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Simple Summary: Extracellular vesicles (EVs) are secreted continuously from different cell types.
The composition of EVs, like proteins, nucleic acids and lipids is linked with the cells of origin
and they are involved in cell-cell communication. The presence of EVs in the majority of the body
fluids makes them attractive to investigate and define their role in physiological and in pathological
processes. This review is focused on EVs with dimensions between 30 and 150 nm like exosomes
(EEVs). We described the biogenesis of EEVs, methods for isolation and their role in cancer as
innovative diagnostic tools and new drug delivery systems.

Abstract: Nanosized extracellular vesicles (EVs) with dimensions ranging from 100 to 1000 nm
are continuously secreted from different cells in their extracellular environment. They are able to
encapsulate and transfer various biomolecules, such as nucleic acids, proteins, and lipids, that play
an essential role in cell-cell communication, reflecting a novel method of extracellular cross-talk.
Since EVs are present in large amounts in most bodily fluids, challengeable hypotheses are analyzed
to unlock their potential roles. Here, we review EVs by discussing their specific characteristics
(structure, formation, composition, and isolation methods), focusing on their key role in cell biology.
Furthermore, this review will summarize the biomedical applications of EVs, in particular those
between 30 and 150 nm (like exosomes), as next-generation diagnostic tools in liquid biopsy for cancer
and as novel drug delivery vehicles.

Keywords: extracellular vesicles; microvesicles; diagnostics; drug delivery; nanomedicine; cancer

1. Introduction

Cancer is a severe worldwide health problem. In order to improve the survival rate of patients,
clinicians and medical researchers have worked on early diagnosis and awareness of risk factors for
cancer. In the meantime, we cannot deny the urgent need for novel markers with better efficiency
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and less invasive features, as these markers could lead to early diagnosis, changing the therapeutic
direction for individual patients with a more precise estimation of prognosis. Cell-derived materials
are considered as specific markers that reflect definite cellular characteristics, and extracellular vesicles
(EVs) in particular are attracting a lot of interest when it comes to cancer diagnosis and treatment since
different cell types produce distinctive amounts of EVs. EVs can be divided into a few subgroups
based on their biogenesis, size, and biomarkers. In particular, three main group have been described:
intraluminal vesicle (ILV)-derived EVs; microvesicles, and apoptotic bodies. It should be highlighted
that most studies have not clearly described the origin of the EVs under investigation. It should also be
underlined that the subcellular origin of EVs is often not described in most of the published literature;
EVs are differentiated based on the size and expression of biomarkers that we now know are often
not exclusive to a particular EV class. Due to this, in many cases, it is not possible to assume that
these studies were indeed looking at ILV-derived EVs rather than other biogenesis pathways, but were
small EVs of an undetermined origin. In this review, we will focus our attention on those EVs with a
size between 30 and 150 nm, like exosomes; we will call these exosome extracellular vesicles (EEVs)
throughout the text.

The first description of EEVs’ secretion was mentioned in reticulocytes, platelets, dendritic, lymphocytes
B and T, mast cells, and macrophage hematopoietic cells [1–11]. Additionally, othe nonhematopoietic cells
can produce EEVs, such as astrocytes, melanocytes, neurons, adipocytes, epithelial, fibroblasts, and tumor
cells [12–20]. EEVs are present in most of the physiological fluids, including blood, serum, urine, saliva,
breast milk, lymph, amniotic fluid, ascites, semen, cerebrospinal fluid, and nasal secretions [21]. EEVs play
a key role in short- and long-distance cell communication, promoting the development and function of
multicellular organisms under physiological and pathological conditions. EEVs are deeply involved
in long-distance communications to transfer proteins [22–25], mRNAs, and miRNAs that could
be expressed in target cells [26,27]. This mechanism ensures highly efficient secretion, signaling,
and communication, in a robust and economic manner, for information exchange between cells [28].
Depending on the cellular origin, EEVs can contain different profiles of RNA, miRNA, and proteins,
including tetraspanins, metalloproteinases, major histocompatibility molecules (MHC), and adhesion
molecules [20,29,30]. These molecules can be altered by stress or pathological conditions; thus,
molecular profiles of circulating EEVs can be used for theragnostic implications. Cancer-derived EEVs
are ideal as biomarkers for the early diagnosis of cancer as they carry specific molecules that reflect the
genetics and signaling alterations of parental cancer cells [31–33].

As well as being a potential diagnostic tool, EEVs are ideal drug delivery vehicles. A size of
about 100 nm has been demonstrated to be optimal for a long circulating time in biological fluids,
avoiding fast elimination [34]. The EEV membrane contains a specific set of lipids and proteins
similar to that of the cell of origin, with infinite combinations of targeting possibilities. The membrane
structure and composition allow for immune surveillance escape, ideal interaction with cell membranes,
and internalization, better than formulated pegylated liposomes [35–38]. EEVs are mediators of cell
communication [27,39,40] and many research groups, including us, have utilized EEVs to deliver
nucleic acids, proteins, or small molecules [41–44].

In the first part of this review, after a brief introduction to EEVs’ biology, we point out the attention
to cancer-derived EEVs as potential biomarkers, which will probably have a high impact in the near
future in terms of facilitating the early detection, monitoring, and prognosis of cancer. In the second
part, we focus on the use of EEVs as novel drug delivery systems, depending on their specific features
to apply them as anticancer therapeutic vehicles in vitro and in vivo, and discuss the limits and the
prospective challenges.

1.1. EEVs’ Biogenesis

During their life cycle, eukaryotic cells periodically engulf small amounts of intracellular fluids
and form small intracellular bodies called endosomes [29,45]. As the early endosome is maturing
into a late endosome, it forms ILVs in the lumen of endosomes. ILVs have a range of 30–100 nm of
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diameter and are formed by inward budding of the endosome’s membrane. Portions of the cytosol
and incorporated transmembrane/peripheral proteins are engulfed into the invaginating membrane.
This phenomenon can be detected in late endosomes by following the changes in their location
and shapes: early endosomes are located in the outer part of the cytoplasm with a tube-like shape,
whereas late endosomes are present near to the nucleus with a spherical shape [29]. Late endosomes
containing ILVs are also called multivesicular bodies (MVB) [46,47]; usually, they fuse with lysosomes,
followed by degradation of their contents mainly by hydrolysis. It has been hypothesized that MVBs’
content can be divided based on their function: the proteins found in the ILVs are destined for lysosomal
degradation, while functional proteins with a biological role are imported into the ILVs of MVB [48].
Until now, the mechanism that describes this process has not been completely understood, and there
are different theories about protein sorting [49]. MVBs may fuse with the plasma membrane instead of
fusion with lysosomes and therefore release ILVs to the extracellular space (Figure 1); these released
vesicles are then called EEVs [46,50].
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Figure 1. EEVs’ biogenesis, content, and functions. EEVs are eventually secreted by any cells in the
bloodstream to deliver their cargos to targeted cells, regulating, among other functions, neoangiogenesis,
proliferation, invasion, metastasis, and drug resistance. EEVs are demonstrated to be useful biomarkers
for cancer diagnosis and prognosis. These nanovesicles could also be engineered in order to be loaded
with drugs or therapeutic molecules.

The uniformity of EEVs originating from similar cell types reveals the presence of a sorting
mechanism behind EEVs’ development. The protein sorting of ILVs in MVBs is thought to involve
different participants such as an endosomal sorting complex required for transport (ESCRT) components
(e.g., Alix, Tsg101, and clathrin), lipids, and/or tetraspanin-enriched microdomains present in EEVs.
The sorting mechanism started with the recognition of the ubiquitinated cargo proteins by an ESCRT
complex, which then recruits the ESCRT-I subunit Tsg-101, activating AIP/Alix [51]. All these sequential
interactions drive the cargo into the budding vesicles. It appears that there is also an ESCRT-independent
mechanism involved in protein sorting to MVBs [52]. The sorting of cytosolic proteins does not
require the ESCRT machinery and can be explained by a “random” engulfment of small portions of
cytosol during the inward budding process and/or by their transient association with transmembrane
proteins [53]. Moreover, the sequestration of glycophosphatidylinositol-anchored proteins and other
“raft”-associated proteins in EEVs reflects the presence of lipid-like domains in EEVs’ membranes.
The lipid microdomains could themselves be involved in the generation of ILVs, or in concert with
other proteins, with affinity for “raft-like domains” such as tetraspanins [46,54]. The biogenesis of EEVs
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indicates that their macromolecule composition, including proteins, lipids, mRNAs, and microRNAs,
can be varied depending on the cell of origin. Protein analysis of EEVs from different cell types
including dendritic cells (DC) [47], B-lymphocytes [7], and epithelial intestinal cells [55] revealed that
there are common, as well as cell-type-specific, proteins within EEVs. Common proteins shared by
various EEVs are Annexins I, II, V, and VI, which could be involved in cytoskeleton dynamics and
membrane fusion [10,56]. The Ras superfamily of monomeric G proteins (Rab) also contains common
proteins that could act in EEVs’ docking and on the ability to fuse with membranes of other cells [10,57].
Adhesion molecules [10], apoptosis proteins, heat shock proteins (Hsc73 and Hsc90), tetraspanins (CD9,
CD63, CD81, and CD82 [47,55,58,59]), GTPases, and cytoskeletal proteins (actin, synenin, moesin,
and albumin) [60] are classically found within EEVs of different origins. Other main EEV proteins are
reported in Table 1.

