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ABSTRACT
The cosmological utility of galaxy cluster catalogues is primarily limited by our ability to
calibrate the relation between halo mass and observable mass proxies such as cluster rich-
ness, X-ray luminosity, or the Sunyaev–Zeldovich signal. Projection effects are a particularly
pernicious systematic effect that can impact observable mass proxies; structure along the line
of sight can both bias and increase the scatter of the observable mass proxies used in cluster
abundance studies. In this work, we develop an empirical method to characterize the impact of
projection effects on redMaPPer cluster catalogues. We use numerical simulations to validate
our method and illustrate its robustness. We demonstrate that modelling of projection effects
is a necessary component for cluster abundance studies capable of reaching ≈5 per cent mass
calibration uncertainties (e.g. the Dark Energy Survey Year 1 sample). Specifically, ignoring
the impact of projection effects in the observable-mass relation – i.e. marginalizing over a
lognormal model only – biases the posterior probability of the cluster normalization condition
S8 ≡ σ 8(�m/0.3)1/2 by �S8 = 0.05, more than twice the uncertainty in the posterior for such
an analysis.

Key words: galaxies: clusters: general – large-scale structure of Universe.

1 IN T RO D U C T I O N

Galaxy clusters have played a significant role in the definition
of the ‘concordance’ �CDM model (for reviews, see e.g. Allen,
Evrard & Mantz 2011; Kravtsov & Borgani 2012). Current and up-
coming wide-area photometric surveys – e.g. the Dark Energy Sur-
vey (DES),1 the Hyper Suprime-Cam Subaru Strategic Program,2

� E-mail: matteo.costanziac@gmail.com (MC); erozo@email.arizona.edu
(ER); erykoff@stanford.edu (ESR)
1https://www.darkenergysurvey.org
2http://hsc.mtk.nao.ac.jp/ssp/

the Large Synoptic Survey Telescope,3 Euclid,4 and WFIRST5 –
seek to use the abundance and spatial distribution of galaxy clus-
ters to improve constraints on the dark energy and the late-time
normalization of the matter power spectrum.

One of the main limitations for the exploitation of galaxy clus-
ters as cosmological tools is our ability to model the observable
features of the massive halo population (e.g. Vikhlinin et al. 2009;
Rozo et al. 2010; Mantz et al. 2015; Planck Collaboration XXIV
2016). The observable mass proxy of interest within the context of
the photometric surveys mentioned above is cluster richness. While

3https://www.lsst.org/
4http://sci.esa.int/euclid/
5https://wfirst.gsfc.nasa.gov/index.html
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the precise definition of cluster richness varies from catalogue to
catalogue (e.g. Gladders & Yee 2000; Miller et al. 2005; Hao et al.
2010; Soares-Santos et al. 2011; Bellagamba et al. 2018, and many
others), in general cluster richness is a measure of galaxy content
– possibly weighted by luminosity – of a galaxy cluster. In this
work, we will focus specifically on cluster richness as defined in
the red sequence matched-filter probabilistic percolation algorithm
(redMaPPer; Rykoff et al. 2014). This choice reflects both the ex-
cellent performance of redMaPPer in the Sloan Digital Sky Survey
data release 8 (SDSS DR8; Aihara et al. 2011; Rozo & Rykoff
2014), and the fact that redMaPPer is the cluster-finding algorithm
currently employed by the DES collaboration (Rykoff et al. 2016).

As suggested by the name, redMaPPer detects clusters as over-
densities of red-sequence galaxies. redMaPPer estimates the prob-
ability that each red galaxy is a cluster member using a matched
filter approach and then calculates the richness as the sum of the
membership probabilities of all galaxies in the cluster field. The
sum extends over all red-sequence galaxies above a fixed luminos-
ity threshold, and within an empirically calibrated cluster radius. In
order to maximize the cosmological utility of the redMaPPer cluster
sample, the cluster richness defined by redMaPPer has been opti-
mized to minimize the scatter in the richness–mass relation (Rozo
et al. 2009, 2011; Rykoff et al. 2012). Rozo et al. (2011) performed
an early study of systematic uncertainties affecting the richness es-
timates using the algorithm employed by redMaPPer. Among the
systematics studied in that work, two stood out: cluster miscentring
and projection effects. Miscentring in redMaPPer clusters has been
studied in previous works (Rozo & Rykoff 2014; Sadibekova et al.
2014; Hoshino et al. 2015; Hikage et al. 2017), and additional work
is ongoing (Zhang et al., in preparation; von der Linden et al., in
preparation). Here, we focus exclusively on projection effects.

Projection effects refer to the impact that correlated and uncor-
related structures along the line of sight can have on photometric
cluster richness estimates (or any other observable mass proxy). In
particular, the width of the red sequence, along with photometric
uncertainties, places an inherent limit to the resolution that a photo-
metric cluster-finding algorithm can achieve along the line of sight
(Cohn et al. 2007). Consequently, one expects richness estimates
to be contaminated by the galaxy content of nearby structures. In-
deed, there are now multiple sources of observational evidence for
projection effects in the SDSS redMaPPer cluster catalogue (Farahi
et al. 2016; Busch & White 2017; Zu et al. 2017). As emphasized
in Erickson, Cunha & Evrard (2011), a detailed, quantitative char-
acterization of these projection effects is necessary to successfully
utilize galaxy clusters as a dark energy probe. This work seeks to es-
tablish the modelling framework necessary to quantify these effects
for the SDSS and DES redMaPPer cluster catalogues.

A quantitative characterization of projection effects in a clus-
ter catalogue faces two distinct challenges. First, while one could
imagine randomly inserting synthetic data clusters into the survey
data set to study the impact of projection effects, any conclusions
derived from such a study would not account for the impact of
correlated large-scale structure around galaxy clusters. Conversely,
any conclusions from simulation-based studies of projection effects
in which galaxies are painted on dark matter haloes will be lim-
ited by uncertainties in the halo occupation distribution and galaxy
colour assignment used in the simulation (see e.g. van Haarlem,
Frenk & White 1997; Gerke et al. 2005; Cohn et al. 2007; Farahi
et al. 2016). Here, we demonstrate how we can combine both real
data and numerical simulations to tackle these twin challenges. In
particular, we rely on an analysis of real data to estimate the ef-
fect of background subtraction uncertainties and the magnitude of

projection effects from uncorrelated large-scale structures. At the
same time, and exploiting the empirical understanding of projection
effects gained from characterizing the impact of projection effects
around random points in the SDSS data set, we use mock catalogues
to characterize the effects of correlated structures. While the method
proposed here remains model-dependent – as is necessarily the case
for any simulation-based approach – our method has the virtue of
being explicitly data driven. Moreover, the simplicity of our anal-
ysis enables multiple robustness tests that help us characterize the
sensitivity of cosmological posteriors to our model assumptions.

The modelling framework detailed in this work will be utilized
to derive cosmological constraints from the SDSS redMaPPer cata-
logue (Costanzi et al., in preparation) and will be used by the DES
collaboration in their upcoming analysis of the DES Year 1 redMaP-
Per data set. We also note that while the analysis in this paper is
focused specifically on the SDSS redMaPPer cluster catalogue, the
algorithm developed here can be used to characterize projection ef-
fects in any cluster catalogue, including catalogues selected in other
wavelengths.

The paper is organized as follows. In Section 2, we introduce the
parametric model we have adopted for characterizing the impact of
projection effects on the richness of galaxy clusters. Section 3 is
devoted to the calibration and validation of our model. Section 4
demonstrates that the work carried out in this paper is necessary
for enabling accurate and precise cosmological inferences from
the analyses of the abundance of redMaPPer galaxy clusters. We
summarize and conclude in Section 5.

2 OV E RV I E W O F T H E PRO J E C T I O N EF F E C T S
M O D E L

Let λob denote the observed richness of a galaxy cluster. The expec-
tation value of the density of galaxy clusters is given by

〈n(λob, z)〉 =
∫ ∞

0
dM n(M, z)P (λob|M, z) , (1)

where n(M, z) is the halo mass function, and P(λob|M, z) denotes
the probability that a halo of mass M at redshift z is observed with
richness λob. It is worth noting that this equation explicitly assumes
that haloes can be uniquely matched to clusters, which need not
always be the case (see e.g. Gerke et al. 2005). Using redMaP-
Per clusters identified in simulated galaxy catalogues, Farahi et al.
(2016) demonstrate that 99 per cent of clusters with λ ≥ 20 map to a
unique dark matter halo, while 1 per cent map to haloes previously
assigned to a richer system.

