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ABSTRACT
TURBORVB is a computational package for ab initio Quantum Monte Carlo (QMC) simulations of both molecular and bulk electronic systems.
The code implements two types of well established QMC algorithms: Variational Monte Carlo (VMC) and diffusion Monte Carlo in its robust
and efficient lattice regularized variant. A key feature of the code is the possibility of using strongly correlated many-body wave functions
(WFs), capable of describing several materials with very high accuracy, even when standard mean-field approaches [e.g., density functional
theory (DFT)] fail. The electronic WF is obtained by applying a Jastrow factor, which takes into account dynamical correlations, to the most
general mean-field ground state, written either as an antisymmetrized geminal power with spin-singlet pairing or as a Pfaffian, including
both singlet and triplet correlations. This WF can be viewed as an efficient implementation of the so-called resonating valence bond (RVB)
Ansatz, first proposed by Pauling and Anderson in quantum chemistry [L. Pauling, The Nature of the Chemical Bond (Cornell University
Press, 1960)] and condensed matter physics [P.W. Anderson, Mat. Res. Bull 8, 153 (1973)], respectively. The RVB Ansatz implemented in
TURBORVB has a large variational freedom, including the Jastrow correlated Slater determinant as its simplest, but nontrivial case. Moreover, it
has the remarkable advantage of remaining with an affordable computational cost, proportional to the one spent for the evaluation of a single
Slater determinant. Therefore, its application to large systems is computationally feasible. The WF is expanded in a localized basis set. Several
basis set functions are implemented, such as Gaussian, Slater, and mixed types, with no restriction on the choice of their contraction. The code
implements the adjoint algorithmic differentiation that enables a very efficient evaluation of energy derivatives, comprising the ionic forces.
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Thus, one can perform structural optimizations and molecular dynamics in the canonical NVT ensemble at the VMC level. For the electronic
part, a full WF optimization (Jastrow and antisymmetric parts together) is made possible, thanks to state-of-the-art stochastic algorithms for
energy minimization. In the optimization procedure, the first guess can be obtained at the mean-field level by a built-in DFT driver. The code
has been efficiently parallelized by using a hybrid MPI-OpenMP protocol, which is also an ideal environment for exploiting the computational
power of modern Graphics Processing Unit accelerators.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005037., s

NOMENCLATURE

A antisymmetrization operator
a, b, I, J indices of atoms
Fa atomic force for an atom a, Fa ≡ − dE

dRa

f i general force for the ith variational parameter, fi ≡ − ∂E
∂αi

f (ri, rj) spatial part of the pairing function
G N × N matrix with elements Gi ,j = g(i, j)
g(i, j) pairing function between electrons i↔ (ri, σi) and j↔

(rj, σj)
i, j compact notation for (ri, σi) and (rj, σj), respectively
i, j indices of electrons/orbitals/Monte Carlo sampling
J Jastrow factor, composed of J1, J2, and J3/4
l, m indices of orbitals
M the number of configurations of electrons (the number

of Monte Carlo samplings)
N the number of electrons
Nat the number of atoms
Nd the number of electrons with spin down
Nu the number of electrons with spin up
Ok(x) the logarithmic derivative of a many-body WF Ok(x)

≡ ∂ lnΨ(x)
∂αk

Ra ath ion coordination
ri ith electron coordination
S overlap matrix with elements Sμ ,ν ≡⟨ψμ|ψν⟩
S variance–covariance matrix of the logarithmic deriva-

tive of a many-body WF
SQMC(R) variance–covariance matrix of QMC forces
x N set of electron coordinations including spins, the

same as xi
xi N set of electron coordinations including spins

≡ (r1σ1, r2σ2, . . . , rNσN)i. The index i refers to the
Monte Carlo sampling index

Φ N × k matrix with elements Φi,k = ϕk(i)
ΦAGP antisymmetrized geminal power (AGP)
ΦAS antisymmetric (AS) part
ΦPf Pfaffian (Pf)
ΦSD single Slater determinant (SD)
Ψ many-body WF Ansatz, Ψ = ΦAS × exp J
ΨG many-body guiding function
ΨT many-body trial WF
α1, . . ., αp variational parameters of the trial WF
αk kth variational parameter
μ, ν indices of orbitals
σi spin of ith electron
χi(r) primitive atomic orbital for the Jastrow part
ψi(r) primitive atomic orbital for the antisymmetric part

ϕk(r) kth molecular orbital for the antisymmetric part
∫di compact notation for∑σi ∫dri

I. INTRODUCTION
The solution of the many-body Schrödinger equation, which

describes the interaction between electrons and ions at the quantum
mechanical level, represents a fundamental challenge in computa-
tional chemistry, condensed matter, and materials science. Since
about a century ago, there has been a relentless theoretical and
computational effort to find an accurate solution to this problem,
which also features many recent interdisciplinary applications in
machine learning1 and materials informatics.2 While computation-
ally the scaling of the problem is exponential with the number of
electrons, several numerical approximate methods have been put
forward in the last decades. Among them, the Density Functional
Theory (DFT) method, proposed by Kohn and Sham3 in 1965, is one
of the most successful approaches. In this framework, the original
interacting 3N many-body problem (N being the number of elec-
trons in a system) is mapped to a non-interacting electron system,
defined by an effective mean-field potential, to be determined self-
consistently.4 While DFT is an exact theory in principle, the exact
form for the exchange-correlation functional, which is an essential
part of the DFT mean-field potential, remains unknown. Unfortu-
nately, the progress in generating increasingly successful approxi-
mations of this functional is rather slow,5 partly because there is
no established strategy for systematic improvement,6 while main-
taining an efficient scaling with the system size. The commonly
adopted approximations for the exchange-correlation DFT func-
tional have well-known limitations, especially in describing weak
dispersive interactions, strongly correlated materials, and extreme
environments (e.g., high pressure).7,8

Alternative strategies are represented by the so-called wave
function (WF)-based approaches popular in quantum chemistry
applications.9 In these methods, electronic correlations are captured
either variationally or perturbatively by post-Hartree–Fock theo-
ries, such as the Møller–Plesset perturbation theory (MP),10 config-
uration interaction (CI) and Full-CI (FCI),11 multi-configurational
self-consistent field (MCSCF),12 and Coupled-Cluster (CC) the-
ory,13 to name a few. Among them, coupled-cluster with single,
double, and perturbative triple excitations, or CCSD(T), is consid-
ered to be the gold standard in quantum chemistry as it typically
provides results in good agreement with experiments and a rea-
sonable balance between accuracy and computational affordabil-
ity (despite its cost growing as the seventh power of the num-
ber of electrons). While quantum chemistry methods have the
advantage of treating electronic exchange and correlation effects
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in a systematically improvable fashion, they are also much more
computationally demanding compared to DFT, and their applicabil-
ity to large or periodic systems is often computationally prohibitive.

Another way to tackle the problem of the electron correlation
and the huge dimension of a many-body WF, exponentially large
in the number of electrons, is by means of stochastic approaches,
which are in this context referenced with the widely used expression
of quantum Monte Carlo (QMC) methods.14,15 Since the invention
of Markov Chain Monte Carlo (MCMC) in the 1940s,16 stochas-
tic approaches to numerical algorithms had a pervasive influence
in a wide range of fields, from physics and engineering to finance.
In this respect, the QMC framework is qualitatively different from
the deterministic one mentioned above, and it represents, there-
fore, an original and alternative approach for the solution of the
Schrödinger equation, overcoming some of the drawbacks of DFT
and the deterministic WF-based approaches of quantum chemistry.
In particular, QMC does not rely on uncontrolled approximations;
its accuracy can be systematically improved, the scaling with sys-
tem size is good, and it is straightforwardly applicable to both iso-
lated and periodic systems. While the scaling with the system size
is comparable with standard DFT methods, the prefactor is typi-
cally much larger. However, methods based on stochastic sampling
are well suited for massively parallel computing architectures as
the algorithms can sustain an almost ideal scaling with the num-
ber of cores. As a result, the feasibility and popularity of QMC are
expected to increase with the foreseeable substantial improvements
in high-performance computing (HPC) facilities.

TURBORVB includes two of the most popular ground-state QMC
algorithms: variational Monte Carlo (VMC) and diffusion Monte
Carlo (DMC).14 In VMC, a systematically improvable approxima-
tion for the ground state is obtained by direct minimization of the
energy, evaluated by a parametrized many-body WF. In an explic-
itly correlated WF, the electron coordinates are not separable, and
the expectation value of the Hamiltonian has to be calculated with
Monte Carlo integration, hence the name. In realistic calculations, a
faithful and nevertheless compact parametrization for the trial state
is essential for a successful energy optimization. The first property
allows an unbiased treatment of the electronic correlations across
different regimes, such as bond dissociation and electronic phase
transitions. The second is needed for a stable optimization of the
variational parameters, which may become a too difficult task when
the chosen parametrization is redundant or unnecessarily detailed.
Therefore, a central effort, in the TURBORVB project, has been devoted
to the development of efficient and systematic parametrizations of
correlated WFs.

As we will see in the following, an accurate trial WF is also fun-
damental in DMC, which is the second main algorithm present in
TURBORVB. DMC is an imaginary-time projection technique,15 which,
when combined with the so-called fixed-node (FN) approximation,
represents a powerful route to electronic ground-state calculations.
In this approximation, the nodal-surface, which is kept fixed dur-
ing the projection, can be determined by an accurate variational
optimization.

So far, several groups have implemented the above algo-
rithms and established excellent QMC codes such as QMC-
PACK,17 CASINO,18 QWALK,19 CHAMP,20 and HANDE-QMC.21

We also remark that other QMC algorithms have also been devel-
oped recently, such as the auxiliary field quantum Monte Carlo

(AF-QMC),22,23 full-configuration interaction quantum Monte
Carlo (FCI-QMC),24,25 coupled cluster Monte Carlo (CCMC),26,27

density matrix quantum Monte Carlo (DMQMC),28,29 model space
quantum Monte Carlo (MSQMC),30–32 clock quantum Monte
Carlo (CQMC),33 or driven-dissipative quantum Monte Carlo
(DDQMC).34

A typical workflow for a QMC calculation performed with
TURBORVB is shown in Fig. 1. It shall be noticed that the choice of
the most suited Ansatz for the WF, as well as the optimization
of its parameters, is a prerequisite of both VMC and DMC eval-
uations. Ionic forces, if evaluated, can be used to perform QMC-
based structural relaxations, Langevin molecular dynamics (MD),
or path integral molecular dynamics (PIMD). Moreover, several
post-processing tools are available to analyze the outcomes. The
TURBORVB code is peculiar because it relies on the assumption that
a complex electronic problem, though, until now, cannot be solved
exactly with a black-box computer software, can be described very
accurately by appropriate variational wave functions, guided by
robust physical and chemical requirements and human ingenuity.
In particular, TURBORVB is different from other codes in the follow-
ing features: (i) It employs the Resonating Valence Bond (RVB) WF,
first proposed by Pauling and Anderson in quantum chemistry35

and condensed matter physics,36 respectively. It includes statical
and dynamical correlation effects beyond the commonly used Slater
determinant, while keeping the computational cost at the single-
determinant level, thanks to its efficient implementation. (ii) The
code implements a VMC algorithm based on localized orbitals (e.g.,
Gaussians) and state-of-the-art optimization methods, such as the
stochastic reconfiguration. Therefore, at the VMC level, one can
optimize not only the amplitude of the WF (i.e., the Jastrow fac-
tor) but also the nodal surfaces (e.g., the Slater determinant). This
leads to a better variational energy in general and also improves the
corresponding FN-DMC energy. (iii) The energy derivatives (e.g.,
atomic forces) are calculated very efficiently, thanks to an imple-
mentation based on the Adjoint Algorithmic Differentiation (AAD).
As a consequence, one can perform structural optimizations and
Langevin molecular dynamics. (iv) The code implements the newly
developed Lattice Regularized Diffusion Monte Carlo (LRDMC),
a stable DMC algorithm that, very recently, has shown to have a
better scaling with the atomic number Z, compared with standard
DMC.37

This review is organized as follows: in Sec. II, we briefly
explain the fundamental QMC algorithms implemented in TURBORVB,
namely, the VMC and LRDMC; in Sec. III, we describe the RVB
WF; in Sec. IV, we extend the WF to treat periodic systems; in
Sec. V, we introduce the DFT algorithm efficiently implemented in
TURBORVB; in Sec. VI, we describe the way energy derivatives are com-
puted (e.g., atomic forces) by means of AAD; in Sec. VII, we list
the TURBORVB steps to optimize a many-body WF; in Sec. VIII, we
introduce the first and the second-order Langevin molecular dynam-
ics implemented in TURBORVB; in Sec. IX, we summarize the typical
QMC workflow from the WF generation to the final LRDMC calcu-
lation; in Sec. X, we show weak and strong scaling results of TURBORVB,
measured on the Marconi/CINECA supercomputer; in Sec. XI, we
list the physical properties that can be calculated by TURBORVB; in
Sec. XII, we review the major TURBORVB applications done so far; and
in Sec. XIII, we introduce a Python-based workflow system, named
TURBO-GENIUS.
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FIG. 1. Schematic picture of some of
the possible tools available in TurboRVB.
The arrows indicate typical workflow cal-
culations.

II. METHODS
TURBORVB implements two types of well established quantum

Monte Carlo methods: Variational Monte Carlo (VMC) and Lattice
Regularized Diffusion Monte Carlo (LRDMC). We summarize these
methods in this section. The interested readers should also refer to
the comprehensive review of QMC14 for details. TURBORVB also imple-
ments an original DFT engine to generate trial WFs, which is more
suitable for the VMC and LRDMC calculations, as shown in Sec. V.

A. Variational Monte Carlo
Starting from the variational principle, the expectation value of

the energy evaluated for a given WF Ψ can be written as

⟨E⟩ = ∫ dxΨ2(x) ⋅ ĤΨ(x)/Ψ(x)
∫ dxΨ2(x) = ∫ dxeL(x)π(x), (1)

where x = (r1σ1, r2σ2, . . . , rNσN) here and henceforth is a shorthand
notation for the N electron coordinates and their spins, whereas

eL(x) ≡
ĤΨ(x)
Ψ(x) and π(x) ≡ Ψ2(x)

∫ dx′Ψ2(x′)

are the so-called local energy and the probability of the configuration
x, respectively. This multidimensional integration can be evaluated
stochastically by generating a set {xi} according to the distribution
π(x) using the Markov chain Monte Carlo such as the (acceler-
ated38,39) Metropolis method and by averaging the obtained local
energies eL(xi),

EVMC = ⟨eL(x)⟩π(x) ≈
1
M

M

∑
i=1

eL(xi), (2)

which has an associated statistical error of
√

Var[eL(xi)]/M̃, where
Var[eL(xi)] is the variance of the sampled local energies and M̃ is the
sampling size M divided by the autocorrelation time. This indicates
that the precision of the VMC evaluation is inversely proportional
to the square root of the number of samplings (i.e., of the compu-
tational cost). It is worth to note that if Ψ(x) is an eigenfunction
of Ĥ, say with eigenvalue E0, then eL(x) = E0 for each x, implying
that the variance of the local energy is zero and EVMC = E0 with no
stochastic uncertainty. This feature is known as the zero-variance
property.

The probability distribution used for the importance sampling
can also differ from π(x). Indeed, one can use an arbitrary probabil-
ity distribution function π′(x) = Ψ2

G(x)/ ∫dxΨ2
G(x) and estimate a

generic local observable O(x) either by using ŌVMC = ⟨O(x)⟩π(x) or

ŌVMC =
⟨O(x′)W(x′)⟩π′(x′)
⟨W(x′)⟩π′(x)

≈ ∑
M′
i=1 O(x′i)W(x′i)
∑M′

i=1 W(x′i)
, (3)

where W(x) = ∣Ψ(x)/ΨG(x)∣2, and the points x′i are dis-
tributed according to π′. This reweighting scheme is very impor-
tant when evaluating atomic forces, as discussed in Sec. VI B.
Since the evaluations of the standard deviations are nontrivial in
this case, TURBORVB employs the bootstrap and jackknife methods
in order to estimate the mean value and the statistical error,15

which are also used when evaluating those of the local energy,
forces, and so on. Indeed, the code outputs the history of the
local energies, forces, or other properties in appropriate files
(when the corresponding option is true), thus allowing the error
bar estimates by simple post-processing. The user can also use
the reblocking (binning) technique to remove the autocorrelation
bias.40
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One can optimize the WF based on the variational theorem by
introducing a set of parameters (α1,α2, . . . ,αp) to the WF Ψ(x,α),

EVMC(α) = ∫ dxeL(x,α)π(x,α) ⩾ Eexact. (4)

However, the optimization of a many-body WF remains a difficult
challenge not only because optimizing a cost function containing
many parameters is a complex numerical task, due to the presence
of several local minima in the energy landscape, but also because
this difficult task is further complicated by the presence of statisti-
cal errors in the QMC evaluation of any quantity. Nevertheless, a
great improvement in this field has been achieved when the QMC
optimization techniques have made use of the explicit evaluation of
energy derivatives with finite statistical errors. In particular, in TUR-

BORVB, the adjoint algorithmic differentiation (AAD) has been imple-
mented, by allowing the efficient calculation of generalized forces
(fi = − ∂E

∂αi
)41 and very efficient optimization methods, the so-called

“stochastic reconfiguration”42,43 and “the linear method.”44–46 These
methods are discussed in Secs. VII A and VII B.

B. Lattice regularized Monte Carlo
Lattice regularized diffusion Monte Carlo (LRDMC), which

was initially proposed by Casula et al.,47 is a projection technique
that allows us to improve a variational Ansatz systematically. This
method is based on Green’s function Monte Carlo (GFMC),48–50 fil-
tering out the ground state WF ∣Υ0⟩ from a given trial WF ∣ΨT⟩: since
the eigenstates of the Hamiltonian have the completeness property,
the trial WF can be expanded as

∣ΨT⟩ =∑
n

an∣Υn⟩, (5)

where an is the coefficient for the nth eigenvectors (Υn). Therefore,
by applying GM = (Λ − Ĥ)M

, one can obtain

∣Υ0⟩∝ lim
M→∞

(Λ − Ĥ)M ∣ΨT⟩

= lim
M→∞

(λ − E0)M[a0∣Υ0⟩ +∑
n≠0
(λ − En

λ − E0
)

M
an∣Υn⟩], (6)

where Λ is a diagonal matrix with Λx ′ ,x = λδx ′ ,x (λ should be suffi-
ciently large to obtain the ground state) and En is the nth eigenvalue
of Ĥ. Since λ−En

λ−E0
< 1, the projection filters out the ground state WF

Υ0 from a given trial WF ∣ΨT⟩, as long as the trial WF is not orthog-
onal to the true ground state (i.e., a0 ≡ ⟨Υ0|ΨT⟩ ≠ 0). To apply the
GFMC for ab initio electron calculations, the original continuous
Hamiltonian is regularized by allowing electron hopping with step
size a, in order to mimic the electronic kinetic energy. The corre-
sponding Hamiltonian Ĥa

is then defined such that Ĥa → Ĥ for
a→ 0. Namely, the kinetic part is approximated by a finite difference
form

Δif (xi, yi, zi) ≈ Δa
i f (xi, yi, zi)

≡ 1
a2 {[f (xi + a) − f (xi)] + [f (xi − a) − f (xi)]}

↔ yi ↔ zi, (7)

and the potential term is modified as

Va(x) = V(x) +
1
2
[∑i (Δa

i − Δi)ΨG(x)
ΨG(x)

]. (8)

The corresponding Green’s function matrix elements are

Gx′ ,x = ⟨x′∣(Λ − Ĥ
a)∣x⟩ ≡ (Λ −Ha)

x′ ,x
(9)

and the single LRDMC iteration step is given by the following
equation:

Ψn+1(x′) =∑
x
Gx′ ,xΨn(x). (10)

The sketch of the LRDMC algorithm, a Markov chain that evolves
the many-body WF according to Eq. (10), is as follows:47 (STEP 1)
Prepare a walker with configuration x and weight w (w0 = 1).
(STEP 2) A new configuration x′ is generated by the transition
probability,

px′ ,x = Gx′ ,x/bx, (11)

where

bx =∑x′ Gx′ ,x (12)

is a normalization factor. By applying the discretized Hamiltonian
to a given configuration (Ĥa∣x⟩), (6N + 1) configurations |x′⟩ are
determined according to the probability px ′ ,x in Eq. (11), where N
is the number of electrons in the system.51 This allows the evalua-
tion of the normalization factor bx in Eq. (12) even in a continu-
ous model. Note that 6N comes from the diffusion of each electron
in two directions (±a) and the remaining 1 stands for the starting
configuration x before the possible hoppings (all N electrons) (i.e.,
x′ = x). (STEP 3) Finally, update the weight with wn+1 = wnbx and
return to STEP I. After a sufficiently large number of iterations (the
Markov process is equilibrated), one can calculate the ground state
energy E0,

E0 ≈
⟨wneL(xn)⟩
⟨wn⟩

, (13)

where ⟨⋯⟩ denotes the statistical average over many independent
samples generated by the Markov chain and eL(x) is called the (bare)
local energy that reads

eL(x) =∑
x′
Hx′ ,x = λ − bx. (14)

Indeed, the ground state energy can be calculated after many inde-
pendent n-step calculations. A more efficient computation can be
realized by using the so-called “correcting factor” technique: after
a single simulation that is much larger than the equilibration time,
one can imagine starting a projection of length p from each (n − p)th
iteration. The accumulated weight for each projection is

Gp
n =

p

∏
j=1

bn−j. (15)

Then, the ground state energy E0 can be estimated by

E0 ≈ ∑n G
p
neL(xn)
∑n G

p
n

. (16)
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This straightforward implementation of the above simple method is
not suitable for realistic simulations due to fluctuations of weights,
large correlation times, sign problems, and so on. TURBORVB imple-
ments the following state-of-art techniques for real electronic struc-
ture calculations.

