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ABSTRACT
The merging of two neutron stars (MNS) is thought to be the source of short gamma-ray
bursts (SGRB) and gravitational wave transients, as well as the main production site of r-
process elements like Eu. We have derived a new delay time distribution (DTD) for MNS
from theoretical considerations and we have tested it against (i) the SGRB redshift distribution
and (ii) the Galactic evolution of Eu and Fe, in particular the [Eu/Fe] versus [Fe/H] relation.
For comparison, we also tested other DTDs, as proposed in the literature. To address the first
item, we have convolved the DTD with the cosmic star formation rate, while for the second
we have employed a detailed chemical evolution model of the Milky Way. We have also
varied the DTD of Type Ia SNe (the main Fe producers), the contribution to Eu production
from core-collapse SNe, as well as explored the effect of a dependence on the metallicity
of the occurrence probability of MNS. Our main results can be summarized as follows: (i)
The SGRB redshift distribution can be fitted using DTDs for MNS that produce average
time-scales of 300–500 Myr; (ii) If the MNS are the sole producers of the Galactic Eu and the
occurrence probability of MNS is constant the Eu production time-scale must be on the order of
�30 Myr; (iii) Allowing for the Eu production in core-collapse SNe or adopting a metallicity-
dependent occurrence probability, allow us to reproduce both observational constraints, but
many uncertainties are still present in both assumptions.

Key words: nuclear reactions, nucleosynthesis, abundances – gamma-ray burst: general –
stars: neutron – Galaxy: evolution.

1 IN T RO D U C T I O N

The merging of two neutron stars via the emission of gravitational
waves has been invoked to explain a variety of phenomena like
the production of heavy r-process elements (Korobkin et al. 2012;
Hotokezaka et al. 2013) and the short gamma-ray bursts (SGRBs;
Eichler et al. 1989; Narayan, Paczynski & Piran 1992). The
observation of binary systems composed by compact and massive
star remnants (Hulse & Taylor 1975; Tauris et al. 2017) with
measurable changes in their orbital periods, and the recent detection
of the gravitational wave (GW) transient GW170817 (Abbott et al.
2017a) strongly support the occurrence of this process.

Elements heavier than Fe cannot be produced by exoenergetic
fusion reactions in stars and instead they must be the result of

� E-mail: paolo.simonetti@inaf.it

neutron capture on Fe-peak nuclei. This capture can be ‘rapid’
or ‘slow’ with respect to the β decay time-scale and produces
two distinct abundance patterns (Burbidge et al. 1957; Seeger,
Fowler & Clayton 1965). Correspondingly, these elements are
called r- and s-process elements, depending on which of these
processes has contributed the most to their production at solar
metallicity. Moreover, r-process elements can be subdivided in a
light (with atomic weight A < 90) and a heavy (A > 90) subclass. A
widespread used tracker for heavy r-process elements is Europium
(Eu; e.g. Matteucci et al. 2014). The production of heavy r-process
elements requires very neutron-rich environments, such as core-
collapse SNe (CC–SNe) and MNS. The dominant production site,
though, remains uncertain (Côté et al. 2018a).

Early studies, based on the observation of r-process elements in
very metal-poor ([Fe/H] < −3.0 dex) stars, led to the conclusion
that r-process production should occur in massive, short-lived stars
(m > 10 M�, Truran 1981).
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Hydrodynamical simulations (e.g. Woosley et al. 1994; Wheeler,
Cowan & Hillebrandt 1998) supported such a result, showing that
the neutrino-driven wind from newly born neutron stars (NS) in
stars with masses higher than 20 M� is a promising (although
imperfect) site for r-process nucleosynthesis. However, subsequent
studies (Arcones, Janka & Scheck 2007; Arcones & Janka 2011;
Martı́nez-Pinedo et al. 2012) have cast doubts on the capability of
this mechanism to produce a robust r-process abundance pattern.
In particular, it was found that neutrino-driven winds were not
enough neutron rich to produce elements with A > 120. Moreover,
the final abundance pattern is very sensitive to details of the
physical conditions at explosion. Other simulations have identified
two possible regions inside a collapsar in which heavy r-process
production can occur. The first one is constituted by the polar
jets accelerated by extreme magnetic fields in a rare sub-class
of CC–SNe called magnetorotational (MR) SNe (Cameron 2003;
Winteler et al. 2012). The second one is constituted by the outflows
from the accretion disc around the newly formed central compact
object which have been claimed to put broader constraints on the
initial physical conditions than the MR–SNe case (Siegel, Barnes &
Metzger 2018). However, it is not clear if their rate is sufficient to
reproduce the solar abundance of r-process elements (Woosley &
Heger 2006). If this is the case, collapsars would be an adequate
primary r-process site (Cescutti & Chiappini 2014).

In parallel, other authors have explored the role of compact object
mergers (CBM; like NS–NS and NS–BH systems) in the production
of r-process elements. Nucleosynthesis calculations (Korobkin et al.
2012; Eichler et al. 2015; Rosswog 2015) predict the ejection of up
to 10−2 M� of r-process matter with a robust abundance pattern in
a single coalescence event, due to the large number of neutrons per
target Fe nuclei. There are some uncertainties on the role of neutron
poorer viscous and neutrino-driven ejecta from CBM accretion discs
(see e.g. Martin et al. 2015; Wu et al. 2016), but this source appears
to be more reliable with respect to the CC–SNe.

The viability of double neutron star mergers as r-process produc-
tion site has been tested in Galactic chemical evolution simulations,
which trace the abundances of different elements in the gas of the
Milky Way. In this regard, a very important parameter to evaluate
is the time-scale of production of a given element, which can be
estimated as the average coalescence time-scale of a single burst
stellar population. For MNS systems, the delay time (or time
between the birth of the binary system and its final merging) is
determined by both the stellar nuclear lifetime and the gravitational
delay time, and it can vary in a wide range. The typical time-scale
for enrichment from MNS depends on the distribution of the delay
times (DTD).

A popular choice in literature consist in selecting a DTD in
the form of a power law, i.e. ∝ t−γ with 0.5 ≤ γ ≤ 2.0 (Côté
et al. 2017b; Hotokezaka, Beniamini & Piran 2018), where t is
the total (i.e. nuclear + gravitational) coalescence delay time;
in other studies, the total coalescence delay time is obtained by
adding a constant gravitational delay on top of stellar evolutionary
lifetimes (Matteucci et al. 2014; Vangioni et al. 2015). Some authors,
like Matteucci et al. (2014), have tested both MNS only, and a
combination of MNS and CC–SNe as Eu producers. In all studies
it is found that, in order to reproduce the decreasing trend in the
[Eu/Fe] versus [Fe/H] relation in the thin disc stars, the Europium
pollution time-scale should not exceed 100 Myr or be even shorter
(10–30 Myr). These time-scales can be attained either using very
steep power laws (∝ t−2) or assuming a constant gravitational
delay of 1 Myr on top of the nuclear evolution time-scale of the
progenitors. These DTDs are in disagreement with the results of

population synthesis models (Belczynski et al. 2017; Côté et al.
2018a; Giacobbo & Mapelli 2018b) that predict a γ in the range
[ − 1.0; −1.5].

Gamma-ray bursts (GRBs) are luminous transients of high-
energy photons (in the range of 10–100 keV) incoming isotropically
to the Earth at a rate of 1 per day (Klebesadel, Strong & Olson
1973). They can be divided in short (<2 s, SGRBs) and long
(>2 s, LGRBs; Norris et al. 1984); SGRBs are characterized by
high-peak energy, while LGRBs exhibit a softer emission. It is
generally accepted that short and long GRBs are produced by
different mechanisms; in particular the latter have been explained
as due to the acceleration of matter along the poles of a newly
born black hole during massive CC–SNe explosions (MacFadyen &
Woosley 1999). The SGRBs are instead thought to be produced from
the magnetic recombination or neutrino–antineutrino annihilation
during the merging of compact binary objects (Narayan et al.
1992).

