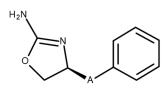
SUPPLEMENTARY MATERIALS

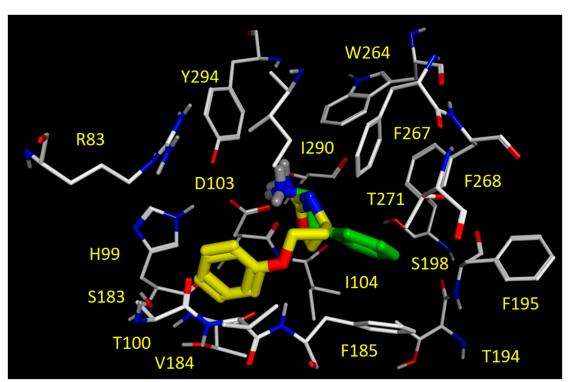

Novel 1-amidino-4-phenylpiperazines as potent agonists at human TAAR1 receptor: rational design, synthesis, biological evaluation and molecular docking studies

Valeria Francesconi ¹, Elena Cichero ^{1,*}, Evgeny V. Kanov ², Erik Laurini ³, Sabrina Pricl ^{3,4}, Raul R. Gainetdinov ^{2,5} and Michele Tonelli ^{1,*}

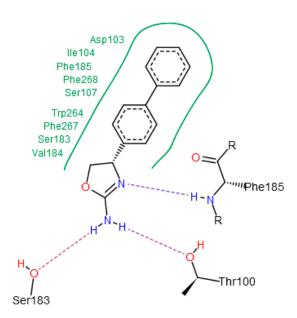
Table S1. Chemical structure and biological activity of 2-aminooxazolines (1b-37b) acting as hTAAR1 agonists previously exploited for QSAR analyses [30].

Comp.	R	A	R1	Configuration	pEC ₅₀ (M)
1b	Н	-CH ₂ -	2-C1	S	6.81
2b	H	-CH ₂ -	Н	S	6.48
3b	H	-CH ₂ -	Н	R	5.54
4b	H	-CH ₂ CH ₂ -	3-C1	S	7.74
5 b	H	-CH ₂ CH ₂ -	Н	S	7.57
6b	CH_3	-CH ₂ CH ₂ -	3-C1	S	6.48
7b	H	-CH ₂ O-	3-C1	S	6.57
8b	H	-CH ₂ NH-	3-C1	S	6.24
9b	H	-CH ₂ NCH ₃ -	3-C1	S	7.57
10b	H	-CH ₂ NC ₂ H ₅ -	3-C1	S	7.54
11b	H	-CH ₂ NC ₂ H ₅ -	Н	S	7.23
12b	Н	-CH ₂ N ⁱ Pr-	Н	S	6.85
13b	H	-CH ₂ NC ₂ H ₅ -	Н	R	6.64

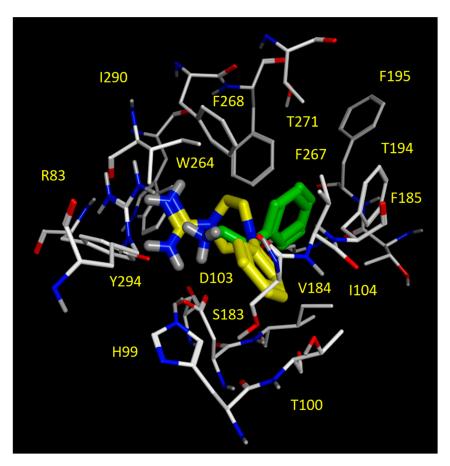
Comp.	R	pEC ₅₀ (M)
14b	(S)-CH ₃	5.81
15b	(R)-CH ₃	6.14
16b	(S) - C_2H_5	7.74
17b	(R)-C ₂ H ₅	5.65


Comp.	A	pEC ₅₀ (M)
18b	-CH ₂ CH ₂ CH ₂ -	7.57
19b	-CH ₂ OCH ₂ -	6.44
20b	-CH ₂ CH ₂ O-	8.05