The observed richness assigned to each cluster can be seen as the
result of a two-step process: First, the cluster has an inherent ‘true’
richness, λtrue, that can be thought of as the richness the cluster
finder would assign to an object in the absence of projection effects
and observational errors. λtrue is a random variable that depends
on cluster mass. Secondly, projection effects and photometric and
observational noise perturb the richness λtrue to arrive at the observed
richness λob assigned to that galaxy cluster. We can parametrize
these stochastic contributions by decomposing P(λob|M, z) into a
convolution of two distinct probability distributions:

P (λob|M, z) =
∫ ∞

0
dλtrue P (λob|λtrue, z)P (λtrue|M, z) , (2)

where P(λtrue|M, z) describes the intrinsic scatter of the richness–
mass relation, and P(λob|λtrue) accounts for the additional scatter
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introduced by the observation.6 In this way, we disentangle any
biases introduced by the cluster finder and the characteristics of the
survey (e.g. photo-z uncertainty) from the underlying observable-
mass relation. The aim of this work is to provide a general procedure
to calibrate P(λob|λtrue, z) and to demonstrate our method using the
SDSS redMaPPer catalogue.

We model the perturbation of the observed richness relative to
the true richness as the sum of two uncorrelated stochastic terms,

λob = λtrue + �bkg + �prj , (3)

one due to photometric noise and the impact of observational un-
certainties in the background subtraction, �bkg, and another that
accounts for the effects of chance projections, �prj. The key dis-
tinction here is that �bkg is non-zero even when detecting clusters
in unstructured background. By contrast, �prj refers to the contri-
bution to λob from member galaxies of other haloes projected along
the line of sight.

The properties of the observational noise �bkg can be estimated
directly from the data by injecting synthetic galaxy clusters of
known richness λtrue into the survey data. The injected clusters
are added at the catalogue level, not the image level. When inject-
ing clusters into the data, we fluctuate galaxy magnitudes according
to the predicted magnitude errors given the local observing condi-
tions, and then measure the observed richness λob. We detail our
calibration of this observational noise in Section 3.1. One form of
noise we do not account for is noise due to centring failures. It is
possible for projected clusters – having an excess of galaxies rela-
tive to non-projected systems – to be more likely to be miscentred
than non-projected clusters. That is, miscentring and projection ef-
fects might be correlated. Because miscentring is well constrained
(Zhang et al., in preparation) and has little impact on weak-lensing
mass (McClintock et al. 2018), we expect any such corrections to
be small, and postpone an investigation of this possibility to fu-
ture work. As will be discussed in the cosmological analyses of
the SDSS and DES redMaPPer cluster samples, our approach is to
correct the data for the effects of miscentring, rather than forward
modelling the impact of miscentring on the data.7 Consequently,
the analysis in this work (which ignores miscentring) is directly
applicable to those data sets. In the future, we intend to forward
model miscentring in addition to projection effects.

Unlike the background term �bkg, we may not calibrate �prj

through the injection of synthetic galaxy clusters into the data be-
cause galaxy clusters are not randomly distributed within the survey
footprint; they live in overdense regions, and correlated large-scale
structure will boost projection effects relative to estimates based on
placing synthetic galaxy clusters at random points. To overcome
this difficulty, we rely on N-body simulations, which allow us to
place galaxy clusters at locations of massive dark matter haloes.

At first glance, one might expect that to calibrate the impact of
correlated structure one needs only to populate N-body simulations

6Here, we are implicitly assuming that λob is independent of mass at fixed
λtrue and redshift. This assumption is validated a posteriori using our syn-
thetic data. Specifically, we used our mock catalogue to compare the distri-
bution of richness values P(λob) for haloes in different mass bins selected in
such a way as to have identical λtrue distributions. The distribution P(λob)
for these different halo mass bins were nearly identical to each other.
7Note the weak-lensing masses used in our analyses rely on forward mod-
elling the impact of miscentring. The recovered mass is used as the ob-
servable data vector for the cosmology analysis, and in that sense it is
‘corrected for miscentring’, though the ‘correction’ comes about from a
forward-modelling treatment of the data.

with galaxies, and then run the redMaPPer algorithm on the result-
ing mock galaxy catalogues. The problem with such an approach
is that the projection effects depend in detail on how galaxies are
distributed, particularly the colour–redshift relation of red-sequence
galaxies: Wider red sequences will increase projection effects. Con-
sequently, an accurate calibration of projection effects requires a
quantitatively accurate reproduction of not just the halo occupation
distribution of cluster galaxies, but also the red-sequence width as
a function of redshift for the mock galaxy catalogues.

To ensure that projection effects in our simulated data sets cor-
rectly mirror projection effects in the real data, we proceed as fol-
lows: Given a halo catalogue in a light-cone, we assign each halo
a richness λtrue. The observed (i.e. projected) richness of a galaxy
cluster is summing the true richness of all haloes along the line of
sight, weighted by a redshift kernel w(�z), and the fractional over-
lap area. The kernel w(�z) characterizes the fractional contribution
of the richness of a halo along the line of sight to the projected
richness of the dominant clusters. Thus, w = 1 when �z = 0 and
w = 0 when |�z| is large, i.e. haloes separated by a large redshift
offset do not project on to each other. The richness perturbation due
to projections takes the form

�
prj
i =

N∑
j 	=i

f A
ij w(�zij , zj )λtrue

j , (4)

where the sum is over all clusters j in the catalogue. The coefficient
f A

ij is a geometric term that accounts for misalignments between
haloes: that is, projection effects should increase as the projected
halo and the central parent halo become more aligned. At perfect
alignment, f A

ij is equal to 1. In the case of partial alignment, the
fractional overlapping area is computed analytically based on the
radial offset between the parent and projected haloes. The key re-
maining task at this point is to specify the form of the filter function
w(�z, z). The calibration of the filter function w(�z, z) is one of
the key innovations in this work and is described in Section 3.2.

We seek to test the validity of our model for implementing pro-
jection effects on a simulation. To this end, it is important to note
that when we place synthetic galaxy clusters at random points in
the survey, projection effects still occur, even though they are sup-
pressed due to the absence of correlated large-scale structure. This
enables a non-trivial test of the projection effects model: The projec-
tion effects of randomly placed synthetic clusters in the simulation
should match the projection effects observed in randomly placed
synthetic galaxy clusters in the real data. That is, the probabil-
ity distribution P(λob|λtrue, z) for randomly injected clusters in the
simulation should match the corresponding distribution recovered
from the data. If the two distributions match, we can assert that
our method for implementing projection effects in the simulation
correctly mirrors how projection effects occur in the real data. This
validation test is performed in Section 3.3.

Having validated our methodology for incorporating projection
effects into N-body simulations, in Section 3.4 we characterize
the impact of projection effects on richness estimates including
correlated large-scale structure, i.e. we re-calibrate the probability
distribution of the richness perturbation �prj considering clusters at
their actual position within the large-scale structure of the simulated
universe.

In short, our analysis ultimately relies on two types of synthetic
data sets: (1) synthetic galaxy clusters that are injected into the
real SDSS data in order to quantify projection effects along ran-
dom points. (2) N-body simulations in which haloes are assigned

MNRAS 482, 490–505 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/482/1/490/5114581 by U
niversita degli Studi di Trieste user on 05 N

ovem
ber 2020



Projection effects in cluster catalogues 493

true richness, which are then analytically projected to arrive at an
observed (projected) richness for each halo.

It is worth reiterating that the work described here does not rely
on populating N-body simulations with galaxies and then running
redMaPPer on the resulting cluster catalogue. Doing so would en-
able us to calibrate projection effects in the simulations, but the
results are necessarily dependent on the details of the input colour
distribution and evolution of the galaxies. By contrast, our empir-
ically motivated analysis enables us to calibrate projection effects
in a controlled, data-driven way. In future work, we intend to apply
the methods described here to redMaPPer runs on synthetic galaxy
populations to further validate our methodology on synthetic uni-
verse.