Despite the small statistics, various groups (Ghirlanda et al. 2016;
Zhang & Wang 2018) have reconstructed the redshift distribution
of SGRBs, while others (D’Avanzo 2015; Fong et al. 2017) have
tried to reproduce it by convolving different DTDs with the cosmic
star formation history. It has been found that the SGRB redshift
distribution is better reproduced when a DTD ∝ t−1 or ∝ t−1.5 is
used. Moreover, between 1/4 and 1/3 of the total SGRBs comes
from early-type galaxies (Berger 2014; Fong et al. 2017), which
host old stellar populations. This evidence contrasts with the notion
of short time-scales to describe MNS in favour of longer ones.

A great deal of information comes from the detection of
GW170817. Not only it has been the first direct evidence of an
MNS (Abbott et al. 2017a), but it was also associated with an SGRB
(Abbott et al. 2017b) and an optical transient known as ‘kilonova’
(Smartt et al. 2017). The study of its multiband light curves and
of the spectra has provided constraints on the composition of
the ejecta, though a consensus has not yet been reached. Smartt
et al. (2017) concluded that these ejecta should have been rich in
light r-process and very deficient in heavy r-process, while others
(Evans et al. 2017; Pian et al. 2017; Tanvir et al. 2017; Troja et al.
2017) support the hypothesis of a robust production of extremely
opaque r-process elements. Finally, based on this event, Abbott
et al. (2017a) estimated the cosmic local rate of MNS events to be
1540+3200

−1220 yr−1 Gpc−3.
In this paper we want to test under which conditions it is possible

to accommodate the various observational constraints under the
hypothesis that MNS are responsible for all SGRBs, and that they
are important contributors to the Europium chemical enrichment of
the Milky Way. To do this we: (i) derive a new formulation for the
DTD from theoretical considerations, adapting the Greggio (2005)
procedure, which was developed for Type Ia Supernovae, to the
progenitors of MNS; (ii) use the cosmic star formation history
(CSFR) and the redshift distribution of SGRBs to evaluate the
fraction of massive stars, which give rise to a MNS event; (iii) test the
results versus the Milky Way abundance pattern of Eu and Fe using
a full Galactic chemical evolution model of the Milky Way, which
successfully reproduces a majority of observational constraints (e.g.
Matteucci et al. 2009). We also explore the effect of adopting the
DTD formulations which are proposed in the literature.

2 O U R N E W D T D

The DTD function fMNS(τ ) for MNS represents the distribution of
the coalescence times from an instantaneous burst of star formation
of unitary mass and it is fundamental to compute the MNS rate. The
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MNS rate can be written as

RMNS(t) = kα

∫ min(t,τx )

τi

αMNS(τ ) ψ(t − τ ) fMNS(τ ) dτ, (1)

where ψ is the SFR, kα is the number of stars with mass in a suitable
range per unit mass of star-forming gas in a stellar generation, and
αMNS is the fraction of them which gives rise to MNS events. In
principle, both kα and αMNS can vary as a function of time, but for the
sake of simplicity we will assume them constant. In Section 5.4 we
will explore the effect of varying αMNS. The time τ is the delay time
defined in the range (τ i, τ x), where τ i is the minimum delay time of
occurrence for merging neutron star (here fixed to 10 Myr) and τ x

is the maximum delay time which can be larger than a Hubble time,
depending on the progenitor model. Since fMNS(τ ) is a distribution
function, it must be normalized to 1 in the allowed range for τ :∫ τx

τi

fMNS(τ ) dτ = 1. (2)

The parameter kα depends on the IMF and it is

kα =
∫ mU

mL

φ(m) dm, (3)

where mL and mU are, respectively, the progenitor minimum and
maximum mass to produce an NS. In this paper we adopt mL = 9 M�
and mU = 50 M�.

We now derive the form of fMNS(τ ). For MNS the time delay is the
sum of the evolutionary lifetime of the secondary component of the
binary system plus the gravitational time delay. From Landau and
Lifshitz (1966):

τgw = 0.15A4

m1m2(m1 + m2)
Gyr, (4)

where m1 and m2 are the masses of the primary (more massive) and
of the secondary star of the binary system, respectively, while A
is the initial separation of the neutron star binary system. We have
neglected the eccentricity parameter for the sake of simplicity. In
fact, for high eccentricity the coalescence time can be much shorter,
at fixed values of masses and separations, but here we consider only
the case of circular orbits.

We can now show that this equation can be rewritten as a function
of the total mass, instead of the masses of the two components, with
a small error. The mass-dependent term, namely the denominator
of equation (4), can be written as

μ(MDN, m2) = M2
DN · m2 − m2

2 · MDN, (5)

with MDN = m1 + m2, i.e. the total mass of the system. This function
can be studied in its two variables. For a fixed MDN this formula
produces a parabola with the maximum at m2 = 0.5 MDN.

The lightest known neutron star whose mass has been precisely
measured is the companion of the binary pulsar PSR J0453+1559,
with an estimated mass of 1.17 ± 0.004 M� (Martinez et al. 2015).
On the other hand, the heaviest measured neutron star is the PSR
J0348+0432, with a mass of 2.01 ± 0.04 M� (Antoniadis et al.
2013). In a yet not fully confirmed study, Linares, Shahbaz &
Casares (2018) estimate the mass of PSR J2215+5135 to be
2.27 ± 0.15 M�, and this fact would rule out some of the proposed
equations of state for NS interior (Özel & Freire 2016).

We have decided to adopt a slightly different range with a lower
limit to the mass of the neutron star of 1 M� and an upper limit of
2 M�. Therefore the allowed range for MDN goes from 2.0 to 4.0 M�.
The requirements on the mass of the primary NS further constrains
the range of possible values for m2 so that not all combinations of

Figure 1. The function μ(MDN, m2) is plotted with respect to m2 for five
different fixed values of MDN (2.0 M� in black, 2.5 M� in dark red, 3.0 M�
in red, 3.5 M� in orange, and 4.0 M� in yellow solid lines). The grey shaded
area represents the space of valid values for m2 (i.e. represents a system with
a secondary lighter than the primary and in the correct mass range, for a
fixed total mass of the system).

MDN and m2 are acceptable. In Fig. 1 we show the function μ(MDN,
m2) plotted versus m2 for five different values of MDN. The shaded
area shows the portion of the plane in which m1 > m2. The sections
of the parabolae within the shaded area are very flat: for each MDN

the function μ varies very little (no more than 10 per cent) inside
the allowed region of the parameter space (m1, m2).

We can conclude that it is possible to rewrite μ as a function
of MDN with a negligible error: every binary system with the same
total mass and the same initial separation has approximately the
same delay. Substituting the value of the maximum for each MDN,
μ(MDN, m2) becomes

μ(MDN) = 0.25M3
DN, (6)

and so it follows that

τgw = 0.6A4

M3
DN

Gyr. (7)

Having simplified the Landau formula we derive distribution of the
delay times due to the emission of gravitational waves as follows.