Table 1. Main EEV membrane components.

Proteins Function References

Alix
MVB formation

[46,61–63]

Gag
TSG101

Hsp70, Hsp84, Hsp90 Protein-protein interaction

Advillin

Cytoskeletal Proteins
Actin, Ezrin
CAP1, Talin

Radixin
Vimentin

ATPase

Enzymes

ATP Citrate lyase
Asp amino-transferase

a-enolase
G6P Isomerase
Peroxiredoxin 1

Cholesterol

Lipid RaftFlotilin-1
LBPA

Stomatin

CD9, CD37, CD53, CD63, CD81, CD82 Tetraspanin

MHC I/II Antigen presenting
CD86

AP-1, Arp2/3, SNAP

Membrane fusion and transportDynamin
RabGD1, Rab5,7, Rap1B

Syntaxin

CD11a, b, c

Adhesion molecules
CD146, CD166, CD326

ALCAM, ICAM-1
CD53, LFA3

Catenin, LCK

Signal transduction
Erk2, FRL, Fyn, Gi2a, Gi3a, Gsa

RhoA, C, GDI
Sh2 phosphatase

Syntenin, CBL

CD18, CD55, CD59, CD147 Other proteins
Complement factor 3

Clathrin

Other proteins [46,61–63]

Histone 1, 2, 3
MVP, CD26, CD13

P-selection
peroxidase

Thioredoxine
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It was demonstrated in vitro and in vivo that EEVs are produced in both normal and pathological
conditions [64]. EEVs have been involved in numerous physiological processes, including the removal
of unnecessary proteins from cells, but their principal role is in cell-cell communication, both locally
and systemically, by transferring their contents, including protein, lipids, and RNAs, between cells [65].
The role of EEVs in immune system stimulation was extensively investigated [66]; it was also proposed a
new approach to vaccine development [67]. EEVs were described as playing a pivotal role during normal
development and the physiology of the nervous system, acting as cell–cell communicators and playing
functional roles not only during development but also during the regeneration of normal neurons [68].
Besides their physiological role, EEVs were depicted as a Trojan horse in neurodegenerative processes
due to their capability to transfer “toxic” cargos from unhealthy to normal neurons [69,70]. Recently,
it was demonstrated that EEVs are involved in a wide range of cardiovascular physiological and
pathological processes, with beneficial or pathological activity [71,72]. In this review, we discuss the
EEVs’ role in cancer. Cancer cells have shown a higher secretion rate of EEVs compared to normal
cells [73,74]. The secretion of EEVs in cells could follow two different mechanisms: the constitutive
secretion involving the trans-Golgi network (TGN) and/or inducible release, depending on the cell
type and on the activation state of the cell [75]. The constitutive pathway does not require a specific
stimulus, although it is controlled by cell activity (intracellular signaling, cell growth, differentiation,
DNA damage, etc.). Proteins destinated to be secreted into the extracellular medium or to the cell
surface can be routed from the TGN, where EEVs are transported within vesicles containing only one
or two EEVs. However, the inducible release of EEVs requires specific stimuli such as hypoxia or toxic
stress, causing DNA damage and leading to vesicular trafficking [29]. Thery et al. have demonstrated
that Rab proteins such as Rab27 isoforms play a regulatory role in EEVs’ secretion [76]; in addition,
Rab35 family members have been shown to be an essential part in the regulation of EEVs’ secretion
due to the interaction with the TBC1 domain of GTPase-activating protein and 10A-C (TBC1D10A-C)
family members [77,78]. It is known that Rab proteins are usually mutated (constitutively active) or
overexpressed in tumor cells [79]. Furthermore, other studies have shown that, due to the activation of
the tumor suppressor protein p53, EEVs’ secretion rate is stimulated by regulating the transcription of
different genes like TSAP6 and CHMP4C [75,80,81]. Once the cells suffer from stresses like toxicity
or hypoxia, damage may occur at the DNA level; then, a response of the p53 protein is generated by
regulating the transcription of different genes [82]. This process is also called the “bystander effect”,
in which cells communicate with the microenvironment by the secretion of specific proteins in order
to compensate for a response to stress [83]. Evidence of this process was seen during the irradiation
of human prostate cancer cells, which led to DNA damage that could induce an increase in EEV
production due to cell activation [84]. Many other mechanisms are correlated to EEVs’ secretion in
several cell types, including K+ depolarization of neuronal cells, intracellular Ca2+ level, pH variation,
and CD3 crosslinking with T cells [29,46,83,85].

Various functions are carried out by EEVs once they are secreted from the cells of origin and
might be transferred to other cells [86]. It has been shown that some EEVs, such as those secreted
by tumor cells, were found to carry phosphatidylserine (PS) on their surface as signal transduction,
allowing their uptake by appropriate cells via specific mechanisms [87,88]. Once EEVs are taken up by
other cells, they can be either endocytosed via clathrin-coated pits or could release their contents in
the cell and remain joined with the plasma membrane [89]. EEVs contain various molecules derived
from the cell surface, which allows them to recognize different cell receptors at the same time [90];
furthermore, the EEV-cell interaction favors the intercellular exchange of several materials like lipids,
proteins, carbohydrates, and pathogens. Recent data from 286 studies on the ExoCarta database show
that 9769 proteins, 3408 mRNA, 2838 miRNA, and 1116 lipids (07/10/2015 Exocarta update published
in J Molecular Biology [91]; http://www.exocarta.org/) are associated with EEVs, thus demonstrating the
complexity of EEVs.

http://www.exocarta.org/
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1.2. EEVs’ Isolation Methods

Size, protein and lipid contents are usually used to characterize EEVs and related microvesicles [28].
The complete separation and purification of each type of vesicles would help to exploit their benefits
for clinical use; however, this is extremely hard if not impossible [37,92]. Researchers are trying
to overcome these limits, although the absolute separation and definition of various extracellular
vesicles and EEVs based on their size or biogenesis is still to be determined because no markers
could distinguish the origin of the EEVs [93], and there are difficulties in sorting them due to their
heterogeneous biochemical composition [94]. EEVs could be isolated from body fluids or from
processed cell culture media through different techniques (Table 2), based on EEV surface markers
such as tetraspanins, integrins, and cell adhesion molecules [95], or lipid composition, as they are rich
in cholesterol, phosphatidylcholine, and phosphatidylethanolamine [96]. These techniques include
immunoaffinity or size-exclusion chromatography (SEC), differential centrifugation, filtration coupled
with centrifugation, microfluidic technologies, and polymer-based precipitation [28]. With biological
fluids or cell culture supernatants that may be the source of EEV, the initial volumes can be scaled up
or down according to the number of vesicles required for further analysis. Although biological fluids
contain a large number of exosomes, they also have large numbers of soluble proteins and aggregates
content, which could lead to contamination issues during EEV isolation methods.

Differential ultracentrifugation and density-gradient centrifugation are the most important
methods for isolating EEVs [97]. In the differential ultracentrifugation method, different centrifugal
forces are applied sequentially to a solution containing EEVs, eliminating cells, dead cells, cellular debris,
intact organelles, and, finally, EEVs. One limit of this technique is that other vesicles and proteins can
be deposited. Moreover, even in this sequentially extended ultracentrifugation, contaminants from
bovine small RNAs could be miscategorized as human RNA. Density-gradient centrifugation can
help to overcome this limitation: using a sucrose density gradient, contaminants may be separated
from EEVs, resulting in a more uncontaminated fraction [98]. Another technique is immunoaffinity
chromatography, which depends on antibody recognition of EEV proteins: antibodies are covalently
attached to beads, binding specifically to surface proteins or antigens on the EEV surface, which helps
to minimize antibody contamination and buffers interference [93].

Polyethylene glycol (PEG) solutions have been used to precipitate and isolate viruses and other
macromolecules for more than five decades. EEVs are typically isolated using a precipitation solution
consisting of PEG with a molecular weight of about 8 kDa. This solution is mixed with the source
containing EEVs and then centrifuged at a low speed to form a pellet containing EEVs, which still carry
a risk of contamination by proteins, before collecting the pellet from the upper aqueous phase [99].