3 A NA LY SIS

Here, we analyse the following:

(i) Calibrate the noise in the cluster richness estimates associated
with photometric noise and stochasticity in the background galaxy
population (Section 3.1). We also characterize projection effects
due to uncorrelated large-scale structure using synthetic clusters at
random points in the real data.

(ii) Describe how we introduce projection effects into simulated
halo catalogues to arrive at synthetic cluster catalogues that include
projections (Section 3.2).

(iii) Validate our model by comparing the incidence of projection
effects for randomly located synthetic clusters in the simulation to
that of the data (Section 3.3).

(iv) Calibrate the incidence of projection effects in the simulation
including correlated large-scale structure (Section 3.4).

Throughout the paper, quantities labelled with ‘RND’ are de-
rived using randomly located synthetic clusters, while quantities
labelled with ‘LSS’ are derived using synthetic clusters placed at
the appropriate halo positions within the large-scale structure of
the simulation. That is, ‘LSS’ quantities properly account for the
impact of correlated structures.

3.1 Calibration of observational noise and projection effects
from uncorrelated large-scale structure

To characterize observational noise, we inject synthetic clusters at
random positions in the sky and compare the recovered richness
λob

out to the true input richness of the synthetic clusters λtrue
in . Our

synthetic galaxy clusters are generated using an improved version
of the method outlined in Rykoff et al. (2014), which uses the red-
sequence colour model calibrated from the data and depth maps. In
brief, given a true cluster richness and redshift (λtrue

in , zin) we proceed
as follows:

(i) First, we generate a list of 10 000 random positions, uniformly
sampling the survey mask.

(ii) At each location, we place λtrue
in galaxies distributed in radius

and colour–magnitude space according to the empirically calibrated
red-sequence model of redMaPPer. The magnitudes of the cluster
galaxies are then perturbed according to the expected photometric
noise as reported in the SDSS depth maps. The red-sequence cali-
bration assumes a linear model in colour–magnitude space, with a
multivariate Gaussian scatter for the photometric magnitudes. The
expectation value and covariance matrix characterizing the red-
sequence model are iteratively trained on spectroscopic clusters
using a maximum-likelihood method for estimating the parameters.

For further details, we refer the reader to Rykoff et al. (2014). While
our methodology does not insert blue galaxies – i.e. galaxies not de-
scribed by the red-sequence model detailed above – whether in the
cluster or otherwise, these galaxies have zero weight when comput-
ing cluster richness, and therefore do not impact the performance
of the cluster finder.

(iii) We measure the richness λob of the synthetic galaxy clusters.

The procedure above does not account for miscentring errors, nor
for ‘catalogue noise’, i.e. the stochasticity associated with galaxy
detections. In our upcoming cosmological analyses, the impact
of cluster miscentring on the cluster number counts and weak-
lensing mass estimates is explicitly accounted for by correcting
the observed data vectors (abundance and weak-lensing masses)
for the effects of miscentring. As for stochasticity due to cata-
logue noise, any such stochasticity will necessarily be subsumed
into estimates of the intrinsic scatter of the richness–mass relation
when performing cosmological analyses with the redMaPPer cluster
samples.

As detailed in Rykoff et al. (2014), redMaPPer analyses clus-
ters in three stages. First, it looks for overdensities of red-sequence
galaxies. Secondly, for every cluster of galaxies, it computes the
probability for each galaxy to be a cluster member. Thirdly, after
sorting the cluster candidates according to the cluster likelihood, it
percolates through the full catalogue while probabilistically mask-
ing out cluster members. In the interest of simplicity, in this first
pass we will ignore the impact of percolation, which only affects
a small percentage of the clusters. However, we return to charac-
terize the impact of percolation on P(λob|λtrue, z) in Section 3.4.
With this simplification, the galaxies of our synthetic clusters are
never absorbed by higher richness systems, and therefore projec-
tion effects can only increase the observed richness of synthetic
clusters.

For our analysis, we inject synthetic clusters into the SDSS
DR8 data. The richness and redshifts of the injected clus-
ters are taken from a grid along these two axes, with λtrue

in =
[5, 15, 26, 36, 47, 58, 68, 78, 89, 100] and zin = [0.1, 0.15, 0.2,
0.25, 0.3]. The blue histograms in Fig. 1 show the probability
distributions P(λob|λtrue, z) recovered from our analysis for three
different richness and redshift bins as labelled. As expected, the
distributions are wider and more positively skewed for larger ob-
jects – i.e. larger λtrue – and at higher redshift; larger objects have a
larger cross-section, increasing the chance of spurious projections,
while higher redshift systems suffer from larger photometric errors.

We model the fluctuations in the observed richness as the sum
of two stochastic perturbations, �bkg and �prj, as per equation (3).
�bkg is assumed to be Gaussian distributed, N(�μ, σ ), where both
the bias in the recovered richness �μ, and the scatter σ are functions
of (λtrue, z). The distribution P(�prj) is modelled as the sum of an
exponential and a delta distribution:

P (�prj|λtrue, z) = (1 − f prj)δD(�prj) + f prjτe−τ�prj

(�prj). (5)

We have found empirically that this parametric model provides an
accurate description of our simulated data. In the above expression,
fprj(λtrue, z) is the fraction of objects affected by projections, and the
step function 
(�prj) ensures �prj ≥ 0. The parameter τ (λtrue, z),
defining the steepness of the exponential distribution, characterizes
the magnitude of projection effects. Note that τ has a unit of inverse
richness, and small values of τ correspond to stronger projection
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Figure 1. The blue histograms show the probability distribution P(λob|λtrue, z) obtained by randomly injecting synthetic galaxy clusters into the SDSS data
for a grid of input redshifts and richness as labelled. They show the effect of photometric noise and projection effects, yet without the additional scatter due to
correlated structure and percolation. The solid red lines are the best-fitting analytic models (equation 6) to these distributions. The vertical lines correspond to
the λtrue values used to generate the distributions.

effects. The convolution of the two distributions is

P (λob|λtrue, z) = (1 − f prj)N(μ, σ )+
+f prj τ

2
exp

[ τ

2
(2μ + τσ 2 − 2λob)

]
erfc

(
μ + τσ 2 − λob

√
2σ

)
,

(6)

where we have defined μ = λtrue + �μ. This expression contains
four independent parameters, {�μ, σ , fprj, τ}, that are fit by match-
ing our parametric model to the probability distributions P(λob|λtrue,
z) recovered from injecting clusters into the SDSS data sets. As
shown by the dashed red lines in Fig. 1, our model provides a good
fit to the data. The dependence of the best-fitting parameters on the
input richness and redshift is shown in Fig. 2. These parameters
characterize the impact of observational errors and the impact of
uncorrelated large-scale structure in the observed cluster richness.
The mean of the distribution is biased low with respect to λtrue, i.e.
�μ < 0. This makes sense. Because redMaPPer performs a global
background subtraction, we expect 〈λob|λtrue〉 = λtrue (Rykoff et al.
2014). Taking the expectation value of equation (3), it follows that
〈�bgk〉 = −〈�prj〉 < 0. Projection effects increase with increasing
redshift due to larger photometric errors, which raises 〈�prj〉 while
decreasing μ = 〈�bgk〉. In addition, since rich clusters are larger in
the sky, richer clusters will exhibit stronger projections, leading to

a lower μ. This same reasoning explains the qualitative trends in
fprj and τ shown in Fig. 2. In particular, the pronounced increase fprj

reflects the fact that at lower redshifts, projection effects are driven
primarily by the width of the red sequence. Once photometric noise
becomes larger than the intrinsic width of the red sequence, the im-
pact of projection effects increases with increasing redshift, leading
to the enhancement seen in Fig. 2. Finally, the increased photomet-
ric errors of galaxies at higher redshift also explain why the variance
of �bkg, σ , increases with increasing redshift.

An important result from this analysis is that the richness errors
quoted in the redMaPPer catalogue underestimate the true obser-
vational uncertainty by ∼40–70 per cent depending on the richness
and redshift of the cluster. This difference is due to the fact that the
errors quoted in the redMaPPer catalogue represent the statistical
uncertainty in the total number of cluster galaxies assuming the
membership probabilities are correct. That is, it only accounts for
the stochasticity in cluster membership. In practice, the membership
probabilities themselves are subject to observational noise, boosting
the observed error relative to the error calculated by redMaPPer.