The contribution to the number of systems with delay τ gw from
systems with separation A and total mass MDN can be written as

df (τgw) = df (A, MDN) = g(A) h(MDN) dA dMDN, (8)

where g(A) is a function describing the initial separations, while
h(MDN) is the distribution of the total masses of the systems that
will merge. In equation (8) these two functions are assumed to be
independent. We further assume that g(A) can be described as a
power law and, for simplicity, that the distribution of binary masses
is flat. Therefore the two functions can be written as{

g(A) ∝ Aβ

h(MDN) ∝ const.
(9)

As can be seen, β parametrizes the shape of the distribution in
initial separations. Integrating equation (8) over the relevant range
of separations we derive the number of MNS systems, which merge
with a gravitational time delay τ gw:

f (τgw)dτgw = dτgw

∫ As

Al

g(A) h(MDN)
∣∣∣∂MDN

∂τgw

∣∣∣ dA, (10)
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with Al and As are the minimum and maximum separations that
contribute to n(τ gw) for systems with total mass MDN. They can be
calculated as

Ax =
(

M3
DN,xτgw

0.6

)1/4

, (11)

where the subscript x stands for s and l. The result of such calculation
is

f (τgw) ∝ 1

τ
4/3
gw

1

β + 7/3

[
Aβ+7/3

]As

Al
. (12)

Substituting equation (11) in equation (12) we derive the distribution
of the gravitational wave delay times as

f (τgw) ∝ τ (1/4)β−3/4
gw

(
M

(3/4)(β+7/3)
DN,s − M

(3/4)(β+7/3)
DN,l

)
. (13)

The number of systems with a total delay between τ and τ +
dτ will be close to the number of systems with a gravitational
delay between τ gw and τ gw + dτ gw, because of the short and
similar nuclear lifetime (τ n) of stars with high masses, that ranges
between ∼30 Myr for 9 M� stars and ∼4 Myr for 50 M� stars.
However, the existence of a distribution of τ n implies that the
DTD deviates from f(τ gw) at the short delay times, because the
parameter space is limited from the requirement τ = τ n + τ gw.
Greggio (2005) developed a DTD for binary white dwarfs taking this
effect into account. Following her results we construct the following
distribution of total (nuclear + gravitational) delay time:

f (τ ) ∝

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if τ < 10 Myr

p1 if 10 < τ < 40 Myr

p2 τ 0.25β−0.75
(
M

0.75(β+2.33)
DN,s − M

0.75(β+2.33)
DN,l

)
if 40 Myr < τ < 13.7 Gyr

, (14)

where p1 and p2 will be chosen so as to obtain a continuous and nor-
malized function. The first portion of the distribution ends with the
formation of the first double neutron star system. Ten million years
is the nuclear lifetime of a typical massive star. The second portion
refers to systems which merge soon after the formation of the double
neutron star binary system. Similar to the distributions in Greggio
(2005), this portion of the distribution function is described as a flat
plateau, up to the maximum nuclear time delay of the double neutron
star binary or, in other words, the lifetime of the minimum mass pro-
genitor of a neutron star (∼9 M�). The third portion is just the distri-
bution of the gravitational delay times and attains to those systems
for which the time delay is dominated by the gravitational radiation
mechanism described by the Landau equation. The results can be
seen in Fig. 2, where a normalization factor of 1 has been assumed.

2.1 Other tested DTDs

As a comparison for DTDs, we have also tested four other common
options found in literature. Three of them are single-slope power
laws, with γ = −1.0, −1.5, −2.0, as proposed by Côté et al.
(2018b,a). We again impose a minimum value to the total delay
time of 10 Myr, which represents the shortest lifetime of neutron
stars progenitors. All of them are normalized between this effective
minimum time and one Hubble time (13.7 Gyr). The various choices
of DTDs discussed so far are shown in Fig. 2.

We also tested the DTD implemented in Matteucci et al. (2014),
in which the total delay time is equal to 1 Myr on top of the stellar
lifetime, implicitly assuming that all binary neutron stars are born

Figure 2. The seven different DTDs tested for MNS. For the DTD derived
in this paper, the three phases are clearly visible: the initial null plateau, the
plateau representing the close binaries that promptly merges, and the tail for
wide binary systems. We have tested it for four different values of β: −1.5
(black), −0.9 (blue), 0.0 (indigo), and 0.9 (purple). The three DTDs ∝ t−γ

with γ equal to −1 (light green), −1.5 (medium green), and −2 (dark green)
are also shown. The area under each of these curves is the same and equal
to 1.

very close, and merge soon after they are formed. In Matteucci
et al. (2014) it has been shown that longer gravitational delays do
not reproduce the Eu abundances in very metal-poor stars.

2.2 The progenitors of SNe Ia

Since one of our constraints concerns the trend of [Eu/Fe] versus
[Fe/H] and since an important part of the iron enrichment comes
from SNe Ia, we need to specify a choice for their DTD. We test
two different options:

(i) a distribution proportional to t−1, as suggested by Totani et al.
(2008) and Maoz et al. (2012) on the basis of empirical data;

(ii) the DTD in the wide double degenerate scenario depicted
in Greggio (2005) with an initial separation distribution coefficient
βa = −0.9 and a maximum nuclear lifetime τ n,x = 0.4 Gyr. The
reasons for these choices are presented in Matteucci et al. (2009).

Both DTDs are normalized in the range 0.04–13.7 Gyr, and we
show them in Fig. 3. These two distributions are not very different.
In fact, at times larger than ∼3 Gyr, the fraction of exploded SNe
Ia is similar. On the other hand, as will be shown in Section 5,
their effect on the [Eu/Fe] versus [Fe/H] relation at low (−2.5 <

[Fe/H] <−1.0 dex) metallicities is pronounced. Chemical evolution
models based on DTDs very different from this kind of shape have
difficulties to fit the abundances of low-metallicity stars.

The various DTDs discussed so far imply different time-scales
for the Europium and Iron pollution on the ISM. As mentioned in
the Introduction, the pollution time-scale can be represented as the
average coalescence time-scale for a single burst stellar population,
or the time within which half of the events occur. Fig. 4 shows the
cumulative distribution of the DTDs for the MNS and the SNe Ia’s
adopted in our computations. The Europium pollution time-scales
for the various models are very different, ranging from ∼20 Myr to
2 Gyr as the DTD for the MNS changes from the steepest pure power
law to the flattest of our proposed DTD. Instead, in our models, the
time-scale for Fe production from SNe Ia ranges only from 0.4 to
0.7 Gyr.
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Figure 3. The two different DTDs used to represent the SNe Ia in this
paper: the ∝ t−1 suggested by Totani et al. (2008) and Maoz, Mannucci &
Brandt (2012; red line) and the DTD described in Greggio (2005) in the
wide double degenerate case with βa = −0.9 (orange line). This value for
βa is also suggested by Matteucci et al. (2009). The area under each of these
curves is the same and equal to 1, i.e. they are normalized.

Figure 4. The cumulative distributions associated with the DTDs tested for
MNS (solid lines) and for SNe Ia (dashed lines). The colour code is the same
as used in Figs 2 and 3. The dotted line marks the 0.5 value for fraction of
merged binary neutron stars and provide an immediate comparison between
the different time-scales produced by the DTDs.

3 C OMPARISON W ITH THE SGRB R EDSHI FT
DISTRIBU TION

As briefly described in the Introduction, it has been possible to
derive the SGRB redshift distribution despite the small statistics.
However, there are discrepancies between the results of different
groups.

3.1 The SGRB redshift distribution

To constrain our models we consider two redshift distributions
of SGRB proposed in the literature: the Ghirlanda et al. (2016;
hereafter G16) and Zhang & Wang (2018; hereafter ZW18).

