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Background
One of the most exciting recent developments in cancer informatics is the ability to 
reconstruct the evolutionary history and clonal composition of tumours from whole-
genome DNA sequencing (WGS) data [1, 2]. This analysis leverages statistical models 
and bioinformatics tools that can recapitulate patient-level intra-tumour heterogeneity, 
and that we can use to study, from an evolutionary point of view, tumour evolution-
ary patterns across multiple patients [3–6]. An investigation of the evolutionary forces 
underpinning a tumour usually begins by performing a subclonal deconvolution of the 
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bulk WGS data of a single patient. The main objective of this first and crucial task is to 
determine how many cancer (sub)clones co-exist in the tumour, and the general archi-
tecture of tumour population [7]. This step is crucial as the construction of the tumour 
evolutionary trajectory depends on results from this analysis. The deconvolution of the 
signal is however challenged by the mixed effect of positive, neutral and negative selec-
tion that are all potentially operating within the tumour; see a review and references 
therein for a discussion on the role of these forces in driving tumour evolution [8].

Several unsupervised bioinformatics tools exist that can be used to determine the 
clonal architecture of a tumour; all of the tools solve different formulations of a cluster-
ing problem, defined from the site frequency spectrum of somatic mutations detected 
in the WGS biopsies and other covariates [7]. In a recent work [9], we have shown that 
these clustering methods have severe limitations stemming from the fact that they do 
not account for neutral evolutionary forces, one key force underpinning tumour growth 
(see [10–13]). A direct consequence of their data-driven design is that they tend to over-
estimate the number of tumour clones, and the complexity of the tumour clonal archi-
tecture. In the same work [9], we have mitigated these limitations by approaching the 
clustering problem through the integration of Machine Learning and Population Genet-
ics. In particular, we have used mathematical models from Population Genetics to cre-
ate a mixture model that, for the first time, could account also for within-clone neutral 
evolutionary dynamics.

The new model-based method MOBSTER (Fig.  1a) can identify subclones that are 
experiencing positive selection, while at the same time modelling background neutral 

a

b

Fig. 1  a Pipeline for data analysis with the mobster R package for subclonal deconvolution. The package 
can be used to infer the clonal composition of a tumour bulk DNA biopsy. The statistical method integrates 
machine learning and evolutionary theory to detect subclones that have expanded due to positive selection, 
while modelling intra-clone neutral evolution with distributions predicted by population genetics. mobster 
also computes clone-specific evolutionary parameters (e.g., mutation rates, selection coefficients), dN/
dS statistics and clone trees. b Example tumour clonal expansion simulated with the stochastic branching 
process implemented in the TEMULATOR (https​://t-heide​.githu​b.io/TEMUL​ATOR/) package. After t = 13 cell 
doublings a subclonal driver triggers a clonal expansion that sweeps in the ancestral population (left). Using 
mobster from a bulk sample collected at t = 17 we can retrieve the tumour architecture, the clone tree and 
the evolutionary parameters of the simulated tumour (right)

https://t-heide.github.io/TEMULATOR/
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dynamics. This Software paper describes the implementation of mobster, a new open 
source R package for tumour subclonal deconvolution that implements the statistical 
model introduced in [9].

Implementation
The package mobster can be used to detect cancer subclones in bulk whole-genome 
DNA sequencing assays of tumour and matched normal samples (Fig. 1a). Besides clus-
tering, the package implements several other analyses that can compute a number of 
evolutionary parameters that characterize tumour growth, which we discuss below.