3.2 How to include projection effects in simulated data

We wish to develop a method for adding projection effects to sim-
ulated data in a way that faithfully reproduces the impact of pro-
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Figure 2. Dependence on the input richness and redshift of the model
parameters that characterize the observational scatter and the magnitude of
projection effects due to uncorrelated structures (equation 6).

jection effects in the real data. Populating haloes with galaxies in
a multidimensional colour space in a way that adequately matches
the detailed trends of cluster galaxies is difficult. Here, we assign
richness values to haloes according to a richness–mass relation, and
then project and percolate the halo catalogue in a way that mirrors
the redMaPPer algorithm. We validate our method in Section 3.3.

Here, we describe our algorithm for computing the projected
richness of a galaxy cluster given a simulated data set in which
all haloes along the line of sight have been assigned an intrinsic
richness. Specifically, given a halo with known position, redshift,
projected area, and an assigned richness λtrue, we assign a total
projected richness as follows:

(i) Sort the mock halo catalogue according to λtrue – the assigned
intrinsic richness – in descending order. This step mimics the rank-
ordering procedure of redMaPPer.

(ii) Starting from the richest cluster in the catalogue, assign an
observed (projected) richness according to

λob
i = λtrue

i + �
prj
i = λtrue

i +
N∑

j 	=i

λtrue
j f A

ij w(�zij , zj ). (7)

Here, λtrue is the richness of a galaxy cluster assigned using a fiducial
scaling relation. f A

ij is the fraction of area of the jth object that
overlaps with the area of the ith object in projection. This assumes
that the galaxies are uniformly distributed inside the cluster radius;
Although a crude approximation, we have explicitly verified that
using a more realistic radial profile model does not significantly
impact the resulting analysis. We have not explored the sensitivity
of our analysis to allow for elliptical galaxy distributions, which
we leave for future work. Finally, w(�zij|zj) is a redshift-dependent
weight that accounts for the redshift distance between i and j. We
provide detail next how the function w(�z) is calibrated.

(iii) For tests that include percolation effects, having measured
the observed (projected) richness of cluster i, we update the in-

trinsic richness (and therefore the radius) of all clusters j > i via
λtrue

j = λtrue
j (1 − f A

ij w(�zij , zj )). This update subtracts out from
each cluster j the galaxies that this cluster contributed to a richer
system, mirroring the percolation algorithm employed in redMaP-
Per. The richness perturbation �prc due to percolation can be written
as follows:

�
prc
j =

N∑
i<j

λtrue
j (1 − f A

ij w(�zij , zj )). (8)

This quantity is a third source of stochastic noise that impacts the
observed richness of a galaxy cluster and is added to the �prj and
�bkg contributions in equation (3).

(iv) We move from cluster i to cluster i + 1 and iterate until we
move through the whole halo list, arriving at our synthetic cluster
catalogue.

At this point, the richness λob does not include the noise due to
observational errors, �bkg. The final value for λob is obtained by
adding a Gaussian random draw from the �bkg distribution cali-
brated in the previous section. While comparing our simulated data
to the synthetic random clusters of Section 3.1, we do not apply the
percolation step, but when calibrating the full impact of projection
effects (Section 3.4) we explicitly incorporate this effect.

In order to fully specify our projection algorithm, we must cal-
ibrate the function w(�z, zcl), that is, the fraction of galaxies that
a high-richness cluster will absorb from a lower ranked cluster at
redshift zcl + �z, assuming perfect alignment of the two systems.
This function is specific to the survey and cluster-finding algorithm
under consideration and must be calibrated directly from the data.
For this calibration, we re-measure the richness of every cluster
in the redMaPPer catalogue along a grid of redshift values around
each cluster’s true redshift (see e.g. right-hand panels of Fig. 3).
Given a cluster at redshift zcl, the richness λ(z) gives us the number
of galaxies that would ‘leak’ into a higher ranked object along the
same line of sight at redshift z. That is, we expect the function
λ(z) = λw(�z, zcl), where λ is the true richness of the cluster, and
�z = z − zcl is the redshift offset. Our analytic model for w(�z,
zcl) is

w(�z, zcl) =
{

1 − (�z)2

σz(zcl)2 , |�z| < σz(zcl)

0 , otherwise
. (9)

This functional form arises from the simple expectation that
w(�z, zcl) = 1 when �z = 0, and that w(�z, zcl) = 0 when |�z|
is larger than some maximum separation σ z, where σ z depends on
the cluster redshift.

Example fits to the function w(�z, zcl) as measured in the SDSS
data are shown in the right-hand panels of Fig. 3. Note that our
functional form has only one free parameter, σ z. The best-fitting
values for σ z for every object in the SDSS redMaPPer sample are
shown in the left-hand panel of Fig. 3. As expected, the size of the
kernel increases with redshift due to larger photometric errors. At z

> 0.33, the redMaPPer catalogue is no longer volume limited, and
the faintest galaxies detected for every cluster reside at the survey’s
limiting magnitude. This results in the roughly constant width of the
kernel function w(�z, zcl) at high redshifts. The scatter in σ z values
between clusters at the same redshift reflects the presence or ab-
sence of structures along the line of sight to each cluster: secondary
structures add their richness to the naive expectation λw(�z, zcl),
thereby broadening the measured λ(z) function. Consequently, if we
wish to measure the ‘leakage’ w(�z, zcl), we should restrict our-
selves to clusters that reside along clean lines of sight, i.e. clusters
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Figure 3. Left-hand panel: The blue dots are the best-fitting values for σz obtained when fitting the curves λ(z) for each cluster in the redMaPPer cluster
catalogue (see text). The red squares represent the 5 percentile of the σz distribution estimated in redshift bins of width �z = 0.01. The solid orange line shows
the model for σz(z) adopted for the analysis. Right-hand panels: The blue solid lines are the measured λ(z) for the three clusters labelled with triangles in the
left-hand panel; the red solid lines represent the best-fitting model for w(�z, zcl); for comparison, the black dashed lines show the redshift kernel expected for
clear l.o.s. clusters, i.e. assuming the calibrated σz(z) in the computation of the kernel w(�z, zcl).

for which there is no broadening of the curve λ(z) due to structures
along the line of sight. We estimate the leakage function w(�z, zcl)
as the lower envelope defining the 5 per cent narrowest kernels in
Fig. 3. This 5 per cent envelope is estimated in redshift bins of width
�z = 0.01, which are fit with a broken log-linear model. Our best
fit, shown with the orange line in Fig. 3, gives the relation

log σz(z) = 2.299 (z − 0.32) − 0.961 for z ≤ 0.32,

log σz(z) = 0.185 (z − 0.32) − 0.961 for z > 0.32. (10)

We have explicitly verified that our final model for projection effects
is robust to modest modifications of our method for calculating the
lower envelope of the data for σ z(z) shown in Fig. 3. Specifically,
we verified that using the 10th percentile of the σ z distribution to
define σ z(z) does not appreciably affect our results (see Sections 3.3
and 4). The break in the figure reflects the transition of the SDSS
redMaPPer catalog from being volume limited to limited by the
survey depth.

3.3 Validation of the projection effects model on simulated
data

We seek to validate our model for introducing projection effects in
simulations by generating a synthetic cluster catalogue and testing
whether the projection effects from uncorrelated large-scale struc-
ture in this mock catalogue match the observational results from

Section 3.1. Agreement on the impact of projection effects between
the simulated and real data sets constitutes strong evidence that our
methodology for including projection effects in the simulation is
valid.