Size-exclusion chromatography is a different method used to separate heterogeneous populations
of different vesicle size in a solution. Biological materials with a small radius can penetrate through pores,
whereas larger components, such as EEVs, are unable to pass through the pores [100]. Evidence showed
that for the lipidomics profiling of plasma- or serum-derived EEVs, size-exclusion chromatography
could be the most suitable method due to their porous structure reducing the risk of contamination
with undesired circulating lipids and biological fluids [101].
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Table 2. EEV isolation methods.

Method of EEV Isolation Isolation Principle Advantages Disadvantages

Ultracentrifugation

Ultracentrifugation is based on the
separation and purification of
different EVs according to the size
and density of the EVs applying
high centrifugal speed

• Reduced contamination risk
• Large sample capacity and yields, large extraction of EEVs

• High equipment cost, time-consuming, labor-intensive, and low portability
(not available at point of care).

• High-speed centrifugation with risk of EEV damage and lack of methods for
the precise assessment of EEV damage

Density-gradient
centrifugation

Separation of vesicles according to
their density High EEV purification • EEVs could be divided into multiple subsamples

• Subject to operator-dependent variability

Size-exclusion
chromatography

Based on the size difference
between EEVs and other
constituents

• Ultrafiltration: Fast, no special equipment needed,
good portability, possibility of direct RNA extraction,
and low equipment cost

• SEC: high-purity EEVs, gravity flow preserves the
integrity and biological activity, moderate sample capacity,
high reproducibility

• Ultrafiltration: moderate purity of EEVs, risk of deterioration, possibility of
elution blockage and vesicle trapping, EEV loss due to membrane attachment

• SEC: needs dedicated equipment and a long running time.

Polymer precipitation
Altering the solubility or
dispersibility of EEVs by the use of
water-excluding polymers

Relatively easy to use and does not require a specialized
equipment or a long run time.

• Coprecipitation of non-vesicular contaminants such as lipoproteins, as well
as polymers;

• Pre- and post-isolation steps can overcome this limitation, pre-isolation
typically to remove subcellular particles such as lipoproteins
through centrifugation;

• Post-isolation to remove the polymer, using a specific (Sephadex
G-25) column.

Microfluidics-based
techniques

Microscale isolation based on EEV
characteristics such as
immunoaffinity, size, and density

• Small volume of starting material
• Highly pure EEV isolation
• Not time-consuming

• No standardization and large-scale tests on clinical samples
• No method validation
• Low sample capacity

Immunoaffinity
chromatography

EEV capture based on specific
interaction between
membrane-bound antigens
(receptors) of EEVs with
immobilized antibodies (ligands)

• Excellent for the isolation of specific EEVs.
• Highly purified EEVs compared with other techniques,

high possibility of subtyping

• High-cost reagents, low yield, cell-free samples conditions
• Tumor cells could inhibit immune recognition. Risk of blockage, or masking

of antigenic epitopes.
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Immunoaffinity approaches using antibodies specific for EEVs surface proteins could be integrated
with microfluidic technologies. These antibodies are covalently bound to the chip for the separation
of EEVs from other contaminants [102]. This allows for the rapid production and isolation of
EEVs, but not in sufficient quantities to enable their use in the clinic. Chip-based immunoaffinity
was developed to isolate EEVs and microvesicles, allowing for quantitative and high-throughput
analysis of EEVs’ contents [103]. A microfluidic device formed by a porous silicon nanowire on the
micropillar structure can trap EV-like lipid vesicles while filtering out proteins and debris. Extracellular
vesicles are sieved through a porous membrane with a specific size, and collected by filtering the
biofluid through a membrane; the filtration is then driven by either pressure or electrophoresis to
assist EEVs’ separation from contaminants. Proteins are less affected by the electric field due to
their lower negative charge compared to phospholipidic vesicles [104]. A porous ciliated silicon
microstructure could selectively trap particles of 40–100 nm in size. This technique offers benefits in
terms of both diagnostic and therapeutic applications [105]; however, stronger collaborations between
microfluidic engineers and clinicians would be able to take advantage of microfluidic technology to
isolate EEVs from body fluids [102]. It is well known that EEVs have significant advantages for disease
diagnostics and monitoring because of their abundance, stability, and unique molecular cargos [106].
Since the challenges of EEVs’ isolation could be addressed by the integration of a microfluidics
platform, clinicians must contribute to point-of-care testing and treatment options by focusing on these
potential players.

2. EEVs in Tumor Malignancy

EEVs have many roles in natural and pathological processes. They were identified as mediators
for reticulocyte maturation and, since then, investigators have shown the ability of EEVs to eliminate
nonessential proteins and unnecessary molecules from the cell and suggested that EEVs are involved
in cellular communications, intercellular material exchange, pathogen spreading, immune system
regulation, and many other functions [107–110]. Thus, the functions of EEVs are varied and depend
on their cell type of origin, which enables them to provide extracellular communications between
normal and malignant physiological conditions (Table 3). These extracellular communications are also
important factors for tumor malignancies, regulating cell proliferation, migration, invasion, survival,
and metastasis. EEVs contribute to the complexity of the tumor microenvironment (TME). EEVs derived
from tumor and stromal cells (macrophages, mesenchymal stem cells (MSCs), and fibroblasts) could
affect each other and act as protumorigenic factors by triggering intracellular signal transduction
mechanisms. In the TME, EEVs accelerate angiogenesis by secreting factors that act on the stromal
cells to either promote or inhibit the growth of new blood vessels [111]. EEVs may have a high
level of pro-angiogenesis molecules, promoting endothelial cell proliferation and the survival and
differentiation of fibroblasts into myofibroblasts, leading to tumor vascularization. They can also
enhance vessels’ permeability, leading to tumor cell diffusion and metastasis [112]. Interest has grown
in adipose-derived stem cells in the TME; preclinical studies suggested that adipose-derived stem cells
could be a potential tumor promoter, supporting tumor progression and activating several intracellular
signals [113]. It is also important to consider tumor-associated macrophage (TAM)-derived EEVs’ role
in promoting tumor progression and metastasis [114]. Tumor cell-associated EEVs can also induce
the reprogramming of fat-derived stem cells to undergo neoplastic transformation and expansion of
tumor cells. EEVs may alter the TME and prepare a substructure for distant tissue metastases and
adhesion processes [115]. Finally, EEVs from tumor and stroma cells may reach the lymph nodes and
distant organs, establishing premetastatic niches for metastatic colonization and suppression of the
host immune response, and they may also deliver matrix metalloproteinases (MMPs) to degrade the
extracellular matrix (ECM), affecting cell adhesion [116–118].
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Table 3. EEVs in cancer.

EEVs Proteins/mRNA,
miRNA Effects on Stromal Cells Role in Tumor

Malignancy References

Carbonic anhydrase 9 (CA9) Induced by hypoxia-inducible factor 1
(HIF1) in response to hypoxia

Angiogenesis

[119]

Cell adhesion molecule 1 Endothelial cell motility [107,120]

FGF2 mRNA Vessel formation [121]

Interleukin-8
• Endothelial cell motility [107,119,

120]• Enhanced tumor survival

miR-126 Formation of vessel-like endothelial
structures [122]

miR-130a Formation of vessel-like endothelial
structures [122]

miR-155

c-MYB inhibition and vascular
endothelial growth factor (VEGF)
induction: promoting cell growth,
metastasis, and tube formation of
vascular cells

[123]

miR-210 -Secreted under hypoxic conditions
-Angiogenesis induction [124]

MMP-2 mRNA Vessel formation [121]

MMP-9 mRNA Vessel formation [121]

TGF-ß

• Differentiation of fibroblasts
into myofibroblast

• FGF2 induction (fibroblast
growth factor 2) and
tumor vascularization

Angiogenesis

[125]

Tspan8-CD49d complex

• VEGF-independent regulation of
angiogenesis-related genes

• Endothelial cell proliferation,
migration,
and progenitor maturation

[126]

Vascular cell adhesion
molecule 1 Endothelial cell motility [107,120]

VEGF mRNA Vessel formation [121]

Apolipoprotein E
Migration through the transfer from
cancer-associated macrophages to
cancer cells

Metastasis

[114]

CXCR4 Angiogenesis and metastasis [127]

IRF-2 VEGF-C secretion, with consequential
lymphangiogenesis and metastasis [128]

miR-23b Dormancy induction [129]

miR-223 Invasiveness of breast cancer cells
in vitro [130]

miR-1246

Reprogrammed macrophages to a
cancer-associated phenotype with
high expression of TGF-β, increasing
tumor growth

[131]
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Table 3. Cont.