The package is implemented using the S3 object system in R (version >= 3.6.0), provid-
ing easy access to the main inference algorithm and a number of visualization functions 
that can be used to inspect the input data, and the model fits. The package supports dif-
ferent types of input formats that store input data for the somatic mutations detected in 
the tumour. The theory of MOBSTER is based on the site frequency spectrum of each 
somatic mutation, which can be either single-nucleotide variants or more complex inser-
tions and deletions (provided the frequency spectrum is computable). For every muta-
tion mobster needs to know either the Variant Allele Frequency (VAF), i.e., the ratio of 
read counts mapping to the mutant allele, over the total coverage at the variant locus, or 
the Cancer Cell Fraction (CCF). The CCF is the proportion of cancer cells harboring the 
mutations, and must be pre-computed normalizing the VAF for tumour sample purity 
and tumour copy number segments. All the calls (i.e., somatic mutations, copy num-
ber and tumour purity estimates) should be generated before tumour subclonal analysis 
using external bioinformatics tools. Input frequency values have to range in [0, 1] con-
sistently with the support of the probability distributions used in MOBSTER’s statistical 
model. VAF values by definition range in [0, 1] . For CCF values this is not necessarily the 
case, since CCF values of clonal mutations, which are by definition present in 100% of 
cancer cells, range around 1; for this reason, canonical CCF values can be adjusted by 
dividing the CCF estimate by half. In this case they technically represent the expected 
allele frequency for a clonal diploid mutation, for a pure tumour sample (i.e., a sample 
with no contamination from normal cells).

To facilitate data input for the mobster package, input VAF values can also be provided 
from a file storing somatic mutations in the standard Variant Calling Format (see the 
package manual for input requirements).

The model

The statistical model implemented in the mobster package a Dirichlet finite mixture with 
mixed distributions [9]. It contains one (optional) Pareto Type-I random variable (a type 
of power-law), and k ≥ 1 Beta random variables; the overall model is a univariate finite 
mixture with k + 1 components if the tail is fit to data, and k otherwise. In this model, 
Beta components capture ongoing clonal expansions, while the power law tail captures 
neutral dynamics; the power law distribution is predicted by Population Genetics of 
mutant alleles spreading in growing populations, and has been recently used within can-
cer evolution [10–12]. Model selection determines the optimal value for k , and also if a 
tail should be fit, or not, to data. A model fit with k = 1 represents a monoclonal tumour 
(i.e., with no evidence of ongoing subclonal selection), a model with k > 1 is polyclonal.
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The likelihood for n datapoints xi in data D is

where g and h are density functions for the mixture components, 
θ = {x∗,α, a1, . . . , ak , b1, . . . , bk} is a set of parameters; here π = (π1, . . . ,πk+1) are mix-
ing proportions in a standard mixture model with n× (k + 1) latent variables z (which 
determine the assignment probability of each one of the n input points to the k + 1 
mixture components). The Pareto component (fixed indexed position 1 of the mixture) 
follows the standard Pareto Type-I density function, and the other components the 
standard Beta density. The details on the densities, the model derivation and the fitting 
strategy are presented in detail in [9].

A MOBSTER model is fit through an iterative procedure that resembles an Expecta-
tion-Maximization strategy; the fit combines the maximum likelihood estimators for the 
Pareto tail, and the moment-matching estimator for the Beta peaks (default implementa-
tion). A full maximum likelihood estimation via the expectation maximization algorithm 
is also available. Model selection can optimize the value of k as well as the presence or 
absence of the tail in the fit. A model M with size � (number of parameters) is scored 
according to the following quantities

Here H(z) is the entropy of the latent variables z , and ẑ  a re-normalisation of z after 
removal of tail mutations (i.e., points with hard clustering assignments to the tail). The 
scoring is obtained extending the popular BIC with the entropy of the model’s latent var-
iables, which leads to the ICL approach. We also derived a different version of the ICL 
score which uses the entropy for a subset of variables ẑ  ; this latter is the default score for 
model selection and is called reduced ICL (reICL). The intuition of reICL is to penalize 
the overlap between Beta components of the mixture—i.e., promoting models with clear, 
well-separated subclonal peaks.

In [9] we provide extensive testing for MOBSTER, comparing our approach to other 
popular methods in the field in a variety of settings; e.g., with single-sample or multi-
region tumor datasets, with variable sequencing coverage and sample purity, and with 
different input clonal architectures.