To generate a synthetic cluster catalogue, we start with the halo
catalogue extracted from an N-body simulation of a flat-�CDM
cosmological model with �m = 0.286, h0 = 0.7, �b = 0.047, ns =
0.96, and σ 8 = 0.82 ( DeRose et al. 2018, in preparation; Wechsler
et al. 2018, in preparation). The simulation, containing 14003 parti-
cles in a [1050 h−1 Mpc]3 volume, has been run with the L-GADGET

code, a variant of GADGET (Springel 2005). A light-cone covering a
quarter of the sky, over the redshift range 0.1 < z < 0.9, was output
from the simulation on the fly. The halo catalogue has been created
with the Rockstar halo finder (Behroozi, Wechsler & Wu 2013),
and it includes haloes down to M200m = 1012.5[M/h]. Through-
out, all masses refer to an overdensity of 200 with respect to the
mean. To assign a richness to the haloes, we rely on the results of
Simet et al. (2017) who placed constraints on the mass–richness
relation of SDSS redMaPPer clusters. Specifically, we assign to
each halo a richness drawn from a lognormal distribution having
mean

ln〈λtrue|M〉 = ln λ0 + α ln

(
M

M∗

)
, (11)
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Projection effects in cluster catalogues 497

Figure 4. Comparison of the probability distributions P(λob|λtrue, z) as
recovered from the data (blue histograms) and our simulated catalogue
(red histograms). In both cases, synthetic clusters are added at random
positions when measuring λob. The shaded areas correspond to the statistical
uncertainty of the samples.

and variance

σ 2
ln λ−M = 〈λtrue|M〉 − 1

〈λtrue|M〉2
+ σ 2

intr , (12)

where the model parameter values are α = 0.70, λ0 = 40, log M∗ =
14.348, and σ intr = 0.25. The scatter model is Poissonian when
the number of satellite galaxies is low but super-Poissonian at high
occupancy. The fiducial value of the scatter parameter σ intr is moti-
vated from comparisons of the redMaPPer catalogue to X-ray and
SZ clusters (Rozo & Rykoff 2014; Rozo et al. 2015). A more ex-
tensive analysis of the scatter of the richness–mass relation from
comparison to X-ray data will be presented in an upcoming paper
(Farahi et al., in preparation). Finally, as per the convention adopted
by the redMaPPer algorithm, we assign a physical radius to each
halo based on its assigned richness: R(λ) = (λ/100)0.2[Mpc/h]. The
radius, in turn, defines the projected angular extent of the halo:
π [Rλ/DA(z)]2.

Given this simulated cluster catalogue, we assign a projected
cluster richness to every halo as detailed in Section 3.2. To validate
the projected richness, we inject 5000 clusters in the simulated data
set at random positions and compute their projected cluster richness.
These injected clusters are simply tagged with a richness value, not
a full galaxy distribution, and therefore there is no ‘observational
noise’ associated with the injection. Instead, we add the Gaussian
random noise calibrated in Section 3.1 to the observed richness for
each cluster. Since this noise is Gaussian, any non-Gaussian tails in
the simulated data set necessarily come from the projection effects
modelling described in Section 3.2.

Fig. 4 compares the probability distributions P(λob|λtrue, z) recov-
ered in our simulated data set (red histogram) to the SDSS results
obtained by injecting synthetic clusters at random positions (blue

Figure 5. The probability distributions P(λob|λtrue, z) as calibrated un-
der a variety of different assumptions. The red line shows the distribution
recovered from our fiducial mock catalogue detailed in Section 3.3. The
blue histograms are obtained from mock catalogues in which we vary the
richness–mass relation parameters within their allotted errors or using the
10th percentile of the σz distribution to calibrate the redshift kernel. These
differences have only a modest impact on the resulting probability distribu-
tion P(λob|λtrue, z).

histogram). The shaded regions for the simulated data sets corre-
spond to the statistical uncertainty of the samples, estimated as the
square root of the number of synthetic clusters retrieved with a given
λob. There is good agreement between the two distributions at all
input richness and redshifts tested. A small horizontal shift of the
distributions can be seen in the middle panel of Fig. 4. However, the
shape of the distributions is well matched. Since small horizontal
shifts are exactly degenerate with the richness–mass relation, they
are trivially absorbed into the nuisance parameters of a standard
cluster abundance study.

A key question is the degree to which the recovered incidence
of projection effects depends on the details of the input richness–
mass relation used in our analysis. We have verified that shifting
the richness–mass relation parameters used to generate the mock
catalogue has a negligible impact on the resulting distributions when
varied within the ±0.1 uncertainty for the slope and amplitude of the
mass–richness relation of Simet et al. (2017). We have also tested
varying the intrinsic scatter by ±0.1, again finding a negligible
impact on the recovered distributions. Likewise, modest changes
in the calibration of the redshift kernel – e.g. considering the 10th
percentile of the σ z distribution instead of the 5th percentile to define
σ z(z) – does not appreciably affect our results. As an example, an
explicit comparison of these variations is shown in Fig. 5 for clusters
of input richness λtrue = 58 at z = 0.2.

Finally, the magnitude of projection effects should also depend
on cosmology; e.g. larger values of σ 8 and/or �m entail a larger
number density of haloes and thus stronger projection effects. In
Appendix A, we develop an analytic model for calculating the rel-
ative shift of the parameters characterizing the projection effects –
fprj and τ – as a function of cosmology. Fig. 6 shows the response of
P(λob|λtrue) to the cosmological dependent shifts of the projection
effect parameters. Specifically, the blue lines have been obtained
from equation (6) using the best-fitting parameters derived from the
data, but correcting τ and fprj for the analytically derived shift cor-
responding to 20 different cosmologies. The 20 input cosmologies,
shown with the orange dots in the inset plot of Fig. 6, have been
chosen sampling the posterior distribution derived from the cosmol-
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Figure 6. Effect of cosmology on the probability distributions P(λob|λtrue,
z). The red solid line shows our best-fitting model to the data. The blue
lines are obtained shifting the best-fitting values of τ and fprj according to
the analytically derived correction detailed in Appendix A for different cos-
mologies. The orange dots in the inset plot show the cosmological parameter
values used to generate the thin blue lines in the above figure. The confi-
dence contours of the inset are those derived from the mock cosmological
analysis of Section 4. The red stars correspond to the cosmologies tested in
Section 4 to assess the sensitivity of our cosmological posteriors to the input
cosmological model used when calibrating P(λob|λtrue, z).

ogy analysis of the simulated data set using our fiducial values (see
Section 4). This test shows that the cosmological sensitivity of the
projection effects is mild.

We further demonstrate the robustness of our calibration to the
input cosmology by selecting a few cosmological models that fall
just outside the 95 per cent confidence region of the posterior derived
from our simulated data set (red stars in the inset plot). We calculate
fproj and τ for these models and explicitly verify that the resulting
cosmological posteriors are not significantly different when using
these values. That is, the cosmological dependence of projection
effects has a negligible impact on cosmological constraints obtained
using our model. For further details, see Section 4.

3.4 Characterization of the projection effects due to
correlated large-scale structure

Having validated our algorithm to include projections and obser-
vational noise into our simulated cluster catalogues, we proceed to
calibrate the full distribution P(λob|λtrue, z) for real galaxy clusters,
including the impact of correlated large-scale structure. We again
begin by assigning every halo in our simulation a true intrinsic rich-
ness λtrue from the distribution P(λtrue|M, z). We wish to calibrate
the distribution P(λob|λtrue, z) for clusters of a given input richness,
λtrue

in , and redshift, zin. To do so, we compute the observed cluster
richness for all haloes in the catalogue having a ‘true ’ richness
and redshift equal to the desired input richness/redshift. In practice,
we use the criteria |λtrue − λtrue

in | < 0.1λtrue
in and |z − zin| < 0.025

to select the haloes of interest and replace the assigned richness
λtrue of the selected haloes by λtrue

in to avoid introducing artificial
scatter in the recovered distribution. Next, we proceed to compute
the projected richness of the targeted haloes as per Section 3.2. We
include percolation effects in this analysis. If the number of selected
clusters in the catalogue is less than 5000, we generate a new mock
catalogue and iterate the procedure until we arrive at 5000 indepen-
dent realizations of P (λob|λtrue

in , zin). The key difference between

the distribution P(λob|λtrue, z) computed here and that obtained in
Sections 3.1 or 3.3 is that the clusters are now correctly embedded
within the large-scale structure of the Universe, and therefore corre-
lated large-scale structure contributes to the incidence of projection
effects.

The resulting distributions in λob are shown in Fig. 7 for different
redshift and richness bins. As expected, the magnitude of projection
effects increases compared to that obtained when injecting synthetic
clusters at random points (compare the black dot–dashed and red
dashed lines in Fig. 7). The difference is especially pronounced
for the richest clusters – i.e. the most massive ones – that live in
the most dense environments. Moreover, for low-input richness the
distribution develops a tail towards low λob due to percolation: low-
richness clusters lose member galaxies to richer systems along the
line of sight.