If the potential term [Eq. (8)] is unbounded (it is the case in
ab initio calculations), the bare weight bx [Eq. (12)] and the local
energy eL(x) [Eq. (14)] significantly fluctuate, making the numerical
simulation very unstable and inefficient. To overcome this difficulty,
the code employs the importance sampling scheme,15 in which the
original Green’s function is modified using the so-called guiding
function ΨG as

G̃x′ ,x = Gx′ ,x
ΨG(x′)
ΨG(x)

, (17)

and the projection is modified as

ΨG(x′)Ψn+1(x′) =∑
x
G̃x′ ,xΨG(x)Ψn(x). (18)

In practice, the guiding function is prepared by a VMC calculation.
The modified Green’s function for importance sampling G̃x′ ,x has the
same eigenvalues as the original one, and this transformation does
not change the formalism of LRDMC. The weight is updated by

b̃x =∑
x′
G̃x′ ,x, (19)

and the local energy with importance sampling is

ẽL(x) =
⟨ΨG∣Ĥ∣x⟩
⟨ΨG∣x⟩

=∑
x′
Hx′ ,x

ΨG(x′)
ΨG(x)

. (20)

Equation (20) implies that if the guiding function ΨG is an exact
eigenstate of the Hamiltonian, there are no statistical fluctuations,
implying the zero variance property, namely, the computational effi-
ciency to obtain a given statistical error on the energy improves with
the quality of the variational WF. In this respect, it is also important
to emphasize that a meaningful reduction in the statistical fluctua-
tions is obtained by satisfying the so-called cusp conditions. As long
as they are satisfied, the resulting local energy does not diverge at
the coalescence points where two particles are overlapped, despite
the singularity of the Coulomb potential term [V(x) in Eq. (8)].51

In addition, the importance sampling maintains the electrons in a
region away from the nodal surface since the guiding function van-
ishes there [i.e., the RHS of Eq. (17)→ 0]. This clearly enhances the
efficiency of the sampling because the local energy diverges at the
nodal surface.

The Green’s function cannot be made strictly positive for
fermions; therefore, the fixed-node (FN) approximation has to
be introduced15 in order to avoid the sign problem. Indeed,
the Hamiltonian is modified using the spin-flip term Vsf(x)
= ∑

x′ :sx′ ,x>0
Hx′ ,xΨG(x′)/ΨG(x),

HFN,γ
x′ ,x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Hx,x + (1 + γ)VSF(x) for x′ = x
Hx′ ,x for x′ ≠ x, sx′ ,x < 0
−γHx′ ,x for x′ ≠ x, sx′ ,x > 0,

(21)

where sx′ ,x = ΨG(x′)Hx′ ,x/ΨG(x) and γ ≥ 0 is a real parameter. The
use of the fixed-node Green’s function

G̃FN
x′ ,x = (Λ −HFN)

x′ ,x

ΨG(x′)
ΨG(x)

(22)

can prevent the crossing of regions where the configuration space
yields a sign flip of the Green’s function; therefore, the walkers
are constrained in the same nodal pockets and avoid the sign
problem.

TURBORVB also implements the many-walker technique and the
branching (denoted as reconfiguration49 in TURBORVB) scheme for a
more efficient computation.15 The code performs the branching as
follows: (1) Set the new weights equal to the average of the old ones,

w′α,n = w̄ ≡ 1
Nw
∑
β

wβ,n. (23)

(2) Select the new walkers from the old ones with a probability that
is proportional to the old walkers’ weights,

pα,n =
wα,n

∑
β

wβ,n
, (24)

which does not change the statistical average of weights but sup-
presses the fluctuations by dropping walkers having small weights.
The code performs branching (reconfiguration) after a projection
time τ, which can be chosen as a user input parameter. In practice,
within the many-walker and branching schemes, the average weights
are stored and are set to one for all walkers after each branching.
The user can retrieve the accumulated weights at the end of the
simulation,

Gp
n =

p

∏
j=1

w̄n−j, (25)

and calculate the ground state energy,

E0 ≈ ∑n G
p
neL(xn)
∑n G

p
n

, (26)

where eL(xn) is the mean local energy averaged over the walkers,
which reads

eL(xn) = ∑α wα,neL(xα,n)
∑α wα,n

(27)

and is evaluated just before each reconfiguration. Note that p is also
an input parameter, which has to be carefully chosen by the user to
allow energy convergence.

When λ is sufficiently large, the correlation time also becomes
large because the diagonal terms of the Green’s function become
very close to one (i.e., a walker remains in the same configuration),
which causes a very large correlation time. In TURBORVB, this diffi-
culty is solved by considering in a different way the diagonal and
non-diagonal moves. In a given interval of M iterations, the non-
diagonal updates are efficiently calculated using a random number
according to the probability that the configuration remains in the
same one (diagonal updates). This technique can be generalized to
the continuous-time limit, namely, M →∞, at M

Λ = τ fixed. In the
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M → ∞ limit, the projection (Λ − Ĥ)M
is equal to the imaginary

time evolution exp(−τĤ), apart from an irrelevant constant ΛM .
Thus, the user should specify only τ as the input parameter. Indeed,
the walker weight is updated by w → w exp(−τξeL(x)) and the
imaginary time is updated by τleft → τleft − τξ at each non-diagonal
update until τleft becomes 0, where τξ = − log(1 − ξ)/bx is a diagonal
move time step determined by a uniform random number 0 ≤ ξ < 1.
The branching (reconfiguration) is performed after each projection
time of length τ that a user puts in the input file within the many
walker and the branching implementation.

In practice, there are three important features in LRDMC. First,
there is not a time step error in LRDMC because the Suzuki–Trotter
decomposition is not necessary, unlike the standard DMC algo-
rithm.15 Instead, there is a finite-size lattice error due to the dis-
cretization of the Hamiltonian (a). Therefore, in order to obtain
an unbiased FN energy, it is important to extrapolate the LRDMC
energy to the a → 0 limit by using several results corresponding to
different lattice spaces.47 This is then consistent with the standard
DMC energy estimate (Fig. 2) obtained in the limit of an infinitely
small time step. Probably one of the most important advantages of
the LRDMC method is that the extrapolation to the a → 0 limit
is very smooth and reliable so that unbiased FN energies are eas-
ily obtained with low order polynomial fits. Second, LRDMC can
straightforwardly handle different length scales of a WF by intro-
ducing different mesh sizes (a and a′) so that electrons in the vicin-
ity of the nuclei and those in the valence region can be appropri-
ately diffused,37,47 which defines the so-called double-grid LRDMC.
This scheme saves a substantial computational cost in all-electron
calculations, especially for a system including large atomic num-
ber atoms,37 with a typical computational cost scaling with Z∼6,
where Z is the maximum atomic number. TURBORVB makes use of
an appropriate ratio of the mesh sizes (i.e., a/a′), the smaller one
a used when electrons are close to the nuclei and the larger one

FIG. 2. Fixed-node energies for the all-electron carbon atom computed within
DMC, single-grid LRDMC (one lattice), and double-grid LRDMC. The lattice dis-
cretization parameter a is mapped to the time step τ as a =

√
τ. Reprinted with

permission from M. Casula, C. Filippi, and S. Sorella, Phys. Rev. Lett. 95, 100201
(2005). Copyright 2005 APS.

a′≫ a adopted in the valence region. By choosing a proper Thomas–
Fermi characteristic length around the nuclei, where short hops of
lengths a mostly occur, a significant improvement of the scaling
(i.e., Z∼5.6 → Z∼5) has recently been reported.37 Finally, the inclu-
sion of non-local pseudopotentials in this framework is straight-
forward by means of an additional spherical grid defined in an
appropriate mesh.51 As described in Refs. 47 and 52, LRDMC pro-
vides an upper bound for the true ground-state energy and allows
the estimation of EFN, even in the presence of non-local pseudopo-
tentials. Note that this variational property has also been extended
to the standard DMC framework,53 with the introduction of the
so-called T-moves. Moreover, the recently introduced determinant
locality approximation (DLA)54 to deal with non-local pseudopoten-
tials is also implemented in TURBORVB and can be optionally used in
LRDMC.

III. WAVE FUNCTIONS
Both the accuracy and the computational efficiency of QMC

approaches crucially depend on the WF Ansatz. The optimal Ansatz
is typically a trade-off between accuracy and efficiency. On the one
side, a very accurate Ansatz can be involved and cumbersome, hav-
ing many parameters and being expensive to evaluate. On the other
hand, an efficient Ansatz is described only by the most relevant
parameters and can be quickly and easily evaluated. In particular,
in Sec. II, we have seen that QMC algorithms, both at the variational
and fixed-node levels, imply several calculations of the local energy
eL(x) and the ratio Ψ(x)/Ψ(x′) for different electronic configurations
x and x′. The computational cost of these operations determines the
overall efficiency of QMC and its scaling with system size.

TURBORVB employs a many-body WF Ansatz Ψ, which can be
written as the product of two terms,

Ψ = ΦAS × exp J, (28)

where the term exp J, conventionally dubbed Jastrow factor, is sym-
metric under electron exchange and the term ΦAS, also referred to as
the determinant part of the WF, is antisymmetric. The resulting WF
Ψ is antisymmetric, thus fermionic.

In the majority of QMC applications, the chosen ΦAS is a sin-
gle Slater determinant (SD) ΦSD, i.e., an antisymmetrized product
of single-electron WFs. Clearly, SD alone does not include any cor-
relation other than the exchange. However, when a Jastrow factor,
explicitly depending on the inter-electronic distances, is applied to
ΦSD, the resulting Ansatz ΨJSD = ΦSD ∗ exp J often provides over
70% of the correlation energy55 at the variational level. Thus, the
Jastrow factor proves very effective in describing the correlation,
employing only a relatively small number of parameters and there-
fore providing a very efficient way to improve the Ansatz.56 A Jas-
trow correlated SD (JSD) function yields a computational cost for
QMC simulations—both VMC and FN—about ∝N3, namely, the
same scaling of most DFT codes. Therefore, although QMC has
a much larger prefactor, it represents an approach much cheaper
than traditional quantum chemistry ones, at least for large enough
systems.

While the JSD Ansatz is quite satisfactory in several applica-
tions, there are situations where very high accuracy is required, and
a more advanced Ansatz is necessary. The route to improve JSD is
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not unique, and different approaches have been attempted within
the QMC community. First, it should be mentioned that improv-
ing the Jastrow factors is not an effective approach to achieve higher
accuracy at the FN level as the Jastrow is positive and cannot change
the nodal surface. A popular approach is through the employment
of backflow,57 which is a remapping of the electronic configura-
tions that enter into ΦAS (SD as a special case) where each elec-
tron position is appropriately changed depending on nearby elec-
trons and nuclei. Backflow is an effective way to recover correlation
energy, both at the variational and FN levels. However, it can be used
at a price to increase significantly an already large computational
cost.58 Another possibility is to improve ΨSD similar to conven-
tional quantum chemistry approaches, namely, by considering ΦAS
as a linear expansion of several Slater determinants. While this sec-
ond approach can provide very high accuracy, it may be extremely
expensive as the number of determinants necessary to remain
with a pre-defined accuracy grows combinatorially with the system
size.

The vision embraced in TURBORVB is that the route toward an
improved Ansatz should not compromise the efficiency and good
scaling of QMC. For this reason, neither backflow nor explicit mul-
tideterminant expansions are implemented in the code. Within the
TURBORVB project, the main goal is instead to consider an Ansatz that
can be implicitly equivalent to a multideterminant expansion but
remains in practice as efficient as a single determinant. There are
five alternatives for the choice of ΦAS, which correspond to (i) the
Pfaffian (Pf), (ii) the Pfaffian with a constrained number of molecu-
lar orbitals (Pfn), (iii) the Antisymmetrized Geminal Power (AGP),
(iv) the Antisymmetrized Geminal Power with a constrained num-
ber of molecular orbitals (AGPn), and (v) the single Slater deter-
minant. It is interesting to observe that the latter four WFs are all
obtained by introducing specific constraints on the most general
Pf Ansatz. The hierarchy of the five Ansätze is represented in the
Venn diagram of Fig. 3. Clearly, a more general Ansatz is more accu-
rate in the total energy but not necessarily in the energy differences.

FIG. 3. Ansatz hierarchy. The output of Hartree–Fock (HF) or DFT simulations with
different exchange-correlation functionals are special instances of the SD Ansatz.

Moreover, it is described by more variational parameters that could
imply a more challenging optimization and a slightly higher cost.
TURBORVB includes several tools to go from one Ansatz to another,
as represented in Fig. 4. Typically, the starting point is SD, which
can be obtained from a Hartree–Fock (HF) or a DFT calculation
with different exchange-correlation functionals. Both methods are
not expected to provide the optimal parameters when the Jastrow
factor is included in the WF. Indeed, in QMC, the WFs are always
meant to include the Jastrow factor, which proves fundamental to
improve the properties of the overall WF. For instance, AGP car-
ries more correlation than SD. However, it is not size-consistent
unless it is multiplied by a Jastrow factor. Thus, a fundamental step
to take advantage of the WF Ansatz is the possibility to perform
reliable optimizations of the parameters. Optimization will be dis-
cussed in Sec. VII. In this section, we will describe the functional
form of the Jastrow factor implemented in TURBORVB (Sec. III A),
the Pfaffian (Sec. III B), the AGP (Sec. III C), the AGPn and Pfn
(Sec. III D), the SD (Sec. III E), the multiconfigurational character of
the AGP (Sec. III F), the basis set (Sec. III G), the pseudopotentials
(Sec. III H), the contractions of the orbitals (Sec. III I), and the
conversion tool (Sec. III J).

A. Jastrow factor (J)
The Jastrow factor (exp J) plays an important role in improving

the correlation of the WF and in fulfilling Kato’s cusp conditions.59

TURBORVB implements the Jastrow term composed of one-body, two-
body, and three/four-body factors (J = J1 + J2 + J3/4). The one-
body and two-body factors are used to fulfill the electron–ion and
electron–electron cusp conditions, respectively, and the three/four-
body factors are employed to consider a systematic expansion, in
principle converging to the most general electron pair contribu-
tion. The one-body Jastrow factor J1 is the sum of two parts, the

FIG. 4. Ansatz conversion.
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homogeneous part (enforcing the electron–ion cusp condition),

Jh
1(r1, . . . , rN) =

N

∑
i=1

Nat

∑
a=1
(−(2Za)3/4ua((2Za)1/4∣ri − Ra∣)), (29)

and the corresponding inhomogeneous part,

Jinh
1 (r1σ1, . . . , rNσN) =

N

∑
i=1

Nat

∑
a=1
(∑

l
Mσi

a,lχa,l(ri)), (30)

where ri are the electron positions, Ra are the atomic positions
with corresponding atomic number Za, l runs over atomic orbitals
χa , l (e.g., GTO) centered on the atom a, σi represents the elec-
tron spin (↑ or ↓), {Mσi

a,l} are variational parameters, and ua(r) is
a simple bounded function. In TURBORVB, the most common choice
for ua is

ua(r) =
1

2bea
(1 − e−rbea), (31)

depending on a single variational parameter bea, which may be
optimized independently for each atomic species.

The two-body Jastrow factor is defined as

J2(r1σ1, . . . , rNσN) =∑
i<j

vσi ,σj(∣ri − rj∣), (32)

where vσi ,σj is another simple bounded function. There are several
possible choices for vσi ,σj implemented in TURBORVB (all listed in the
file input.tex in the doc folder), and one of them is, for instance, the
following spin-dependent form:

vσi ,σj(ri,j) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ri,j

4
⋅ (1 + bpara

ee ⋅ ri,j)
−1 (σi = σj)

ri,j

2
⋅ (1 + banti

ee ⋅ ri,j)
−1 (σi ≠ σj),

(33)

where ri,j = ∣ri − rj∣, and bpara
ee and banti

ee are variational parameters.
The three/four-body Jastrow factor reads

J3/4(r1σ1, . . . , rNσN) =∑
i<j

⎛
⎝∑a,l
∑
b,m

Mσi ,σj

a,l,b,mχa,l(ri)χb,m(rj)
⎞
⎠

, (34)

where the indices l and m again indicate different orbitals cen-
tered on corresponding atoms a and b, and {Mσi ,σj

a,l,b,m} are variational
parameters. Sometimes, it is convenient to set to zero part of the
coefficients of the four-body Jastrow factor, namely, those corre-
sponding to a ≠ b, as they increase the overall variational space
significantly and make the optimization more challenging, without
being much more effective in improving the variational WF.

B. Pfaffian wave function (Pf)
The SD is an antisymmetrized product of single-electron WFs.

Thus, SD neglects almost entirely the correlation between electrons.
A natural way to improve this description is to include explicitly in
the Ansatz pairwise correlations among electrons. This is precisely
what the Pfaffian WF does.60–62 The building block of the Pfaffian
WF is the pairing function g(i, j) between any pair of electrons i and
j. Henceforth, we denote with the generic bolded index i both the

space ri coordinates and the spin values σi,

i↔ (ri, σi), (35)

corresponding to the ith electron.
For simplicity, let us first consider a system with an even

number N of electrons. The WF, written in terms of pairing
functions, is

ΦAS(1, . . . ,N) = A{g(1, 2)g(3, 4)⋯g(N − 1,N)}, (36)

where A is the antisymmetrization operator,

A ≡ 1
N! ∑P∈SN

ϵPP̂, (37)

SN is the permutation group of N elements, P̂ is the operator
corresponding to the generic permutation P, and ϵP is its sign.

Let us define G the N × N matrix with elements Gi ,j = g(i, j).
Note that

g(i, j) = −g(j, i) (and Gi,j = −Gj,i), (38)
as a consequence of the statistics of fermionic particles; thus, G is
skew-symmetric (i.e., GT = −G, T being the transpose operator),
so the diagonal is zero and the number of independent entries is
∑N−1

n=1 n = N(N − 1)/2.
The Pfaffian63 of a N × N skew-symmetric matrix G is

defined as

Pf(G) ≡ 1
2N/2(N/2)! ∑P∈SN

ϵPGP(1),P(2)⋯GP(N−1),P(N) (39)

if N is even, and it is zero if N is odd.64 Therefore, the WF ΦAS
defined in the right-hand side (RHS) of Eq. (36) equals 1

N!! Pf(G),
where the semifactorial N!! ≡ N!

2N/2(N/2)! is irrelevant in QMC as it
affects only the normalization of the WF. Thus, we can define our
electronic WF as

ΦPf = Pf(G). (40)

Note that the ΦPf here defined allows the description of any
system with Nu electrons with spin-up and Nd electrons with spin-
down, provided that N = Nu + Nd is even. Indeed, with no loss of
generality, we can assume that electrons i = 1, . . ., Nu have σi = 1/2
and electrons with i = Nu + 1, . . ., N have σi = −1/2. Thus, the N ×N
skew-symmetric matrix G is written as

, (41)

where Guu is a Nu × Nu skew-symmetric matrix with elements
guu(i, j), Gdd is a Nd × Nd skew-symmetric matrix with elements
gdd(i, j), Gud is a Nu × Nd matrix with elements gud(i, j), and Gdu

= −Gud
T , i.e., gdu(i, j) = −gud(j, i). guu describes the pairing between

a pair of electrons with spin-up,

guu(i, j) = fuu(ri, rj)∣↑↑⟩, (42)

where the function f uu describes the spatial dependence on the coor-
dinates ri, rj for i, j ≤ Nu. Note that f uu(rj, ri) = −f uu(ri, rj) as a
consequence of the properties of g. The spin part ∣↑↑⟩ describes a sys-
tem with unit total spin and spin projection along the z-axis and will
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be indicated by ∣1, +1⟩. Similarly, gdd describes the pairing between
pairs of electrons with spin-down for i, j > Nu,

gdd(i, j) = fdd(ri, rj)∣↓↓⟩ (43)

with f dd(rj, ri) = −f dd(ri, rj), and the spin part ∣↓↓⟩ describes a sys-
tem with total unit spin and negative spin projection along the z-axis,
indicated with ∣1,−1⟩. gud describes the pairing between pairs of elec-
trons with unlike spins. Since two electrons with unlike spins can
form a singlet ∣0, 0⟩ = ∣↑↓⟩−∣↓↑⟩√

2
or a triplet ∣1, 0⟩ = ∣↑↓⟩+∣↓↑⟩√

2
, in the gen-

eral case, the pairing function gud will be a linear combination of the
two components,

gud(i, j) = fS(ri, rj)
∣↑↓⟩ − ∣↓↑⟩√

2
+ fT(ri, rj)

∣↑↓⟩ + ∣↓↑⟩√
2

, (44)

where f S(ri, rj) = f S(rj, ri) describes the spatial dependence of the
singlet part of gud and f T(ri, rj) = −f T(rj, ri) describes the spatial
dependence of the triplet part. Therefore, the generic pairing func-
tion g(i, j) is the sum of all four components mentioned above,
namely,

g(i, j) = fS(ri, rj)∣0, 0⟩ + fT(ri, rj)∣1, 0⟩
+ fuu(ri, rj)∣1, +1⟩ + fdd(ri, rj)∣1,−1⟩. (45)

The pairing functions f S, f T , f uu, and f dd are expanded over
atomic orbitals (see Sec. III G). Say, for a generic pairing function
f, we have

f (ri, rj) = ∑
l,m,a,b

A{a,l},{b,m}ψa,l(ri)ψb,m(rj), (46)

where ψa , l and ψb ,m are primitive or contracted atomic orbitals,
their indices l and m indicate different orbitals centered on atoms
a and b, while i and j label the electron coordinates. Symmetries on
the system or properties of the underlying pairing function f imply
constraints on the coefficients. For instance, the coefficients of f S
are such that A{a,l},{b,m} = A{b,m},{a,l} because f S(ri, rj) = f S(rj, ri),
whereas A{a,l},{b,m} = −A{b,m},{a,l} for f T , f uu, and f dd.