Main software functions

Fitting functions

Function mobster_fit is the interface to the Dirichlet finite mixture that can cluster the 
input mutations into k Beta components—i.e., k clonal peaks—and one optional power 

f (D|θ ,π) =

n∏

i=1

[
π1g(xi|x∗,α)+

k∑

w=2

πwh(xi|aw−1, bw−1)

]

NLL = −log f (D|θ ,π) (negative log-likelihood)

BIC = 2NLL+ � log n (Bayesian Information Criterion)

ICL = BIC+H(z) (Integrated Classification Likelihood)

reICL = BIC+H
(
ẑ
)

(reduced ICL).
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law tail for neutral mutations. The function implements a routine for model-selection 
that determines the optimal number of Beta clusters k ≥ 1 , and whether a tail should be 
used to fit the data, or not. Models are scored using data likelihood, regularised by model 
complexity with the aid of the entropy of the latent variables (see above); this function 
takes a parameter to identify which scoring strategy should be used to determine the 
best model. Function mobster_fit repeats the fit a desired number of times, sampling 
multiple initial conditions for the model parameters to avoid local optima. The tool can 
exploit a parallel inference engine, which can be used to speed up the fit with multi-core 
architectures. In general, however, the fit is fast compared to other approaches, possibly 
because of the maximum-likelihood formulation of the inference, e.g., the analysis of a 
tumour with about 13,000 somatic mutations takes about one minute, on a standard lap-
top, without exploiting the parallel inference engine.

A post-hoc cluster-selection heuristic is available to filter out clusters that are either 
too small, or that contain too few mutations; post-hoc, the package can also assign new 
mutations (i.e., previously unseen) to the model’s clusters, conditioning on the inferred 
parameters. Density functions are available for the S3 model object, as well as functions 
to sample data from a fit model, or to create a random generative model (clusters and 
parameters) that can be used for data generation. This utility can be easily used for syn-
thetic benchmarking of MOBSTER or other subclonal deconvolution tools.

Confidence of the fits can be computed using parametric and non-parametric boot-
strap procedures that are available in mobster [14]. Both procedures take as input a 
model object computed from mobster_fit, and the number n of required bootstrap sam-
ples. The non-parametric approach re-samples n datasets of size equal to the original 
dataset, therefore sampling with repetition from the original dataset; the parametric 
approach samples n new datasets from the fit model. In both cases the new datasets are 
used to fit n new models with a parallel fitting routing, and from the output fits the pack-
age computes a distribution over the full model (i.e., the frequency at which the input 
model is re-fit) and over the parameter fits to the original data. Bootstrap results can be 
used to estimate confidence intervals, using a given confidence α-level with 0 < α < 1 to 
determine quantiles. In the case of the non-parametric approach the package also com-
putes the co-clustering probability for each pair of input mutations; this is a quantity 
that can be used to determine clustering’s stability, defined as the frequency at which 
two mutations cluster together. We note that in this case the frequency is bounded by 
the probability of sampling every pair of mutations in the same bootstrap resample.

Visualization functions

Model fits can be plotted as data histograms colored by clustering assignment, with the 
fit density (per component and overall) overlaid to the data histogram. A number of 
functions can be used to plot the model likelihood, the entropy of the latent variables, 
the sum of squares error of the fit to data and the mixing proportions. An additional 
function allows the user to inspect alternative fits of the data, which helps for model 
selection in cases where one is not confident about the tool parameterizations. Specific 
functions also allow to visualize results from bootstrap analysis, giving easy access to the 
bootstrap distribution and confidence intervals.
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Post‑clustering analyses

The package can be used to run further (post-clustering) analyses directly from the out-
put of mobster_fit. For example, dN/dS statistics from the ratio of nonsynonymous to 
synonymous single nucleotide mutations can be computed for either the clusters of a 
single patient, or across multiple patients (e.g., pooling all tail mutations). Computations 
are carried out interfacing mobster to dndscv, an R package for dN/dS [15]. From a fit, 
mobster can compute also the tumour’s evolutionary parameters, revealing the mutation 
rate µ > 0 , and the selective advantage coefficient s > 0 and the age of each subclone, in 
units of tumour doubling times. Interfacing with the ctree R package, clone trees can 
also be readily assembled from the output mobster clusters [4].

Detailed functionalities

In Additional file 1 of this paper we provide six extra notes that explain the most relevant 
mobster functions and their parameters.

Using a markdown-style with example R code, these notes discuss the following topics:

1	 Introduction to the input format, simple fits and data-generation process;
2	 plotting functions for fit models and input data;
3	 bootstrap estimation for confidence assessment;
4	 post-clustering inference of Population Genetics parameters of tumour growth;
5	 post-clustering clone-specific dN/dS statistics;
6	 post-clustering clone trees generation.