Following equation (3), we model the distributions by setting λob

to the sum of three random variables:

λob = λtrue + �bkg + �prj + �prc. (13)

Note that in this equation, the term �prj still refers to the noise
due to projection effects, but this noise term now incorporates the
effects of correlated large-scale structure. That is, �prj in the above
equation is drawn from a different distribution than the noise term
�prj appearing in equation (3). In addition, the above equation in-
cludes an additional noise term �prc to account for the effect of
percolation. We model the distribution of �prc via

P (�prc|λtrue, z) = (1 − f msk)δD(�prc) + f msk

λtrue

(−�prc)
(�prc + λtrue).

(14)

Here, fmsk represents the fraction of clusters masked by higher
ranked objects. The second component of the distribution requires
that �prc is equally likely to remove anywhere between no galaxies
and the full λtrue galaxies of the projected halo. That is, �prc ∈ [ −
λtrue, 0]. As for equation (5), we have found empirically that this
distribution provides an accurate fit to our simulated data.

Convolving the probability distributions of the three random vari-
ables defining λob – i.e. a Gaussian for �bkg, equation (5) for �prj,
and equation (14) for �prc – we arrive at our final expression for
P(λob|λtrue, z):

P (λob|λtrue, z) = (1 − f msk)(1 − f prj)
e
− (λob−μ)2

2σ2

√
2π σ 2

+ 1

2

[
(1 − f msk)f prjτ + f mskf prj

λtrue

]
e

τ
2 (2μ+τσ2−2λob)erfc

(
μ + τσ 2 − λob

√
2σ

)

+ f msk

2λtrue

[
erfc

(
μ − λob − λtrue

√
2σ

)
− erfc

(
μ − λob

√
2σ

)]

− f mskf prj

2λtrue

[
e−τλtrue

e
τ
2 (2μ+τσ2−2λob)erfc

(
μ + τσ 2 − λob − λtrue

√
2σ

)]
, (15)

where, as in equation (6), the parameters μ and σ characterize the
Gaussian kernel due to observational noise, while f prj and τ cor-
respond to the fraction of clusters affected by projections and the
magnitude of such effect, respectively. The above equation looks
complicated but is conceptually straight forward: Projection effects
lead to a boost in the richness. Percolation subtracts out some galax-
ies because a fraction of the galaxies of low-mass haloes have been
mistakenly assigned to richer systems. Finally, there is some Gaus-
sian observational noise on top of these two effects. Indeed, we
view the conceptual simplicity of our model as a key asset, despite
the many terms in equation (15).

The best-fitting values of the parameters characterizing the im-
pact of correlated structures – τ , f prj, f msk – as a function of input
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Figure 7. P(λob|λtrue, z) for clusters, including the effect of correlated large-scale structure and percolation, as determined from our simulations. The observed
richness, λob, is computed by applying our data calibrated method to include projection effects and background subtraction noise (Section 3.2) The blue
histogram shows the distributions recovered from the mock data measuring λob of 5000 clusters at their actual position along the large-scale structure for a
grid of input redshifts and richness (see labels). The shaded area represents the statistical uncertainty of the mock sample. The red dashed lines are given by
the best-fitting model of equation (15). For comparison, we also include the best-fitting model for P(λob|λtrue, z) obtained in Section 3.1 by injecting clusters
at random positions. Evidently, correlated large-scale structure significantly boosts the impact of projection effects.

richness and redshift are shown in Fig. 8. As expected, when the
impact of correlated structures is included, the fraction of objects
affected by projections (f prj) is larger, reaching one for λtrue � 40.
Similarly, the magnitude of the richness perturbations increases –
i.e. τ values decrease – compared to the case when only uncorrelated
structures are considered (see for comparison Fig. 2). Quantitatively,
correlated structures boost the richness perturbation �prj by a factor
between 2 and 4 in the λtrue range 20−100.’

The fraction of masked clusters (fmsk) as a function of richness
may seem surprising, but this number includes clusters that had even
tiny amounts of masking. The fraction of haloes with λtrue = 20 that
suffer more than 50 per cent masking is only 5 per cent. Moreover,
these values are well understood: They must be there due to purely
geometric effects, and their precise value is fairly robust to changes
in the details of the percolation. For instance, changing the redMaP-
Per percolation radius by 15 per cent – equivalent to assigning the
percolation radius of a richness λ = 50 clusters to a richness λ =
100 cluster – changes the abundance function by ≈ ± 2 per cent.
Such changes have a negligible impact on our cosmological
inferences.

4 TH E I M PAC T O F P RO J E C T I O N EF F E C T S O N
C O S M O L O G I C A L PA R A M E T E R IN F E R E N C E

To assess the relevance of the proposed modelling on cosmologi-
cal parameter inference, we perform a cosmological analysis that
combines simulated cluster number counts data and weak-lensing
mass measurements. Specifically, we reproduce the cosmological
analysis performed in a companion paper (Costanzi et al., in prepa-
ration), where we use the model developed here to place cosmolog-
ical constraints using the SDSS redMaPPer catalogue. A detailed
description of the full likelihood is presented in that work. In addi-
tion, a similar analysis using the DES Y1 data is forthcoming. Here,
we limit ourselves to a brief summary.

Our synthetic data vector is derived from the halo catalogue
introduced in Section 3.2 implementing our procedure to include
projection effects in simulated data. The data vector consists of
the number of galaxy clusters in five richness bins – the bin edges
are �λob = [20, 27.9, 37.6, 50.3, 69.3, 140] – and two redshift
bins – z ∈ [0.1, 0.2) and z ∈ [0.2, 0.3). We assume a weak-
lensing analysis enables us to recover the mean mass for the clus-
ters in each richness/redshift bin. These mean masses are taken by
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Figure 8. Dependence on the input richness and redshift of the model
parameters that characterize projection and percolation effects, including
the impact of correlated structures along the line of sight (equation 15). The
other two model parameters not shown in the figure (�μ, σ ) are kept fixed
to the values shown in Fig. 2.

computing the mean halo mass of the clusters in a bin. Random
noise is added using a multivariate Gaussian distribution defined
by the covariance matrix for the weak-lensing mass estimates. The
latter is computed starting from the weak-lensing mass errors de-
rived for the redMaPPer SDSS catalogue by Simet et al. (2017),
and assuming that errors associated with the multiplicative shear
bias, photometric redshift uncertainties, projection effects, and tri-
axiality, are all perfectly correlated across all richness bins. The
statistical shape noise is taken directly from the weak-lensing anal-
ysis by Simet et al. (2017). We do not re-scale the shape noise
errors to account for the number of clusters in the simulations and
each bin: the errors are exactly those from Simet et al. (2017). The
uncertainty in the amplitude of the mass–richness relation for the
simulated data vector is ≈4.5 per cent, smaller than the correspond-
ing error budget in SDSS (the simulation has a larger number of
clusters, and we have two redshift bins, each with errors identical
to the single-redshift bin result for SDSS), but comparable to the
error recently reported by McClintock et al. (2018) with the DES
Y1 cluster sample.

Given these synthetic data vectors and their covariance matrix,
we sample the appropriate likelihood distribution using the emcee
package8 (Foreman-Mackey et al. 2013) to explore the parameter
space. The likelihood is modelled as a Gaussian distribution. The
expectation value for the number counts is computed by integrating
equation (1) over the relevant richness and redshift bin. Similarly,
the expected mean cluster mass is computed by weighting equa-
tion (1) by the halo mass and integrating over the λob and z bins.
The covariance matrix for the abundances includes both Poisson
noise and sample variance (e.g. Hu & Kravtsov 2003), while the
covariance matrix for the weak-lensing mass estimates is described
above. We assume no covariance between the weak-lensing mass
data and the abundance data.

To assess the relevance of projection effects on parameter infer-
ence, we consider four models for the scatter between the true and
observed richness:

8http://dan.iel.fm/emcee/

(i) We account for projection effects using equation (15) with
the best-fitting values recovered from the analysis as our model
parameters.

(ii) We neglect the effect of correlated structures using
P(λob|λtrue, z) calibrated from cluster placed at random positions.

(iii) We neglect the effect of masking setting fmsk to zero in equa-
tion (15).