Let us consider now the remaining case of a system with an
odd number of electrons N. The simplest way to handle this case
is to consider a system with an extra fictitious electron N + 1
↔ (rN +1, σN +1) that we set at infinity rN +1→∞, thus non-interacting
with all N physical electrons. The extra matrix elements are easily
computed,

g(N+1,N+1) = 0,
g(i,N+1) = −g(N+1, i) = ϕ(i) for i ≤ N, (47)

where ϕ(i) ≡ ϕ(ri, σi) can be considered an extra spin dependent
unpaired orbital vanishing at infinity.

The antisymmetric part of the WF of the overall system is then

ΦAS(1, . . . ,N) = A{g(1, 2)g(3, 4)⋯g(N,N+1)}, (48)

where the antisymmetrization operator acts on the (now even)
N + 1 electrons. This is a perfectly allowed N electron fermionic
WF because by definition (i) it is antisymmetric for all permuta-
tions of the N + 1 particles and, in particular, for the N− physical
ones and (ii) it does not depend on the extra N + 1th coordinates

and spin as the fictitious particle is at infinity. On the other hand,
it is easy to show that this is a nontrivial and nonvanishing WF
because we can use the basic Pfaffian formula in Eq. (39) for the
antisymmetrization of the N + 1 particles and we readily obtain that

ΦPf = Pf(G̃), (49)

where

(50)

is a (N + 1) × (N + 1) skew-symmetric matrix and Φ is a N-
dimensional vector whose elements are ϕ(i), i = 1, . . ., N. Its Pfaffian
is quite generally nonvanishing for at least some configuration, pro-
vided that the diagonalization of the Pfaffian (see later) has at least
(N + 1)/2 non-zero eigenvalues (likewise for the Slater determinant,
it is enough that the N−molecular orbitals are linearly independent),
and we obtain in this way that the Pfaffian is perfectly defined even
in the odd number of electrons case.

Finally, we would like to emphasize that the above argument
can be generalized to arbitrary number k of unpaired orbitals and
arbitrary boundary conditions including calculations on periodic
supercells. We can indeed assume at the beginning that when N is
odd (even), we add an odd (even) number k of unpaired orbitals such
that there are N electrons coupled by the matrix G plus k unpaired
electrons. The k unpaired electrons are paired with k fictitious elec-
trons [with a pairing function satisfying conditions analogous to
those in Eq. (47)]. This yields a Pfaffian of even linear dimension N +
k of the same form as the one in Eq. (50) but with Φ being a block N
× k rectangular matrix, determined by k different spin-dependent
orbitals. The same argument holds that the antisymmetrized WF
is written as the Pfaffian of the corresponding (N + k) × (N + k)
skew-symmetric matrix and does not depend on the fictitious parti-
cle coordinates introduced and therefore is an allowed physical WF
antisymmetric over the N physical particles.

A special case that is of interest is when all N electrons are set to
be unpaired (i.e., when k = N and Φ is a generic N × N matrix) and
it is assumed that there is no pairing among them [i.e., G = 0 in the
N × N block matrix in Eq. (50)]. Thus, using a well-known relation
of a Pfaffian

(51)

we recover the standard Slater determinant. In this way, we can
clearly see that the Pfaffian represents a quite remarkable general-
ization of the single determinant picture and that a larger varia-
tional freedom is exploited by allowing pairing correlations with a
non-zero matrix G.

Recently, we have noticed that, following the above-mentioned
derivation, it is possible to generalize further the Pfaffian WF Ansatz
by introducing fictitious particles and relaxing the constraints on
the G̃ matrix, even in the lower block diagonal part, which can
be assumed to be an arbitrary non-zero skew-symmetric matrix.
Work is in progress in order to understand whether this extended
formulation can further improve the accuracy within a single
Pfaffian WF.
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C. Antisymmetrized geminal power (AGP)
If we consider only the case of a pairing function g(i, j) that is

a spin singlet [namely, f uu, f dd f T in Eq. (45) are set to zero, yielding
g(i, j) = fS(ri, rj)∣0, 0⟩], then we obtain the singlet Antisymmetrized
Geminal Power (denoted as AGP).

Let us consider first an unpolarized system, having an even
number N of electrons, and without loss of generality, we can assume
that the electrons i = 1, . . ., N/2 have spin up and electrons j = N/2
+ 1, . . ., N have spin down. Then, the matrices Guu and Gdd defined
in Sec. III B are both zero matrices of size N/2 × N/2, and the matrix
Gud has only the contribution coming from the singlet, which we dub
GS. The antisymmetrization operator implies the computation of

, (52)

where the equality follows from a property of the Pfaffian [see
Eq. (51)]. The overall sign is arbitrary for a WF; thus, the antisym-
metrized product of singlet pairs (geminals) is indeed equivalent to
the computation of the determinant of the matrix GS,

ΦAGPs = det(GS). (53)

It should be noted that it is not necessary that the matrix Gud be
symmetric to reduce the Pfaffian to a single determinant evalua-
tion. As long as the matrices Guu and Gdd are zero, the Pfaffian is
indeed equivalent to det(Gud) and describes an antisymmetric WF.
However, if Gud is not symmetric, the function

ΦAGP = det(Gud) (54)

is not an eigenstate of the spin. In other terms, there is a spin
contamination, similar to the case of unrestricted HF calculations.

The AGP Ansatz can be generalized to describe polarized sys-
tems, i.e., systems where the number Nu of electrons with spin up
is different from the number Nd of electrons with spin down. With
no loss of generality, we can assume that Nu > Nd; thus, the system
is constituted by a number p = Nd of electron pairs and a number
k = Nu − Nd of unpaired electrons (clearly, N = Nu + Nd = 2p + k).
We aim at evaluating

A{g(1, 2)⋯g(2p − 1, 2p)ϕ1(2p+1)⋯ϕk(N)}. (55)

As mentioned above, we assume that the pairing function is zero for
like-spin pairs. With no loss of generality, we can assume that elec-
trons i = 1, . . ., Nu have spin up and electrons j = Nu + 1, . . ., N have
spin down. Moreover, as was done at the end of Subsection III B, we
can add k fictitious entries to g(i, j) such that g(i, N + l) = ϕl(i) for
l = 1, . . ., k and i = 1, . . ., Nu. Thus, the antisymmetrization implies
the use of Eq. (51), i.e.,

, (56)

with the Nu × Nu matrix G̃ = [Gud ∣Φ], the Nu × Nd matrix Gud
describing the pairing between the Nu spin up electrons and the
Nd spin down electrons, and the Nu × k matrix Φ describing the

k unpaired orbitals. Thus, we need to evaluate

ΦAGP = det(G̃). (57)

One of the most important advantages of the AGP Ansatz is
that it is equivalent to a linear combination of Slater determinants
(i.e., multi configurations), but the computational cost remains at
the level of a single-determinant one65–67 (see Sec. III F). This is espe-
cially important for large systems because the naive multireference
approach requires an exponentially large number of Slater deter-
minants, which drastically increases the computational cost. The
AGP Ansatz was applied to the ab initio calculation by Casula and
Sorella65 for the first time in 2003; then, it has also been implemented
in other QMC codes.

D. AGP and Pf with a constrained number
of molecular orbitals (AGPn and Pfn)

A convenient way to impose constraints on the variational
parameters defining the AGP or Pf WF is obtained by rewriting the
expansion of the geminal in terms of molecular orbitals (MOs). As
shown in Eq. (46), a geminal g(i, j) is natively expressed in terms of
the atomic orbitals {ψa , l(r)}, by summing over all the atoms a, the
corresponding orbitals l, and the spin index σ (as the elements of the
basis may in principle also depend on the spin, even though the most
common choice is to take the same orbital for each of the two pos-
sible values of the spins). In order to simplify the notation here, let
us merge the atomic orbital and spin indices in a unique one that is
indicated with a Greek symbol [e.g., μ↔ (a, l)] running from 1 to
the total dimension of the 2L atomic orbitals used, L for each spin
component. Therefore,

g(i, j) =
2L

∑
μ,ν

Aμ,νψμ(i)ψν(j), (58)

and clearly, the symmetry of g implies that Aμ ,ν = −Aν ,μ. The coef-
ficients Aμ ,ν define a 2L × 2L skew-symmetric matrix A. If we
define the 2L dimensional vector Ψi = (ψ1(i), . . . ,ψ2L(i))T , Eq. (58)
rewrites as g(i, j) = ΨT

i AΨj. Moreover, the overlaps Sμ ,ν ≡ ⟨ψμ|ψν⟩
between atomic orbitals define the overlap matrix S, which in the
case of a spin-dependent basis is block diagonal,

, (59)

with Suu and Sdd being positive definite L × L square matrices
(Suu = Sdd when orbitals are the same for spin up and spin down).
In TURBORVB, the overlap matrix S is computed on a suitable uni-
form mesh with an efficient and general parallel algorithm. Then,
an orthonormal basis is defined,

ψ̃μ(i) =∑
ν

S−1/2
μ,ν ψν(i), (60)

where S−1/2 is well defined since S is strictly positive definite.68 The
matrix elements of g can be recasted in the new orthonormal basis
{ψ̃μ(i)}, yielding g(i, j) = ∑2L

μ,ν Ãμ,νψ̃μ(i)ψ̃ν(j) = Ψ̃T
i ÃΨ̃j, with the

matrix Ã ≡ S1/2AS1/2 that is skew symmetric.
At this point, from the spectral theory of skew symmetric matri-

ces, it is possible to perform the Youla decomposition of Ã (see
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Ref. 69), which can be written in the form Ã = QΣQT , where Q is
unitary (also real if Ã is real) and the matrix Σ is block diagonal with
Σ2k−1,2k = λk = −Σ2k ,2k−1 for k = 1, . . ., L and zero everywhere else,
with λk ≥ 0.70 So, the pairing function g(i, j) can be written as ΦT

i ΣΦj,
where Φi = QTΨ̃i for each i. This defines a basis of L MOs {ϕk(i)}
and corresponding twinned ones {ϕ̄k(i)}, forming together a basis
of 2L mutually orthonormal elements for which the original geminal
function reads

g(i, j) =
L

∑
k=1

λk[ϕk(i)ϕ̄k(j) − ϕ̄k(i)ϕk(j)] (61)

with λk ≥ 0. After these transformations, these MOs can be finally
written in the chosen (hybrid) atomic basis,

ϕk(i) =
2L
∑
ν=1

Pμ,lψμ(i),

ϕ̄k(i) =
2L
∑
ν=1

P̄μ,lψμ(i)
(62)

by appropriate p × 2L rectangular matrices P and P̄. Then, with
no loss of generality, we can assume that the molecular orbitals
{ϕk(i), ϕ̄k(i)} are ranked such that λ1 ≥ λ2 ≥. . .≥ λL ≥ 0. The above
expression highlights that the most important MOs are those corre-
sponding to the larger values of λk. Therefore, it is possible to con-
strain the variational freedom by neglecting all orbitals with k > n,
yielding the pairing function

gn(i, j) =
n

∑
k=1

λk[ϕk(i)ϕ̄k(j) − ϕ̄k(i)ϕk(j)], (63)

where n is conveniently chosen and is ≪L. This yields the AGPn
Ansatz and theΦAGPn WF, which can be useful to improve the stabil-
ity of the wave-function optimization. The corresponding algorithm
(enabled by setting molopt = −1 in the optimization section input of
TURBORVB), based on projection operators in the space of the n molec-
ular orbitals considered, has been described extensively in Ref. 15.
Moreover, in the original paper71 introducing the AGPn, a precise
recipe was given to improve the evaluation of the binding energies.
Indeed, despite a constraint on the variational parameters neces-
sarily increasing the variational energy expectation value, energy
differences may actually improve by an appropriate choice of n. In
the mentioned work,71 this promising approach was applied with
an AGP containing only singlet correlations, but the binding ener-
gies were defined without using a rigorous size consistent criterion.
This drawback can now be removed, by exploiting the full variational
freedom of the Pf WF combined with a general spin-dependent Jas-
trow factor (see, e.g., Fig. 14). Work is in progress in this interesting
research direction.

The variational optimization of an AGP with a fixed number
n of molecular orbitals can be easily generalized to the Pf case, by
exploiting that the constrained Pf WF, dubbed Pfn, can be written
either in the canonical form with MOs, as in Eq. (63), or in the local-
ized basis set expansion, as in Eq. (58), with a corresponding matrix

An
μ,ν =

n
∑
k=1

λk[Pμ,kP̄ν,k − Pν,kP̄μ,k]. According to Eq. (63), an arbitrary

small variation δgn of the constrained pairing function gn reads

δgn(i, j) =
n

∑
k=1

δλk[ϕk(i)ϕ̄k(j) − ϕ̄k(i)ϕk(j)]

+
n

∑
k=1

λk[δϕk(i)ϕ̄k(j) − δϕ̄k(i)ϕk(j)]

+
n

∑
k=1

λk[ϕk(i)δϕ̄k(j) − ϕ̄k(i)δϕk(j)] (64)

and therefore satisfies the following property, as will be shown later,

(Î − L)δgn(Î − R) = 0, (65)

where Î is the identity operator, L and R are projection operators
over the occupied MOs, i.e., L2(i, j) = ∫ dkL(i, k)L(k, j) = L(i, j),
and similarly, R2 = R, where here and henceforth the shorthand
integration symbol ∫dk = ∑σk ∫drk contains implicitly also the spin
summation. These operators are then defined as follows:

L(i, j) =
n
∑
k=1
[ϕk(i)ϕ∗k (j) + ϕ̄k(i)ϕ̄∗k (j)],

R(i, j) =
n
∑
k=1
[ϕ∗k (i)ϕk(j) + ϕ̄∗k (i)ϕ̄k(j)].

(66)

With the above definitions, Eq. (64) is easily verified because each
term of Eq. (64) is annihilated either by the left (Î − L) or the right
(Î − R) projection over the unoccupied MOs. Note that L = R in
the real case and L = R∗ in the most general complex case. In this
way, in order to implement a constrained variation δgn of the Pfn
WF, corresponding to an appropriate variation of its matrix δAn

μ,ν, it
is useful to work with a small free variation δg (with corresponding
δAμ ,ν). This is then projected onto the chosen restricted Ansatz by
means of the following equation:

δgn = δg − (Î − L)δg(Î − R). (67)

Indeed, it is easy to show that the RHS of the above equation van-
ishes if we apply Î − L and Î − R to its left and its right, respec-
tively, just because Î − R and Î − L are projection operators, being
such R and L, yielding (Î − R)2 = (Î − R) and (Î − L)2 = (Î − L),
from which Eq. (67) fulfills Eq. (65). Equation (67) represents, there-
fore, a linear relation applied to the variational parameter matrix
change δAμ ,ν corresponding to the unconstrained geminal g in
Eq. (58), yielding the new constrained variation δAn

μ,ν. Indeed, by
using the definitions of the projector operators in Eq. (66) and the
expansion of the MOs in the atomic (hybrid) basis [see Eq. (62)],
Eq. (67) turns to a number of matrix–matrix operations acting on
δA, P, P̄, and the overlap matrix S that can be easily and efficiently
implemented.15

This linear relation between A and An can be therefore easily
implemented together with the corresponding derivatives necessary
for the optimization of the energy72 and allows the explicit calcula-
tion of the new matrix An

μ,ν, yielding the new constrained geminal
gn + δgn. Then, the new geminal can be recasted in the form of
Eq. (63) by the mentioned diagonalization of skew-symmetric matri-
ces, in this way implicitly neglecting nonlinear contributions that
are irrelevant close to convergence, when δgn → 0. After employ-
ing several iterations of this type, the lowest energy Ansatz of the
JPfn type can be obtained in a relatively simple and very efficient
way.
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Finally, it is also important to emphasize that this constrained
optimization algorithm allows the reduction of the number of
parameters by efficiently exploiting locality, namely that variational
parameters Aμ ,ν corresponding to atoms at a distance larger than a
reasonable cutoff (an input named rmax in TURBORVB) can be safely
disregarded with negligible error.15

E. Single Slater determinant (SD)
An important special case of the AGPn and Pfn Ansätze dis-

cussed in Sec. III D is when we constrain the pairing function gn to
use the minimum possible number of molecular orbitals providing
a non-zero WF. The minimum number for an unpolarized system
with N electrons is equal to the number of electron pairs, that is,
n = N/2. The WF obtained in this way starting from the AGP is
indeed the single Slater determinant (SD),15,71 and we dub it ΦSD.
In principle, also the Pfn WF with n = N/2 corresponds to a single
Slater determinant with spin dependent molecular orbitals, a case
that has never been considered so far, but it represents an available
option within the most recent versions of TURBORVB.

Similarly, in a polarized system having Nu spin up electrons
and Nd spin down electrons (we assume Nu > Nd), the SD Ansatz
is obtained by using Nu − Nd unpaired electrons and using a
constrained pairing function gn with n = Nd/2.

F. Implicit multiconfigurational character of the AGP
In Secs. III B and III C, it has been mentioned that the Pfaffian

and the AGP Ansätze have a multiconfigurational character despite
the fact that they can be evaluated at the cost of a single determi-
nant. In this section, we expand the AGP Ansatz in terms of Slater
determinants to show this aspect explicitly. In order to simplify the
derivation, we will consider here a simplified case, while the most
general case could be studied with a similar approach but involving
more cumbersome expressions.

We consider the real AGPs Ansatz [Eq. (53)] for an unpolarized
system of N = 2Np electrons (i.e., Nu = Nd = N/2). The symmetry
implies that the twin molecular orbitals {ϕk(i), ϕ̄k(i)} appearing in
the RHS of Eq. (61) have the same spatial part, which we denote
ϕ̃k(r), modulus a sign (because they are orthonormal), and they have
an opposite spin part. Without the loss of generality, we can assume
that ϕk is spin up and ϕ̄k is spin down. Given this convention, the
scalar product lk between the spatial parts of ϕk and ϕ̄k will either be
+1 or −1. We define λ̃k = lkλk, where λk is the same as the one in the
RHS of Eq. (61). Note that ∣λ̃k∣ = λk, so {λ̃} are ranked in decreasing
order of their absolute value (i.e., ∣λ̃k∣ ≥ ∣λ̃k+1∣). The pairing function
can then be written as

g(i, j) =
L

∑
k=1

λ̃kϕ̃k(ri)ϕ̃k(rj)(∣↑↓⟩ − ∣↓↑⟩). (68)

This expression is useful for comparing with the standard CI expan-
sion.

It is convenient now to use the second quantization notations
in order to simplify the derivation. In particular, we indicate with
â†

k,↑ (â†
k,↓) the operator that creates an electron of spin up (down)

in the orbitals ϕ̃k and satisfies the canonical anticommutation rela-
tions. We can write the pairing functions g(i, j) ≡ ⟨i, j∣ĝ∣0⟩, where
∣0⟩ is the vacuum, ∣i, j⟩ is the WF of a system with one electron with

coordinates (ri, σi) and another with coordinates (rj, σj), and ĝ is the
operator

ĝ =
L

∑
k=1

λ̃kâ†
k,↑â

†
k,↓, (69)

where λ̃k is the one defined above. Using this notation, it is easy to
show (see Appendix of Ref. 67) that the pairing function g is equiva-
lent to the complete active space of two electrons on the L molecular
orbitals {ϕ̃k}.

Within this notation, the AGP WF is

∣ΦAGPs⟩ = ĝp∣0⟩, (70)

where p ≡ N/2 is the number of electron pairs. If we substitute in ĝp

the expansion for ĝ in Eq. (69), after having conveniently defined the
operator b̂k ≡ â†

k,↑â
†
k,↓, which created an electron pair on the orbital

ϕ̃k, and having noted that b̂kb̂l = b̂lb̂k and b̂2
k = 0 (as following from

the anticommutation relations of the â†
k operators), we obtain that

ĝp = p! ∑
1≤i1<i2<⋯<ip≤L

λ̃i1 λ̃i2⋯λ̃ip b̂i1 b̂i2⋯b̂ip . (71)

The chosen order of the λ̃k coefficients implies that the leading term
in ĝp is given by the term with (i1, . . ., ip) = (1, . . ., p).73 Thus, we can
rewrite ĝp in terms of this leading term and excitations with respect
to it,

ĝp ∣0⟩
p!∏p

i=1 λ̃i
=

p

∏
i=1

b̂i∣0⟩ +
p

∑
j=1

L

∑
q=p+1

λ̃q

λ̃j

⎛
⎜⎜
⎝

p

∏
i=1
i≠j

b̂i

⎞
⎟⎟
⎠

b̂q∣0⟩

+ ∑
1≤j<k≤p

∑
p<q<r≤L

λ̃qλ̃r

λ̃jλ̃k

⎛
⎜⎜⎜
⎝

p

∏
i=1

i≠k∧i≠j

b̂i

⎞
⎟⎟⎟
⎠

b̂qb̂r ∣0⟩ +⋯. (72)

In the above expansion, we shall recognize that the first element is
a single Slater determinant of the molecular orbitals {ϕ̃i}i=1,...,N/2;
the second element is the summation of all possible double excita-
tions going from an orbital j ≤ N/2 to an orbital q > N/2; the third
element is the summation of a subset of the possible quadruple exci-
tations and so on. In other terms, AGPs can be written as the zero
seniority74 subset of the CI expansion, having some constraints on
the coefficients of the expansion.