EEVs Proteins/mRNA,
miRNA Effects on Stromal Cells Role in Tumor

Malignancy References

Insulin-like growth factor I
receptor

Activation of insulin-like growth
factor I receptor signaling in bone
marrow stromal cells Premetastatic niche

formation

[132]

Oncoprotein receptor tyrosine
kinase (MET) Vascular leakiness [133]

ADAMs (metallopeptidases
domain) Matrix degradation

Premetastatic niche
formation and ECM
degradation

[134]

Amphiregulin (AREG) Contributes to therapeutic resistance
in tumor microenvironment [135]

HAdase (Hyaluronic acid
proteases)

Degradation of ECM components and
proliferation of stromal cells [134]

miR-25-3p, miR-130b-3p and
miR-425-5p

Serum level of EEV miRNA is
correlated with progression and
metastasis of CRC

[136]

uPAR (urokinase plasminogen
activator receptor)

Degradation of the ECM of stroma
lines and endothelial cells (EC) [134]

ABC (ATP binding cassette)
transporter A3 Subcellular drug sequestration

Therapy resistance

[137]

CXCL1, CXCL2 (Chemokine
ligand) Tumor survival [138]

GM-CSF (colony-stimulating
factor Tumor survival [138]

HAdase (Hyaluronic acid
proteases)

Degradation of ECM components and
proliferation of stromal cells [134]

HER2 (human epidermal
growth factor receptor)

Inhibition of the antiproliferation
activity of trastuzumab in breast
cancer

[139]

IL-6 Drug sensitivity [140]

miR-21 Increase of docetaxel resistance in
MCF-7 cells and recipient cells [141]

miR-29a Increase of docetaxel resistance in
MCF-7 cells and recipient cells [141]

miR-30 Increase of docetaxel resistance in
MCF-7 cells and recipient cells [142]

miR-100 Increase of docetaxel resistance in
MCF-7 cells and recipient cells [142]

miR-122 Reduction of drug susceptibility in
chemosensitive cells in CRC [143]

miR-196a Increase of docetaxel resistance in
MCF-7 cells and recipient cells [141]

miR-222 Increase in docetaxel resistance in
MCF-7 cells and recipient cells [142]

Multidrug-resistance transport
(MDR-1) Drug resistance Therapy resistance [144]

P-glycoprotein (P-gP) Drug resistance [145]

SFRP2
Wnt pathway modulator, produced
by human primary fibroblasts after
genotoxic treatments

[146]

TIMP1 (metallopeptidase
inhibitor 1) Cell proliferation and tumor survival [138]
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2.1. Cancer EEVs Promote Neoangiogenesis

Neoangiogenesis is an important step in cancer growth as it allows blood supply for tumor
expansion and dissemination. EEVs derived from tumors may promote the differentiation of fibroblasts
and adipose tissue-derived MSCs, influencing tumor angiogenesis [147]. Moreover, hypoxia caused by
the reduction of tissue oxygen induces the secretion of angiogenic and metastatic factors through EEVs
by tumor cells [124]. EEVs derived from glioblastoma multiforme (GBM) cells reveal hypoxic conditions
and activate several cell surface receptors, which elicits an angiogenic response [148]. EEVs from
K562 [120] and LAMA84 [107] chronic myelogenous leukemia (CML) cell lines, when internalized by
human umbilical vein endothelial cells (HUVECs) during tubular differentiation, induced angiogenic
effects. Other EEVs from human CD34-positive stem cells containing high levels of pro-angiogenic
miRNAs (miR-126 and miR-130a) conferred in vivo angiogenesis ability and led to the in vitro formation
of vessel-like endothelial structures of HUVECs [122]. EEVs derived from a gastric cancer patient
contained miRNA155, which negatively regulates C-MYB and in turn promotes angiogenesis via
VEGF [123]. The CD105-positive EEVs expressing a set of pro-angiogenic miRNAs, such as VEGF,
FGF2, MMP-2, and MMP-9, mediate an angiogenic phenotype and induce vessel formation in SCID
mice [121]. EEVs expressing carbonic anhydrase 9, a hypoxia inducible enzyme, were also found to
promote angiogenesis [149].

2.2. Cancer EEVs Promote Invasion and Metastasis

Fibroblasts and inflammatory cells are tumor-associated stromal cells that can produce EEVs
to deliver proteins or miRNAs into adjacent tumor cells. EEVs produced by fibroblasts stimulated
invasive behaviour and metastasis of breast cancer cells [150]. It was also reported that EEVs from
IL-4-activated macrophages induce invasiveness of SKBR3 and MDA-MB-231 breast cancer cells
in vitro [130]. Additionally, EEVs isolated from the pluripotent bone marrow MSCs of patients with
multiple myeloma (MM) have a lower amount of the tumor suppressor miR-15a and higher amounts
of oncogenic proteins when compared to the EEVs derived from normal individuals. These EEVs
promote tumor growth and induce dissemination of tumor cells to the bone marrow in an animal
model of MM, whereas EEVs derived from normal bone marrow MSCs had the opposite effect on
tumor cells [151]. Another study showed that EEVs derived from human bone marrow MSCs enhance
VEGF expression in tumor cells by activating the ERK1/2 pathway. MSC-derived EEVs, subcutaneously
injected in mice with gastric cancer cells, promote tumor growth and increase tumor blood supply [152].
Liang et al. showed that platelet-derived EEVs from patients with hematogenous metastatic lung
cancer are enriched in miR-223, which promotes lung cancer cell invasion [153]. In 2018, Song et al.
demonstrated that EEVs containing elevated CXCR4 (CXC chemokine receptor-4) derived from high
lymph node metastatic mouse hepatocarcinoma Hca-F cells were able to promote the migration and
invasion of paired syngeneic Hca-P cells that have low metastatic potential. It was demonstrated
that the metastatic potential is increased by EEVs derived from Hca-F cells [127]. The importance
of TAM-derived EEVs was described by Zheng et al. in 2018 [114]. They described the effect of
TAM-derived EEVs on the migration of gastric cancer cells (GC). They found that gastric TAMs were
predominantly constituted by a macrophage subpopulation promoting protumorigenic activity called
M2. They found that M2 EEVs promoted the migration of GC in vitro and in vivo.

2.3. Cancer EEVs Promote Prometastatic Niche Formation and ECM Degradation

EEVs delivered into the extracellular environment can travel to surrounding cells and reach
distant sites, such as the bone marrow, lungs, lymph nodes, and other organs, thus participating in the
establishment of a prometastatic niche and the degradation of ECM [154]. EEVs derived from CML
cells promote cell survival, adhesion, and metastasis by inducing IL-8 proinflammatory chemokine
production from bone marrow stromal cells [155]. However, EEVs released from acute myelogenous
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leukemia (AML), which are enriched in mRNAs and miRNAs essential for AML pathogenesis,
induce proliferative and angiogenic profiles when transferred to bone marrow stromal cells [132].

EEVs containing specific proteins—mRNAs, and miRNAs released from breast cancer cells [156]
and melanoma [157], respectively—contribute to the formation of premetastatic niches in the lungs
and lymph nodes. In addition, ECM remodeling is essential for tumor cell invasion and metastasis
by influencing intercellular cross-talk between tumor and stromal cells [158]. Tumor-derived EEVs
can bind to specific components of the ECM, depending on a set of EEVs adhesion molecules.
For instance, high expression of CD44 and α6β4 mediate hyaluronic acid and laminin 332 binding,
respectively, inducing degradation of ECM [134]. These EEVs are rich in matrix metalloproteinases
(MMPs), MMP activators and other proteases including urokinase plasminogen activator receptor
(uPAR), metallopeptidases (ADAMs), and hyaluronic acid proteases (HAdase). The EEVs content
induced the degradation of ECM components and matrix proteins type I and IV collagens, laminins,
and fibronectin [134]. EEVs derived from gastrointestinal stromal tumor patients show enhanced
MMP1 secretion by smooth muscle cells compared to healthy donors and induce tumor cell invasion.
In contrast, inhibition of EV-mediated MMP1 secretion decreases tumor invasiveness [159]. In addition,
EEVs derived from metastatic head and neck squamous cell carcinoma cells are important for
invadopodia formation and activity, key structures for the invasion process [160]. EEVs from GBM
microenvironment were found to mediate aggressiveness and tumorigenesis. Certain EEVs were found
to transport PTPRZ1–MET fusion (ZM fusion) transcript and can be internalized by recipient cells
inducing GBM cell migration and invasion [161]. The role of EEVs in promoting metastasis in CRC was
recently highlighted. In particular the level of EEVs miRNA (miR-25-3p, miR-130b-3p, and miR-425-5p)
were correlated with the progression and metastasis of CRC [136].