(iv) We ignore both masking and projection effects by setting
λob = λtrue + �bkg, i.e. we consider only the Gaussian observational
noise term. This model is typical of analyses to date and ignores
the impact of projection effects on the shape of P(λob|λtrue, z) (e.g.
Rozo et al. 2007, 2010).

In all cases, we simultaneously constrain the cosmological pa-
rameters σ 8 and �m, and the richness–mass relation parameters
ln λ0, α, and σ intr (see equations 11 and 12).

The results of our analyses are shown in Fig. 9. As expected,
model (i) recovers both the cosmological and richness–mass rela-
tion input parameters. When neglecting the effects of correlated
structures or masking – models (ii) and (iii) – the input cosmologi-
cal parameters are still recovered within errors, though with a ∼1σ

bias compared to the posteriors obtained in model (i). The relatively
small bias reflects the fact that in model (ii) the smaller skewness
of P(λob|λtrue, z) is compensated by a steeper slope and larger nor-
malization of the richness–mass relation. Turning to model (iii),
masking effects are rare and impact primarily low-richness objects
– λ � 20 – so we are able to correctly recover the fiducial richness–
mass relation parameters despite ignoring percolation effects. By
contrast, for model (iv) the recovered richness–mass relation is bi-
ased, and the corresponding cosmological constraints disfavour the
input cosmology at more than 2σ . Specifically, the cluster normal-
ization condition parameter S8 ≡ σ 8(�m/0.3)1/2 is shifted by �S8 =
0.05 compared to model (i), i.e. a bias larger than two times the
uncertainty associated with S8 for such an analysis. Unsurprisingly,
the recovered scatter σ intr ∼ 0.5 is significantly larger than the input
scatter for the simulation, σ intr = 0.25. Despite this extra scatter
absorbed by σ intr, the mismatch between the true shape of P(λob|M,
z) and the model assumed in (iv) results in a biased cosmological
inference.

While this analysis clearly shows the importance of accounting
for projection effects, it is important to stress that the level of biases
caused by an incorrect calibration of P(λob|λtrue, z) depends on the
size of the cluster catalogue, the accuracy of the mass calibration,
and the flexibility of the richness–mass relation adopted. In par-
ticular for a mock catalogue having the same statistical properties
as those of the SDSS redMaPPer catalog and its associated weak-
lensing data, we find that the cosmological parameter posteriors
are only minimally biased. That is, the modelling described in this
paper is necessary for Stage III dark energy experiments but not for
stage II.

Finally, we test the robustness of our results to the details of the
procedure used to calibrate the impact of projection effects, specif-
ically the input cosmology and richness–mass relation parameters
of the simulation (i.e. �m, σ 8, α, ln λ0, and σ intr), and the percentile
used to calibrate the width σ z(z) of the projection kernel w(�z,
z). To this end, following Section 3.4, we re-calibrate P(λob|λtrue,
z) three times as follows: (i) using mock catalogues generated by
perturbing the richness–mass relation parameters used to populate
the simulation by one standard deviation (σα = σln λ0 = 0.1), (ii)
approximating the lower envelope of the redshift kernel with the 90
percentile (see Section 3.2 for details), and (iii) assuming four dif-
ferent input cosmologies falling outside the 95 per cent confidence
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Figure 9. Posterior on cosmological and richness–mass relation parameters for our synthetic data set. The synthetic data were generated by applying our
procedure to include projection effects and observational noise on a simulated halo catalog as detailed in Section 3.2. We considered four separate cases. The
blue contours are obtained by accounting for projection effects as advocated in this work. The orange contours are derived using P(λob|λtrue, z) as calibrated
from clusters injected at random positions, i.e. neglecting the effect of correlated structures. The green contours are obtained neglecting masking effects, that
is, setting the parameter fmsk to zero in equation (15). Finally, the pink contours are derived ignoring both projection and masking effects by setting P(λob|λtrue,
z) equal to the Gaussian noise characterizing observational noise. We can see that failing to properly model projection effects can potentially introduce large
biases in the inferred cosmological parameters.

region of our fiducial posterior distribution. As for the latter, we
use equation (A8) to derive the cosmology-dependent shift of the
projection effect parameters used in equation (15). For each new
calibration of P(λob|λtrue, z), we repeat the cosmological analysis
keeping the same fiducial mock data and covariance matrices de-
scribed before. That is, the input data vector into our likelihood is
always the same.

The results of these analyses are summarized in Fig. 10 that com-
pares the 68 per cent confidence regions derived using the different
calibrations of P(λob|λtrue, z) (coloured error bars) with the results
obtained using the reference model (shaded grey area). We consis-
tently recover the correct cosmological and richness–mass relation

parameters regardless of the details of how we calibrate our pro-
jection effects model. In short, our calibration procedure is both
robust and sufficient for enabling accurate cosmological parameter
estimates from current cluster surveys.

5 SU M M A RY A N D C O N C L U S I O N S

We have developed a new algorithm for quantitatively characteriz-
ing projection effects in cluster catalogues and applied this algo-
rithm to the redMaPPer SDSS DR8 cluster catalogue. Our method
combines real data with N-body simulations to correctly account for
the effects of correlated large-scale structure on projection effects.
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Figure 10. Comparison of the 68 per cent confidence regions derived from our synthetic data set to the posteriors from our fiducial analysis after perturbing the
input model parameters relevant for the calibration of P(λob|λtrue, z). The shaded area corresponds to 68 per cent confidence region derived using our reference
model. The coloured error bars correspond to the results derived using P(λob|λtrue, z) calibrated varying: the richness–mass relation parameters (i−iv), the
percentile used to define the redshift kernel (v), or the input cosmology (vi−ix) (see labels in the plot).

Specifically, we use the real data to calibrate the observational noise
in richness estimates due to photometric noise and background sub-
traction and to validate our method for incorporating projection
effects into simulations. By comparing the probability distributions
for λob given λtrue as recovered in both simulated and real data, we
are able to demonstrate the validity of our method for adding pro-
jection effects in simulations. Finally, we use these quantitatively
validated numerical simulations to characterize the impact of corre-
lated large-scale structures in the recovered richness measurements.

We find that projection effects can substantially alter the observed
richness, and that the effect is especially strong in rich galaxy clus-
ters due to the abundance of correlated structures around these
systems. By performing a cosmological analysis of a synthetic data
set with a known underlying cosmology, we demonstrate that ex-
plicitly modelling projection effects is necessary in order to derive
unbiased cosmological constraints from upcoming photometrically
selected cluster catalogues.

The fully calibrated distribution P(λob|λtrue, z) recovered in
this analysis (equation 15) will be utilized in a companion paper
(Costanzi et al., in preparation) to derive cosmological constraints
from the SDSS redMaPPer cluster sample. This formalism will
further be applied to the analysis of the DES Year 1 redMaPPer
cluster catalogue. We note in particular that the wider redshift range
spanned by DES Year 1 redMaPPer catalogue (0.2 < z < 0.65)
does not represent a limitation for the application of the method de-
scribed in this work: the calibration of the redshift kernel w(�z, zcl),
and observational noise parameters �μ and σ , being performed di-
rectly on the data, automatically extends to the whole redshift range
of the catalogue. In addition, halo catalogues covering the relevant
redshift range and with the appropriate mass resolution are already
available. Following the tests performed in Section 4, we will assess
the robustness of the inferred results to the P(λob|λtrue, z) calibration
by repeating the cosmological analysis with different calibrations
of the projection effect parameters, as obtained using a variety of
cosmologies and input richness–mass relations. As demonstrated
in Section 4, similar analyses to that carried out here will be nec-
essary for all future photometric cluster surveys seeking to place
cosmological constraints.

We again emphasize that the calibration of projection effects
in this work is specific to the SDSS redMaPPer cluster sample,
and that other cluster-finding algorithms and/or other data sets will
require a full re-calibration of projections effects, as these depend
both on the algorithm employed and the photometric properties
of the survey. Nevertheless, the method described in this paper
can be in principle generalized to photometric cluster catalogues
produced with different cluster-finding algorithms and/or data –
e.g. the cluster samples that will be provided by the forthcoming
Euclid9 and Large Synoptic Survey Telescope10 – or even selected in
other wavelengths – e.g. using X-ray data or the Sunyaev–Zeldovich
signal. Its applicability relies on the possibility of measuring and
modelling the effective projection kernel w(�z, zcl) for the specific
cluster finder/observable adopted.