Comp.	R	R1	R2	R3	Configuration	pEC ₅₀ (M)
21b	Н	Н	H	Н	S	7.17
22b	Н	C1	Н	Н	S	7.64
23b	Н	Н	C1	Н	S	7.68
24 b	Н	Н	H	C1	S	6.84
25b	H	Н	Cl	C1	S	7.51
26b	Н	H	Н	Br	S	6.82
27b	Н	Н	H	Br	R	5.00
28b	CH_3	C1	H	Н	S	6.78
29b	CH_3	Н	H	Br	S	7.39
30b	Н	Н	H	Ph	S	5.57
31b	Н	Н	OPh	Н	R/S	5.71
32b	Н	H	F	Н	S	6.31
33b	Н	CH_3	H	Н	S	7.17
34b	H	CH_3	H	C1	S	7.96
35b	H	CH ₂ CH ₃	H	C1	S	7.59
36b	H	cPr	H	C1	S	7.92
37b	Н	CH_3	F	Н	S	7.77


Table S2. Table of scoring functions for the selected docking poses of the discussed hTAAR1 agonists.

Compound	S	E_conf	E_place	E_score1	E_refine	E_score2
20b	-99.1078	-109.1025	-10.3802	-5.6912	-33.6487	-99.1078
26b	-96.2118	-108.1425	-10.5221	-5.1112	-31.4564	-96.2118
27b	-87.6534	-102.8943	-8.9768	-6.7823	-28.8635	-87.6534
30b	-84.7643	-107.8932	-9.0065	-7.6523	-28.6522	-84.7643
1	-85.7222	-319.0324	-11.0525	-5.1549	-22.5136	-85.7222
2	-94.6754	-310.7677	-11.0066	-6.4366	-28.9887	-94.6754
6	-94.5612	-280.4532	-12.6753	-5.7821	-27.9911	-94.5612
15	-95.0332	-281.8556	-12.7560	-6.2340	-29.0032	-95.0332
PEA	-95.8775	-109.6754	-9.6544	-4.7865	-27.7765	-95.8775


Figure S1. Docking positioning of the oxazoline derivative **20b** (C atom, yellow) and β -**PEA** (C atom; green) at the *h*TAAR1 putative binding site. Ligands are shown in sticks. The most relevant residues are labelled.

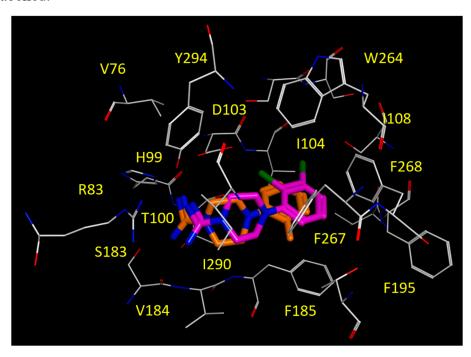
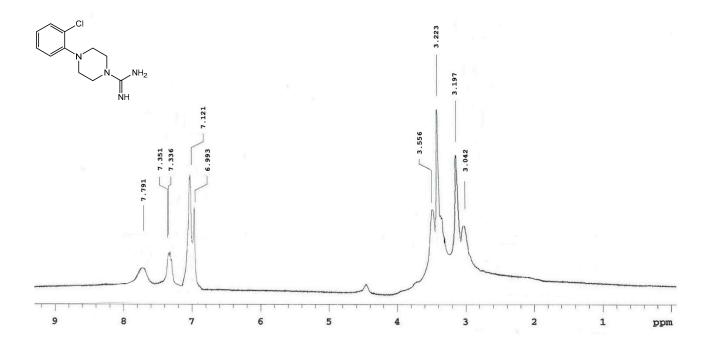

Figure S2. Docking positioning of the oxazoline derivative 30b at the hTAAR1 putative binding site is shown as ligplot. The most relevant residues are labelled, being represented the most relevant H-bonds experienced by the agonist.

