRE].

[63] E.A. Bergshoeff, J. Gomis, J. Rosseel, C. Şimşek and Z. Yan, String theory and string
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