Results
Relation to tumour growth models

We show the analysis of a simulated tumour using the mobster package. The tumour 
is simulated using thee stochastic branching process [11–13] model of tumour growth, 
which is implemented in the TEMULATOR open source R package.1

In brief, the stochastic branching process that we use is a discrete-time discrete-state 
Markov process that describes cell divisions and mutation accumulation. At each time 
point t > 0 cells divide or die, with some probability; when they divide successfully the 
somatic mutations are copied into daughter cells, and new accumulation are accumu-
lated at a certain rate (the tumour mutation rate). This simple linear birth–death model 
captures the diffusion of mutant alleles (i.e., somatic mutations) in expanding popula-
tions (i.e., cells dividing). A selective advantage coefficient s > 0 controls the propen-
sity of successful cell divisions or, in other words, the rate of growth of the progeny of 
any given cell—this is a measure of fitness for a cellular population. In the model imple-
mented in the TEMULATOR package, the cell initiating the tumour starts with a base-
line value s0 , and its progeny keeps sharing the same s0 value. At any given timepoint, 
if a new subclonal driver mutation triggers the formation of a more fit clone, its value 
of s is increased relative to s0 (i.e. s1 = s0 + δ1 is the new clone-specific value for the 
coefficient). It is possible to show that, in the long run, the new subclonal population 

1  https​://t-heide​.githu​b.io/TEMUL​ATOR/

https://t-heide.github.io/TEMULATOR/
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outgrows the parental clonal population. This model is particularly interesting since it 
allows deriving the analytical Power law distribution for within-clone neutral evolution-
ary dynamics used in the MOBSTER model [9]—i.e., the distribution of the site fre-
quency spectrum for somatic mutations that accumulate in-between the formation of 
new clones with different values of s . This is true for both the deterministic version of 
the model based on an ordinary differential equation representation of the Markov chain 
[11, 12], as well as for the stochastic counterpart ruled by a master equation [13].

In Fig. 1b (left panel) we show a simulated tumour where after t = 13 cell doublings a 
subclonal driver triggers a clonal expansion that sweeps in the ancestral population. The 
tumour bulk WGS data is simulated form the tumour cell population collected at time 
t = 17 , when the subclone has reached a tumour mass that is detectable relative to the 
overall tumour size, considering a simulated WGS assay with Poisson-distributed cover-
age with rate � = 120 (i.e., mean coverage 120×).

We run filtering of simulated somatic mutations consistently with a standard quality-
check analysis, and identify n = 3499 somatic mutations with VAF above 5%. We use 
these to run a mobster analysis with default parameters Fig. 1b (right panel), and retrieve 
the generative model simulated with TEMULATOR. In particular, the tool detects K = 2 
Beta clusters, plus one Pareto tail. The Beta clusters reveal clonal mutations (cluster C1, 
red; 30% of the mutations) present in all tumour cells in the simulated biopsy, as well 
as the mutations that characterize the ongoing subclonal expansion (cluster C2, blue; 
about 40% of the mutations). Mutations assigned to the tumour tail—an intermixing of 
the tails of both clones—are about 30% of the simulated mutations. Using functionalities 
of the mobster package we retrieve evolutionary parameters that we used to simulate 
the tumour with TEMULATOR. In particular we obtain a mutation rate µ = 71.4 (in 
mutations per cell division), and the subclone parameters—i.e., we date the subclone to 
t̂ = 13.3 (age of the subclone relative to its ancestor) and retrieve its selection coefficient 
to ŝ = 1.73 (where 1 is the baseline value of the ancestor). Through the interface of mob-
ster with other packages, we can also retrieve the clone tree that explains this architec-
ture, which in this case is trivial because C2 is the only possible descendant of C1.

Overall, this simple example shows that we can simulate tumour growth (with specific 
evolutionary parameters like mutation rate, selection coefficients etc.), and that we can 
faithfully retrieve such parameters and architectures using the mobster package.

Subclonal deconvolution from the PD4120a breast tumour

We discuss an example application to a WGS dataset of a real primary breast cancer; this 
dataset has been first discussed in [7] and also re-analyzed in our recent work [9]. The 
analysis that we present here reports the same overall conclusions but is more detailed 
than the one in [9], as it serves to show multiple functionalities of the mobster package.