G16 considered seven observables: (i) peak flux, (ii) fluence,
(iii) observer frame duration, (iv) observer frame peak energy
distribution, (v) redshift, (vi) isotropic energy, and (vii) isotropic
luminosity, usually not available at the same time for each event, and

a set of parametric relations that bind these together. The parametric
form chosen for the redshift is


(z) = 1 + p1z

1 + (
z/zp

)p2
. (15)

Then, they generated synthetic populations of SGRBs, choosing
randomly the values of the parameters, and compared their features
to the observational data set. A total of 10 free parameters (3 for red-
shift distribution, 3 for peak energy distribution, and 4 for energy–
luminosity correlations) have been tested. This is referred in the
paper as ‘model a’. G16 considered also a slightly different scheme
for relations between observables with independent (from the peak
energy and between themselves) distributions for luminosity and
duration, raising the number of free parameters to 11. This is referred
as ‘model c’.

The values of the redshift distribution parameters which best
represent the observational characteristics of the SGRB population
turn out to be: p1 = 2.8 (model a) or 3.1 (model c), p2 = 3.5 (model
a) or 3.6 (model c), and zp = 2.3 (model a) or 2.5 (model c).

With a different approach, ZW18 first considered the 16 SGRBs
with known redshift. From them, they derived a peak energy–
luminosity relation and have used this relation to find the redshift
of the other 284 SGRBs in the Fermi-GBM sample. Finally, ZW18
have used these inferred redshifts to fit a bimodal relation in the
form of


(z) ∝
{

(1 + z)−3.08 z < 1.60

1 + z)−4.98 z ≥ 1.60
. (16)

This is an ever-decreasing function of redshift, sharply in contrast
with the result of G16.

3.2 Simulations and results

In this section we compare the SGRB redshift distribution shown
above to theoretical expectations of the redshift distribution of
MNS based on the DTDs described in Section 2. To do this we
convolve the DTDs with the cosmic star formation rate (CSFR; see
equation 1), for which we adopt the relation obtained by Madau and
Dickinson (2014):


(z) = 0.015(1 + z)2.7

1 + ((1 + z)/2.9)5.6
M� Mpc−3 yr−1, (17)

based on a Salpeter (1955) IMF, that is

φ(m) = 0.171 m−2.35, (18)

when normalized between 0.1 and 100 M�.
For a Salpeter IMF and a 9–50 M� range for progenitors of NS we

have kα = 0.0059 neutron star progenitors per M� of star-forming
gas. The parameter αMNS has been chosen in order to reproduce
the current rate of GW events per unitary volume of the Universe
as found by Abbott et al. (2017a), 1540 yr−1 Gpc

−3
. The values

for αMNS are reported in Table 1 for the different DTDs, alongside
with the fractions of MNS systems merged after 20 Myr (third
column) and 100 Myr (fourth column) after an initial single star
formation burst. Together with Fig. 4 this allows us to make a simple
comparison among the time-scales of the different distributions.

In this way we have computed a redshift distribution of MNS
rate directly comparable with the derived redshift distributions of
SGRBs of G16 and ZW18. Both their relations have been multiplied
by a suitable factor to reproduce the current GW rate, in order to
make a comparison possible.
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Table 1. The table reports the value of the occurrence probability αMNS

for each tested DTD that must be inserted in order to obtain the present
time cosmic rate of MNS at z = 0 equal to the gravitational wave event rate
found by the LIGO/Virgo Collaboration (Abbott et al. 2017a). In the third
and fourth columns are reported the fractions of MNS systems merged after
20 and 100 Myr from a single initial starburst.

MNS αMNS Merged Merged
DTD (×10−2) in 20 Myr in 100 Myr

Our DTD β = 0.9 0.66 0.008 0.056
Our DTD β = 0.0 0.81 0.019 0.129
Our DTD β = −0.9 1.02 0.039 0.241
Our DTD β = −1.5 1.18 0.056 0.336

Prop to t−1 1.09 0.096 0.319
Prop to t−1.5 1.60 0.301 0.703
Prop to t−2 1.73 0.500 0.901
Constant 10 Myr 1.75 1.000 1.000

The results can be seen in Fig. 5. The rate of SGRB proposed by
G16 is best represented by our DTD with β = −1.5, which means
that a bottom heavy distribution (i.e. with many systems with small
initial separations) is a good candidate. It is worth noting that such
a value for β gives rise to a distribution of time delays, which scales
as ∝ t−1.125. Lower values for β imply higher and earlier maxima,
so shorter time delays are preferred. However too short time-scales,
like those produced by the simple power law ∝ t−2 and the fixed
10 Myr total delay, do not produce a good agreement with the
observations (see panel b of Fig. 5: the maxima appear to exceed
by a large factor the G16 distributions).

The rate distribution proposed by ZW18, on the other hand,
cannot be matched by any of the considered distributions. It requires
a very top heavy distribution for the initial separations (with a
β = 6.0) and a low probability of forming close binaries (αMNS

equal to 0.39 × 10−2), but such a model is in strong contrast with
the local data on chemical evolution. In fact, as it will be shown
in Section 5, the chemical enrichment of our Galaxy must have
happened in time-scales no longer than 30 Myr, whereas the β = 6.0
model produces time-scales far in excess of 1 Gyr.

4 C H E M I C A L E VO L U T I O N MO D E L F O R TH E
M I L K Y WAY

A chemical evolution model tracks the abundance of a given element
i in the gas of a galaxy at different times. The ingredients and the
general theory of such a simulation can be found, for example, in
Matteucci (2012). In particular, we have adopted a scheme similar
to those described in Matteucci et al. (2014) that will be summarized
below.

The evolution of the surface gas density of the element i, Gi(r, t),
is described by the following equation:

dGi

dt
(r, t) = −ψ(r, t)Zi(r, t)

+
∫ MU

m(t)
ψ(t − τ (m))Qmi(t − τ (m))φ(m) dm

+Zi,0A(r, t). (19)

The first term is the product of the star formation rate (SFR) ψ(r, t)
and the elemental fraction Zi(r, t) in the gas and represents the gas
removed by the ongoing star formation. The second term represents
the fraction of gas restored as element i by stars born at t − τ (m)

and dying at the time t. τ (m) is the stellar lifetime for a star of
mass m. In particular, φ(m) is the initial mass function (IMF) and
Qmi(t − τ (m)) is the production matrix for a star of mass m as
defined by Talbot and Arnett (1973). MU is the upper limit for the
mass of a star that we have chosen to be 100 M�, while m(t) is the
minimum mass for a star dying at the time t. The mass dying at the
present time is 0.8 M�. The third term represents the infall of gas
from outside the Galaxy. This infall follows a given rate in time at
each galactocentric radius A(r, t) and has a primordial (i.e. given
by the big bang nucleosynthesis) composition, which for element
i is Zi, 0.

Our model follows the evolution of 31 chemical species, from H
to Eu. The Milky Way is divided in concentric rings 2 kpc wide and
equation (19) is integrated on a variable time-step, whose minimum
is 2 Myr. The output quantities represent the averages (for chemical
abundances) or the totals (for rates) in the simulated Galaxy. Rates
are calculated for MNS and SNe Ia alike as in equation (1). We
adopted the SFR by Kennicutt (1998), the IMF of Kroupa, Tout &
Gilmore (1993), and a double-exponential infall law (the so-called
two infall model of Chiappini, Matteucci & Gratton 1997) aimed
at reproducing the present surface mass densities in the halo and
the disc as observed by Kuijken and Gilmore (1991) with time-
scales from Romano et al. (2000). No outflow is included and
the instantaneous mixing approximation is retained (because their
delaying effect on the chemical evolution seems negligible, see e.g.
Spitoni et al. 2009). The yields are taken from Karakas (2010) for
low and intermediate mass stars, from Doherty et al. (2014a,b) for
super-AGB stars, from Nomoto, Kobayashi & Tominaga (2013) for
SNe II, from Iwamoto et al. (1999) for SNe Ia, and from José &
Hernanz (1998) for nova systems. The stellar lifetimes are those of
Schaller et al. (1992).