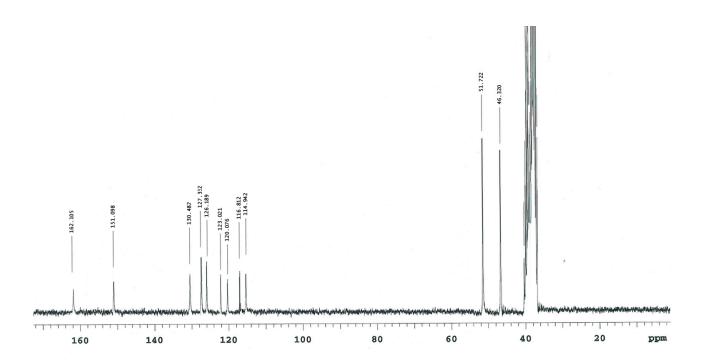
Figure S3. Docking positioning of the amidine derivative 1 (C atom, yellow) and **PEA** (C atom; green) at the hTAAR1 putative binding site. Ligands are shown in sticks. The most relevant residues are labelled.

Figure S4. Docking positioning of the amidine derivative 2 (C atom, orange) and 15 (C atom; magenta) at the hTAAR1 putative binding site. Ligands are shown in sticks. The most relevant residues are labelled.

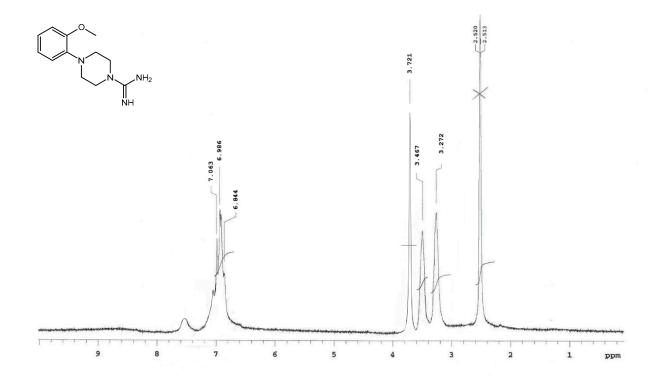
Table S3. Analysis of the ChEMBL database depending on different similarity thresholds to the present 1-amidino-4-phenylpiperazines 1-16.

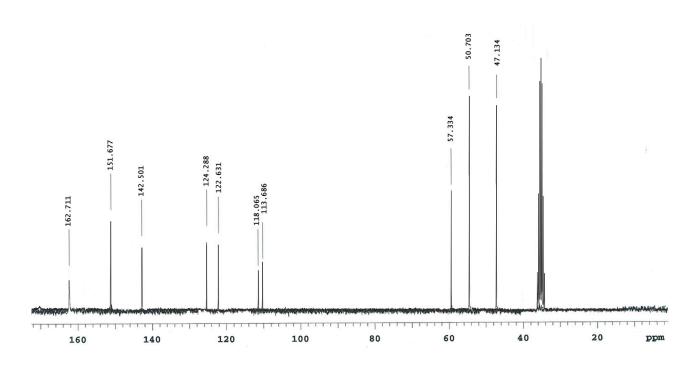
Compounds	First similar structures from ChEMBL database
	Similarity 67.74%
	Similarity 66.66%
	Through olds COO/
	Threshold: 60% no records were found