Ultimately, a full calibration of P(λob|λtrue, z) should describe the
full complexity of the mapping between haloes and clusters, includ-
ing e.g. miscentring, triaxiality, blending, and fragmentation effects,
tested on appropriately tuned synthetic galaxy catalogues from cos-
mological simulations. Moreover, additional work is required to
enable forward modelling of projection effects for cluster lensing.
In the mean time, cosmological analyses must rely on ‘backwards
modelling’ of projection effects for these two probes (e.g. Baxter
et al. 2016; Simet et al. 2017; McClintock et al. 2018). Nevertheless,
the success of the model advocated in this work is an important step
forward in the modelling of photometric cluster samples and pro-
vides a critical stepping stone in our quest to saturate the statistical
limit of ongoing and future photometric cluster surveys.
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APPENDI X A : A NA LY TI C DERI VATI ON O F
PROJ ECTI ON EFFECT PARAMETERS

Here, we present a model to estimate analytically the projection
effect parameters for a given input cosmology and richness–mass
relation. The results of this section are used in the main analysis to
estimate the response of the projection effect parameters to a shift
of the cosmological parameters σ 8 and �m.
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The number of clusters expected to fall inside the light-cone
defined by the angular size of a cluster having radius R(λtrue) at
redshift ztrue is given by

N̄�(λtrue, ztrue) =
∫ ∞

0
dz

dV

dzd�

∫ ∞

0
dλ �(λtrue, ztrue, λ, z)∫ ∞

0
dM n(M, z)P (λ|M, z) , (A1)

where the angular aperture within which we count objects is defined
by the sum of the angular radii, ϑ , of the objects considered:

ϑ(λ, z) = R(λ)

DA(z)

�(λtrue, ztrue, λ, z) = 2π
[
1 − cos

(
ϑ(λtrue, ztrue) + ϑ(λ, z)

)]
.

(A2)

For a cluster placed at a random position, the expected shift on the
observed richness due to projection effects, �̄prj, can be estimated by
weighting the previous equation by the number of member galaxies
that each cluster has inside the appropriate light-cone, as these are
the galaxies that can be ‘shared’ with the main halo at ztrue, i.e.
following equation (4):

�̄prj(λtrue, ztrue) =
∫ ∞

0
dz

dV

dzd�

∫ ∞

0
dλ �(λtrue, ztrue, λ, z)

�prj(λ, z)
∫ ∞

0
dM n(M, z)P (λ|M, z) , (A3)

where we have defined

�prj(λ, z) = w(z − ztrue, σz(z))f̄ (λtrue, ztrue, λ, z)λ , (A4)

w(z − ztrue, σ z(z)) is the redshift weight defined in equation (9), and
f̄ (λtrue, ztrue, λ, z) is the mean fraction of overlapping area of haloes
inside the appropriate light-cone, i.e. in the angular aperture � de-
fined by ϑ(λtrue, ztrue) and ϑ(λ, z). Using the flat-sky approximation,
the integral over the solid angle � can be solved analytically, and
the mean fraction of overlapping area reads

f̄ (λtrue, ztrue, λ, z) =
(

1 + ϑ(λ, z)

ϑ(λtrue, ztrue)

)−2

. (A5)

Assuming N�(λtrue, ztrue) to follow a Poisson distribution, the
variance of �prj can be computed as:

Var(�prj(λtrue, ztrue)) =
∫ ∞

0
dz

dV

dz d �

∫ ∞

0
d λ �(λtrue, ztrue, λ, z)

(
�prj(λ, z)

)2
∫ ∞

0
dM n(M, z)P (λ|M, z) . (A6)

Assuming P(�prj) to follow equation (5), we can relate the latter
two derived quantities to the two model parameters fprj and τ . In
particular, from equation (5) it follows that

�̄prj = f prj

τ
,

Var(�prj) = f prj(2 − f prj)

τ 2
. (A7)

Solving for fprj and τ , one gets

f prj = 2
(�̄prj)2

(�̄prj)2 + Var(�prj)
,

τ = 2
�̄prj

(�̄prj)2 + Var(�prj)
. (A8)

To verify the above assumptions we use mock catalogues. Specif-
ically, from the analysis performed in Section 3.3 we compute �̄prj

Figure A1. Comparison of the theoretical predictions of �̄prj (upper panel)
and Var(�prj) (lower panel) with the values recovered from the random mock
catalogue for different input richness and redshifts. The bands correspond to
the errors on the estimate of the mean and variance from the mock catalogue.

and Var(�prj) for the various input (λin, zin) tested and compare
these values with the ones derived from equations (A3) and (A6).

The result of this test is shown in Fig. A1 for different richness
and redshift bins. Our model for the expectation value of �prj is
only slightly biased towards higher values, whereas our theoretical
predictions for the variance are biased low by ∼10–20 per cent.
The main reason for the latter disagreement is due to correlated
structures along the line of sight in the mock catalogue: even if we
are considering �prj for clusters placed at random positions, the
objects that appear to be in projection are not randomly distributed
along the radial direction. We have verified this explicitly: when
we repeat the analysis performed in Section 3.3 after randomizing
the angular positions of all clusters in the mock catalogue, then the
simulations agree with our theoretical model at the 5 per cent level.

Even if the theoretical model proposed is not capable of fully
reproducing the mock results, we can use it to estimate the impact
of cosmology on projection effects. In particular, we exploit the
analytic model to evaluate the relative shift of τ and fprj as a function
of cosmology. As an example to illustrate the magnitude of the
variation of τ and fprj, we consider a set of cosmologies satisfying
the relation: σ 8(�m/0.3)0.58 = 0.80. The latter corresponds to the
degeneracy direction between σ 8 and �m recovered from the mock
cosmological analysis of Section 4. Fig. A2 shows the shift of τ

and fprj relative to their values on the fiducial cosmology (σ 8 =
0.82, �m = 0.286), as a function of the cosmological model for
different input richnesses and redshifts. The magnitude of the shift
is almost independent of the input richness and shows some modest
variation with redshift. The changes in P(λob|λtrue, z) shown in Fig. 6
correspond to the shifts in τ and fprj computed via equation (A8) for
30 pairs of (σ 8, �m) values randomly sampled from the posterior
derived from the cosmological analysis detailed in Section 4.

The above analytical derivation can be ideally extended to real
clusters accounting for correlated structures. Perhaps the simplest
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Figure A2. Predicted shift of τ and fprj relative to their fiducial cosmol-
ogy values for different combinations of (σ 8, �m) satisfying the relation
σ 8(�m/0.3)0.58 = 0.80. Different colours correspond to different input rich-
nesses and redshifts (see figure labels).

way to account for them is to boost the expected number of haloes
around the clusters according to the halo–halo correlation function,
i.e. multiplying the halo mass function in equations (A3) and (A6)
by

(1 + b(M, z)b(〈M(λtrue)〉, ztrue)ξNL(|r(z) − r(ztrue)|, z̄)) , (A9)

where b(M, z) represents the halo bias and ξNL(|r(z) − r(ztrue)|, z̄))
is the non-linear matter correlation function at the mean redshift z̄ =
(z + ztrue)/2 and co-moving distance |r(z) − r(ztrue)|. To account for
exclusion effects, we include the condition

b(M, z)b(〈M(λtrue)〉, ztrue)ξNL(|r(z) − r(ztrue)|, z̄)) = 0,

if |r(z) − r(ztrue)| < R(λtrue)(1 + ztrue).
Like before, we compare our analytical derivations with results

from the mock data, and this time including the effect of corre-
lated structures (Section 3.4). In this case, both predictions for �̄prj

and Var(�prj) underestimate the mock data results by more than
50 per cent. Note that a 20 per cent difference between our model
and numerical simulations was already observed when considering
the impact of projection effects about random points, a difference
we attributed to clustering of large-scale structure. It is therefore
not surprising that a further underestimation of projection effects
occurs when considering the impact of projection effects about dark
matter haloes. In particular, note that our model explicitly ignores
the contribution of higher order (e.g. 3-point and 4-point) cluster-
ing in our estimate. We postpone a detailed analytic model of such
effects to future work.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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