5 C OMPARI SON W I TH THE G ALAC TI C
A BU N DA N C E S O F EU RO P I U M A N D I RO N

In our calculation we need to specify the following parameters:

(i) the DTD of the MNS;
(ii) the DTD of the SNe Ia;
(iii) the production of Eu by CC–SNe;
(iv) the fraction of neutron stars which produce an MNS intro-

duced in Section 2 (αMNS);
(v) the Eu produced per merging event.

We have varied (i) and (ii) according to the options proposed in
Section 2. Concerning (iii), we have run two sets of scenarios, one
in which CC–SNe are allowed to produce Eu and the other in which
they are not. Finally, (iv) and (v) have been chosen according to the
following observational constraints:

(i) αMNS has been fixed to the value found in Section 3 to
reproduce the cosmic LIGO/Virgo MNS rate (Abbott et al. 2017a);

(ii) the yield of Eu has been fixed to reproduce the solar absolute
abundance of Eu observed by Lodders, Palme & Gail (2009), in
particular comparing it with the simulated abundance of Eu present
in the Galaxy 9 Gyr after the Big Bang (which is about the age
of formation of the Solar system). Given that different values of
αMNS produce different predicted Eu abundances in the Sun, we
have chosen a value that reproduces the observations in the case
of intermediate time-scales (models 4A and 4B in Table 2) and
we have kept it constant. This choice makes it easy to see the
effects of different time-scales on the total amount of Eu in the
solar neighbourhood.
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Figure 5. The redshift distribution of SGRB, as found by G16 (red and orange dashed lines) and ZW18 (yellow dashed line) against the predicted rate of
MNS events (solid lines). Our DTD is shown in panel (a), with five different values for the β parameter (pink = 6.0; purple = 0.9; violet = 0.0; blue = −0.9;
dark blue = −1.5). In panel (b) we show three different power laws (∝ t−1 in light green; ∝ t−1.5 in green; ∝ t−2 in dark green) and a constant total delay of
10 Myr (in black).

Table 2. The table reports all the models shown in the graphs. As explained in Section 5, the occurrence probabilities for SNe Ia (αIa) has been tuned to obtain
the current Galactic rate of SNe Ia and the current cosmic rate MNS. Instead, the occurrence probability αMNS for MNS has been taken from Table 1. The
yield of Eu from MNS (7th column) has been tuned to reproduce the abundance in our Sun (the results of our simulations are reported in the 9th and the 10th
columns). Finally, in the 8th column is reported the predicted current rate of MNS in the Milky Way.

Name Eu from SNe Ia MNS αIa αMNS MNS Eu yield Current MNS XFe XEu

CC–SNe DTD DTD (×10−2) (×10−2) (×10−6M�) rate (Myr−1) (×10−3) (×10−10)

1A no Prop to t−1 Our DTD β = 0.9 4.77 0.66 4.0 76 1.38 1.68
2A no Prop to t−1 Our DTD β = 0.0 4.77 0.81 4.0 84 1.38 2.29
3A no Prop to t−1 Our DTD β = −0.9 4.77 1.02 4.0 94 1.38 3.15
4A no Prop to t−1 Our DTD β = −1.5 4.77 1.18 4.0 102 1.38 3.77
5A no Prop to t−1 Prop to t−1 4.77 1.09 4.0 93 1.38 3.27
6A no Prop to t−1 Prop to t−1.5 4.77 1.60 4.0 104 1.38 4.65
7A no Prop to t−1 Prop to t−2 4.77 1.73 4.0 93 1.38 4.28
8A no Prop to t−1 Constant 10 Myr 4.77 1.75 4.0 94 1.38 4.29
1B no G05 βa = −0.9 Our DTD β = 0.9 4.67 0.66 4.0 76 1.52 1.68
2B no G05 βa = −0.9 Our DTD β = 0.0 4.67 0.81 4.0 84 1.52 2.29
3B no G05 βa = −0.9 Our DTD β = −0.9 4.67 1.02 4.0 94 1.52 3.15
4B no G05 βa = −0.9 Our DTD β = −1.5 4.67 1.18 4.0 102 1.52 3.77
5B no G05 βa = −0.9 Prop to t−1 4.67 1.09 4.0 93 1.52 3.27
6B no G05 βa = −0.9 Prop to t−1.5 4.67 1.60 4.0 104 1.52 4.65
7B no G05 βa = −0.9 Prop to t−2 4.67 1.73 4.0 93 1.52 4.28
8B no G05 βa = −0.9 Constant 10 Myr 4.67 1.75 4.0 94 1.52 4.29

1AS yes Prop to t−1 Our DTD β = 0.9 4.77 0.66 1.5 76 1.38 2.57
2AS yes Prop to t−1 Our DTD β = 0.0 4.77 0.81 1.5 84 1.38 2.80
3AS yes Prop to t−1 Our DTD β = −0.9 4.77 1.02 1.5 94 1.38 3.13
4AS yes Prop to t−1 Our DTD β = −1.5 4.77 1.18 1.5 102 1.38 3.22
5AS yes Prop to t−1 Prop to t−1 4.77 1.09 1.5 93 1.38 3.11
6AS yes Prop to t−1 Prop to t−1.5 4.77 1.60 1.5 104 1.38 3.68
7AS yes Prop to t−1 Prop to t−2 4.77 1.73 1.5 93 1.38 3.55
8AS yes Prop to t−1 Constant 10 Myr 4.77 1.75 1.5 94 1.38 3.56
1BS yes G05 βa = −0.9 Our DTD β = 0.9 4.67 0.66 1.5 76 1.52 2.57
2BS yes G05 βa = −0.9 Our DTD β = 0.0 4.67 0.81 1.5 84 1.52 2.80
3BS yes G05 βa = −0.9 Our DTD β = −0.9 4.67 1.02 1.5 94 1.52 3.13
4BS yes G05 βa = −0.9 Our DTD β = −1.5 4.67 1.18 1.5 102 1.52 3.22
5BS yes G05 βa = −0.9 Prop to t−1 4.67 1.09 1.5 93 1.52 3.11
6BS yes G05 βa = −0.9 Prop to t−1.5 4.67 1.60 1.5 104 1.52 3.68
7BS yes G05 βa = −0.9 Prop to t−2 4.67 1.73 1.5 93 1.52 3.55
8BS yes G05 βa = −0.9 Constant 10 Myr 4.67 1.75 1.5 94 1.52 3.56
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Figure 6. Observational data used in paper: a compilation of 426 Milky
Way halo stars (red crosses) taken from JINABase and 374 Milky Way thin
disc stars (yellow points) from Battistini and Bensby (2016). Black dots
represent the average value, binned in 0.5 dex wide bins. It is possible to see
the plateau at low metallicities ([Fe/H] < −1.0) and the decreasing trend at
later times.

5.1 Eu production sites

As discussed in the Introduction, there are two possible sites for Eu
production: MNS and CC–SNe. In this paper, we have tested two
different scenarios: one in which Eu is entirely produced by MNS
and another in which Eu is produced both by MNS and CC–SNe.

MNS, as a production site of Eu, have been explored thoroughly
by several authors (e.g. Korobkin et al. 2012), who proposed a yield
in the range 10−7 − 10−5 M� of Eu per event. More recently, the
observation of the kilonova AT2017gfo has allowed us to estimate
the yield of Eu in the range (3−15) × 10−6 M� of Eu per event
(Evans et al. 2017; Tanvir et al. 2017; Troja et al. 2017). We have
chosen to represent MNS as systems of two 1.4 M� neutron stars
with progenitors in the 9–50 M� mass range.