It is worth mentioning that AGPs are also reliable in cases
where a single Slater determinant is not a good reference, as, for
instance, in the case of a broken covalent bond, where the high-
est occupied molecular orbital (HOMO) and the lowest unoccupied
molecular orbital (LUMO) are degenerate (see Fig. 5). In fact, we

can have that ∣λ̃p∣ = ∣λ̃p+1∣, so the two determinants
p
∏
i=1

b̂i∣0⟩ and

(
p−1
∏
i=1

b̂i)b̂p+1∣0⟩ have the same weight, and they both are the leading

terms of the constrained zero-seniority expansion in Eq. (72).
Note that in the AGPn Ansatz, we can perform an expansion

similar to Eq. (72), but the excitations stop at the orbital n rather
than L. Thus, it is straightforward to see that for n = N/2, there are
no excitations and the only term is a single Slater determinant.
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FIG. 5. The twisted ethylene molecule (C2H4) is a prototypical system requiring
a multireference method. The ground state geometry is planar (torsional angle
equal to zero); C atoms have a double bond, and the HOMO and LUMO orbitals
are separated. As the molecule is twisted, one bond is broken and the HOMO–
LUMO orbitals become degenerate for a torsional angle of 90○. The upper panel
shows evaluations of the torsional barrier as obtained using JSD and JAGP at the
VMC and LRDMC level and using a complete active space (CAS) of 12 orbitals
in 12 electrons. JAGP provides reliable results, whereas JSD (which neglects the
LUMO orbital) overestimates the barrier both at the variational and diffusion levels.
The middle panel shows the ratio λ̃LUMO/λ̃HOMO in the JAGP Ansatz and the corre-
sponding value in the CAS calculations. The bottom panel shows the HOMO and
LUMO orbitals for the planar and twisted geometries. Readapted with permission
from Zen et al., J. Chem. Theory Comput. 10, 1048 (2014). Copyright 2014 ACS.

G. Atomic basis set for the pairing function
and the Jastrow factor

TURBORVB employs localized atomic orbitals such as the Gaussian
type,

ψGaussian
l,±m,I (r; ζ) = ∣r − RI ∣le−ζ∣r−RI ∣2 ⋅R[(−i)

1±1
2 Yl,m,I(θ,φ)], (73)

or the Slater type,

ψSlater
l,±m,I(r; ζ) = ∣r − RI ∣le−ζ∣r−RI ∣ ⋅R[(−i)

1±1
2 Yl,m,I(θ,φ)], (74)

where the real and the imaginary part (m > 0) of the spherical har-
monic function Yl,m,I(θ,φ) centered at RI are taken and rewritten
in Cartesian coordinates in order to work with real defined and
easy to compute orbitals, l is the corresponding angular momen-
tum, and m ≥ 0 is its projection number along the z−quantization
axis. The localized atomic orbitals are also present in the one-body
and three/four-body Jastrow parts [i.e., denoted as χ(r) in Eqs. (30)
and (34)]. One can use standard basis sets with exponents ζ (also
coefficients for a contracted basis set) taken from the available stan-
dard database such as the Basis Set Exchange75 or from other more
specific references when using pseudopotential.76–81 A Python wrap-
per, named TURBO-GENIUS, makes the above procedure much easier, as
shown later.

H. Pseudopotential
TURBORVB supports pseudopotential calculations both in VMC

and LRDMC calculations. Many ECPs have been generated and
successfully used in quantum chemistry codes, but they are usu-
ally tuned to match Density Functional Theory (DFT) or Hartree–
Fock (HF) all-electron (AE) calculations, which are not expected
to be optimal for state-of-the-art many-body techniques. Recently,
some progress has been made in this direction, and pseudopo-
tentials determined by correlated many-body techniques are also
available.76–83 All the pseudopotentials used in QMC employ the
standard semi-local form

V̂ I
pp(ri) = V I

loc(ri,I) +
lmax

∑
l=0

V I
l (ri,I)

l

∑
m=−l
∣Yl,m⟩⟨Yl,m∣, (75)

where ri ,I = |ri − RI | is the distance between the ith electron and the
Ith ions, lmax is the maximum angular momentum of the ion I, and
lmax

∑
l=0

l
∑

m=−l
∣Yl,m⟩⟨Yl,m∣ is a projection operator on the spherical harmon-

ics centered at the ion I. In TURBORVB, the angular momentum projec-
tor is calculated by using standard polyhedral quadrature formulas
for the angular integrations.84 As it is now becoming a common
practice not only in QMC, both the local V I

loc(ri,I) and the non-
local V I

l (ri,I) functions are expanded over a simple Gaussian basis
parametrized by coefficients (e.g., effective charge Zeff and other sim-
ple constants), multiplying simple powers of r and a corresponding
gaussian term

r2Vl(r) =∑
k
αk,lr

βk,l exp(−γk,lr
2), (76)

where αk , l, βk , l (usually small positive integers), and γk , l are the
parameters obtained by appropriate fitting. Several published pseu-
dopotentials have already been tabulated in TURBORVB. Of course, one
can also use any pseudopotential employing the semi-local form
in the mentioned Gaussian basis with a straightforward little extra
work for the input preparation.

I. Contraction of the primitive atomic basis
The contraction of atomic orbitals has been widely used in

quantum chemistry and DFT codes, and was originally introduced
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to define a pseudo-Slater orbital by combining several primitive
Gaussian orbitals. This is also important in the QMC context
because it decreases the number of variational parameters by a large
factor, as will be shown in this section. Although one can obtain
a contracted basis set directly from a database, TURBORVB allows us
to prepare a high-quality hybrid basis set (contraction) starting
from a given primitive basis, by the so-called “geminal embedding
scheme.”85 To this purpose, let us decompose the geminal function
in terms of atomic contribution, as far as the dependence over i (the
left argument) is concerned,

g(i, j) =∑
I

UI
proj(i, j) =∑

I
∑
μ,ν

AI
μ,νϕμ(i)ϕν(j), (77)

where I represents an atom in a system; UI
proj(i, j) is the pairing

function projected on the atom I; AI
μ,ν is Aμ ,ν if μ ∈ I and AI

μ,ν = 0
otherwise, where Aμ ,ν is assumed to be given for the system under
consideration, e.g., obtained by a standard DFT calculation, where
in this case, by Eq. (63),

Aμ,ν =
n

∑
k=1
(ck

μc̄k
ν − c̄k

μck
ν), (78)

where ck
μ and c̄k

μ are the coefficients of the DFT molecular orbitals
ϕk(i) = ∑μ ck

μϕμ(i) and ϕ̄k(i) = ∑ν c̄k
νϕν(i) in the atomic basis

expansion, respectively.
Quite generally, the projected pairing function can be expanded

in a truncated space spanned by q terms,

ŨI
proj(i, j) =

q

∑
k=1

σkψ
GEO
k (i)ψEnv

k (j). (79)

In other words, the Schmidt decomposition is applied to the matrix
ŨI

proj(i, j) describing the coupling between a given atom I and the
environment, within the geminal Ansatz. This procedure defines the
so-called geminal embedded orbitals (GEOs), which are determined
in terms of an expansion over all atomic orbitals used for the atom I,

ψGEO
k (i) =∑

μ∈I
μGEO

k,μ ψμ(i), (80)

where ψGEO
k (i) are orthonormal. Following the Schmidt decompo-

sition, it is possible to determine the best GEOs by minimizing the
Euclidian distance between the original and the truncated geminal
functions,

d2 = ∣UI
proj − ŨI

proj∣
2
. (81)

Considering all possible unconstrained functions ψEnv
k (j) and

employing the steady condition δd2

δψEnv
k (j)

= 0, d2 reads

d2 = ∣UI
proj∣

2 −
p

∑
k=1
∫ didjDI

proj(i, j)ψGEO
k (i)ψGEO

k (j), (82)

where ∣UI
proj∣

2 = ∫didj∣UI
proj(i, j)∣

2 and DI
proj(i, j) is the density matrix

that reads

DI
proj(i, j) = ∫ dkUI

proj(i,k)∗UI
proj(j,k). (83)

Since the GEOs ψGEO
k (r) are orthonormal and the density matrix

is Hermitian, Eq. (82) becomes minimum when the GEOs coin-
cide with the p eigenvectors of the density matrix with the

maximum eigenvalues (denoted as wi). The original atomic basis
ψμ(i) is usually non-orthogonal, so the problem turns into the
generalized eigenvalue equation,

∑
j∈J
[(AI∗SAI)S]

i,j
μGEO

k,j = ωkμ
GEO
k,i . (84)

The truncation error is readily estimated by the summation of the
eigenvalues d2 = ∣UI

proj∣
2 −∑p

i=1 wp. Since the eigenvalues are sorted
in ascending order, a suitably chosen value of p allows the user to
neglect the most irrelevant vector components with small eigenval-
ues wi and work with enough accuracy even with a few GEOs per
atom, thus minimizing the number of variational parameters neces-
sary to describe well the system, as will be shown below. With this
construction, a new geminal is defined in the GEO basis, namely,

g̃(i, j) =∑
μ,ν

Ãμ,νψGEO
μ (i)ψGEO

ν (j), (85)

where the matrix coefficients Ãμ ,ν are given by maximizing the
normalized overlap (Q) between the original and the new geminals,

Q = ⟨g̃∣g⟩2
⟨g̃∣g̃⟩⟨g∣g⟩ , (86)

where ⟨g̃∣g⟩ = ∫didjg̃(i, j)∗g(i, j). It turns out that the over-
lap remains large even for small GEO basis set size p, implying
that by using this scheme, one can decrease the number of varia-
tional parameters corresponding to the matrix A, i.e., from 4L2 to
4p2 ≪ 4L2.

J. Conversion of the WF
As described in Sec. III, TURBORVB implements different types

of Ansätze: (i) the Pfaffian (Pf), (ii) the Pfaffian with a constrained
number of molecular orbitals (Pfn), (iii) the Antisymmetrized Gem-
inal Power (AGP), (iv) the Antisymmetrized Geminal Power with
a constrained number of molecular orbitals (AGPn), and (v) the
single Slater determinant (SD). One can choose a proper Ansatz
depending on a target system, considering the computational cost
of a chosen Ansatz and the relevant physical and chemical proper-
ties of a target material. During the simulation, a user can go back
and forth between the Ansatz using modules implemented in TUR-

BORVB, with/without losing the information of an optimized Ansatz
(see Fig. 4): The first case is to add molecular orbitals to an Ansatz,
i.e., JAGP⇒ JSD, JAGP⇒ JAGPn, or JPf⇒ JPfn. In TURBORVB, this
is obtained by rewriting the expansion of the geminal in terms of
molecular orbitals (see Secs. III D and III E). The corresponding
tool is convertfort10mol.x. The second important case is to con-
vert an Ansatz among the available ones, i.e., JSD, JAGP, or JAGPn
⇒ JAGP. In TURBORVB, this is the purpose of the convertfort10.x tool
and is achieved by maximizing the overlap between the two WFs,
one of them being the input (fort.10_in) and the other being the type
(fort.10_out) to be filled by new geminal matrix coefficients (result
written in fort.10_new). In more details, in TURBORVB, the following
overlap between two geminals is maximized:

max Q = ⟨gnew∣gori⟩2
⟨gnew∣gnew⟩⟨gori∣gori⟩ , (87)
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in order to obtain new geminal matrix coefficients Anew
μ,ν , defining the

new pairing function as

gnew(i, j) =∑
μ⋅ν

Anew
μ⋅ν ψ

new
μ (i)ψnew

ν (j), (88)

while the original geminal was given in terms of the parameter
matrix Aori

μ,ν,

gori(i, j) =∑
μ,ν

Aori
μ,νψ

ori
μ (i)ψori

ν (j). (89)

Note that 0 ⩽ Q ⩽ 1; therefore, the larger the Q, the better the con-
version, and Q approaches the unit value if the conversion is per-
fect. For this type of conversion, one can also apply the geminal
embedding scheme to construct a hybrid basis set, as described in
Sec. III I.

The final case is to convert a JAGP Ansatz to JPf. Since the
JAGP Ansatz is a special case of the JPf one, where only Gud and
Gdu terms are defined, as described in Sec. III C, the conversion can
be realized just by direct substitution. Therefore, the main challenge
is to find a reasonable initialization for the two spin-triplet sectors
Guu and Gdd that are not described in the JAGP and that otherwise
have to be set to 0. There are two possible approaches:62,69: (i) for
polarized systems, we can build the Guu block of the matrix by using
an even number of unpaired orbitals {ϕi} and build an antisymmet-
ric guu by means of Eq. (63), where the eigenvalues λk are chosen
to be large enough to occupy certainly these unpaired states, as in
the standard Slater determinant used for our initialization. Again,
we emphasize that this works only for polarized systems. (ii) The
second approach that also works in a spin-unpolarized case is to
determine a standard broken symmetry single determinant Ansatz
(e.g., by the TURBORVB built-in DFT within the LSDA) and modify
it with a global spin rotation. Indeed, in the presence of finite local
magnetic moments, it is often convenient to rotate the spin moments
of the WF in a direction perpendicular to the spin quantization axis
chosen for our spin-dependent Jastrow factor, i.e., the z quantiza-
tion axis. In this way, one can obtain reasonable initializations for
Guu and Gdd. TURBORVB allows for every possible rotation, including
an arbitrary small one close to the identity. A particularly important
case is when a rotation of π/2 is applied around the y direction. This
operation maps

∣↑⟩→ 1√
2
(∣↑⟩ + ∣↓⟩) and ∣↓⟩→ 1√

2
(∣↑⟩ − ∣↓⟩). (90)

One can convert from an AGP the pairing function that is obtained
from a VMC optimization

gud(i, j) = fS(ri, rj)
∣↑↓⟩ − ∣↓↑⟩√

2
+ fT(ri, rj)

∣↑↓⟩ + ∣↓↑⟩√
2

(91)

to a Pf one

gud(i, j)→ g(i, j) = fS(ri, rj)
∣↑↓⟩ − ∣↓↑⟩√

2
+ fT(ri, rj)(∣↑↑⟩ − ∣↓↓⟩).

(92)

This transformation provides a meaningful initialization to the Pfaf-
fian WF that can then be optimized for reaching the best possible
description of the ground state within this Ansatz.

IV. BULK SYSTEMS
The application of TURBORVB is not limited to open systems

such as atoms and molecules. TURBORVB can also simulate bulk sys-
tems in large supercells with arbitrary twisted boundary conditions.
These are used to minimize finite-size effects and represent quite an
important approach86,87 in order to reach a meaningful and accurate
thermodynamic limit.

A. CRYSTAL basis set
For periodic system calculations, the many-body WF should

satisfy the many-body Bloch condition,88,89

Ψks(r1, . . . , ri + Ts, . . . , rN) = eiks ⋅TsΨks(r1, . . . , ri, . . . , rN), (93)

which follows from the property that the many-body Hamiltonian
is invariant under the translation of any electron coordinate by a
simulation-cell vector Ts, where Ts = la + mb + nc is determined
by arbitrary integers l, n, m and the three vectors a, b, and c define
the supercell.

In TURBORVB, a single-particle basis set satisfies the following
condition:

ψPBC
l,m,I(r + Ts; ζ) = eiks ⋅TsψPBC

l,m,I(r; ζ), (94)

where ks is a twist vector [ks = (kx
s , ky

s , kz
s)] and Ts represents an arbi-

trary simulation cell vector. Note that the use of a non-vanishing
twist vector generally makes a many-body WF complex. TURBORVB

implements the CRYSTAL periodic basis,15,90,91

ψPBC
l,m,I(r; ζ) =∑

Ts

ψl,m,I(r + Ts; ζ)e−iks ⋅Ts , (95)

where ψl ,m ,I is a non-periodic real atomic orbital such as Gaussian
[Eq. (73)] and Slater [Eq. (74)]. The use of Gaussian or Slater orbitals
that rapidly decay far from nuclei guarantees that the above summa-
tion converges fast with a finite small number of Ts. Note that, in
TURBORVB, Ts are not limited to orthorhombic ones, but has recently
been extended to include all possible crystal translation groups (e.g.,
rhombohedral, hexagonal triclinic).

The same procedure is applied to the basis set for the Jastrow
part, although using simple periodic boundary conditions,15 because
the twists do not affect the Jastrow part of the WF, namely,

χPBC
l,m,I(r; ζ) =∑

Ts

χl,m,I(r + Ts; ζ), (96)

which satisfies χPBC
l,m,I(r + Ts; ζ) = χPBC

l,m,I(r; ζ).
Moreover, the homogeneous one-body and two-body Jastrow

factors have to be appropriately periodized because they are not
defined in terms of the above periodic basis. Namely, the homoge-
neous one-body Jastrow part [Eq. (30)] should satisfy

J̃1(r + Ts) = J̃1(r), (97)

and the two-body Jastrow part [Eq. (32)] should fulfill

J2(r1σ1, . . . , (ri + Ts)σi, . . . , rNσN) = J2(r1σ1, . . . , riσi, . . . , rNσN).
(98)

In order to satisfy the above constraints, we consider the rela-
tive electron–nuclei or electron–electron coordinate differences rd,
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necessary to evaluate J1 and J2, respectively, and expand them as

rd = raa + rbb + rcc, (99)

where ra, rb, and rc are appropriate transformed coordinates, which
are conveniently defined within a cube of unit length because of the
assumed periodicity of the supercell, namely, |ra|, |rb|, |rc| < 1/2.
As a consequence, this mapping makes the physical electron–
electron and electron–ion distance periodic by definition (i.e., they
refer to the minimum distance image of the supercell). However,
there may be divergences or singularity at the boundaries of this
unit cube. Therefore, before computing the distance correspond-
ing to rd, these coordinates are transformed (ra, rb, rc) → (r̄a, r̄b, r̄c)
= (p(ra), p(rb), p(rc)) by use of an appropriate function p(x), with at
least a continuous first derivative for |x| < 1/2. This function is cho-
sen to preserve the physical meaning at short distances, i.e., p(x) = x
in these cases and nonlinear elsewhere, in order to satisfy not only
the periodicity but also the requirement of continuous first deriva-
tives of the many-body WF Ψks . We have, therefore, defined p(x) as
follows:

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x (− 1
4 < x < 1

4)

− 1
8(1+2x) (− 1

2 ⩽ x ⩽ − 1
4)

1
8(1−2x) ( 1

4 ⩽ x ⩽ 1
2).

(100)

Indeed, although the modified relative distance diverges (i.e., ∣rd∣
→∞) at the edges of the Wigner–Seitz cell (e.g., r = ± 1

2a,± 1
2b,± 1

2 c),
the exponential [Eq. (31)] and the Padé [Eq. (33)] functions remain
finite, u(r) → 1/2bea and vσi ,σj(ri,j) → 1/4bpara

ee or 1/2banti
ee , respec-

tively, thus preserving with continuity the periodicity of the one-
/two-body homogeneous parts of the Jastrow factor. However, for
the Padé form, one has to change the expression for p(x) in order
to satisfy also the continuity in the WF derivatives, even when the
modified relative distances diverge, i.e.,

p(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x (− 1
6 < x < 1

6)

− 1
54(1/2+x)2 (− 1

2 ⩽ x ⩽ − 1
6)

1
54(1/2−x)2 ( 1

6 ⩽ x ⩽ 1
2).

(101)

In this case, the region where p(x) = x further shrinks. Thus, it is
often more convenient to use the exponential form to obtain a more
accurate variational WF because the long-range part is implicitly
corrected by the inhomogeneous terms in Eq. (34).

Finally, we remark that the many-body WF also obeys the
second Bloch condition,88,89 namely,

Ψkp({ri + Tp}) = eikp ⋅TpΨkp({ri}), (102)

where Tp represents a unit-cell (not supercell) vector and kp is the
crystal momentum. This comes from the property that the many-
body Hamiltonian is invariant under the simultaneous translation
of all-electron coordinates by a unit-cell vector Tp. Within TURBORVB,
this condition can be employed by imposing the intra-unit cell trans-
lational symmetries on the Jastrow and the pairing function as sim-
ple linear constraints in the variational parameters. However, this
option is restricted to the case kp = 0. On the other hand, it is pos-
sible to use different twists on each spin component, which has

proven very effective for implementing the mentioned translation
symmetries within pairing WFs.92

B. Finite-size effects
The systematic error induced by a finite simulation cell is a

long-standing issue in the ab initio QMC calculation. There are
two types of finite-size errors in QMC calculations: one is the so-
called one-body effect that arises from the kinetic energy term of the
Hamiltonian and the other is the so-called two-body effect that arises
from the periodic Ewald contribution resulting from the electron–
electron interaction. Note that, in the independent-particle calcu-
lations (i.e., DFT), only the former is present, which can be read-
ily evaluated by k summation in the first Brillouin zone, but the
two-body finite-size effects are not present because the exchange-
correlation energy used in DFT usually derives from DMC results
extrapolated to the infinite simulation cell size. To correct the one-
body finite-size error, one can use the twisted averaged bound-
ary conditions,86 special k-points methods,88,89 or the exact spe-
cial twist (EST) method,87 all of which have been implemented in
TURBORVB. Within the TURBORVB implementation, the Jastrow part is
independent of twists (i.e., TURBORVB uses a common Jastrow for all
twists),

Ψks(r1, . . . , rN) = J(r1, . . . , rN)Φks
AS(r1, . . . , rN). (103)

As emphasized in Ref. 86, at variance with DFT, the QMC com-
putational effort is independent of the number of k-points used.
For the two-body finite-size effects, which cannot be alleviated by
the above remedy, one can employ the model periodic Coulomb
(MPC) interaction.93–95 This method has not been implemented in
TURBORVB yet. Nevertheless, simpler alternatives exist. For instance,
one can alleviate the two-body finite size effects by directly increas-
ing the supercell size, or one can estimate these effects by employing
the KZK exchange-correlation function96 at the DFT level. More-
over, it is also possible to employ systematic finite-size corrections
based on the knowledge of the density structure factor in momen-
tum space,97 which can be readily computed within TURBORVB, with a
short postprocessing computation.