2.4. Cancer EEVs and Drug Resistance

EEVs are involved in the mechanisms of drug resistance and may influence the efficacy of
chemotherapeutics, either by exchanging drug-resistant information or by exporting drugs from tumor
cells, protecting cancer cells from drugs. Melanoma cells treated with cisplatin actively eliminate
cisplatin via EEVs in a pH-dependent manner [162]. Moreover, enhanced secretion of EEVs was
demonstrated after the treatment of A549 lung cancer cells with cisplatin [163]. EEVs from the MCF-7
cell line were rich in miRNAs such as miR-196a, miR-21, miR-222, miR-29a, miR-100, miR-30a [141,142],
and P-glycoprotein (P-gP) [145], which are implicated in drug resistance. Moreover, adding these EEVs
into recipient drug-sensitive tumor cells induces resistance to the treatment [142]. In a different study on
prostate cancer cells, EEVs’ transfer of MDR-1/P-glycoprotein increased drug resistance [144]. On the
other hand, EEVs can competitively bind to and inhibit a drug’s action. For instance, EEVs deriving
from lymphoma cells are rich in CD20 surface markers and can compete with Rituximab, a monoclonal
antibody against CD20 used in hematological cancers; therefore, they protect tumor cells from the
cytotoxicity induced by rituximab-dependent complementation [164]. In addition, sensitivity to
rituximab was inhibited by EEV delivery of ATP-binding cassette (ABC) transporter A3 (ABCA3),
which mediated subcellular drug sequestration in acute myeloid leukemia (AML) [165]. In a similar
mechanism, EEVs released by breast cancer cells overexpressing HER2 inhibited the antiproliferation
activity of trastuzumab, an antibody targeting HER2 [139]. Similarly, EEVs derived from bone marrow
MSC induced dormancy of breast cancer cells by delivering miR-23b, thus escaping from drug action
because dormant tumor cells are usually unresponsive to traditional chemotherapies [129]. miR-223 is
involved in the cross-talk between macrophages and epithelial ovarian cancer cells and could mediate
chemotherapy resistance [166]. Finally, a large number of soluble factors synthesized and secreted
from drug-damaged stromal cells, including CXCL1, CXCL2, GM-CSF, SPINK1, IL-6, IL-8, AREG,
WNT16B, SFRP2, and TIMP1, promote the survival of recipient cells [138].
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3. Importance of EEV Content in Cancer Diagnostics

EEV content (nucleic acids, proteins, and lipids) is attracting interest as a novel cancer biomarker
for diagnosis and prognosis. These considerations are based on particular features of EEVs such as
the variable contents of DNA, RNA, proteins, and lipids of tumoral origin [167]. The biochemical
characteristics of the bilayer membrane of EEVs made from lipids have a protective role for EEV contents
from degradative enzymes present in the blood. The small dimensions of EEVs, their permeability
to plasma membranes, and a widespread presence in most body fluids suggest the use of EEVs as a
liquid biopsy for diagnostic purposes [168]. Additionally, the low concentration of cancer-derived
nucleic acids and proteins in the early stage of disease in a complex biological sample like blood makes
it a big challenge that can be solved by the extraction of cancer-derived EEVs contained in the blood
(109 EEVs/mL) [169].

Since EEVs provide a barrier against enzymes and mainly RNases, a lot of research is focusing on
the effective use of EEVs for diagnostic approaches based on miRNA [170]. Several studies showed the
role of blood-derived EEV miRNA in the dysregulation of normal physiology, which supports their
use during early cancer detection (Table 4). Mckiernan et al. demonstrated the utility of combining
the expression profile of urine EEVs with standard-of-care protocols for prostate cancer patients to
improve the diagnosis [171].

Table 4. EEVs miRNAs in cancer.

Tumor Body Fluids Biomarkers Isolation/Detection Method References

Breast cancer Plasma miR-200a, miR-200c, miR-205 Ultracentrifugation/nest-qPCR [172]

Cervical cancer Cervicovaginal
lavage miR-21, miR-146a Ultracentrifugation/RT-PCR [173]

Colorectal cancer Serum
Let-7a, miR-1229, miR-1246,
miR-150, miR-21, miR-223,
miR-23a

Step-wise
centrifugation/ultracentrifugation/miRNA
microarray, qRT-PCR

[174]

Glioblastoma
Serum miR-320, miR-574-3p Exoquick/RT-PCR [175]

Cerebrospinal
fluid miR-21 Ultracentrifugation/qRT-PCR [176]

Lung cancer

Plasma
miR-151a-5p, miR-30a-3p,
miR-200b-5p, miR-629,
miR-100, miR-154-3p

ExoQuick/qRT-PCR [177]

Plasma Let-7f, miR-30e-3p, miR-223,
miR-301 Ultracentrifugation/RT-PCR [178]

Ovarian cancer Serum
miR-21, miR-141, miR-200a,
miR-200b, miR-200c, miR-203,
miR-205, miR-214

Modified MACS procedure with
anti-EpCAM/miRNA microarray [73]

Pancreatic
cancer

Serum miR-17-5p, miR-21 Ultracentrifugation/RT-PCR [179]

Serum miR-1246, miR-4644,
miR-3976, miR-4306 Ultracentrifugation/qRT-PCR [180]

Prostate cancer

Serum miR-141, miR-375 ExoMir/RT-PCR [181]

Urine
miR-107, miR-574-3p

δ-catenin, PCA-3,
TMPRSS2:ERG Ultracentrifugation/nested PCR [182]

EEVs derived from cancer cells also contain tumor-specific proteins. Recent proteomic analyses
suggested the presence of specific protein profiles shown by EEVs of cancer patients; therefore,
EEVs proteins might be used as diagnostic tools for different types of cancer during the early stages.
One distinctive example is the glypican-1 protein found in circulating EEVs [31]. Glypican-1 positive
EEVs were detected with high specificity and sensitivity in the serum of patients in the early stages
of pancreatic cancer (Table 5). Furthermore, glypican-1-positive circulating EEVs were found to be
correlated with tumor burden and the overall survival in pre- and postsurgical stages. Depending on
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these relevant data, EEV proteins exhibit a high utility as noninvasive screening and diagnostic tools
for cancer detection.

Table 5. Cancer EEVs protein content.

Tumor Body Fluids Biomarkers Isolation/Detection Method References

Spongioblastoma

Serum EGFR-VIII Ultracentrifugation [183]

Plasma EGFR, PDPN,
IDH1

Differential centrifugation, filtration
followed by ultracentrifugation/ELISA [184]

Nasopharyngeal
cancer

Plasma Galactin-9 Ultracentrifugation/Immunomagnetic
capture [185]

Serum, saliva LMP1, BARF1 Ultracentrifugation and sucrose
gradient/Immunoprecipitation [186]

Melanoma
Plasma

TYRP2, VLA-4,
Hsp70, Hsp90,
CD63, caveolin-1

Ultracentrifugation/ELISA [74,133]

Serum MRD-9, GFP78 Polymer precipitation/Immunoblotting [187]

Breast cancer
Plasma CEA, tumor

antigen15-3

Differential
centrifugation/Immuno-enzymometric
assay, latex-amplified
immuno-turbidimetry-

[188]

Serum Survivin,
Survivin-2B Polymer precipitation/ELISA [189]

Lung cancer

Urine
Leucine-rich
a-2glycoprotein
(LRG1)

Ultracentrifugation/1-D SDS-PAGE [190]

Serum CD9-CD91, EGFR,
EpCAM, CEA

Porous monolithic silica microtips/Mass
Spectrometry and ELISA, Extracellular
Vesicle Array

[191–193]

Pancreatic cancer Serum

Glypican-1,
CD44v6, Tspan8,
EpCam, MET,
CD104, MIF

Ultracentrifugation/Mass Spectrometry [31,180,194]

Gastric cancer Plasma HER-2/neu, CCR6 Ultracentrifugation/FACS
(fluorescence-activated cell sorting) [195]

Colorectal cancer Serum CD147, CD9 ExoScreen using photosensitizer-beads [196]

Ovarian cancer Serum EpCAM
Modified MACS (magnetic-activated
cell sorting) procedure with
anti-EpCAM

[73]

Ovarian cancer Plasma

Claudin-4, TGFβ1,
MAGE3/6, CD24,
L1CAM, ADAM10,
EMMPRIN

Sucrose gradient
separation/Immunoblotting [197–200]

Prostate cancer Plasma, serum Survivin Ultracentrifugation/ELISA [201]

Bladder Cancer Urine TACSTD2
Ultracentrifugation/liquid
chromatography-tandem mass
spectrometry

[202]

Renal cell
carcinoma Urine

MMP-9,
EMMPRIN,
Carbonic
anhydrase

Differential centrifugation/liquid
chromatography-tandem mass
spectrometry

[203]

Up to now, it has been a major challenge to identify and quantify EEV proteins in body fluids
due to their high heterogeneity [204]. It should be noted, for instance, that reliable and cost-effective
technologies for EEV extraction from a small volume of human body fluid are not present. In addition,
ultracentrifugation techniques are still used in EEV isolation in basic research but are not efficient for
clinical use. As a consequence, it is important to develop advanced methods for EEV protein analysis
that have sensitivity and specificity.
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3.1. Novel Approaches for EV Detection in Clinic