This breast cancer sample (PD4120a) has been sequenced at very high-coverage 
(approximately 180×) and presents with n = 4643 somatic single-nucleotide variants 
(SNVs) mapping to chromosome 3; this reduced dataset has been generated and quality-
checked for one of our earlier works [12]. Chromosome 3 is diploid and therefore the 
VAF analysis of mutations mapping to that chromosome is analogous to using CCF val-
ues (here re-scaled in [0, 1] ). This is true because for diploid regions the CCF computa-
tion from VAF is trivial, and corresponds just to a purity adjustment.
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A call to mobster_fit on the input mutations with default parameters computes the 
output model, as well as a number of alternative fitting solutions. The computation takes 
less than a couple of minutes on a standard laptop. The best output model computed 
using reICL is shown in Fig. 2a, while the sequencing depth of the input mutations is 
shown in Fig. 2b to show the high-quality of the input data. mobster fits the input data 
with K = 3 Beta components, and one Pareto tail. This reflects a cancer sample that har-
bours clonal mutations, two distinct sub-clones enjoying a clonal expansion triggered by 
positive selection, and the tail of within-clone neutral dynamics. This 2-subclones model 
is a simplification of the v proposed in the original analysis of PD4120a [7]. As suggested 
in [9], the 2-subclones model seems more plausible in light of a complementary analysis 
carried out in [7], where it is shown that tail mutations after phasing associate to mul-
tiple nodes of the tumour’s clone tree. This is consistent with the signal of polyphyletic 
lineages that by definition constitute neutral mutations, and not with mutations hitch-
hiking tumour subclones. Therefore, the input n = 4643 SNVs are assigned to 4 clusters 
by MOBSTER (Fig. 2c); the pool of clonal mutations represents the larger cluster (C1) 
with more than 30% of the input SNVs, the largest subclone (C2) and the tail have a simi-
lar number of mutations (i.e., about 25% of the input SNVs), and the smallest cluster is 
one of the two subclones (C3).

Fig. 2  MOBSTER analysis of WGS sample PD4120a (breast cancer). a MOBSTER fit for n = 4643 somatic 
mutations mapping to chromosome 3, which is largely diploid. Here the input VAF (Observed frequency) is 
adjusted by tumour purity. MOBSTER identifies K = 3 Beta components and one tail, as shown previously 
in [CG20]. b Coverage for this sample as a histogram of the depth of sequencing for the input mutations. 
This sample has a median coverage of 169×. c Mixing proportions obtained from MOBSTER’s clustering 
assignments; these represent the proportion of mutations assigned to each one of the fit clusters in the 
model’s mixture. d Scores for model selection used by MOBSTER; in this case the model is selected by using 
the ICL score with reduced entropy, termed reICL. Note that all other scores suggest the same optimum 
model (red point in the score plot). This means that the identified model is the optimum no matter what 
scoring system we use. e Entropy of the model’s latent variables; we report both the standard entropy (solid 
line), as well as the reduced entropy which is computed just between mutations assigned to Beta clusters. As 
expected the reduced entropy is bounded from above by the standard entropy. f Value of the latent variable 
per mutation (cluster assignment probability). Here we assign via hard clustering assignments all mutations 
regardless the latent variables value. This shows that more uncertainty is found for mutations that map to 
clusters C3, C2 and Tail as the mixture density functions have overlapping support
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The package implements a number of distinct scores for model-selection, but the 
model in Fig. 2a is selected by using reICL. In this case all the scores available in the 
package rank the output model first, meaning that they consistently predict the model 
in Fig. 2a to be the best possible fit for the input data (Fig. 2d). The tool also offers 
visualization functions that can at least suggest, even from a single model fit, what is 
the stability of the clustering. This information is linked to model’s latent variables—
denoted with z , and represented as a n× (k + 1) matrix—which provide the prob-
ability of each of the input n mutations to be assigned to the k + 1 clusters ( k Beta 
plus one tail). In Fig. 2e we plot the entropy profile associated to each one of the input 
values in the domain [0, 1] ; this is computed from the relative density of each mixture 
component in the model, and shows, for both the standard and reduced entropies, 
higher values where there is more uncertainty in clustering assignments. The full set 
of latent variables can also be visualized (Fig. 2f ) as a heatmap, in this case highlight-
ing more uncertainty for the assignments of the two subclones and the tail. This is 
expected since the three components largely overlap with similar density values.