We have chosen an empirical yield of Eu equal to 4.0 × 10−6 M�
when the MNS are the sole producers, and 1.5 × 10−6 M� when
Eu is co-produced by CC–SNe. This second value is slightly lower
than the estimate from the kilonova AT2017gfo but well inside the
theoretical range.

CC–SNe, on the other hand, have a less clear role in the r-
process elements production. In this paper, we have used a slightly
modified version of the provisions found in Argast et al. (2004),
model SN2050, and used also in the paper Matteucci et al. (2014):

(i) a constant yield of 3.8 × 10−8 M� of Eu for 20–23 M� mass
range stars;

(ii) a decreasing yield from 3.8 × 10−8 M� of Eu for a 23 M� star
to 1.7 × 10−9 M� of Eu for a 50 M� star.

We do not consider any dependence on metallicity of these yields,
nor do we take into account the distribution in rotational velocities
of high-mass stars and its effect on the yield of Eu.

If the time-scale of Eu production were short, we would expect
to see a plateau at low metallicities ([Fe/H] < −1.0) followed by
a decline as the Fe abundance grows. This trend is found in the
observational data (see Fig. 6), and can be explained supposing
that the main producers of Fe, namely the SNe Ia, have lower
mass progenitors than CC–SNe and longer gravitational delay times
than MNS. Therefore, the bulk of Fe is released to the ISM on
a longer time-scale with respect to Eu. Initially, Eu and Fe are

produced at a similar rate by only massive stars and this generates
the plateau. Then, SNe Ia start to explode, producing Fe but not
Eu, progressively decreasing the [Eu/Fe]. This behaviour is similar
to that of α-elements (like O, Mg, Ca, and Si) that are likewise
produced in high-mass short-lived stars, and is known as time delay
model (see e.g. Matteucci 2012).

This is an idealized situation and the spread in the data for a given
element can make difficult to discern between different behaviours.
This is particularly true in our case of study, since the [Eu/Fe]
values for halo stars span nearly three orders of magnitudes (see
Fig. 6). Therefore, it is possible to identify the low-metallicity
plateau only as a trend. Non-homogeneous stochastic simulations
(e.g. Cescutti et al. 2015; Safarzadeh, Sarmento & Scannapieco
2018) can investigate the different spread induced by different Eu
sources and it should be remarked that a model which can reproduce
the mean [Eu/Fe] evolution in the halo population can still fail to
account for the scatter in the data. However, here we will limit to
the analysis of the average abundance trend.

5.2 Conversion of the cosmic rate to a Galactic rate

As a consistency check, we have developed a simple conversion pro-
cedure to infer the Galactic MNS rate from the cosmic LIGO/Virgo
rate of Abbott et al. (2017a). We have considered the total luminosity
of a unitary volume of the Universe as derived by the integration
of the Press–Schechter function, equal to 2 × 1017 × h L�, as
reported by Mo, van den Bosch & White (2010). Here, h is the
dimensionless parametrization of the Hubble constant in units of
100 km s−1 Mpc−1.

Considering a total baryonic mass for our Galaxy equal to
(5−10) × 1010 (as found by, for example, Sofue 2013; McMillan
2016) and a mass-to-luminosity ratio for a spiral galaxy equal to
5 (Mo et al. 2010), we have estimated the total luminosity of the
Milky Way. The result is that there are ∼(1−2) × 107 × h Milky
Way-equivalent (MWe) galaxies per Gpc3. Choosing a value for
h equal to 0.7 as most cosmological observations suggest (Planck
Collaboration XXIII 2016) produces a central value for the obtained
interval of ∼1 × 107 MWe Gpc−3. Therefore, we expect that the
Galactic rate of MNS is � 10−7 times lower than the Abbott
et al. (2017a) value, or 1.54+3.2

−1.22 × 10−4 yr−1. This figure compares
well to previous Galactic estimations based on binary pulsars such
as 0.83+2.1

−0.7 × 10−4 yr−1 (Kalogera et al. 2004). In our chemical
evolution model the current rate of MNS is not a free parameter,
but results from the convolution of the star formation history of the
Milky Way with the DTD module the fraction αMNS derived from
the cosmic constraint. We will compare the model results to these
figures.

5.3 Simulations and results

We ran several models, as reported in Table 2. In the 1st column we
put the name of the model, in the 2nd column is indicated if the CC–
SNe have been considered as production site for Eu or not, and in
the 3rd and 4th columns are indicated the DTDs used, respectively,
for SNe Ia and MNS. In the 5th and 6th columns are reported the
values for the occurrence probabilities of SNe Ia and MNS. The
occurrence probabilities αIa have been chosen so as to obtain the
estimated current rate of Type Ia supernovae, 1.8 × 10−3 SN yr−1

in the Milky Way (Li et al. 2011), while αMNS has been fixed by
the local volumetric GW rate (see Section 3). In the 7th column is
reported the adopted Eu yield per MNS event, in the 8th column the
predicted current rate of MNS in the Milky Way and in the 9th and
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Figure 7. The Galactic rate of MNS for five of the eight DTDs tested here:
1A/B in pink, 3A/B in violet, 4A/B in indigo, 5A/B in blue, and 7A/B in
black.

10th columns are reported the predicted absolute solar abundances
of Fe and Eu.

As it is possible to see in Table 2, the current Galactic MNS
rate turns out smaller than the estimate in Section 5.2 obtained
extrapolating the Abbott et al. (2017a) value, but it appears to be in
very good agreement with Kalogera et al. (2004) estimate. Given
that Galactic and cosmic star formation histories are different we do
expect some differences in the current MNS rate, at fixed DTD and
αMNS. The effect of the Galactic SFR on the MNS rate can be clearly
seen in Fig. 7, where the computed MNS rates are shown: at around
1 Gyr from the formation of the Galaxy, when the first infall episode
terminates, the merging rate rapidly decreases. The magnitude of
such a decrease depends on the time-scale of the adopted DTD:
longer ones act as smoothing masks. The rapid oscillations at very
early times are caused by the threshold in the SFR adopted in the
chemical model, as described in Section 4.

As a first step, it has been verified the ability of different DTDs
to reproduce the solar abundances of Eu and Fe.

For the Sun, Lodders et al. (2009) have determined:

log(Fe/H)� = −2.792 log(Eu/Fe)� = −6.496

XEu = 3.50 × 10−10 XFe = 1.34 × 10−3.

These values should be compared with the predicted ones in Table 2.
We have kept the same yields of Fe for SNe II and SNe Ia

during all the tests and instead varied the DTD, using the two
possible distributions listed in Section 5.1. The values reported
in Table 2 show that the solar Fe abundance in our model is
in excellent agreement with the observational value. For the Eu
contribution from MNS, the yields were actually tuned to reproduce
the solar abundance with our model. We can see that the required
production is quite compatible with theoretical estimates, as well
as the empirical value from of the kilonova, as mentioned in
Section 5.1.

Now we can turn to study the [Eu/Fe] versus [Fe/H] relation. We
remind that the [X/Y] notation refers to the logarithm of the ratio
between the two elements X and Y, normalized with respect to the
same logarithmic ratio in the Sun. In Fig. 8 we show the effects
of different DTDs on the [Eu/Fe] versus [Fe/H] relation when CC–
SNe are not allowed to produce Eu. In particular, we are interested
in reproducing the decreasing trend of [Eu/Fe] versus [Fe/H] in the

disc stars (i.e. those at [Fe/H] > −1.0). We will not study the spread
in the data points in the halo stars as done by other authors (e.g.
Cescutti et al. 2015; Wehmeyer, Pignatari & Thielemann 2015),
since our model is homogeneous. This spread is likely due to local
polluting events.