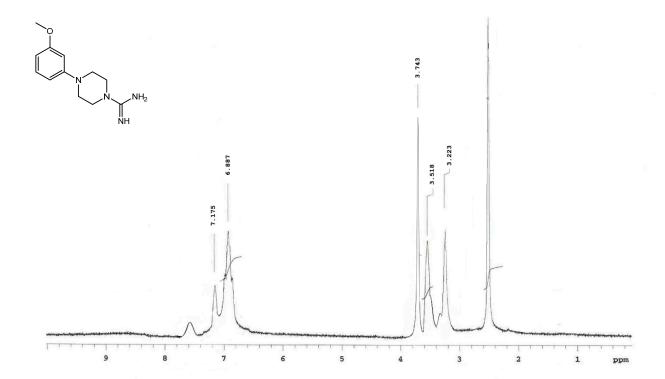

	Similarity 71 420/
N N N N N N N N N N	Similarity 71.42% CI NH ₂ NH NH NH ₂ CHEMBL4172220 *
	Similarity 73.68%
CI NH ₂ NH ₂	CI NH ₂ NH NH ₂ NH NH ₂ CHEMBL4163065 *
	Similarity 100.0%
NH NH	CI—NNH CHEMBL1215544
$CI \longrightarrow N \longrightarrow NH_2$	Similarity 70.59%
5	CI——N—NH ₂ NH N—NH ₂ NH ₂ NH ₂ CHEMBL4173769 *
	Similarity 74.36%
OCH ₃ NH NH ₂ 6	OCH ₃ NH ₂ NH ₂ NH ₂ NH ₂ CHEMBL4169509 *
	Similarity 75.0%
H ₃ CO NH NH NH ₂ 7	H ₃ CO NH ₂ NH NH NH ₂ CHEMBL4177366 *

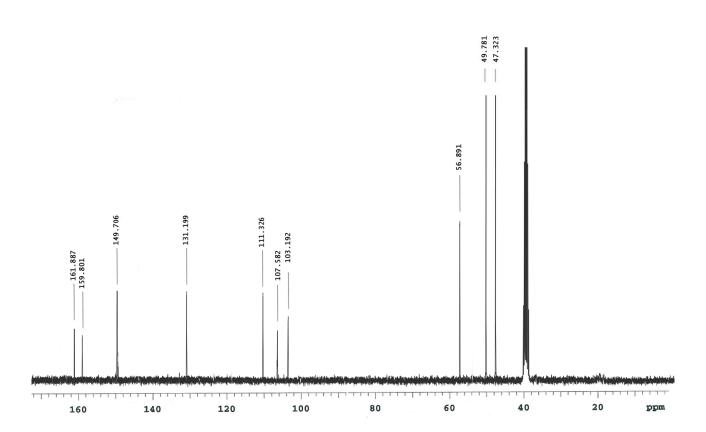

H_3CO N	Similarity 72.97 % H_3CO NH_2 NH_2 NH_2 NH_2 NH_2 NH_2 NH_2 NH_2
CF ₃ NH NH ₂ 9	Similarity 75.61% CF ₃ NH ₂ NH ₂ NH ₂ CHEMBL4161604 *
$ \begin{array}{c} $	Similarity 72.97% NH2 NH CHEMBL4162232 NH2 Similarity 71.43% O CHEMBL296963 NH2
$ \begin{array}{c c} & N \\ & N \\$	Similarity 68.0% NH2 NH NH CHEMBL4162640 NH2
\sim	Threshold: 60% no records were found
$ \begin{array}{c} F \\ N \longrightarrow N \longrightarrow$	Similarity 59.46% F N N N CHEMBL1463766

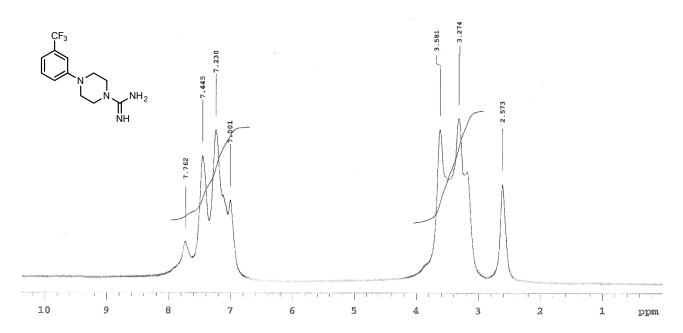
$\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	Similarity 68.75 % CI—NNH CHEMBL1215544 NH ₂
CI CI NH NH ₂	Threshold: 70% no records were found
CI NH NH_2 NH_2	Threshold: 70% no records were found