Model confidence and stability can be formalized using bootstrap procedures. In 
Fig.  3 we show the result of a non-parametric bootstrap run with 200 resamples, 
which can be used to estimate bootstrap confidence intervals (CI) for all the model 
parameters at a desired α-level (default 5%), and the overall model confidence. 
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Fig. 3  Analysis of the model in Fig. 2 using n = 200 non-parametric bootstrap resamples. a Bootstrapped 
model frequency. The target model has K = 3 Beta clusters, plus one tail. Across all the 200 resamples the 
target model is fit in 65% of the cases, and in the remaining 35% only two Beta components are used; in 
all cases the tail is always fit to data. b Bootstrapped distribution of the tail shape, with annotated point 
estimate (dashed line). c Bootstrapped distribution of the mean and variance of the Beta components, with 
annotated point estimate (dashed line). Note that cluster C2 can show bimodal distributions; this is due to 
the 35% bootstrapped cases in which C2 is the only subclonal cluster (i.e., C3 is dropped). Point estimates 
are annotated as dashed lines. d Co-clustering probability of each pair of points in the input data, visualized 
as a matrix ordered by the clustering assignments in Fig. 2. This shows that clonal mutations are very stable 
(C1), and that mutations in cluster C3 in a small proportion of cases are assigned together with mutations in 
cluster C2. This is confirmed by the plot in panel (a) where the model with K = 2 Beta clusters plus one tail 
are identified in 35% of the non-parametric bootstrap resamples
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Figure  3a shows the overall model confidence; the selected output model of Fig.  2a 
is selected in 65% of the non-parametric bootstrap resamples, and in the remaining 
35% of the cases a model with only K = 2 Beta components and one tail is selected. 
In those models the signal lost is the one from the smallest subclone, C3, as one can 
immediately expect from Fig. 2 and the width of the Beta component C2 is increased 
to include SNVs originally assigned to C3. The 200 bootstrap resamples allow the 
estimation of a full distribution for the tail shape (CI [1.41–1.57]), as well as the 
Beta means and variance (means: C1 CI [0.51–0.52], C2 CI [0.24–0.29] and C3 CI 
[0.15–0.16], variance: C1 CI [0.001–0.002], C2 CI [0.001–0.008] and C3 CI [0.0005–
0.0009]); the bootstrap distributions are plot in Fig. 3b, c. Notice that as expected the 
largest CIs are associated to C2, consistently to reflect the cases where cluster C3 is 
drop. The usage of a non-parametric bootstrap procedure allows also to estimate the 
co-clustering probability for each pair of mutations (Fig. 3f ), which is bounded from 
above by the joint sampling probability for each pair of mutations (resampled with 
uniform probability in this bootstrap). This n× n matrix shows that the clonal clus-
ter (C1) is extremely stable (dark blue gradient), and that lower stability involves the 
two subclonal clusters (C3 and C2), confirming the other assessments. On the overall, 
these metrics suggest that the quality of the fit computed with mobster, as measured 
from robustness of the overall model fit and its parameters, is very high and con-
firms that the breast cancer sample PD4120a likely contains two on-going subclonal 
expansions.

Discussion
The mobster package implements the first statistical method that integrates Machine 
Learning and Population Genetics to perform tumour subclonal deconvolution from 
whole-genome DNA sequencing data of human cancers [9]. The method improves 
largely over standard methods for tumour deconvolution, as largely shown in [9], and 
is made accessible through the new R software package mobster which provides sev-
eral functions for data pre-processing, visualization and analysis (model fitting, confi-
dence assessment and post-clustering analysis). In this paper we described the principles 
underlying the R package and showed its analysis of one tumour simulated by a stochas-
tic branching process model of tumour growth, and one polyclonal breast cancer sam-
ple. In the future we will extend the current package to support input/output with other 
common tools for cancer evolutionary analyses, such as callers for somatic mutations 
and copy number detection, and population-level inferences of patterns of tumour evo-
lution from data of multiple patients.
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