Researchers reported the use of specific noninvasive technologies based on antibodies to analyze
EEVs proteins from body fluids such as miniaturized nuclear magnetic resonance-based platform
(µNMR) [205], protein microarray [184], flow cytometry [206], and nanoplasmonic sensing [207].
Although these methods are widely used to purify and analyze EEVs, their conversion to clinical
technology is mostly impractical. For clinical study, the development of a simple and ultrasensitive
technique would be useful for the isolation and molecular analysis of circulating EEVs. The field of
circulating EV detection is still new, and novel technologies will have to address specific challenges such
as slow analysis, low sample volumes, and body fluid complexity [208,209]. ExoScreen is an applicable
example of a novel technology in that it uses circulating (both CD147- and CD9-positive) EEVs to detect
colon cancer. This technology can detect specific tumoral EEVs in just 5 µL of serum sample without
EV purification, using an amplified luminescent proximity homogeneous assay with photosensitizer
beads. Compared with classical markers of cancer, the receiver operating curve indicated a better
diagnostic characteristic of CD147/CD9 double-positive EEVs. Thus, ExoScreen showed a high impact
as a new ultrasensitive technique based on the use of EEVs for liquid biopsy to detect cancer [196].
Another example is the work by Kanwar et al., in which a low-cost and simple microfluidic-based
platform called “ExoChip” was developed. It was prepared in polydimethylsiloxane (PDMS) and
functionalized with an anti-CD63 EEVs marker to isolate circulating extracellular vesicles enriched
in EEVs directly from the blood serum. Thereafter, the extracellular vesicles are stained with a
lipophilic cationic indocarbocyanine fluorescent dye (DiO) and quantified with a standard plate reader.
This allows for the isolation and quantification of EEVs simultaneously in a single device. The recovered
EEVs contain intact RNA, enabling the profiling of EEV miRNA through an open-array analysis with a
potential application in biomarker discovery [210].

3.2. EEVs as Biomarkers in Clinical Trials

Several preclinical studies support clinical investigations to clarify and apply the use of EEVs as
diagnostic tools for human biofluids with noninvasive procedures. Table 6 summarizes the up-to-date
clinical studies (observational) using EEVs as liquid biopsies. From the recruiting studies, researchers from
the University Hospital of Bordeaux in France have designed a study (NCT03032913) to analyze the
diagnostic accuracy of circulating tumor cells (CTCs) and onco-EV quantification in the diagnosis of
pancreatic cancer from approximately 20 patients with a recent diagnosis or suspicion of pancreatic ductal
adenocarcinoma (PDAC) and 20 participants without cancer. In a second recruiting study (NCT03108677),
researchers from Leo W. Jenkins Cancer Center Greenville, NC, USA performed a four-patient pilot
study on blood samples and found that the RNA levels and mutational profile of circulating EEVs
from patients with or without lung metastasis were significantly different. Researchers from the
University of New Mexico Cancer Center (Albuquerque, NM, USA) developed a new test based
on EEVs to detect Human Papillomavirus-positive proteins in the blood or saliva to improve the
diagnosis of oropharyngeal squamous cell carcinoma (OPSCC) (NCT02147418). Another study at
the Medical University of Nanjing in China aims to characterize EEV ncRNAs derived from naïve
cholangiocarcinoma patients as effective circulating biomarkers before and after surgical resection.
A combined phase 2 clinical trial (NCT03228277) at Konkuk University Medical Center of Korea was
designed to assess the antitumor efficacy of Olmutinib (Olita®) administered to patients with T790M
mutations in non-small-cell lung cancer (NSCLC). As a measure of objective response rate (ORR),
the investigators planned to use DNA extracted from extracellular vesicles from bronchoalveolar lavage
fluids. Starting in 2016 in the USA, novel cancer diagnostic products relying on EV profiling [211] have
reached the market. ExoDx® Prostate (IntelliScore) and ExoDx®Lung (ALK) are two test kits based on
the liquid biopsy approach that are commercially available to detect prostate and lung cancer markers,
respectively, in blood and urine samples.
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Table 6. EEV clinical trials in cancer diagnosis.

Title of the Study Start Date Location Condition Description Interventions Status Clinical Trial
Identifier

Identification and
Characterization of
Predictive Factors of
Onset of Bone
Metastases in Cancer
Patients

3 December 2018 Palermo, Italy Bone Metastases

Step 1: assess changes in miRNAs and protein content of circulating tumor EEVs
Step 2: establish the relationship between plasma levels of circulating tumor
EEVs and their content in miRNAs with overall survival and progression of the
disease

Blood Recruiting NCT01668849

Prostasomes as
Diagnostic Tool for
Prostate Cancer
Detection

3 October 2018 Hackensack, NJ,
USA Prostate cancer

Step 1: a validation phase where the purification of prostasomes will be tested
on plasma collected from prostate cancer patients
Step 2: a molecular testing phase where the contents of the purified prostasomes
will be evaluated on their ability to determine the grade of the prostate tumor

Blood Recruiting NCT03694483

Interrogation of
EEV-mediated
Intercellular Signaling
in Patients with
Pancreatic Cancer

19 March 2015
NY, USA Pancreatic Cancer

To isolate and analyze EEVs, which are tiny carriers of important proteins,
and nucleic acids that serve as messenger systems in the blood and tissue. Blood
and tissue from patients with pancreatic cancer will be compared with blood
and tissue from patients with noncancerous pancreatic disease. Patients without
cancer will allow the investigators to establish “normal” values, which currently
do not exist. The investigators will then look to see whether EEVs’ activity has a
connection to disease recurrence and outcomes in patients.

blood and tissue
Active,
not recruiting NCT02393703

Benign Pancreatic
Disease

Diagnostic accuracy of
circulating tumor cells
(CTCs) and
Onco-EEVs
quantification in the
diagnosis of
pancreatic cancer
(PANC-CTC)

26 January 2017 Bordeaux,
France

Pancreatic ductal
adenocarcinoma
(PDAC)

Step 1: test three CTCs isolation methods and analyze by flow cytometry the
presence of onco-EEVs in a culture media of pancreatic cell lines
Step 2: examine the diagnostic accuracy of these blood tumor elements (CTCs
and EEVs) for the diagnosis of cancer of patients with PDAC suspicion or recent
diagnosis and their value for disease monitoring

Blood/
Portal vein blood
samples

Recruiting NCT03032913

EEV testing as a
screening modality for
human
Papillomavirus-positive
oropharyngeal
squamous cell
carcinoma

26 May 2017 NM, USA Oropharyngeal Cancer To develop a new test that can detect certain HPV proteins in the blood or saliva
to help improve detection of OPSCC N/A Recruiting NCT02147418

Clinical research for
the consistency
analysis of PD-L1 in
cancer tissue and
plasma EEVs

7 September 2016 Xinqiao Hospital of
Chongqing, China

Non-small-cell lung
cancer (NSCLC)

To explore the consistency analysis of PD-L1 expression level detected in cancer
tissues and plasma EEVs, guiding clinical practice of radiotherapy combined
with immunotherapy

Liquid biopsy Not yet recruiting NCT02890849

Clinical research for
the consistency
analysis of PD-L1 in
lung cancer tissue and
plasma EEVs before
and after radiotherapy

17 August 2016 Xinqiao Hospital of
Chongqing, China

Non-small-cell lung
cancer (NSCLC)

To explore the consistency analysis of PD-L1 expression level detected in tissues
and plasma EEVs before and after radiotherapy Radiotherapy Not yet recruiting NCT02869685
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Table 6. Cont.

Title of the Study Start Date Location Condition Description Interventions Status Clinical Trial
Identifier

Study of molecular
mechanisms
implicated in the
pathogenesis of
melanoma role of
EEVs

4 December 2016 Nice,
France Metastatic Melanoma

To study the effect of EEVs produced by senescent melanoma cells in the
development and progression of melanoma in vitro and in vivo using cell
cultures and animal models

Blood test Unknown NCT02310451

Pilot prognostic study
via urine EEVs
biological markers in
thyroid cancer
patients

11 August 2016
National Taiwan
University Hospital,
Taiwan

Thyroid Cancer
To detect the prognostic markers in order to find new therapeutic mechanisms
and medications for patients with poorly differentiated or anaplastic thyroid
cancer

N/A Not yet recruiting NCT02862470

Olmutinib trial in
T790M (+) NSCLC
patients detected by
liquid biopsy using
BALF extracellular
vesicular DNA

24 July 2017 Seoul, Korea Non-small-cell lung
cancer (NSCLC)

To evaluate the efficacy of Olmutinib (Olita®) in patients with T790M-positive
non-small-cell lung cancer (NSCLC), confirmed using DNA extracted from
extracellular vesicles of bronchoalveolar lavage fluid

Treatment with
Olmutinib

Recruiting
(Phase 2) NCT03228277

ncRNAs in EEVs of
cholangiocarcinoma 5 April 2017 Jiangsu,

China

Cholangiocarcinoma

To characterize the ncRNAs of cholangiocarcinoma-derived EEVs:
Step 1: see if this EEV biomarker is a useful diagnostic tool.
Step 2: evaluate the prognostic and predictive values of cholangiocarcinoma
EEV levels in plasma in a prospectively recruited cohort of cholangiocarcinoma
patients before and after surgical resection

N/A Recruiting NCT03102268

Benign Biliary Structure
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It should be noted that not all the studies reported in Table 6 have yet published their results,
although they reflect the interest in EEVs in the diagnostic field and represent a next-generation
approach to early cancer detection.