We can categorize the models in three groups: those that totally
fail to produce the decreasing trend in the disc stars, those that
produce an insufficient decreasing trend, and those that produce an
acceptable decreasing trend. The models in the first category usually
fails also to reproduce the low-metallicity plateau. As it is possible
to see in panels (a) and (c), the DTD derived in this paper falls in
the first category, meaning that coalescence time-scales longer than
300 Myr are unable to reproduce the [Eu/Fe] versus [Fe/H] relation
along the entire range of metallicities.

On the other hand, three out of four models shown in panels (b)
and (d) reproduce the decreasing trend at high metallicity. The mod-
els that produce the best correspondence are the 7A/B and the 8A/B.
In particular, the 7A/B also reproduce the plateau at [Fe/H] < −1.0
and can be selected as the best model. Therefore, we can say that a
DTD ∝ t−2 is adequate to reproduce the [Eu/Fe] abundance pattern
in the Milky Way stars, if MNS are the only contributors to Eu.

In Fig. 9 we show the models where CC–SNe co-produce Eu
alongside MNS. The impact of the CC–SNe contribution is very
large since with the prescriptions used here no less than 60 per cent
of the solar Eu should come from CC–SNe. Here, all the DTDs
produce a decreasing trend in the [Eu/Fe] versus [Fe/H] relation. In
particular, DTDs with longer time-scales (like the one derived in
this paper) become indistinguishable from one another (see panel
a). For shorter time-scales (panel b) there are slight differences
between the models. One more time, shorter DTDs (7BS, 8BS)
are favoured over longer ones (5BS). The low-metallicity plateau,
although deformed by the knee at [Fe/H] ∼ −3.3, is visible none
the less. Such a knee is caused by the death of massive stars in
the lower region (20–23 M�) of the allowed mass range, where the
yields of Eu are higher. We do not show the graphs from the 1AS to
the 8AS model because they are substantially equal to those shown
in Fig. 9.

In Fig. 10 we show in detail the effect of changing DTD for SNe
Ia (panel a) and activating or deactivating Eu production in CC–
SNe (panel b) in the abundance range [Fe/H] > −1.5. Using the
G05 DTD for SNe Ia (panel a, dashed lines), that produces longer
time-scales than ∝ t−1, slightly increase the steepness in [Fe/H] <

−0.5, while it has substantially no impact in the [Fe/H] > −0.5.
However, it is not sufficient to make our DTD (with β = −1.5)
acceptable. Instead, the DTD ∝ t−2 offers an optimal profile in both
cases (models 7A and 7B). If we observe panel (b), we can see that
the activation of Eu production in CC–SNe strongly improves the
prediction when using our DTD (model 4BS), even if it remains
worse than in the case of shorter time-scales.

Finally, in Fig. 11 we show the plots relative to two popular
choices for MNS: the DTD ∝ t−1.5 and the DTD ∝ t−1. We recall
from Section 4 that, even if they are not the preferred models to
reproduce the SGRB redshift distribution, they cannot be entirely
ruled out. As we can see, we confirm what has been found by other
studies (e.g. Côté et al. 2017a): a DTD ∝ t−1 is unable to recover
the decreasing trend in the thin disc abundance pattern (panel a).
If we activate the Eu production in CC–SNe (panel b), we obtain
a relation that, although decreasing, is not sufficiently steep. A
more satisfactory prediction is given by the DTD ∝ t−1.5 (models
6A/B and 6AS/BS), both with and without CC–SNe producing Eu.
However, the steepness of the curve is one more time smaller than
the observed one.
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Figure 8. Here we show the models with no Eu production from CC–SNe. Panel (a) shows the models from 1A to 4A, panel (b) the models from 5A to 8A,
panel (c) the models from 1B to 4B, and panel (d) the models from 5B to 8B. The colour-code is the same everywhere: lighter shades of blue stands for higher
index models.

Figure 9. Here we show the models with Eu production from both CC–SNe and MNS. Panel (a) shows the models from 1BS to 4BS and panel (b) shows the
models from 5BS to 8BS. The colour-code is the same everywhere: lighter shades of blue stands for higher index models.
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Figure 10. In panel (a) we highlight what happens when we change DTD for SNe Ia. Blue lines refer to our DTD with β = −1.5 (models 4A/B), purple lines
refer to the DTD ∝ t−2 (models 7A/B). Solid lines represent models with a DTD for SNe Ia ∝ t−1 (models 4/7A), while dashed lines represent models with a
G05 DTD for SNe Ia (models 4/7B). In panel (b) we highlight what happens when we activate the production of Eu in CC–SNe. Solid lines represent models
where Eu is co-produced by CC–SNe (models 4/7BS), while dashed lines represent models where MNS are the sole producers of Eu (models 4/7B). Black
points represents the average [Eu/Fe] in a 0.5 dex wide bin and error bars are 1σ tall.

Figure 11. Brown lines refer to the DTD ∝ t−1 (models 5A/B/BS), green lines refer to the DTD ∝ t−1.5 (models 6A/B/BS). In panel (a) we highlight what
happens when we change DTD for SNe Ia. Solid lines represent models with a DTD for SNe Ia ∝ t−1 (models 5/6A), while dashed lines represent models
with a G05 DTD for SNe Ia (models 5/6B). In panel (b) we highlight what happens when we activate the production of Eu in CC–SNe. Solid lines represent
models where Eu is co-produced by CC–SNe (models 5/6BS), while dashed lines represent models where MNS are the sole producers of Eu (models 5/6B).
Black points represents the average [Eu/Fe] in a 0.5 dex wide bin and error bars are 1σ tall.

5.4 A variable αMNS

CC–SNe seem to provide a way to (partially) reconcile local and
cosmic data. Another possible choice is to relax the assumption of
constancy of the occurrence probability of close binary neutron stars
αMNS. This parameter depends on the physics of the stellar formation
and the efficiency of the common envelope phase in the late stages of
stellar life. Population synthesis models (e.g. Giacobbo & Mapelli
2018a) indicate that metallicity plays an important role. Therefore,
we tested a variation of the MNS occurrence frequency in the best-
fitting model for the SGRB redshift distribution (the 4A, i.e. the
one that uses the DTD derived in this paper with β = −1.5). In
particular, we assumed that αMNS depends on [Fe/H], called ZFe

from now on. All the other parameters are left the same, as reported
in Table 2, and the value for αMNS reported in the table for the model

4A will be indicated as α̃MNS. We tested two dependencies of αMNS

on ZFe:

i. model 4AV1, where αMNS varies as

αMNS(Z) =
{

3α̃MNS ZFe ≤ −1.0

α̃MNS ZFe > −1.0
, (20)

ii. model 4AV2, where αMNS varies as

αMNS(Z) =
{

α̃MNS(1 + 5 ln(−Z)) ZFe ≤ −1.0

α̃MNS ZFe > −1.0
. (21)

The evolution of the parameter αMNS is reported in Fig. 12. For the
primordial gas, the absolute abundance of iron has been set to zero,
and the initial value for αMNS of 27.5 per cent has been chosen in
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Figure 12. The evolution of the αMNS parameter in three different scenarios.
The grey vertical line represents the beginning of star formation in our
simulation of the Milky Way.

order to best fit the observational data. Then, the sharp decrease
of αMNS in the model 4AV2 (black line) is produced by the rapid
increase in metallicity caused by the death of the very first stars.
This procedure is somewhat arbitrary but it is useful to show which
variation of αMNS can reconcile the SGRB cosmic rate with the
[Eu/Fe] versus [Fe/H].