V. BUILT-IN DENSITY FUNCTIONAL THEORY
(DFT) CODE

Although most QMC codes load their trial WFs from available
DFT/quantum chemistry codes such as Gaussian,98 CRYSTAL,91

and Quantum Espresso,99
TURBORVB is a self-consistent many-body

package and does not require input from other codes. Indeed, in
TURBORVB, an original DFT code is implemented that has the impor-
tant feature to work in exactly the same basis and pseudopotentials
(if any) used for the QMC many-body WF and, for instance, can
work with mixed Slater–Gaussian basis or with arbitrary contrac-
tion, i.e., mixing angular momenta. On the other hand, the drawback
is that only very few functionals are available so far because, within
the TURBORVB approach, the DFT has to be used only to have a rea-
sonable initialization of the antisymmetric part of the many-body
WF. This is then optimized at best by direct minimization of the
energy in the presence of the Jastrow factor and should very weakly
depend on the initialization or, for instance, on the DFT func-
tional used. At present, TURBORVB supports Perdew–Zunger (PZ81)
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Local-Spin Density Approximation (LSDA)100 and those combined
with KZK exchange-correlation energy96 but, for instance, does not
allow LDA+U calculations. This will be the goal of a possible future
work.

A. Stabilization algorithm for large localized basis sets
An important issue in any DFT algorithm based on localized

basis sets, such as Gaussian, is how to reach the so-called com-
plete basis set limit. In the plane-wave method, this is system-
atically achieved by increasing the number of plane waves (e.g.,
kinetic cutoff energy). However, with a localized basis set, by increas-
ing its dimension, numerical instabilities may occur as a conse-
quence of the redundancy and non-orthonormality of the basis.
On the other hand, the use of a small basis set implies too much
biased results. In TURBORVB, an original and systematic algorithm
to remove this redundancy101 has been implemented. When the
basis set is non-orthogonal, the key self consistent step for solving
the DFT Kohn–Sham equations turns to a generalized eigenvalue
problem,

Hc = ESc, (104)

where H is the single-particle Hamiltonian matrix, c is the vector of
the coefficients of the orbitals, E is the single-particle energy, and the
S is the Nb × Nb overlap matrix, where Nb is the dimension of the
basis set,

Si,j = ⟨ϕi∣ϕj⟩ = ∫ drϕ∗i (r)ϕj(r). (105)

The overlap matrix is strictly positive definite, namely, all its eigen-
values are positive. The problem mentioned above shows up when
the overlap matrix S becomes ill-conditioned. If the condition num-
ber, namely, the ratio between the largest (denoted as sNb ) and the
smallest eigenvalues (denoted as s1), becomes very large, the CBS
limit cannot be achieved by the standard procedure due to numer-
ical instabilities. Therefore, in TURBORVB, the small eigenvalues and
the corresponding eigenvectors are disregarded. Indeed, the original
basis is modified as follows:

ei
j =

1√
si
υi

j for si/sN ⩾ εmach, (106)

where si and υi
j are the ith eigenvalues and eigenvectors of the over-

lap matrix, εmach is usually set to the machine precision, j runs from
1 to Nb, i runs from 1 to Mb, and Mb represents the number of eigen-
values satisfying the above inequality. If infinite numerical accuracy
were available, the matrix S in the new basis would be just the iden-
tity and the generalized eigenvalue problem in Eq. (104) would turn
to a standard one in this basis. Within finite precision arithmetic, it
is better to iterate further the stabilization procedure and define a
new basis,

ẽi
j =

1√
s̃i
υ̃i

j, (107)

where s̃i and υ̃i
j are the ith eigenvalues and eigenvectors of the recom-

puted overlap matrix s̃i,j = ⟨ei∣S∣ej⟩ (now well conditioned since very
close to the identity), respectively. For using the latter basis set,
the Nb × Mb global transformation matrix is stored as it takes into

account the projection from the original basis to the final modified
one,

Ui,j =∑
k

ek
j ẽi

k. (108)

On this basis set, the generalized eigenvalue problem becomes a
well-conditioned one with a corresponding Mb × Mb Hamiltonian
matrix H̃ = UHŨ. In this way, one can avoid the numerical insta-
bilities induced by a too redundant large basis set. This stabilization
introduces an error at most

√
εmach ⋅Nb, which is typically negligible

compared with the target chemical accuracy.

B. Electron–ion cusp condition
Another feature of the DFT code implemented in TURBORVB is

that electron–nuclei cusp conditions are exactly fulfilled for any
basis (i.e., Gaussian orbital) even within the DFT framework. This
is achieved by an appropriate modification of the standard basis sets
commonly used (e.g., ccpVTZ)102 for WF based calculations: the
new basis is obtained by multiplying each element of the original
basis by a suitably chosen one-body Jastrow factor introducing the
correct cusps, namely,

ϕ̃b
j (r − Rb) = ϕb

j (r − Rb)J̃1(r), (109)

where J̃1(r) is the same as in Eq. (29) and the parameter b in Eq. (31)
is optimized by direct minimization of the chosen DFT energy func-
tional. In this way, each element of the reshaped basis set satisfies the
so-called electron–ion cusp conditions, namely that, when r is close
to any atomic position Rb, the following relation holds:

lim
r→Rb

∇ϕ̃a
j

ϕ̃a
j
= −Zb

r − Rb

∣r − Rb∣
(110)

for all a, b. This formulation allows us to reach the CBS limit
extremely fast in DFT calculations, especially within all electrons.
Indeed, we have experienced that a given target accuracy can be
obtained with a smaller basis, e.g., our modified ccpVDZ basis is
typically equivalent in accuracy to the much larger ccpVTZ (and the
ccpVTZ equivalent to the ccpVQZ, and so on and so forth).

For QMC application, this tool is particularly useful because
the Slater determinant obtained with this new basis does not have
divergences in the local energy, which are instead present in the orig-
inal basis, when electron positions are close to the nuclear ones. This
feature emphasizes further the clear advantage of TURBORVB to allow
the use of a special purpose DFT code, just devoted to the optimal
initialization of a QMC many-body electronic WF.

C. Double-grid remedy for all-electron calculations
As described in Sec. V B, TURBORVB employs standard atomic

orbitals, modified by means of an appropriately chosen one-body
factor. Thus, the electron–electron integrations cannot be evaluated
analytically even when the Gaussian atomic basis set is employed.
Therefore, TURBORVB calculates the electron–electron Hartree poten-
tial by solving Poisson’s equation with the fast Fourier transform
(FFT) on a Cartesian grid both in open and periodic systems. The
numerical solution becomes problematic in all-electron calculations
when the atomic number Z becomes large. Indeed, in this case, the
Kohn–Sham Hamiltonian matrix elements have to be computed in
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the presence of a rapidly varying electron density in the vicinity of
nuclei and therefore require an exceedingly large FFT mesh, with an
almost prohibitive computational cost for its evaluation. TURBORVB

alleviates this drawback by a double-grid scheme,103 in which the
Hartree potential is calculated with standard FFT convolution on a
coarse mesh. Then, these values are interpolated on a much finer
mesh in the vicinity of the nuclei. Although the DFT energy obtained
with the above approximation is not exactly consistent with the one
corresponding to a very dense uniform mesh, the corresponding
VMC energies and the variances are almost indistinguishable to each
other, at a much cheaper computational cost.

VI. DERIVATIVES OF ENERGY
Derivatives of total energies with respect to variational param-

eters represent an essential ingredient for optimizing a many-
body WF. Forces (derivative with respect to atomic positions) are
also essential for performing structural optimization or molecular
dynamics. However, in a complex code, and especially in QMC, the
evaluation of the functional derivatives, necessary for the WF opti-
mization, is very complicated, mainly for the complexity of the algo-
rithm that, in turn, may lead to a very inefficient implementation,
although recent progress has been done.104 For instance, a simple
approach is to compute them with finite difference expressions, lead-
ing to a too large computational time, as obviously proportional to
the number of targeted derivatives.

Algorithmic differentiation (AD) is a method capable of solv-
ing all the above problems, essentially by a smart application of
the differentiation chain rule. There are two types of algorithms:
the forward algorithmic differentiation (FAD) that implements the
chain rule straightforwardly from the beginning to the end of
the algorithm and the adjoint algorithmic differentiation (AAD)
that uses the chain rule starting from the end of the algorithm
(also known as backward propagation). When the number of input
parameters is much larger than the corresponding output ones,
AAD is much more efficient than FAD and indeed allows the cal-
culation of all possible derivatives in a computational time pro-
portional (with a small prefactor; see, e.g., Fig. 6) to the one for
computing the target function (i.e., the energy or the WF value).
The former is therefore the ideal method for quantum Monte
Carlo when the variational WF contains many variational param-
eters. The AAD was applied for the calculation of atomic forces
in Ref. 41. To our knowledge, this was the first time that AAD
was used within QMC. Now, TURBORVB implements all derivatives
such as those of the local energy [ ∂

∂αk
eL(xi)] or those correspond-

ing to the WF logarithm [ ∂
∂αk

lnΨ(xi)] using the AAD, which
drastically improves the efficiency (Fig. 6)41 and reliability of the
calculation.

A. Derivatives with respect to variational parameters
The derivatives of the energy with respect to a given real vari-

ational parameter αk (one complex parameter can be thought to be
composed by two real ones, its real and imaginary part, respectively)
is represented as a generalized force,

fk = −
∂E(α)
∂αk

= − ∂

∂αk

⟨Ψα∣Ĥ∣Ψα⟩
⟨Ψα∣Ψα⟩

. (111)

FIG. 6. Ratio of CPU time required to compute energies and all force components
referenced to the one required for the simple energy calculation within VMC. The
calculations refer to 1, 2, 4, and 32 water molecules. The inset is an expansion
of the lower part of the plot. Reprinted with permission from S. Sorella and L.
Capriotti, J. Chem. Phys. 133, 234111 (2010). Copyright 2010 AIP Publishing LLC.

In variational Monte Carlo, the derivative can be evaluated using M
configurations of electron coordinates,15

fk = −2R
⎡⎢⎢⎢⎢⎣
∑
x

e∗L(x)(Ok(x) − Ōk)∣Ψα(x)∣2

∑x ∣Ψα(x)∣2
⎤⎥⎥⎥⎥⎦

≈ −2R[ 1
M

M

∑
i=1

e∗L(xi)(Ok(xi) − Ōk)], (112)

where eL(x) is the local energy, Ok(x) is the logarithmic derivative
of the WF [i.e., Ok(x) = ∂ lnΨα(x)

∂αk
], and Ōk is its average over M sam-

ples [i.e., Ōk = 1
M

M
∑
i=1

Ok(xi)]. In TURBORVB, the logarithmic derivative

[Ok(x)] is computed very efficiently by using the AAD algorithm.
Note that the derivatives of the local energy are not needed here
because the Hamiltonian does not depend on any variational param-
eter. Instead, these terms are necessary in order to calculate ionic
forces (i.e., derivatives of the total energies with respect to atomic
positions). If the WF is an exact eigenstate of the Hamiltonian, the
generalized forces f k exactly vanish without statistical errors because
the local energy is no longer dependent on x. In other words, the
derivatives have the zero-variance property and therefore represent
the fundamental ingredients for an efficient WF optimization, as
described in Sec. VII.

In practice, during an optimization, the code monitors the vari-
ational energy [E(α)] and the maximum value of the signal to noise
ratio among all the force components, which is denoted as devmax
in the code,

devmax ≡ max
k
(∣ fk

σfk

∣), (113)

where σfk represents the estimated error bar of the force f k. This
value is used in TURBORVB as one of the convergence criteria of the
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optimization. To our experience, after a reasonable number of iter-
ations, devmax stabilizes to a value ≤4.0, when a correct (possibly
local) minimum is being approached.

B. Atomic forces
In TURBORVB, a very useful space warp coordinate transforma-

tion (SWCT)41 is employed for the calculation of atomic forces.
This scheme was introduced several decades ago in Ref. 105, in
order to decrease the statistical errors of forces. The finite-difference
expression for ionic force calculations is

Fa = −
Δ

ΔRa
E = −E(Ra + ΔRa) − E(Ra)

ΔRa
+ O(ΔRa). (114)

The SWCT is used to mimic the displacement of charges around the
nucleus,

r̄i = ri + ΔRaωa(ri), (115)

ωa(r) =
κ(∣r − Ra∣)

∑M
b=1 κ(∣r − Rb∣)

, (116)

where κ(r) is a function that decays sufficiently fast for large r
because the charges far from the nuclei should not be affected by the
SWCT, and ω→ 0, as a consequence of this requirement. It turns out
that the original105 simple choice κ(r) = 1/r4 works very well and is
indeed adopted in TURBORVB.

Starting from the finite-difference expression, one can straight-
forwardly derive the corresponding differential expression,41

Fa = −⟨
d

dRa
eL⟩ + 2(⟨eL⟩⟨

d
dRa

ln(J
1
2 Ψ)⟩ − ⟨eL

d
dRa

ln(J
1
2 Ψ)⟩),

(117)

where J is the Jacobian of the above transformation and the brackets
indicate a Monte Carlo average over the trial WF. All the terms above
can be written by the partial derivatives of the local energy and those
of the logarithm of the WF,41

d
dRa

eL =
∂

∂Ra
eL +∑

i
ωa(ri)

∂

∂ri
eL, (118)

d
dRa

ln(J
1
2 Ψ) = ∂

∂Ra
ln(Ψ) +∑

i
[ωa(ri)

∂

∂ri
ln(Ψ) +

1
2

∂

∂ri
ωa(ri)].

(119)

In order to evaluate these differential expressions, 6N + 6Nat compo-
nents have to be evaluated, namely, ⟨ ∂

∂ri
eL⟩, ⟨ ∂

∂ri
lnΨ⟩, ⟨ ∂

∂Ra
ln eL⟩,

and ⟨ ∂
∂Ra

lnΨ⟩.41 These values are very efficiently computed in
TURBORVB, by using the aforementioned AAD, which works even in
the presence of pseudopotentials.

The SWCT significantly decreases the statistical errors, but the
forces still have infinite variance properties because ∂eL and ∂ ln(Ψ)
diverge in the vicinity of the nodal surfaces. Attaccalite and Sorella106

developed a reweighting method to address this issue in an unbiased
way. Within this scheme, the QMC sampling is not driven by the
chosen trial WF ΠT(x) = Ψ2

T(x) but by a slightly different guiding

function ΨG(x) defined by

ΨG(x) =
Rε(x)
R(x) ΨT(x), (120)

where R(x) vanishes more weakly than the trial function does, when
the configuration x approaches the nodal surface, whereas Rε is an
appropriately chosen regularization of R, depending on ε, that never
vanishes. In this way, the guiding function is larger when approach-
ing the nodal surface, and this singular region can be more accurately
sampled in order to avoid infinite variance problems in the calcula-
tion of forces, as will be shown later. For this purpose, R(x) is defined
in a way to vanish as the antisymmetric part of the WF to some
power 2θR ≤ 1. However, in order to avoid too large fluctuations,
a simple relation is used that Pf(G) ≃ 1

G−1
i,j

, where Gi ,j is the pair-

ing function [Eq. (45)], here referred to as the general AGP case (the
other cases straightforwardly follows upon some restriction of the
matrix G). Indeed, if the Pfaffian goes to zero, most of the matrix ele-
ments of the inverse of G diverge inversely proportional to it. Thus,
the quantity

R(x) =
⎛
⎝

S∑
i,j
∣Gi,j

−1∣2
⎞
⎠

−θR

(121)

satisfies the requirement without depending explicitly on the full
Pfaffian that has fluctuations exponentially large in the number of
particles and would lead to an inefficient regularization.106 Here, we
have also introduced the scaling factor S that takes into account that
the WF may vanish also when a single particle is going to infinity,
and not because it is approaching the nodal surface. In this case, the
scaling factor has to vanish in a proper way so as to allow a non-
vanishing R. In this way, the guiding function can decay sufficiently
fast in this limit and can be normalized in an open system. This rep-
resents a necessary condition to have a stable simulation; otherwise,
all electrons will be kicked out at infinity, after a long Markov chain.
Therefore, the factor S is chosen to vanish as long as one raw of the
pairing function vanishes because it is corresponding to an electron
going to infinity (all matrix elements containing such an electron
coordinate have to vanish),

S = mini∑
j
∣Gij∣2. (122)

This definition is also useful because the regularization proposed is
scale-invariant, namely, R(x) remains unchanged if G is scaled by
an arbitrary constant and therefore is adopted as is also for bulk sys-
tems, and it is particularly important when, in these cases, there exist
large regions of almost negligible electronic density.107

After that, Rε(x) is defined as

Rε(x) = max[R(x), ε], (123)

which is much simpler than the original proposal reported in Ref.
106. By using the new probability, forces (the HF and the Pulay) can
be evaluated with finite variance as

⟨W(x)F(x)⟩ΠG(x)/⟨W(x)⟩ΠG(x), (124)

where W(x) is the new weight,

W(x) = (ΨT(x)/ΨG(x))2 ≡ ( R(x)
max[R(x), ε])

2

(125)
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and F(x), according to Eq. (117), indicates the average of an appro-
priate random variable containing either the derivative of the local
energy (the HF contribution) or the product of the local energy
and the log derivative of the WF (the Pulay one), both contribu-
tions diverging as ≃ 1

δ2 , where δ is the distance from the nodal
surface. The point is that since in the vicinity of the nodal surface,
W(x) is proportional to δ4θR , whereas the probability vanishes much
slower as ΠG(x) ≃ δ2−4θR , the reweighting scheme solves the infinite
variance problem for 1/4 < θR ≤ 1/2 because the random variable
W(x)F(x) remains with finite variance. This follows after simple
inspection of its integrability in the small δ region, i.e., ∫dδδ4θR−2

< ∞. Thus, both the HF and the Pulay terms can be evaluated with
finite variances in the TURBORVB evaluation of atomic forces. In the
most recent versions of TURBORVB, the default value of θR is taken to
be at the middle of the interval of stability, i.e., θR = 3/8, because
the value θ = 1/2, previously chosen,106 leads to some instability;
namely, during the QMC sampling, the nodal surface is approached
too much closely, and the determinants or Pfaffians become very
ill-conditioned with obvious problems of numerical accuracy. More-
over, the value of ε is automatically selected during the first steps
of the simulation in a way that the average reweighting factor
⟨W(x)⟩ ≃ 0.8, which represents empirically an almost optimal
setting.

Finally, we remark that this method to compute the energy
derivatives with finite variance is applied by default in TURBORVB even
for the optimization of the WF variational parameters and that a
similar approach can be used when computing atomic forces within
the LRDMC algorithm.

VII. OPTIMIZATION OF WFs
A. Stochastic reconfiguration

Once the energy derivatives can be computed, the most
straightforward strategy to optimize a WF is to employ the steepest
descent method, where the WF parameters are iteratively updated as
follows:

αk → α′k = αk + δαk, (126)

δαk = Δfk, (127)

where Δ is a small constant and fk ≡ − ∂E
∂αk

is the generalized
force already defined in Eq. (111). However, it does not work well
when optimizing highly non-linear WF parameters because a small
change in a given variational parameter may produce a very differ-
ent WF, whereas another parameter change may weakly affect the
WF. Of course, one can use more sophisticated methods such as the
Newton–Raphson method, the conjugate gradient, and the quasi-
Newton method, but the straightforward implementation of these
optimizations does not work efficiently within a stochastic approach
such as QMC. In order to overcome this difficulty, a more efficient
change in the variational parameters has been defined by means of a
positive-definite preconditioning matrix S and the generalized force
vector f,

αk → αk + Δ ⋅ (S−1f)
k
, (128)

where the matrix S is stochastically evaluated by means of M
configuration samples x = {x1, x2, . . . , xM},

Sk,k′ = [
1
M

M

∑
i=1
(Ok(xi) − Ōk)

∗(Ok′(xi) − Ōk′)], (129)

where Ok(xi) = ∂ lnΨ(xi)
∂αk

and Ōk = 1
M

M
∑
i=1

Ok(xi). The resulting

approach is the so-called stochastic reconfiguration (SR) method.42

Mazzola et al.108 pointed out that the matrix S is essentially a met-
ric for the parameter space, measuring the distance of the under-
lying normalized WF. Therefore, Eq. (128) is simply the steepest
descent in this curved manifold. This observation connects the SR
method with the so-called natural gradient method, widely used in
the context of deep learning.109 In this context, for each parameter
α, (Ôk − Ōk) and Sk,k′ can be interpreted as the score function (i.e.,
the gradient of the log-likelihood function) and the Fisher infor-
mation matrix (FIM), respectively, while the WF square ∣Ψ(x)∣2
plays the role of the likelihood function. In this sense, the stochastic
reconfiguration method is essentially identical to the natural gradi-
ent optimization with the FIM that has been intensively used in the
machine-learning community.

The straightforward implementation of the SR method is not
stable mainly because the statistical noise sometimes makes the
matrix S ill-conditioned, which deteriorates the efficiency of the
optimization method.43 Therefore, in practice, the diagonal elements
of the preconditioning matrix S are shifted by a small positive
parameter (ε) as

s′i,i = si⋅i(1 + ε). (130)

This modification improves the efficiency of the optimization by sev-
eral orders of magnitude, as shown in Fig. 7. Finally, the variational

FIG. 7. Optimization of the variational WF in the simple one-dimensional Heisen-
berg model H = J∑i S⃗i ⋅ S⃗i+1 with the standard SR (ε = 0, open circles) and with
the present regularization (ε = 0.001, open triangles). The evolution of the near-
est neighbor spin–spin (Sz) Jastrow parameter is plotted. The figure clearly shows
that the SR method with regularization is several orders of magnitude more effi-
cient than the standard SR for determining the variational parameter with a given
statistical accuracy. The inset shows the first few iterations. Reprinted with per-
mission from S. Sorella, M. Casula, and D. Rocca, J. Chem. Phys. 127, 014105
(2007). Copyright 2007 AIP Publishing LLC.