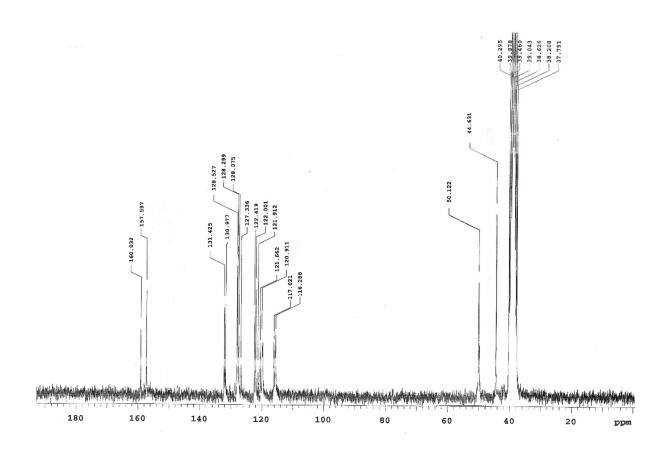

^{*} Piperazino-based biguanides (SET2) previously synthesized by the Authors; see REF 31 (CHEMBL4145505): Guariento, S.; Tonelli, M.; Espinoza, S.; Gerasimov, A.S.; Gainetdinov, R.R.; Cichero, E. Rational design, chemical synthesis and biological evaluation of novel biguanides exploring species-specificity responsiveness of TAAR1 agonists. *Eur. J. Med. Chem.* **2018**, *146*, 146 171-184

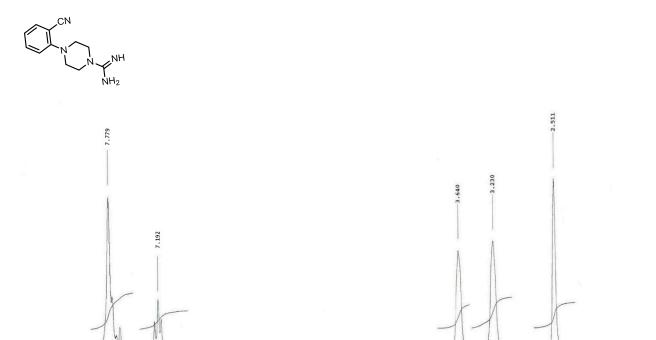

 $^1\mathrm{H}$ and $^{13}\mathrm{C}$ NMR spectra of 4-(2-Chlorophenyl)piperazine-1-carboximidamide hydrochloride (3)

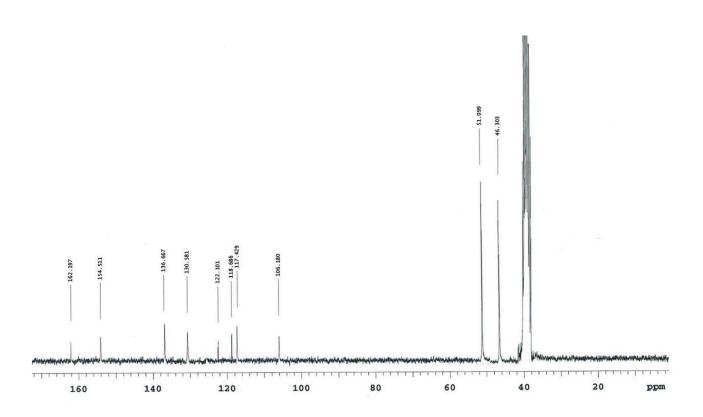


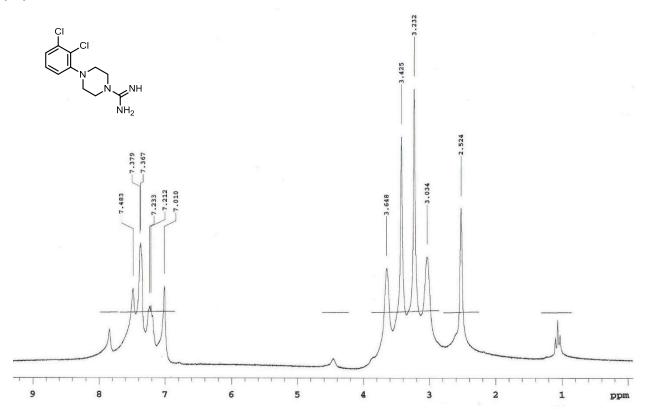

¹H and ¹³C NMR spectra of 4-(2-Methoxyphenyl)piperazine-1-carboximidamide hydrochloride (6)