We have verified the ability to reproduce the current GW rate in
the Milky Way and the absolute Eu abundance in the Sun. It happens
that for both models 4AV1 and 4AV2, the predicted current MNS
rate differs less than 0.1 per cent from the value reported in Table 2.
Speaking about the absolute solar Eu abundance, the model 4AV1
predicts a value equal to 3.79 × 10−10 and the model 4AV2 predicts
a value equal to 3.88 × 10−10. Therefore, we can conclude that the
impact of this enhanced early occurrence on the current MNS rate
and on the total amount of Eu in the Galaxy is negligible. On the
other hand, a variable αMNS deeply influences the [Eu/Fe] versus
[Fe/H] relation, as it is possible to see in Fig. 13. In fact, we are able
to recover the decreasing trend in the disc stars, although the shape
of the curve is not optimal (panel b). The model 4AV2 is also able
to reproduce the low-metallicity plateau.

Finally, we have verified the impact of this new hypothesis on
the cosmic rate of MNS. In order to do this, we have supposed
two evolutionary patterns for the metallicity at high redshift. In
the first one, the [Fe/H] evolves as predicted in the chemical
evolution models of elliptical galaxies (De Masi, Matteucci &
Vincenzo 2018). We have supposed a Salpeter (1955) IMF, an
exponential infall on time-scales of 0.5 Gyr and an SFR efficiency
of 20. These parameters produce a transition between primordial
[Fe/H] values to [Fe/H] ∼ −1.0 dex in 80 Myr. Instead in the
second one, the [Fe/H] evolves as predicted for the Milky Way,
taken as representative of the spiral galaxies, on a time-scale
four times larger. The real evolution of the cosmic metallicity is
expected to be intermediate between these two extreme cases. The
results are shown in Fig. 14. The metallicity-dependent models
differ from the non-metallicity dependent one only at very high
redshift. Moreover, at least in case of a rapid chemical evolution,
the predicted MNS rate does not differ too much neither at very early
times. This fact demonstrates that a metallicity dependent αMNS does
not invalidate our derived DTD with respect to the cosmic MNS
rate.

6 C O N C L U S I O N S

In this paper, we have derived a new DTD for MNS starting from
the initial separation and mass distributions of neutron star binary
systems. We have assumed a flat distribution of NS masses and
a power-law distribution for the initial separations, with exponent
β. We have tested four different values for β: 0.9, 0.0, −0.9, and
−1.5, similar to what suggested for the DTD of SNe Ia (Matteucci
et al. 2009) as derived from the double degenerate (DD) model of
Greggio (2005).

We have tested our assumptions on the DTD of MNS and SNe Ia
on the following constraints:

(i) the cosmic SGRB rate;
(ii) the evolution of Eu abundance in the Galaxy, in particular the

[Eu/Fe] versus [Fe/H] relation.

In this context, we have also tested the effect of core-collapse
SNe as producers of Eu, besides MNS. Finally, we have tested a
metallicity-dependent occurrence probability for MNS (the param-
eter αMNS). Our main results can be summarized as follows:

(i) Our derived DTD for MNS with β = −1.5 provides the best
fit to the cosmic SGRB rate (as found by Ghirlanda et al. 2016). Also
our DTD with β = −0.9 and the DTD going like ∝ t−1 give a good
fit. With these three DTDs, the average time-scale of coalescence
of MNS is 300–500 Myr. Shorter time-scales produce too many
events at high redshift (2–2.5), while longer time-scales produce
too few events over the entire range of redshift. This result is in
agreement with the one found by Fong et al. (2017) that suggests a
DTD ∝ t−1 for MNS to explain the proportion of SGRB incoming
from early-type galaxies.

(ii) The other redshift distribution found by Zhang and Wang
(2018) can be reproduced only with an extremely top heavy (i.e. with
a lot of binaries with large separations) initial separation distribution
that corresponds to use our DTD with β = 6.0. By the way, this
extreme DTD cannot explain the Eu abundances in the Milky Way,
independently from the contribution of CC–SNe to the Galactic Eu
abundance.

(iii) When the MNS are the sole producers of Eu in the Galaxy,
the models which better reproduce the [Eu/Fe] versus [Fe/H]
pattern are those with short (<30 Myr) coalescence time-scales, in
particular the constant total delay (stellar lifetime plus coalescence
time) of 10 Myr and the ∝ t−2 distribution, in agreement with
Matteucci et al. (2014) and Côté et al. (2018a). On the other hand,
our derived DTD is unable to reproduce the decreasing trend of
[Eu/Fe] versus [Fe/H] observed in disc stars for reasonable values
of the parameter β.

(iv) When the MNS are the sole producers of Eu in the Galaxy,
their yield should be no more than 4.0 × 10−6 M� per event. Higher
yields overestimate the absolute Eu abundance in the Sun. This is
in agreement with the lower end of the estimations of Evans et al.
(2017) and Troja et al. (2017) in the kilonova AT2017gfo, but much
higher than the estimate of Smartt et al. (2017).

(v) When CC–SNe co-produce Eu under the prescriptions of
Argast et al. (2004; their model SN2050), they become the main
production site and dominate the [Eu/Fe] versus [Fe/H] relation.
This can reconcile the short time-scale required to explain the Eu
abundance in the Milky Way with the longer time-scale required
to explain the SGRB redshift distribution. However, in this case,
the yield of Eu per MNS event is reduced to 1.5 × 10−6 and falls
(slightly) below the range of value found by Evans et al. (2017) and
Troja et al. (2017).
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Figure 13. In these panels we show the effects of a variable MNS occurrence probability αMNS. Models 4AV1 (blue line) and 4AV2 (black line) are variants
of the model 4A (light blue line). In model 4AV1 we have adopted a step function for the αMNS, while in model 4AV2 we have adopted a continuous function.
Both of them make αMNS dependent on metallicity, traced by [Fe/H]. Panel b shows in detail the behaviour of our models at [Fe/H] > −1.0.

Figure 14. The predicted evolution of SGRB rate against the observed
ones. The models shown are the 4A (in light blue) and the 4AV2 (black and
grey lines). In particular, the grey line refers to the sub-model with a [Fe/H]
evolution as predicted for an elliptical galaxy, whereas the black line refers
to the sub-model with a [Fe/H] evolution as predicted for the Milky Way.

(vi) The influence of different DTDs for SNe Ia (at least of
those tested here) on [Eu/Fe] versus [Fe/H] relation seems mostly
negligible, and it is of the order of ∼10 per cent.

(vii) The occurrence probability αMNS found for SGRBs pro-
duces a Galactic rate similar to that found by Kalogera et al. (2004)
from pulsar luminosities (of the order of 1−2 × 10−2). It turns out
αMNS ∼ 10−2, interestingly close to the occurrence probability of
SNe Ia as determined form the cosmic rate of SN Ia in the local
Universe (Cappellaro et al. 2015).

(viii) A metallicity-dependent occurrence probability, αMNS, can
increase the production of Eu at early times and at low [Fe/H] values
(≤−1.0), enabling a DTD with average coalescence time-scales of
300–500 Myr to reproduce both the SGRB redshift distribution and
the [Eu/Fe] versus [Fe/H] relation in the Milky Way, when the MNS
are the sole Eu producers.

In general, allowing for the CC–SNe to form Eu helps reconciling
the necessity of a short time-scale in Eu production with the long

time-scales required for the SGRBs. However, this choice makes
single massive stars the main Eu production site, by contributing
no less than ∼60 per cent to the total Eu present in the Sun,
and this fact is in contrast with the current understanding about
heavy r-process elements nucleosynthesis. On the other hand, a
time decreasing occurrence probability of MNS provides instead
the correct production rate of Eu, without the contribution of CC–
SNe, but this assumption is somewhat arbitrary and needs to be
checked in the future by means of detailed population synthesis
models.
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Côté B. et al., 2018a, preprint (arXiv:1809.03525)
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