J. Chem. Phys. 152, 204121 (2020); doi: 10.1063/5.0005037 152, 204121-21

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

parameters are updated as

αk → αk + Δ ⋅ (S′−1f)
k
. (131)

In practice, the user should provide two input parameters, namely,
Δ (denoted as tpar in the code input variables) and ε (denoted as
parr).

B. Linear method
In TURBORVB, the state-of-the-art QMC optimization method is

also implemented, namely, the so-called linear method.44–46 In this
scheme, a many-body WF is expanded up the linear order (i.e.,
considering only the first derivatives for the variational parameters),

∣Ψα+δα⟩ = ∣Ψα⟩ +∑
k=1

δαk
∂

∂αk
∣Ψα⟩ ≡ ∣Ψ0⟩ +∑

k=1
δαk∣Ψk⟩, (132)

where αk is the kth variational parameter and Ψk(x) is the first
derivative with respect to the kth variational parameter. Within this
expansion, the expectation value of the energy reads

Eα+z =
∑p

k,k′=0 zk
∗zk′⟨Ψk∣Ĥ∣Ψk′⟩

∑p
k,k′=0 zk

∗zk′⟨Ψk∣Ψk′⟩
. (133)

In order to obtain the vector z that minimizes this expectation value,
one should solve the generalized eigenvalue problem,

Hz = ESz, (134)

where Hk,k′ = ⟨Ψk∣Ĥ∣Ψk′⟩ and Sk,k′ = ⟨Ψk∣Ψk′⟩.
This algorithm is more conveniently implemented in the so-

called semi-orthogonal basis,15

∣Ψα+δα⟩ = z0∣Ψ̃α⟩ +∑
k=1

zk(Ôk − Ōk)∣Ψ̃α⟩, (135)

where ∣Ψ̃α⟩ = ∣Ψα⟩/∥Ψα∥, ⟨x∣Ôk∣x′⟩ = δx,x′Ok(x), Ok(x)
= ∂

∂αk
ln∣Ψα(x)∣, and Ōk = ⟨Ψα|Ôk|Ψα⟩/⟨Ψα|Ψα⟩. TURBORVB calculates

z by solving the generalized equation [Eq. (134)] with the matrices,

Hk,k′ ≈
1
M

M

∑
i=1
(Ok(xi) − Ōk)

∗ ⟨xi∣Ĥ(Ôk′ − Ōk′)∣Ψα⟩
⟨xi∣Ψα⟩

, (136)

Sk,k′ ≈
1
M

M

∑
i=1
(Ok(xi) − Ōk)

∗(Ok′(xi) − Ōk′), (137)

which can be readily evaluated by a Monte Carlo sampling, using
not only the random variables Ok(xi) necessary for the simpler SR
technique but also the parameter derivatives of the local energy
∂αk eL(xi), which can be directly computed by AAD, and thus
allow the calculation of the above Hamiltonian matrix elements, by
straightforward algebra,

∂αk eL(xi) = ∂αk

⟨xi∣Ĥ∣Ψα⟩
⟨xi∣Ψα⟩

=
⟨xi∣Ĥ(Ôk′ − Ōk′)∣Ψα⟩

⟨xi∣Ψα⟩
. (138)

Note that the code does not always take the eigenvector correspond-
ing to the lowest eigenvalue (that in turn may be also complex, as
in the linear method the matrix Hk,k′ is not Hermitian) but takes
the one that maximizes ∣z0∣2 (i.e., the coefficient of the zeroth-order
term) in order to have the most stable parameter change, namely,

the updated WF being as close as possible to the old one. Finally, the
code updates the variational parameters by using the obtained z and
an input parameter Δ (denoted as tpar) as

αk → αk + Δ ⋅ zk/z0, (139)

where Δ ≃ 1/3 is the default TURBORVB choice that is much more
stable than the original algorithm (Δ = 1), but it is approximately
1/3 slower. The linear method is usually rather unstable for large
systems and many parameters, and also, in such cases, each iter-
ation requires a diagonalization of a huge matrix (a task that can
be often prohibitive). In TURBORVB, a practical compromise has been
devised by using the linear method for a restricted variational space
containing up to a maximum number (npbra) of variational param-
eters with the largest signal to noise ratio [optionally larger than
parcutpar, see Eq. (113)] and/or a number (ncg) of global line
parameter directions spanned by the natural gradient ones (e.g., Δ
is one variational parameter of this form in Eq. (131)] calculated
at the given optimization iteration or the previous closest ones,43

optionally neglecting the ones with a smaller signal-noise ratio
(<parcutmin).

C. Practical rule
In most optimizations, the number of samplings in VMC is

much larger than the number of variational parameters and the
optimization is stable and efficient. In the opposite case, the precon-
ditioning matrix S becomes rank-deficient singular; therefore, the
optimization does not work properly (cf. the Cramér–Rao inequal-
ity). A practical rule is to set the number of samples M such that15

M ⩾ 5 ∼ 10 × p, (140)

where p is the number of variational parameters. However, one can
also employ a very small number of samplings with sufficiently large
ε in the stochastic reconfiguration method because the regularization
of the matrix S in Eq. (130) can remove all instabilities as long as ε
is sufficiently large, as in the infinite ε limit one recovers the very
powerful stochastic gradient technique well-known within machine
learning. This method seems promising for optimizing even a huge
amount of variational parameters and could certainly represent an
important development in QMC.

At present, the inversion in Eq. (131) can be done in TURBORVB

without storing explicitly the matrix110 as the associated linear prob-
lem is solved iteratively using conjugate gradients and implicit small
matrix-vector operations, optimally distributed within the MPI pro-
tocol. Thus, the cost of this inversion becomes negligible in the large
ε limit and linear with the number of variational parameters.

VIII. MOLECULAR DYNAMICS
In TURBORVB, several types of ab initio molecular dynamics (MD)

have been implemented for both classical and quantum nuclei. The
MD is driven by ionic forces F = −∇RV(R), where F ≡ {F1, . . ., FN },
R ≡ {R1, . . ., RN }, and the potential energy landscape V(R) is
evaluated by VMC, namely,

V(R) = ⟨ΨR∣Ĥ(R)∣ΨR⟩
⟨ΨR∣ΨR⟩

. (141)
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In Eq. (141), |ΨR⟩ is the QMC WF that, according to the Born–
Oppenheimer (BO) approximation, minimizes the expectation value
of H(R) at each ionic position R. The expression for the ionic forces
is quite complex. Computing these forces with finite variance and in
a fast way, as done in TURBORVB (Sec. VI B), is of paramount impor-
tance to make a QMC-based MD possible. Moreover, in the QMC
framework, the evaluation of V(R) and its corresponding force esti-
mators are intrinsically noisy. The statistical noise must be kept
under control if one wants to have an unbiased sampling of the
phase space during the propagation of the trajectory. This issue has
been solved by resorting to a Langevin type of molecular dynam-
ics in both classical and quantum formulations, where the QMC
noise becomes a controlled source of thermalization at the target
temperature T.

Two types of Langevin dynamics (LD) have been implemented
in TURBORVB: the second-order LD, in its classical (Sec. VIII A) and
quantum (Sec. VIII B) variants, and the first-order LD accelerated
by the covariance matrix of QMC forces (Sec. VIII C).

A. Second-order Langevin dynamics
The equations of motion of the second-order LD read106

υ̇ = −γ(R) ⋅ υ + F(R) + η(t), (142)

Ṙ = υ, (143)

⟨ηi(t)ηj(t′)⟩ = Si,j(R)δ(t − t′), (144)

where R, υ, f, and η are the 3Nat-dimensional vectors representing
atomic positions, velocities, and deterministic and stochastic forces
of Nat atoms, written in mass-scaled coordinates,

Ri = R0
i
√

mi,

Fi = F0
i /
√

mi,

ηi = η
0
i
√

mi

(145)

for i = 1, . . ., Nat. The stochastic forces are related to the friction
matrix γ through the fluctuation–dissipation theorem, namely,

S(R) = 2Tγ(R), (146)

with the temperature T expressed in atomic units. TURBORVB exploits
the freedom in Eq. (146), by assuming

S(R) = s0I + Δ0SQMC(R), (147)

where s0 and Δ0 are constants, I is the identity, and SQMC(R) is the
covariance matrix of QMC forces,

SQMC
i,j (R) = ⟨(Fi(R) − ⟨Fi(R)⟩)⟩⟨(Fj(R) − ⟨Fj(R)⟩)⟩. (148)

In the above equation, ⟨⋯⟩ refers to the average over the QMC sam-
pling at the given MD step. The friction, a quantity that controls the
nuclear sampling efficiency, is, therefore, position-dependent now.
Luo et al. have shown that the force covariance matrix SQMC

i,j (R) is,
within a good approximation, proportional to the dynamical matrix
(Fig. 8). Therefore, the choice in Eq. (148) realizes the nearly optimal
damping of the high-frequency modes. After discretizing Eqs. (142)
and (143) in the time interval tn − τ/2 < t < tn + τ/2, where the index

FIG. 8. Eigenvectors of the 3 × 3 correlation matrix of QMC forces SQMC in the
water monomer. The obtained eigenvectors correspond to the well-known three
vibrational modes: bending (red arrows), symmetrical (blue arrows), and asym-
metrical (green arrows) stretching. The smaller eigenvalue corresponds to the
lowest-frequency vibrational mode. The eigenvalues in the plot are all rescaled
by the lowest one. Reprinted with permission from Y. Luo, A. Zen, and S. Sorella,
J. Chem. Phys. 141, 194112 (2014). Copyright 2014 AIP Publishing LLC.

n denotes the time slice tn = nτ, with time step τ, and by integrating
the above equations, one obtains

υn+1(t) = e−γnτ ⋅ υn + Γn(Fn + η̃), (149)

Rn+1 = Rn + τυn+1, (150)

with Fn ≡ F(Rn), γn ≡ γ(Rn),

Γn = γ−1
n (I − e−γnτ), (151)

and

η̃ = γn

2 sinh(γnτ/2) ∫
tn+τ/2

tn−τ/2
e−γn(t−tn) ⋅ η(t)dt. (152)

By using Eq. (152), it is easy to show that the correlator defining the
discrete noise is given by the following 3Nat × 3Nat matrix:

⟨η̃iη̃j⟩ ≡ S∗ = Tγ2
n coth(γnτ/2). (153)

In this way, η̃ fulfill the fluctuation–dissipation theorem required
by the Langevin thermostat. However, part of this noise is already
present in the QMC force evaluation (η̃QMC), as quantified by
Eq. (148). Hence, TURBORVB adds the external random force η̃ext such
that η̃ = η̃ext + η̃QMC. This is generated according to the following
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correlator:

⟨η̃ext
i η̃ext

j ⟩ = S∗ − SQMC, (154)

in order to fulfill the original fluctuation–dissipation theorem. Since
the correlation matrix in Eq. (154) is positive definite as long as
τ <Δ0, the correlated external force can be readily generated by stan-
dard algorithms (e.g., the Box–Muller method112 combined with the
matrix diagonalization). This noise correction plays an important
role in targeting a stable temperature even in the presence of statis-
tical errors in the QMC forces. The original numerical integration
detailed here has been further improved by Mazzola and Sorella (see
the supplementary notes of Ref. 113).

B. Path integral Ornstein–Uhlenbeck dynamics
Mouhat et al. have recently introduced the nuclear quantum

effects into the second-order LD based on a path integral molecular
dynamics (PIMD) approach,114 driven by QMC nuclear forces. As a
starting point of the Feynman path integral (PI) theory, the quantum
partition function Z = Tr[e−βH] (with β = 1/kBT) can be written
as115

Z ≃ 1
(2πh̵)3NatL ∫ dNatLpdNatLq e−τβHL(p,q), (155)

with τβ = β/L denoting the imaginary time step. We have replaced
here the true quantum particles by fictitious classical ring poly-
mers, consisting of L replicas (beads) of the system. The beads in
these necklaces are connected to each other by harmonic springs,
evolving in the imaginary time. Without the loss of generality,
we can extend the definition of classical vectors to the quantum
case, by including all L replicas, such that the resulting vector

q ≡ (R(1), . . . ,R(i), . . . ,R(L))
T

is 3NatL-dimensional. If interpreted
classically, the partition function Z in Eq. (155) describes a system at
the effective temperature LT. The Hamiltonian HL corresponding
to this quantum-to-classical isomorphism reads as

HL(p,q) =
Nat

∑
i=1

L

∑
j=1
(1

2
[p(j)i ]

2 +
1
2
ω̃2

L(R(j)i − R
(j−1)
i )

2
)

+
L

∑
j=1

V(R(j)1 , . . . ,R(j)Nat
), (156)

written in mass-scaled coordinates [Eq. (145)], with ω̃L = L/βh̵, and
subjected to the ring boundary condition R(0)i ≡ R(L)i . The sys-
tem is thermalized with a Langevin thermostat such that the related
Liouville operator L can be written as

L =
3NatL

∑
i=1

⎛
⎝
Fi∂pi + pi∂qi −

3NatL

∑
j=1

γij(∂pi pj + kBTM∂pi∂pj)
⎞
⎠

(157)

in mass-scaled coordinates, with ∂qi ≡ ∂
∂qi

.L is built upon the Hamil-
tonian propagation, driven by the first two terms, and the Langevin
thermostat, represented by the last two, deriving from the Fokker–
Planck equation. Hereafter in this section, i and j run over all parti-
cles and beads indexed together. In Eq. (157), Fi ≡ FBO

i + Fharm
i is the

total force acting on each replica, comprising the BO (intra-replica)
and harmonic contributions (inter-replicas), where FBO

i ≡ −∂qi Ṽ

and Ṽ =
L
∑
j=1

V(R(j)1 , . . . ,R(j)Nat
).

The quantum-to-classical isomorphism Hamiltonian in Eq. (156)
includes very different energy scales. To cope with this, we split the
Liouvillian in Eq. (157) into two operators, one containing only the
physical (BO) modes and the other depending exclusively on the
harmonic modes of the rings. To do so, we first separate the friction
matrix into two contributions,

γ = γBO + γharm. (158)

We can then rewrite the total Liouvillian as the sum of two terms,
L = LBO + Lharm, where

Lharm =∑
i

⎛
⎝

Fharm
i ∂pi + pi∂qi −∑

j
γharm

ij (∂pi pj + kBTM∂pi∂pj)
⎞
⎠

,

(159)

LBO =∑
i

⎛
⎝

FBO
i ∂pi −∑

j
γBO

ij (∂pi pj + kBTM∂pi∂pj)
⎞
⎠

, (160)

in such a way that we can break up the evolution operator via a Trot-
ter factorization115 to get the following symmetric propagator:116,117

e−Lδt ≃ e−L
BOδt/2e−L

harmδte−L
BOδt/2. (161)

The equations of motion corresponding to the propagator in
Eq. (161) have been implemented in TURBORVB, where now FBO

i can
be computed in a QMC framework, and therefore, it can be affected
by an intrinsic noise, as was in the classical scheme (Sec. VIII A).

We note that the equations of motion generated by Lharm are
linear in both p and q, thus exactly solvable in an analytic closed
form. This is because the non-linear BO components of the total
force have been put in the LBO factor. The dynamics generated by
Lharm is a quantum Ornstein–Uhlenbeck process, which describes
the motion of Brownian quantum particles under the influence of
friction.

The exact integration of Lharm without further splitting the
Langevin thermostat from the harmonic modes of the rings is a
major achievement, which gives the algorithm an enhanced stability
and better scaling with respect to the time step size τ and the num-
ber of replica L. Moreover, the time step error is significantly smaller
than the one of other PILD methods.118 Thus, this is a key feature
of the PI algorithm implemented in TURBORVB. This is also why the
implemented method is called path integral Ornstein–Uhlenbeck
dynamics (PIOUD).

If we now look at the LBO factor in Eq. (161), the corresponding
equations of motion are the ones in Eq. (12) of Ref. 111. Indeed, only
the momenta are evolved in LBO, and the resulting equations are
equal to those of the simple classical Langevin algorithm introduced
in Ref. 106, restricted to p, which in the present case is a 3NatL-
dimensional vector. As in the classical second-order QMC-driven
LD, the QMC noise affecting the BO forces is controlled, thanks to
the friction γBO and the fluctuation–dissipation theorem. A noise
reduction scheme similar to the one described in Eqs. (153) and
(154) is also applied in this case, yielding a thermalization toward
a steady temperature ensemble even for quantum particles.

We refer the interested reader to Ref. 114, where we report
a detailed description of the PIOUD algorithm and the integrated
equations of motion.
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C. First-order Langevin dynamics
TURBORVB also features an accelerated first-order dynamics to

sample the (classical) ionic canonical distribution. This molecular
dynamics scheme has been introduced recently by Mazzola and
Sorella.119 Here, the ions formally undergo the following dynamics:

Ṙ = S−1(R) ⋅ F(R) + η, (162)

⟨ηiηj⟩ = 2Tδ(t − t′)S−1
i,j (R), (163)

where T is the temperature, F(R) and η are the deterministic
and stochastic forces, and S is the covariance matrix of the QMC
forces, as introduced in Eq. (148). This dynamics generalizes the
Newton method, which is valid for structural relaxation, to finite-
temperature.

Indeed, the use of the matrix S, which is empirically pro-
portional to the Hessian matrix, can drastically decrease the auto-
correlation time of the Markov chain. In other words, this metric
plays an important role in treating the different time scales of a
given system. In this way, one can still use a quite large integra-
tion time step τ, which is beneficial in reducing the autocorrelation
time of quantities that depend on slowly varying degrees of free-
dom (e.g., molecular diffusion), without introducing any bias in the
sampling.

Discretization of Eq. (162) for a finite time step τ at finite tem-
perature is rather involved and has been described in Ref. 119 and
reads

R(t + τ) = R(t) +
√

2Tτ ⋅ z(t) + τS−1(R)F(R)

−S−1(R)(S(R(t − τ)) − S(R)
2

)(R(t − τ) − R(t)),

(164)

with

⟨zi(t)zj(t)⟩ = S−1
i,j (R(t)). (165)

As the effective temperature depends on the finite integration
time, the convergence to the target temperature Ttarget for τ → 0
can be improved by a renormalization of the temperature T used
in the simulation, namely, by using the above equations with an
appropriate choice of T,

T = Ttarget (1 − aτ), (166)

where a = 1/2 in the case of the harmonic potential leads to the exact
result for any discretization time τ, as long as S is the exact elas-
tic matrix. In the general case, the parameter a should be tuned to
speed up convergence to the τ→ 0 limit. Conversely, the target tem-
perature of the simulation can be measured a posteriori, as is often
done in the case of second-order Langevin dynamics, by measuring
the average squared velocities of the particles.

The accelerated first-order Langevin dynamics has been suc-
cessfully employed in the most recent studies of dense liquid
hydrogen, providing equilibrated simulations even close to phase
transitions.119,120 Moreover, nuclear quantum effects can also be
computed within this first-order LD, in exactly the same way as
was implemented for the second-order case discussed in Subsec-
tion VIII B. However, so far, it is not clear which method is more
efficient, and further studies are also necessary to clarify what is
the optimal choice of the acceleration matrix S(R) within the QMC
framework.

IX. IMPLEMENTATION AND OPERATIONS
Table I shows the main modules implemented in TURBORVB and

a brief description of their functionalities. All programs reported in
Table I are coded in FORTRAN90. The flow-chart of a typical QMC cal-
culation (see Fig. 1) is detailed as follows: starting from the geometry
and the chemical composition, the user first chooses the basis set for
both Jastrow and antisymmetric factors and generates a JAGP-type
Ansatz using makefort10.x (fort.10 is the wave function filename in
TURBORVB).

TABLE I. Main modules in TURBORVB.

Module Description

makefort10.x Generates a JAGP WF from a given basis set and structure
assembling_pseudo.x Prepares pseudopotentials
convertfort10mol.x Adds molecular orbitals. If the number of molecular orbitals is

equal to (larger than) half the number of electrons in a system, the
resultant WF is the JSD (JAGPn)

convertfort10.x Converts a wave function type (fort.10_in), i.e.,
JSD/JAGP/JAGPn/JPf/JPfn, to another one with a different
type (fort.10_out). The output (fort.10_new) is as close as possible
to the input and may also include an optimal contracted (hybrid)
basis set.

convertfortpfaff.x Converts a JAGP WF to a JPf one
prep.x Performs a DFT calculation
turborvb.x Performs VMC optimization, VMC evaluation, LRDMC, struc-

tural optimization, and molecular dynamics
readforward.x Performs correlated samplings and calculates various physical

properties
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The antisymmetric part of the WF is initially determined at the
DFT mean-field level. Since the DFT calculation is based on a sin-
gle Slater determinant, the generated JAGP WF should be converted
to a JSD one. This is performed by the convertfort10mol.x mod-
ule, which adds M molecular orbitals to the WF, where M = N↑.121

The DFT molecular orbitals are then used to construct the ini-
tial trial WF for subsequent QMC calculations. In QMC, the user
can choose to work with five Ansätze, namely, JSD, JAGP, JAGPn,
JPfn, and JPf. The initial antisymmetric part of the JSD and JAGPn
wave functions can be directly obtained from the DFT orbitals.
In the JSD case, only the occupied orbitals are imported, while
in the JAGPn WF also the unoccupied orbitals will be used in
the geminal expansion, up to the nth orbital. Another possibil-
ity is to employ a JAGP Ansatz. In that case, one has to convert
the initial JSD trial WF obtained by DFT to the JAGP one using
convertfort10.x.