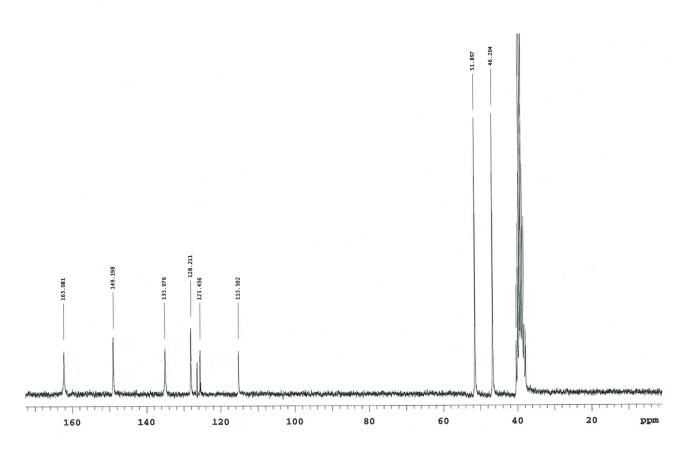


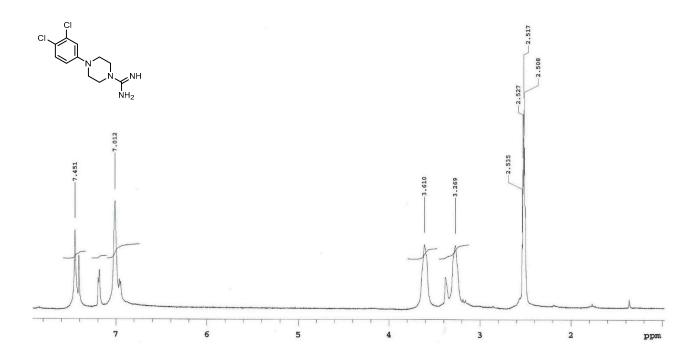

¹H and ¹³C NMR spectra of 4-(3-Methoxyphenyl)piperazine-1-carboximidamide hydrochloride (7)

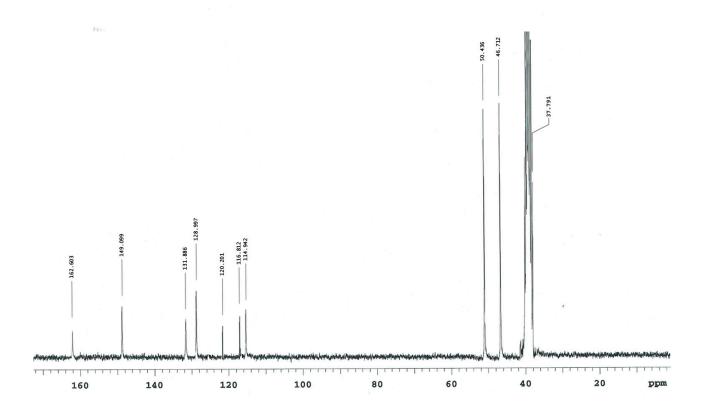



¹H and ¹³C NMR spectra of 4-(3-trifluorophenyl)piperazine-1-carboximidamide hydrochloride (9)




¹H and ¹³C NMR spectra of 4-(2-cyanophenyl)piperazine-1-carboximidamide hydrochloride (12)




¹H and ¹³C NMR spectra of 4-(2,3-Dichlorophenyl)piperazine-1-carboximidamide hydrochloride (15)

¹H and ¹³C NMR spectra of 4-(3,4-Dichlorophenyl)piperazine-1-carboximidamide hydrochloride (16)