4. EEVs as Vehicles for Drug Delivery

The ideal drug delivery system would deliver the drug only to specific locations, avoiding its
recognition and degradation by the body’s immune system. Such systems would also control the release
of cargo molecules upon selective stimuli. EEVs offer a new solution for unmet clinical treatments
because they can act as a nanoscale drug delivery system and transport their cargo, such as proteins,
DNA, and RNA [36]. Additionally, EEVs have been used to deliver interfering RNA (siRNA) [212]
or pharmaceutically active substances for drug delivery such as paclitaxel [213], doxorubicin [214],
and curcumin [215], as well as peptide- and protein-based therapeutics [216]. Because of their small
and native structure, they are able to avoid phagocytosis; cross biological barriers, including the
blood-brain barrier (BBB) [41]; and internalize in the cell through clathrin-mediated endocytosis and
micropinocytosis [217] by passing lysosomes. They also have a hydrophilic core, which makes them
suitable to host soluble drugs [218] and gives them a natural targeting capacity [219]. One of the
advantages of using EEVs as nanocarriers is their small size, which gives them the ability to penetrate
deep into tumors and inflamed tissues [220,221]. In addition, EEVs also have a slightly negative zeta
potential for long circulation [222]. The negative surface charge allows EEVs to not interact with an
endothelial surface that presents the same negative charge, and the presence of “self” surface markers
like CD47 will prevent them from being phagocytized by the reticuloendothelial system (RES) [223].
EEVs could be safely delivered to the patient after being isolated from their body fluids or transferred
to cell cultures to be modified [224]; they possess an inherent targeting characteristic and show little
long-term accumulation in any organ or tissue, so they may also have fewer off-target effects and lower
toxicity [36]. Because EEVs are natural products, the immune response they induce is very minor
compared to other drug delivery systems such as liposomes and virus-based drug delivery [225,226].
The cellular uptake of EEVs is facilitated compared to various synthetic methods of drug delivery [227].
The uptake and pathways in which EEVs are internalized are the result of the presence of key proteins
on the EEV surface such as tetraspanins and integrins [87]. Due to these biocompatible properties,
EEVs are promising nanosize drug carriers for clinical applications.

4.1. Loading EEVs with Therapeutic Cargos

The loading of EEVs with therapeutic cargos is carried out via two approaches. Firstly, naïve EEVs
could be purified from cell media and the drug is loaded by the free diffusion or electroporation
technique [215,228]. Successful studies included the loading of small molecules such as curcumin,
antioxidants [216,229], or anticancer agents such as doxorubicin (DOX) [43] and paclitaxel (PTX) [230].
Through this approach, EEV drug formulations could be obtained in large quantities and standardized
to obtain similar preparations. The second approach consists of loading parental cells with a drug,
then releasing the drug in EEVs. Murine SR4987 MSCs-secreted EEVs were loaded with PTX by simply
incubating the parental cells with the drug. These cells produced an important quantity of PTX-loaded
EEVs [213]. This technique was also used to encapsulate in EEVs several effective anticancer drugs
such as Etoposide, Carboplatin, Irinotecan, Epirubicin, and Mitoxantrone. These EEVs were able to
inhibit the proliferation of the human pancreatic cell line CFPAC-1, and induced immunogenicity and
NK cell responses [213]. It should be noted that prolonged in vitro treatment can affect the properties
of drugs as well as the bioactivity and stability of EEVs [223].

Donor cells could also be transfected with DNA-encoding therapeutic compounds that will
be released in EEVs [37,231,232]. This approach succeeded in delivering chicken egg ovalbumin
OVA to vesicles’ membranes [232]. Another study also revealed the importance of this process;
plasmid DNA (pDNA)-encoding therapeutic protein catalase [233] or glial cell-line derived neurotrophic
factor (GDNF) [231] was used to transfect macrophages for neurodegenerative disorder treatment.
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The association of adeno-associated virus (AAV) capsids with extracellular vesicles (EEVs) diminished
their immunogenicity and improved gene delivery in vitro [234]. However, each of these approaches
has advantages and limitations that may dictate the type of cargo, the site of the disease, and conditions.
As described before, most cargos are loaded into EEVs by passive loading methods or electroporation.
The need for multiple purification steps represents a disadvantage of these approaches, affecting the
quality and the membrane integrity (in particular for electroporation) of EEVs [223].

4.2. Small Molecules

EEVs were exploited to deliver low-molecular-weight drugs [213,230,235]. Our group isolated
EEVs from MDA-MB-231 breast and STOSE ovarian cancer cell lines and loaded with DOX through
electroporation. It was demonstrated that EEVs reduced the toxicity of DOX. Physical examination
and body weight analyses of mice treated with doxorubicin (exoDOX) showed a better safety profile
than DOX-treated mice, in turn setting up exoDOX as a potential alternative therapy for breast and
ovarian cancers [42,43].

A similar result was obtained by incorporating PTX into EEVs to treat tumors in mouse
models. MSCs were found to acquire effective in vivo antitumor activity after PTX incorporation in
a dose-dependent manner, able to take up the drug and later release it through their extracellular
vesicles [213]. The authors also reported an optimized formulation of PTX-loaded EEVs by incorporating
an aminoethyl anisamide-polyethylene glycol (AA-PEG) vector moiety to target the sigma receptor,
which is overexpressed by lung cancer cells. This platform (AA-PEG-exoPTX) possesses a high loading
capacity and ability to accumulate in cancer cells after systemic administration to improve therapeutic
outcomes [236].

Vesicles were also utilized in phototherapy. By comparing membrane vesicles loaded with hydrophobic
photosensitizers to polymer-based synthetic nanoparticles, a superior phototherapeutic effect was obtained
in membrane vesicles; they fuse more effectively with cancer cell membranes. These liposomal-mediated
engineered microvesicles allowed hydrophobic photosensitizers to penetrate spheroids and in vivo tumors
to enhance the therapeutic efficacy [237].

In another study, EEVs loaded with curcumin, an anti-inflammatory small molecule compound,
improved its solubility, circulation time, and delivery to the brain without altering the drug’s
therapeutic activity. Curcumin was able to protect mice from lipopolysaccharide-induced brain
inflammation [215,216]. EEVs are also used for different therapeutic purposes, such as delivering
exogenous siRNA [41,224,238,239].

4.3. Nucleic Acids

EEVs and extracellular vesicles naturally deliver mitochondrial and genomic DNA, mRNA,
miRNA, and various noncoding RNAs [240]. As they are already nanocarriers, they were suggested as
carriers for nucleic acids. The incorporation of this genetic material could be achieved by electroporation,
such as electroporating siRNA into DC-derived EEVs [41] or using sonication [241]. Electroporation is
used to enhance the permeability of the membrane in order to facilitate the loading of nucleic acids
inside the EEVs [41,242–244]. Moreover there are some limitations to this technique, such as extensive
siRNA aggregation, which may cause inaccurate estimation of the amount of siRNA loaded into
EEVs [243].

EEV vesicles can deliver siRNA to human blood cells. For example, plasma EEVs were used as a
gene delivery vector to transport administered siRNAs to human monocytes and lymphocyte blood
cells, selectively silencing the mitogen-activated protein kinase [224]. Moreover, it was demonstrated
that EEVs can efficiently deliver siRNA against RAD51 and RAD52 to recipient cells in vitro, which play
an important role in homologous strand exchange, a key step in DNA repair through homologous
recombination [239,245]. These siRNAs caused post-transcriptional gene silencing in target cells.
Specifically, the siRNA delivered against RAD51 caused massive cancer cell death [239]. During tumor
development, tumor-associated macrophages secrete angiogenic factors such as VEGF to promote
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tumorigenesis. The oncomir miR-150 targets tumor-associated macrophages that increased the secretion
of VEGF. In vivo angiogenesis was attenuated by cell-derived vesicles, delivering antisense RNA to
miR-150 into mice [246].

EEVs derived from normal fibroblast-like mesenchymal cells carrying siRNA or shRNA that
target oncogenic KrasG12D successfully suppressed the growth of pancreatic cancer in different
mouse models [247]. Thus, human EEVs can be used as vectors for gene delivery to provide cell
therapeutic siRNAs, overcoming the obstacle of crossing the cellular plasma membrane that limits
RNA interference-based therapeutics.