JAGPn can also be obtained by applying convertfort10mol.x to
a previously determined JAGP Ansatz. Analogously, a JPf WF can
be converted from a JAGP WF using convertpfaff.x. JPfn can be
obtained by applying convertfort10mol.x to the JPf Ansatz. These
conversions can be done either before or after a QMC optimization.
The possibilities for Ansatz conversion are schematically drawn in
Fig. 4.

After the initial determination of the antisymmetric part of the
WF, one performs the WF optimization at the VMC level. This is an
important step used to determine the best variational parameters of
the Jastrow factor at fixed determinant or to fully relax the WF by
optimizing both Jastrow and determinant parameters.

Finally, the user can proceed to VMC and LRDMC calculations
using the optimized WF. In LRDMC, in order to remove the lattice
discretization error, it is better to repeat the calculations with several
lattice spaces a and to extrapolate the results with a quartic func-
tion E(a) = E0 + k1a2 + k2a4, where E0 is the extrapolated (a → 0)
energy.

The Python tool TURBO-GENIUS makes all the above steps more
straightforward, as discussed later.

X. PARALLELIZATION AND BENCHMARKS
TURBORVB has been parallelized using the MPI and OpenMP

libraries, also supporting the hybrid MPI/OpenMP protocol. As well
known, the QMC algorithm is readily parallelized by employing
many independent random walks (called walkers), initialized with
different seeds for random number generators. Figure 9 shows the
strong and the weak scaling performances of TURBORVB, which are
compared with the ideal scaling. The benchmarks have been mea-
sured using the conventional 2 × 2 × 2 diamond supercell contain-
ing 64 carbon atoms for a simulation with 256 electrons on Mar-
coni KNL nodes (Cineca supercomputer/SCAI, Intel Xeon Phi 7250
CPU, 1.40 GHz, 68 cores per node without hyperthreading). For
the weak scaling case, we set the number of walkers M to the mini-
mum possible one (one walker per core) and increased the number
of cores from 68 (one node) to 27 200 (400 nodes). On the other
hand, for the strong scaling case, we fixed the number of walkers
M = 2176 and increased the number of cores from 544 (8 nodes)
to 8704 (128 nodes) with the hybrid MPI/OpenMP protocol (the
number of openMP threads was set to four). For both cases, the per-
formances are excellent because all techniques are off from the ideal
scaling by ∼5% at worst in all cases performed here. At present, the
code does not support the use of Graphics Processing Unit (GPU)
accelerators. This feature is currently under development.

XI. POSTPROCESSING
A. Correlated samplings

A very efficient and easy-to-use correlated sampling technique
has been implemented in TURBORVB. This is very useful in evaluating

FIG. 9. (a) The weak and (b) strong scalings of TURBORVB. The benchmarks were measured using the conventional 2 × 2 × 2 diamond with the ccECP pseudopotential (256
electrons in the simulation cell) on Marconi KNL nodes (Cineca supercomputer/SCAI).
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total energy differences between two very similar WFs. One of its
practical sides is to investigate whether a conversion of a WF (e.g.,
JSD → JAGP) has been successful. A user should run a short VMC
calculation using one of the two mentioned WFs, during which
the walkers’ history is stored in an appropriate scratch area (tur-
borvb.scratch). After that, a second run should be executed (by using
the readforward.x module) to determine at the end the correlated
energy difference and the overlap between the two WFs. Corre-
lated samplings for LRDMC or for the difference in other quanti-
ties, e.g., forces, have not been implemented yet. The latter could
be very important for the frozen phonon calculation based on the
ionic force difference method, which represents a possible subject of
research.

B. Physical properties
TURBORVB enables us to calculate various properties using the

optimized many-body WF at both the VMC and LRDMC levels by
averaging local observables and applying the forward walking tech-
nique.15 The observables presently available in the readforward.x
module can be categorized as follows: (i) Charge density [ρ(r)
= ρ↑(r) + ρ↓(r)] and spin density [ρσ(r) = (ρ↑(r) − ρ↓(r))/2],
fundamental properties obtained by a stochastic evaluation of multi-
dimensional integrals, involving the many-body WF and improved
estimators, such as those proposed by Assaraf, Caffarel, and Sce-
mama.122 Figure 10 shows the charge density of the square four
hydrogen (H4) depicted by Genovese et al. (ii) Electronic corre-
lation functions, such as the charge–charge and spin–spin struc-
ture factors, useful to study the critical behavior close to a phase
transition or the physical properties of a given phase. (iii) The
expectation values of the spin component along the quantization

FIG. 10. The xy-plane charge density of the square four hydrogen (H4), calculated
using a JAGP WF. Reprinted with permission from C. Genovese, A. Meninno, and
S. Sorella, J. Chem. Phys. 150, 084102 (2019).124 Copyright 2019 AIP Publishing
LLC.

FIG. 11. (a) Electronic localization length λN divided by the interatomic distance a
as a function of a, for the one-dimensional hydrogen chain, where λN is defined
as λN = (L/2π)

√
− ln ∣zN ∣

2/N, N is the number of electrons (hydrogen atoms),
and L is the length of the simulation cell along the one dimensional chain. (b)
Modulus of the complex polarization zN as a function of the interatomic distance
of the hydrogen atoms. According to the previous works,125,126 in the thermody-
namic limit (N → 0), a metal can be characterized by a vanishing modulus of
the complex polarization (∣zN ∣ → 0, λN → +∞), while it becomes unity in the
insulating case (∣zN ∣ → 1, λN → 0). Thus, one can discuss the metal–insulator
transition. Reprinted with permission from Stella et al., Phys. Rev. B 84, 245117
(2011). Copyright 2011 APS.

axis (Sz) and the spin square (S2) operators inside a sphere cen-
tered on each atom,62,69 whose radius can be specified by the user.
(iv) The Berry phase: zα = ⟨Ψ∣ei(2π/Lα)∑N

i=1 rαi ∣Ψ⟩, where the com-
plex polarization is computed for the α = {x, y, z} component
rαi of the position vector ri and Lα is the supercell length in the
same direction α.123 This property can be used to characterize the
metal–insulator transition based on the many-body WF, as has
been done in the one-dimensional hydrogen chain by Stella et al.
(Fig. 11).

XII. APPLICATIONS
Since the start of the TURBORVB project in 2003 by Casula and

Sorella,65 the code has been applied to study atomic species, molec-
ular systems, and various materials, including challenging systems
such as large complexes, surfaces, and liquids. Here, we provide a
brief review of the applications done so far.
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FIG. 12. PES of the sodium dimer. The dashed lines show the obtained Murrell–
Sorbie function. The error bars are within the markers. The obtained LRDMC
PES agrees with the CCSD(T) and experimental ones. Reprinted with permission
from K. Nakano, R. Maezono, and S. Sorella, J. Chem. Theory Comput. 15, 4044
(2019). Copyright 2019 ACS.

A. Molecular systems

TURBORVB has been employed to study the properties of several
molecular systems, including small diatomic systems (such as Li2,127

Be2,71,128 B2,71 C2,62,71 N2,71 O2,69,71,127,129 F2,71 Na2,103 LiF,71 CN,71

and Fe2
130), reactive oxygen species (singlet O2, O−2 , OH•, OH−,

NO•, NO−, HOO•, HOO−, and cis and trans HOOO•),129 aromatic
molecules (benzene127,131 and oligoacene series,132 see Sec. XII D),
the water molecule,107,127 dimer133,134 and hexamer clusters,134 the
Zundel ion (H5O+

2 ),114,135 H2S, SO2, NH3, PH3,111 and others. Most
of the studies report both variational and FN diffusion Monte Carlo
results, and several of the WF Ansätze available in TURBORVB are
tested. Often, it is shown that quite good results are already obtained

FIG. 13. Binding energies of the first-row dimers at their experimental bond length
(see Table II). The vertical axis shows the difference between the LRDMC and
the estimated exact binding energies. The results obtained from the DMC using a
Jastrow correlated full-valence-CAS as trial WF [DMC(JFVCAS)] are taken from
Ref. 138.

at the variational level, and the FN DMC further improves the accu-
racy of the outcomes. For instance, see the case of the sodium dimer
in Fig. 12.

Table II and Fig. 13 report the binding energies for the molec-
ular dimers of the first-row atoms, evaluated using LRDMC with
the JSD, JAGP, or JPf WF Ansätze as guiding functions. Some of
them are close or reach the chemical accuracy (i.e., 1 kcal/mol or
∼0.04 eV). A systematic improvement going from the JSD → JAGP
→ JPf can be appreciated. It follows from the employment of a more
flexible parametrization of the WF, which improves both the varia-
tional energy and the quality of the nodes. However, the improve-
ment given by the JPf Ansatz over JAGP and JSD is even more fun-
damental than what Table II and Fig. 13 indicate, where the reported

TABLE II. Binding energy of the first-row dimers calculated by TURBORVB with LRDMC and different types of Ansätze as a guiding function (GF), at the experimental bond length
(see Ref. 138). Js denotes the symmetric (i.e., spin-independent) Jastrow factor. LRDMC calculations are performed with several lattice spaces a and extrapolated for a→ 0.
The spin–orbit coupling and the zero point energies71 are not included in these evaluations.

Binding energy (eV) Li2 Be2 B2 C2 N2 O2 F2

LRDMC (GF = JSD) 0.976(6) 0.144(7) 2.83(1) 5.74(2) 9.67(1) 4.94(3) 1.27(1)
LRDMC (GF = JsAGPs) 0.9812(12) −0.0270(12) 2.66(1) 6.01(1)a 9.91(1)a 5.06(2)a 1.56(1)
LRDMC (GF = JPf) 1.0580(12) 0.0304(22) 2.75(1) 6.31(1)a 9.97(1)a 5.127(6)a 1.64(1)
Est. exact 1.06(4)b 0.1153(3)c 2.91(6)d 6.43(2)e 9.902(3)e 5.233(3)e 1.693(5)e

aSee Ref. 69.
bSee Ref. 139.
cSee Ref. 140.
dSee Ref. 141.
eSee Ref. 142.
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binding energies are evaluated as the difference between the energy
of the molecule and twice the energy of the atom. This evaluation
does not highlight that JPf is a size-consistent Ansatz, while both
the JSD and the JAGP have a size-consistency issue with most of
the molecules considered.136 Let us consider the oxygen molecule
as an example: the O2 ground state is a spin triplet (3Σ−g ) which,
in both JSD and JAGP, can be described using two unpaired elec-
trons with the same spin. However, as we take the oxygen atoms
far apart (say, the O–O system), they should both be in the ground
state for the oxygen atom, which is also a spin triplet (3P). Nei-
ther JSD nor JAGP has the flexibility to describe the O–O system
by the same WF parametrization used for O2;137 thus, EO-O > 2EO.
In contrast, JPf has the flexibility to describe the dissociation limit
correctly, so EJPf

O-O = 2EJPf
O . Figure 14 shows that JPf is indeed able to

provide a reliable dissociation curve of the oxygen molecule, whereas
JSD and JAGP are reliable only in proximity of the minimum. Note
that the FN projection scheme alleviates in part the limitations of
the underlying Ansatz as both JSD and JAGP have a smaller size-
inconsistency at the LRDMC than at the VMC level, but the correc-
tion is incomplete and the inconsistency is sizable (>1 eV) for all but
the JPf Ansatz. Therefore, in general, JPf will yield a better descrip-
tion of the overall potential energy surface (PES), including binding
energies, vibrational properties, zero-point motion, and transition
states.

The applications of TURBORVB are not limited to single point eval-
uations. As discussed in Sec. VI, a distinctive feature of TURBORVB

among most QMC codes is the efficient evaluation of atomic forces.
This capability has been extensively exploited to investigate several
properties of the PES, such as vibrational frequencies, and to per-
form geometry optimizations and molecular dynamics simulations
at finite temperature. It is important to remember that QMC atomic
forces are, as the QMC energy, affected by a stochastic error. In
a first attempt143 to evaluate vibrational frequencies of a triatomic
molecule (namely, water), a grid of points close to the guessed min-
imum geometry was used to evaluate energy and forces. The results

FIG. 14. O2 dissociation curve as obtained with TURBORVB at the variational (VMC)
and fixed-node projected (LRDMC) levels of theory and using JSD with DFT
orbitals (JDFT), JAGP, and JPf WF Ansätze.

were used to fit the PES around the minimum with a truncated
Taylor expansion, yielding evaluations of the structural minimum
and of both the harmonic and anharmonic vibrational frequencies
(using the second-order perturbation theory). It was observed that
the inclusion of the estimates of forces reduces the stochastic error
on the vibrational frequencies by around an order of magnitude with
respect to the fit using only the energy evaluations (on the same grid
and using the same sampling size on each single point evaluation).
This corresponds to about a 25 times larger speedup.144 Moreover, it
was observed that the optimal grid is a trade-off between maximiz-
ing the precision on the vibrational properties and minimizing the
errors on the fit. A systematic study of the quality of the variational
WF Ansätze in relation to the vibrational (and other) properties of
the water molecule is reported in the work of Zen et al.107 Afterward,
Luo et al.111,145 automated the process of finding the optimal grid by
performing fits on samples generated by a finite temperature molec-
ular dynamics and applied the approach to H2O, H2S, SO2, NH3, and
PH3. The obtained vibrational frequencies are in good agreement
with the experimental values.

Zen et al.134 applied the second-order LD to study the structural
properties of liquid water. They obtained radial distribution func-
tions in good agreement with recent neutron scattering and X-ray
experiments, especially for the position of the oxygen–oxygen peak,
which is very sensitive to the quality of the water description and, in
particular, to the inclusion of dispersive vdW forces. This is a strin-
gent test for ab initio approaches as the shape of the peak can be
directly compared with neutron scattering data.

Mouhat et al. developed a path integral LD formalism particu-
larly suited for QMC and applied it to the Zundel ion (H5O+

2 ), with
the aim of studying nuclear quantum effects.114 The outcome of their
study shows how essential is the inclusion of nuclear quantum effects
to properly deal with proton transfer in water and aqueous systems,
even at room temperature.

B. Weakly bonded systems and non-covalent
interactions

An important application for QMC is the description of sys-
tems interacting through weak van der Waals (vdW) dispersive
interactions, which are fundamental in supramolecular chemistry,
layered and porous materials, molecular crystals, adsorption of
molecules on surfaces, and so on. vdW interactions play a major role
also in non-covalent intra-molecular bonds, which result from the
interplay of forces of different nature, including electrostatic contri-
butions. An accurate evaluation of the overall strength of these non-
covalent bonds requires each component of the interaction to be
modeled correctly. This is a big challenge for all ab initio approaches,
and only a few methods prove reliable. QMC and CCSD(T) are con-
sidered to yield very accurate estimates, and there is a general agree-
ment among the predictions from these two theories. Thus, they are
typically used to produce benchmark values. Traditionally, mean-
field schemes have difficulties in describing dispersive interactions
because they arise from non-local electron correlations, completely
missed by local density functionals. However, in the context of DFT,
there has been an intensive effort in developing new exchange cor-
relation functionals146 to include vdW interactions. This is usually
done in a semi-empirical way, often building on the benchmark
provided by CCSD(T) or QMC.
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The non-covalent interactions are typically a tiny fraction of
the total energy of a compound. Similar to the cases discussed in
Sec. XII A, also in the evaluation of weak interactions, it is impor-
tant to use a size-consistent approach. However, very often, the
molecules form a closed shell, and most of the times, the inter-
molecular interactions are among fragments having zero spin. In
this case, a single Slater determinant is a size-consistent Ansatz, and
so is the JSD. The AGP (without Jastrow) is not size-consistent due
to the presence of unphysical charge fluctuations,43,147 but a very
flexible (i.e., large) Jastrow factor allows damping the charge fluc-
tuations and recovering the size-consistency in the JAGP. This is
of course true also in a subsequent FN-DMC projection, which is
indeed equivalent to applying an infinitely flexible Jastrow factor
to the trial WF. At the variational level, the JSD Ansatz occasion-
ally leads to better results than the JAGP. Even though JAGP leads
to a lower total energy, it is indeed difficult to use a Jastrow factor
large enough to damp any charge fluctuation. So, there is a worse
error cancellation when energy differences are considered in JAGP.
This was observed, for instance, in the water dimer,134 although at
the FN level JSD and JAGP lead to the same binding energy. It
should also be considered that in the widely used DMC scheme,148

a size-consistency issue was present in any simulation with finite
time step τ, until the modification of the “standard” algorithm has
been introduced by Zen et al.,149 whose solution removes almost
completely the size-consistency error. At variance with DMC, the
LRDMC algorithm does not suffer from this bias, and it is always size
consistent.

The DMC scheme is commonly used to project a single Slater
determinant WF where only the Jastrow factor has been optimized,
while the antisymmetric part is filled with DFT orbitals150 (JDFT).
The resulting FN energy is usually biased by the nodal surface,
kept frozen from previous DFT or lower level mean-field calcu-
lations. Optimizing the Jastrow factor and determinant together,
which is routinely done in TURBORVB, improves significantly the total
energy. However, in the evaluation of non-covalent interactions,
there is not yet a clearcut indication of the advantage of the full

optimization over JDFT. This is due to the fact that the error can-
cellation plays a major role. Indeed, it is expected that, for non-
covalent interactions, JDFT has almost the same bias in the inter-
acting and non-interacting systems. When pseudopotentials are
used, DLA54 can be used to remove any bias given by the Jastrow
optimization.

TURBORVB with JDFT, JSD, and JAGP guiding functions has been
applied to several interesting systems, such as molecular hydrogen
adsorbed on benzene,151 benzene dimers,43 graphite layers,152 water
or methanol molecules adsorbed on a clay surface (see Fig. 15),153

and metallic clusters,154 and to evaluate the cohesive energies of
B2O3 polymorphs.155

C. Strongly correlated and superconducting materials
Another important QMC application is the study of strongly

correlated materials, which represents a challenge for any theoret-
ical method, because in several cases a fully consistent description
remains, so far, elusive. In this context, QMC methods have been
widely used for solving, as accurately as possible, strongly corre-
lated lattice Hamiltonians, such as, the Hubbard model. Real-space
ab initio QMC methods could fill the gap between realistic Hamilto-
nians and lattice models, by providing an accuracy similar to the one
reached in lattice Hamiltonians while keeping the complexity of real
materials. TURBORVB has been originally conceived in this perspective,
with the idea that one of the most flexible WF Ansätze tested on cor-
related lattice models,156–160 namely, the generalized version of the
resonating valence bond (RVB) WF, could be translated into a suc-
cessful variational WF for ab initio systems. One of the most appeal-
ing features of the RVB WF is that it allows several broken-symmetry
phases, such as antiferromagnetic insulators and superconductors,
which are present—and sometimes coexisting—in the extremely
rich phase diagrams of strongly correlated materials. As introduced
in Sec. III, the RVB WF employed in TURBORVB takes the static and
dynamic correlation effects into consideration beyond the com-
monly used Jastrow–Slater determinant (JSD) WF. Therefore, the

FIG. 15. Adsorption of water and methanol on the hydroxyl-
terminated and the silicate-terminated faces of kaolinite
(side view in the first row and top view in the second row).
The adsorbed molecule on kaolinite is depicted in cyan and
gray, and the H-bonds are represented by the blue dashed
lines. Reprinted with permission from Zen et al., J. Phys.
Chem. C 120, 26402 (2016). Copyright 2016 ACS.
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code is expected to describe strongly correlated systems more accu-
rately. In particular, among the various families of correlated WFs
that go beyond the simplest JSD form, the JAGP/JPfaffian families
are very suitable to describe extended systems as they keep a com-
pact and still strongly correlated form even in the thermodynamic
limit. Indeed, as detailed in Sec. III, the AGP part is the particle
number conserving version of the BCS WF. In the same way, the
JAGP variational form can be seen as an efficient formulation of
a RVB WF. Thus, superconducting materials including cuprates161

and iron pnictides and selenides162 are prominent applications of
the JAGP/RVB WFs. By running extensive VMC calculations for
CaCuO2, a parent compound of cuprate high-temperature super-
conductors, Marchi et al. validated the JAGP description by cor-
rectly finding the expected d-wave symmetry of the pairing func-
tion.163 Casula and Sorella applied the RVB WF to FeSe, one of the
iron-based high-temperature superconductors,164 whose electronic
structure and pairing mechanism have been unclear and intensively
debated. They determined the symmetry of the superconducting
order parameter and the size of its gap entirely from first princi-
ples, by analyzing the AGP pairing function (Fig. 16). Busemeyer et
al. applied DMC and LRDMC to study the structural and magnetic
properties of the normal state of FeSe under pressure and reported
that collinear spin configurations are energetically more favorable
than other spin patterns, such as ferromagnetic, checkerboard, and
staggered dimer, over a large range of pressures.165

D. Aromatic and honeycomb lattice compounds
Aromatic compounds are also successful examples of the

RVB theory because they are characterized by resonating C–C
bonds that can be efficiently represented by antisymmetrized sin-
glet pairing functions (i.e., antisymmetrized product of geminals
or AGP). Casula et al. applied the AGP WF combined with a Jas-
trow factor to the simplest aromatic compound, that is, the ben-
zene molecule (C6H6) for the first time.127,131 They reported that the
inclusion of the resonance between the two possible Kekulé states

FIG. 16. (a) Even–even and (b) odd–even components of the AGP pairing function
of FeSe at 0 GPa obtained by VMC calculations, where even and odd refer to the
parities of the orbitals to the reflection through the Fe plane. The contour plots
show Φ(Rcenter, r) with Rcenter set to be the iron lattice site at the center of the
supercell, while r spans the plane defined by the 4 × 4 lattice. Red (yellow) balls
are iron (selenium) sites. Arbitrary units of blue (red) intensity indicate negative
(positive) regions with corresponding magnitude. Reprinted with permission from
M. Casula and S. Sorella, Phys. Rev. B 88, 155125 (2013). Copyright 2013 APS.

significantly lowers the VMC energy compared with the one
obtained by a single Kekulé WF. They also showed the importance
of adding a three-body Jastrow factor to improve the AGP descrip-
tion, just in the spirit of the RVB framework. By selectively switching
on the intersite resonances, they proved that the Dewar contribu-
tions (i.e., including the third nearest neighbor carbons) improves
the description of the resonating valence bond. Genovese et al. have
applied a more general AGP WF, i.e., the Pfaffian, to the benzene
molecule.69 They reported that the obtained atomization energies
are reasonably consistent with the experimental value at the LRDMC
level. On the other hand, when starting from JDFT, i.e., from frozen
DFT nodes, the obtained atomization energy is severely underesti-
mated in most cases, implying that the optimization of the nodal
surface at the VMC level is essential to obtain a correct value for
the atomization energy. As mentioned in Sec. XII B, Sorella et al.
applied the RVB WF to calculate the binding energy of the face-
to-face and displaced parallel benzene dimers43 and obtained the
binding energy very close to the experimental value in the displaced
parallel case. Dupuy and Casula applied the same RVB WF to study
the ground-state properties of the oligoacene series, from anthracene
up to the nonacene.132 They found that the ground state obtained by
the RVB WF has a weak diradical or polyradical instabilities until
the nonacene, which is in contrast with the results previously found
by lower-level theories, such as Hartree–Fock, hybrid functionals,
and CASSCF in a restricted active space. TURBORVB has been applied

FIG. 17. The graphene structures studied in Ref. 166. (a) SEM honeycomb,
semimetallic; (b) AFI honeycomb antiferromagnetic insulator; (c) DIM dimerized
Kekulé-like insulator; and (d) HEX distorted hexagonal insulator. There are two
carbons per unit cell in (a) and (b) and six in (c) and (d). tA, tB, and tC schemat-
ically denote different hopping integrals magnitudes. Reprinted with permission
from Sorella et al., Phys. Rev. Lett. 121, 066402 (2018). Copyright 2018 APS.
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not only to simple aromatic molecules but also to honeycomb lat-
tice compounds, in order to study the role of RVB correlations, in
other words, to investigate whether the resonance energy is sizable
also in extended systems. Marchi et al. studied the nature of chemi-
cal bonds in graphene using the RVB WF163 and found that the RVB
energy gain becomes extremely small in the thermodynamic limit,
i.e., in the infinite lattice. Conversely, Sorella et al. applied the RVB
WF to isotropically strained graphene166 (Fig. 17) and found that
the RVB effect is crucial in the Kekulé-like dimerized (DIM) phase
that has been proposed to become stable under the isotropic strain
(Fig. 18). They also reported that the JAGP energy gain with respect
to JSD is negligible in the perfect honeycomb structure—as previ-
ously found by Marchi et al.—but is extremely important in the DIM
phase.

E. Organic compounds: Diradicals and conjugated
systems

Diradical and conjugated organic compounds are other inter-
esting applications of the RVB WF because both static and dynamic
correlation effects play important roles in these systems. Zen et al.
found that the RVB WF gives a correct torsion barrier of the ethy-
lene (C2H4) and the triple-singlet gap in the methylene (CH2).66

They also investigated the charge-transfer and diradical nature
of the electronic states of the retinal minimal model (penta-2,4-
dieniminium cation) at the VMC and LRDMC levels.67 They proved
that the dynamical electronic correlation is key to get a reliable
ground state energy surface in proximity of the conical intersec-
tion between the electronic ground- and first excited-state of the
molecule. Their obtained energy landscapes are significantly differ-
ent from the CASSCF ones, inverting the relative stability of several

FIG. 18. Energy gains by the resonance effect, measured by the energy per atom
difference between the single determinant Ansatz (Jastrow–Slater determinant
WF) and the corresponding multideterminant JAGP WF. The largest energy gain
occurs in the DIM state, underlining its resonating valence-bond nature, actually
increasing for large strain ε. Small negative values at small strain are finite-size
effects. Inset: finite-size scaling of this correlation energy gain in the DIM state at
ε = 15%. Reprinted with permission from Sorella et al., Phys. Rev. Lett. 121,
066402 (2018). Copyright 2018 APS.

torsional paths, and similar to what was obtained by other correlated
approaches. Barborini and Guidoni applied VMC and LRDMC to
calculate the torsion barriers of 1,3-butadiene and the ring-opening
barrier of cyclobutene,167 which are in good agreement with the
experimental results. Barborini and Coccia investigated the poten-
tial energy curves of the two spin states of the tetramethyleneethane
(TME) molecule and the two anionic states of TME as a function
of the torsion of the central dihedral angle.168 Through ab initio
geometrical optimizations at the VMC level, they proposed pos-
sible structural interconversions between the states, which are in
agreement with the ion photoelectron spectroscopy experiments.

The bond length alternation (BLA), namely, the impact on
the geometry of the difference between the single and double car-
bon bonds, is one of the key structural descriptors in conjugated
organic compounds. Barborini et al. investigated the effects of the
static and dynamical electronic correlations on the BLA of the 1,3-
butadiene169 using a VMC-JAGP Ansatz and other quantum chem-
istry calculations. They found inconsistency between BLAs obtained
by CCSD(T)-CBS (the most accurate) and VMC-JAGP calculations,
but the reason for the discrepancy is still unclear. They also investi-
gated the structural properties of polyacetylene chains H-(C2H2)n-H
up to N = 12 acetylene units,170 in which they revealed that the BLA
obtained by the extrapolation to n → ∞ is 0.0910(7) Å, which is
compatible with the experimental data. Coccia et al. applied VMC
to study geometries of the retinal model, the chromophore of the
rhodopsin involved in the mechanism of vision, and discussed the
effects of the electronic correlation on the BLA171,172 by compar-
ing with DFT and quantum chemistry methods. Wave-function and
geometry optimizations of the retinal model were also performed in
the presence of the protein field, classically described via electrostatic
and mechanical interactions: the complex environment dramatically
affects the BLA of the chromophore, which consistently increases
with respect to the gas-phase case. They also performed VMC geom-
etry optimization of the peridinin chromophore in order to verify
the interplay between the BLA and the optical properties of a large
conjugated moiety, involved in the light-harvesting step of photo-
synthesis in the peridinin-chlorophyll-protein complex.173 Compar-
ison with DFT and wave-function approaches shows that the com-
bined application of RVB-based VMC and Bethe–Salpeter methods
for geometry and excitations, respectively, gives an accurate estima-
tion of the electronic transition energies of peridinin. They recently
applied VMC optimization to obtain a ground state structure of
keto-1, enol-1, and enol-2 forms of oxyluciferin,174 which is used to
calculate the S1 ← S0 absorption energy based on the Bethe–Salpeter
formalism. Coccia et al. carried out a systematic basis-set analysis
on polarizability, quadrupole moment, and electronic density of the
C2H2 molecule, with the aim to test VMC and LRDMC calculations
in the presence of an external electric field.175 In particular, a rela-
tively small hybrid (Gaussian + Slater functions) basis set was seen
to be able to properly reproduce reference values.

F. Metal-organic complexes
Recently, TURBORVB has also been used to study metal-organic

complexes. Chu et al. studied free-energy reaction barriers of water
splitting reactions, using a simplified computational model based
on the cobalt ion176 (Fig. 19). They found that the total free-energy
differences of the water oxidation, computed at the QMC level,
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FIG. 19. Reaction cycle involving the cobalt ion model, studied in Ref. 176 by VMC
and LRDMC. The pink, red, and white balls represent the cobalt, oxygen, and
hydrogen atoms, respectively. Reprinted with permission from Chu et al., J. Chem.
Theory Comput. 12, 5803 (2016). Copyright 2016 ACS.

fairly agree with the experimental reference values, in a surpris-
ingly better way than the corresponding CCSD(T) ones. M. Bar-
borini and L. Guidoni applied VMC to tackle the geometry opti-
mization of a Fe2S2(SH)−2 model complex (high-spin and broken
symmetry states)177 based on the extended broken-symmetry (EBS)
approach. The number of applications is still limited in this cate-
gory, but the recent development of sophisticated transition-metal
pseudopotentials will make it more feasible in the near future.

G. Crystal polymorphism
Ab initio electronic calculations allow one to study the phase

stability between crystal polymorphs by comparing the enthalpies
or free energies and by computing their equation of states (EOSs).
As mentioned in the Introduction, DFT’s predictive power strongly
depends on the choice of the exchange and correlation function-
als, sometimes causing qualitatively different phase stability pre-
dictions. On the other hand, VMC and LRDMC calculations do
not suffer from this drawback in principle. Sorella et al. stud-
ied the pressure-induced metal–insulator transition in bulk silicon
through EOS calculations.178 They obtained a reasonable transition
pressure at room temperature by VMC, however still a little far
from the experimental value. Devaux et al. studied the α-γ phase
transition in elemental cerium at the VMC and LRDMC levels.179

They revealed that the volume-collapse transition could be under-
stood as a conventional first-order transition of electronic origin,
induced by the p-f hybridization and by the strong local repulsion
affecting the f states. Hay et al. investigated the effect of long-
range van der Waals forces in the SiO2 polymorphs using DFT
and QMC.180 Their LRDMC calculations showed that the obtained

energy differences in quartz-cristobalite and quartz-stishovite agree
well with the experimental values within sub-chemical accuracy,
implying that QMC is a promising method in describing both
conventional and high-pressure SiO2 polymorphs. Note that, at
present, only the zero-temperature energy (without the entropic
term) is available at the VMC and LRDMC levels. Therefore, the
entropic effects are estimated by DFT-PBE calculations.178 In the
near future, it will be possible to estimate the entropic corrections
directly within the VMC framework, via phonon calculations under
the quasi-harmonic approximation. As described in Sec. IV, con-
sidering twist boundary conditions is essential to correct the one-
body finite-size errors for periodic systems, especially in a metallic
case. Although the twisted average approach is commonly used to
correct the error, one can also use the exact special twist (EST)
method87 developed by Dagrada et al. to save some computa-
tional cost. EST works even in realistic systems, namely, the bcc-
hydrogen, the bcc-lithium, and the silicon in the high-pressure β-tin
phase.87

H. One-dimensional chains
One-dimensional chains of atoms have been intensively stud-

ied based on both effective and ab initio Hamiltonians because
they embody many important open questions in modern con-
densed matter physics, despite their simplicity. The finite or infi-
nite hydrogen chains are ideal systems for this purpose because it
is not necessary to use a pseudopotential or to consider the rela-
tivistic effects. They are therefore benchmark systems. Stella et al.
investigated the metal–insulator transition in the hydrogen chain
by explicitly calculating the complex polarization,123 as shown in
Sec. XI. They found that the model has no metal–insulator tran-
sition and always behaves as an insulating 1D Hubbard model at
half-filling, at least for a large enough interatomic distance (R >
1). Motta et al. (Simons Collaboration on the Many-Electron Prob-
lem)181 undertook a comprehensive benchmark study in the finite
and infinite linear hydrogen chains using state-of-the-art many-
body methods, including VMC and LRDMC with extrapolations
to the thermodynamic and the complete-basis-set limits. They pro-
vided accurate potential energy curves online, which will be very
useful for benchmarking other methods. They have recently inves-
tigated the ground states of the hydrogen-chain more in detail,
namely, the insulator-to-metal transition, dimerization, and mag-
netic phases.182 They revealed a fascinating phase diagram, with
several emergent quantum phases, depending on the interproton
distance.

I. Liquid and solid hydrogen/helium
Hydrogen behavior at high pressures is still not fully under-

stood and is subject of intense research. In 1935, Wigner and
Huntington predicted its metallization upon compression,183 while
Ashcroft also proposed its high-Tc superconductivity.184 Besides
its fundamental interest as the simplest realistic condensed mat-
ter system in Nature, calculating its equilibrium properties remains
of fundamental importance for planetary science applications.185

This system is particularly challenging for DFT-based simula-
tions due to the presence of strong correlation effects and a sub-
tle interplay between structural and electronic phase transitions.
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A straightforward way to study a phase diagram under pressure
and at finite temperature in QMC is to apply the Langevin molec-
ular dynamics described in Sec. VIII. First-order phase transitions
can be identified from a discontinuous behavior in the calculated
equation of state and of pair correlation functions. Attaccalite and
Sorella have formulated a second-order LD suitable for QMC sim-
ulation for the first time, as described in Sec. VIII. They applied
it to assess the relative stability of solid and liquid hydrogen at
high pressure and room temperature.106 Years later, in a series of
works, Mazzola et al. applied this technique to study the proposed
liquid–liquid transition (LLT) from a molecular insulating to an
atomic conducting phase of hydrogen.113,186 Mazzola and Sorella
have also formulated the accelerated first-order LD,119 as described
in Sec. VIII, to study such an elusive phase transition with properly
equilibrated simulations.119 Finally, under the same framework, the
first QMC molecular dynamics simulations of a hydrogen–helium
mixture has been performed at Jupiter’s interior conditions.120 The
study revealed that mixing He has a significant influence on the
H metallization pressure, as shown in Fig. 20, and provided useful
benchmark for the equation of states currently adopted by the plane-
tary science community. Dagrada et al. revealed that their developed
EST technique also works well in the LD simulation for liquid hydro-
gen, but a perfect agreement with the twisted-average technique is
achieved only when relatively large supercells are used.87 There-
fore, a careful finite size scaling analysis is needed when the EST

FIG. 20. Phase diagram of dense hydrogen and a hydrogen–helium mixture. “This
work” refers to the results obtained by VMC-Langevin dynamics simulations. The
shaded areas represent the liquid–liquid transitions (LLTs) between the insulating-
molecular and the metallic-atomic fluids. The solid symbols refer to their QMC LLTs
for the pure hydrogen (blue circles) and for the hydrogen–helium mixture (red tri-
angles), and the blue and red solid lines indicate first order LLTs. The empty (solid)
left (right) triangles correspond to simulations displaying a clear atomic (molecular)
behavior; on the other hand, the red diamonds represent an intermediate behavior.
A calculated Jupiter’s adiabat is shown as a gray line. Pure hydrogen first-order
LLT predicted by QMC (cyan) and DFT (solid and dashed lines) are also shown.
The light green and dark green triangles and the brown stars represent experimen-
tal results. Reprinted with permission from G. Mazzola, R. Helled, and S. Sorella,
Phys. Rev. Lett. 120, 025701 (2018). Copyright 2018 APS.

technique is employed, although the thermodynamic limit extrap-
olation is much smoother at the special twist, saving some com-
putational cost. Moreover, EST allows for the determinant/AGP
optimization.

J. Excited states
TURBORVB allows studying not only the ground-state electronic

properties but also excited states. It is trivial to obtain excitation
properties when they are characterized by different particles or dif-
ferent spin projection because these quantities are clearly conserved.
For example, Barborini et al. calculated the 3B1u ← 1Ag vertical
triplet excitation of the ethylene molecule and its adiabatic exci-
tation 3A1 ←1Ag .187 One can also deal with nontrivial cases based
on a flexible symmetry-adapted RVB WF within its MO represen-
tation, which was proposed by Dupuy et al. in 2015.188 Instead
of dealing with a linear combination of symmetry-adapted config-
uration state functions, they construct a symmetry-adapted RVB
WF that accurately describes the targeted symmetry. They reported
that their developed constrained (fixed-rank) minimization of the
geminal expansion is stable without symmetry contamination of
the starting excited state symmetry; as a result, the vertical ion-
ization energies and the electron affinities of anthracene obtained
by VMC and LRDMC calculations agree with the experimental
values.

FIG. 21. The STM images of in-plane [CuCl4]2− simulated using UHF and QMC
calculations. The left column shows the isosurfaces of the square modulus of the
eQPWF for a fixed value of probability density of 9.7 × 10−5 Å−3, while in the
right column the isosurfaces take the value of 6.7 × 10−6 Å−3. Panels (a) and (a′)
display the LUMO+1 UHF molecular orbitals, while panels (b) and (b′) display the
QMC images. Reprinted with permission from Barborini et al., J. Chem. Theory
Comput. 12, 5339 (2016). Copyright 2016 ACS.
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K. Connection to experimental spectroscopies
Barborini et al. proposed a new ab initio approach to calcu-

late quasiparticle WFs (QPWFs) of isolated systems and resolved
in momentum space, based on the correlated sampling technique.
They applied the new approach to simulate Scanning Tunneling
Microscopy (STM) images189 and Angle-Resolved Photoemission
Spectroscopy (ARPES).190 The STM image of [CuCl4]2− obtained
by this approach is shown in Fig. 21. It reveals that the electronic
correlation has a significant effect on the QPWF in this system.
Indeed, the resulting STM image clearly differs from that obtained
by uncorrelated methods (i.e., the Hartree–Fock counterpart). In
general, the electronic calculation should be useful to interpret the
experimental results theoretically. We believe therefore that TUR-

BORVB can become useful also for state-of-the-art research in this
field.

XIII. PYTHON MODULE: TURBO-GENIUS

In general, a computational study involves many complicated
operations, such as preparing input files, searching for optimal
parameters, performing benchmark studies, transferring informa-
tion coming from previous calculations to a subsequent simulation’s
input file, and analyzing output files. Automatizing these opera-
tions can significantly save researcher’s burden, avoid trivial human
errors, and is beneficial for accelerating the distribution of a com-
putational package to a much wider community. We are now devel-
oping a Python-based workflow system suitable for TURBORVB named
TURBO-GENIUS, such as Nexus191 and QMC-SW.192 The workflow sys-
tem has been implemented in Python 3 in an object-oriented fash-
ion, so the modules are highly extensible. Note that, since TURBORVB

is an all-in-one package, any other commercial code is not neces-
sary to run the code. There are two main modules, turbo-genius-
serial.py and turbo-genius-sequential.py, which manage other mod-
ules/classes. The former allows one to perform a single job specified
by an option (e.g., turbo-genius-serial.py -j makefort10), and the lat-
ter does a sequential job (e.g., makefort10.x → convertfort10mol.x
→ prep.x → turborvb.x). By using TURBO-GENIUS, one can also ana-
lyze a simulation output. For example, one can plot an optimization
history, average the variational parameters after optimization, and
search for an optimal number of equilibration steps and a reblock-
ing length.40

TURBO-GENIUS is still at an early stage of development.
However, its main features are already there. In the near future, the
TURBO-GENIUS modules will be capable of sophisticated TURBORVB job
automatizations, as well as setting optimal parameters depending on
target systems.

XIV. CONCLUSIONS
In this paper, we have reviewed TURBORVB, an ab initio quan-

tum Monte Carlo package featuring two well established QMC algo-
rithms for electronic structure: variational Monte Carlo and diffu-
sion Monte Carlo. The beginning of the TURBORVB development dates
back to 2003, with the Ph.D. thesis project of Casula supervised
by Sorella. Since then, TURBORVB has rapidly grown up, and it has
been applied to the study of several molecular and condensed matter
systems, from benzene to high-temperature superconducting mate-
rials. Central to this package are variational parameterizations of

correlated electronic WFs in the product form Ψ = ΦAS ∗ exp J, made
of an antisymmetric part (ΦAS) and a Jastrow factor (J).

Concerning the antisymmetric part, TURBORVB implements five
Ansätze (in order of decreasing variational flexibility): (i) the Pfaf-
fian (Pf), (ii) the Pfaffian with a constrained number of molecu-
lar orbitals (Pfn), (iii) the Antisymmetrized Geminal Power (AGP),
(iv) the Antisymmetrized Geminal Power with a constrained num-
ber of molecular orbitals (AGPn), and (v) the single Slater deter-
minant (SD). Notably, the user can freely navigate between these
Ansätze. Indeed, the package includes conversion modules, which
allow the user to choose the most suitable WF form for the target
system.

All the above Ansätze can be optimized by state-of-the-art
algorithms, namely, the stochastic reconfiguration and the lin-
ear method, thus achieving highly accurate variational and fixed-
node energies, with a computational cost remaining at the single-
determinant level, thanks to efficient algorithmic developments.

The stochastic optimization of many variational parameters (so
far up to the order of 105) is feasible in TURBORVB, thanks to an efficient
evaluation of energy derivatives using the AAD. This algorithmic
scheme, which gives the code an original architecture, drastically
decreases the computational cost of ionic force calculations, keep-
ing them of order N3. Thus, it paves the way for efficient structural
optimizations and molecular dynamics simulations at the VMC level
of theory. Indeed, by means of the TURBORVB package, it is at present
possible to perform QMC molecular dynamics simulations of dense
hydrogen (with up to 256 ions) and liquid water (with up to 64 water
molecules), with a remarkably large number of atoms, not far from
the DFT state of the art. Thanks to TURBORVB, nuclear quantum effects
are also accessible in a correlated electronic environment provided
by the VMC WF.

Large scale calculations are possible with TURBORVB not only
because of cutting-edge algorithmic developments but also by virtue
of an efficient parallelization based on a hybrid MPI and OpenMP
protocol, which is ideal for employing GPU accelerators as well,
recently available in the most advanced HPC infrastructures.

A Python wrapper, named TURBO-GENIUS, has recently been
developed to make the code user-friendly and to allow both begin-
ners and professional users to handle it more efficiently. We will
continue developing TURBORVB and TURBO-GENIUS to implement new
QMC algorithms and to extend their range of applications for the
current developers and expected new upcoming contributors and
users.
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