4.4. Proteins

Among the engineered nanoparticles, cell-derived EEVs have recently been emphasized as a
promising therapeutic strategy for in vivo and in vitro delivery of proteins [248]. Therapeutic proteins
could be loaded into EEVs by overexpression in donor cells. To preserve the carried therapeutic proteins
against degradation in host cells and increase the EEV loading capacity, a polymer-based nanocontainer
could be used before the loading, which ensures low cytotoxicity. For example, macrophage-carried
nanoformulated catalase was internalized by endocytosis, then trafficked to recycling endosomes.
Catalase was subsequently released in EEVs and transferred from macrophages to adjacent cells [249].

In addition to chemotherapeutic drugs, EEVs can deliver proteins in order to target cancer
cells. It is demonstrated that EEVs loaded with the protein Survivin-T34A induce apoptosis in
pancreatic adenocarcinoma cell lines and enhance cell sensitivity to gemcitabine [250]. In 2017, Koh et al.
engineered EEVs harboring signal-regulatory protein alfa variants (SIRPα), a membrane protein expressed
on the surface of phagocytes. By interacting with CD47, a “don’t eat me” protein, the SIRPα-CD47
complex blocks the phagocytosis of tumor cells. Exploiting this mechanism, SIRPα competitively inhibits
the CD47 protein on tumor cells. This strategy enhances the capacity of phagocyte toward tumor
cells in the presence of engineered EEVs both in vitro and in vivo. Mice tumor xenograft treated with
SIRPα-EEVs showed a reduction in tumor volume compared to untreated mice [250]. Based on this
principle, another research group engineered EEVs derived from M1 macrophages with anti-SIRPα
and -CD47 antibodies through a pH-sensitive linker. In the tumor microenvironment, where pH is
decreased by the fast and anabolic metabolism of tumor cells, linkers are cleaved and anti-CD47 and
-SIRPα antibodies are released and blocked, respectively, SIRPα on macrophages and CD47 on tumor
cells improve the phagocytosis of macrophages towards tumor cells. At the same time, the native M1
EEVs effectively reprogram the macrophages from protumoral M2 to antitumoral M1 [251].

5. Therapeutic EEVs in Clinic

The use of EEVs as a drug delivery system (DDS) reached clinical trials with a phase I clinical
study in 2005, in which Escudier and his research group tested the feasibility of autologous dendritic
cell (DC)-derived EEVs (DEX) pulsed with the melanoma associated antigen 3 (MAGE 3) as vaccination
of metastatic melanoma patients [252] (Table 7). The secreted EEVs transferred MHC class I/peptide
complexes to antigen-naïve DCs in the lymph nodes, leading to the stimulation of CD4+ and CD8+ T
cells [30,253]. Fifteen patients participated in this clinical study and were treated with EEVs vaccination
once per week for four weeks. No sign of grade II toxicity was reported and the maximum tolerated
dose (MTD) was not achieved. Based on the results, patients with non-small-cell lung cancer (NSCLC)
were treated with T autologous DEX loaded with MAGE [254]. This clinical study was carried out on a
group of 13 patients (median age: 62 years old) with unresectable pretreated stage III or IV NSCLC
with tumor expression of MAGE. In order to generate DCs, patients underwent leukapheresis and then
DEX were produced, loaded with MAGE, and administered at weekly intervals. During the study,
three DEX formulations were evaluated; all of them were tolerated with only grade 1-2 adverse effects
(flu-like illness (N = 1), peripheral arm pain (N = 1), and injection site reactions (N = 8)). The time
between the first dose of DEX and disease progression was 30 to 429 days. Disease progression
was shown in three patients before the first dose of DEX. Additionally, the patient’s survival ranged
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from 52 to 665 days after the first dose of DEX. Thus, the vaccination with DEX was considered
functional and advanced NSCLC patients showed good tolerance for DEX therapy (NCT01159288).
In 2008, another phase I study was carried by Dai et al., based on the use of EEVs vaccination,
in which ascites-derived EEVs (Aex) combined with granulocyte-macrophage colony stimulating factor
(GM-CSF) were used in the immunotherapy of colorectal cancer (CRC) [255]. A total of 40 patients
diagnosed with advanced CRC were enrolled in this study and assigned randomly to two groups:
the first treated with Aex and the second with Aex plus GM-CSF. A total of four injections were
administrated once per week subcutaneously. Both therapies were found to be safe to use and well
tolerated. Furthermore, Aex + GM-CSF had a beneficial role in the induction of antitumor-specific
cytotoxic T lymphocyte (CTL) response.

Previous research works demonstrated the anti-inflammatory characteristics of curcumin and its
delivery using EEVs as natural carriers for the treatment of brain diseases and colon cancer [216,229,
256,257]. These data are the basis of a phase I clinical trial (NCT01294072) in which investigators plan
to study the ability of plant EEVs to improve curcumin delivery to colon tumors. At the end of this
clinical study, the effect of curcumin on the phospholipidic profile, immune modulation, and cellular
metabolism will be analyzed in normal and cancer patients. The results of this clinical trial are not
yet published.

It is worth mentioning that most of the initial clinical trials are ongoing and the use of extracellular
vesicles for therapeutic or drug delivery applications and immunomodulatory therapies still requires
large-scale research.

6. Conclusions

Nanomedicine has gained an important role in the treatment and diagnosis of a variety of
human diseases, especially cancer. Nanoparticles have been shown to possess suitable properties
such as improved pharmacokinetics, bioavailability, and passive targeting, owing to the enhanced
permeability and retention effect. Besides the cited pharmacological properties, the nanoformulation
also improved the physicochemical properties of drugs and could be engineered in order to modify
their surface for active targeting [258–260]. Several nanoparticle formulations, such as lipids and
polymer-based materials, have already been approved and are in use [20,261,262]. Although such
nanocarriers show good pharmacokinetic and safety profiles, together with enhanced bioavailability,
the use of naturally occurring EEVs could be of help in overcoming the off-target effects of lipid-
and polymer-based nanocarriers since EEVs are naturally covered with several biomolecules useful
for tumor targeting [263,264]. In addition, the targeting ability could be improved by molecular
engineering [41]. A combination of EEVs with nanoparticles is also possible to combine the positive
characteristics of both nanomaterials [265]. Different from the targeting abilities, several challenges
should be considered for enhancing EEVs as drug vehicles, such as the production of reproducible
EEVs, the identification of the best donor cells for optimal EEVs production, and an efficient loading
system. Optimization in order to avoid immunogenic responses and ensure correct retention time in
particular tissues is also challenging.

More information is needed to modify EEVs as biologically active carriers for different
pathologies [226,266–269]. The goal of these challenges will serve as an essential stage for the industrial
development of EEVs as therapeutic vehicles, including quality control, scaling up production,
toxicological and pharmacokinetic analyses, and, finally, clinical trials.
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Table 7. EEV clinical trials for new cancer treatments.

Name Formulation Bioactive Compound Company Admin. Route Size Target Description Conclusions Clinical Trial Identifier
(Phase Status)

INF-γ-Dex

Tumor
antigen-loaded
dendritic cell
derived EEVs

MHC class I- and class
II- restricted cancer
antigens and INF-γ

Gustave Roussy,
Cancer Campus,
Grand Paris

Vaccination
(intravenous) 100 nm NSCLC

To boost NK and T cell immune responses
in NSCLC as maintenance
immunotherapy after chemotherapy.
Primary outcome: at least 50% of patients
with PFS at four months after
chemotherapy cessation

Dex stimulated NK cells
but no induction of T
cells was seen in patients.
Primary endpoint was
not reached

NCT01159288 (Phase II)

GELNs Grape EEV-like
nanoparticles Curcumin James Graham Brown

Cancer Center Oral 400 nm (out of
canonic range) Colon cancer

To estimate the effect of a fixed
concentration of curcumin when delivered
by plant EEVs compared to oral tablets of
curcumin alone in CRC patients. Primary
outcome: to evaluate the concentration of
curcumin in normal and cancerous tissues

N/A NCT01294072 (Phase I)
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In the field of early cancer detection, EEVs have also attracted growing interest due to their tissue-
or disease-specific content [270]. Nucleic acids, which circulate in the blood and can be protected
by EEVs from degradation, represent a unique population of biomarkers. Of course, the lack of
knowledge about EV generation, purification, and biobank conservation are still major limitations
on their application in diagnosis. More effort should be made in these fields to generate solid data
and allow for rapid translation to patients. At that point, next-generation sequencing technologies
of serum EEVs DNA and RNA influence early cancer diagnosis. Utilizing multiomics approaches to
EEVs will provide a step forward in the understanding of cancer [271].
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