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ABSTRACT
We implement the first blind analysis of cluster abundance data to derive cosmological
constraints from the abundance and weak lensing signal of redMaPPer clusters in the Sloan
Digital Sky Survey (SDSS). We simultaneously fit for cosmological parameters and the
richness–mass relation of the clusters. For a flat � cold dark matter cosmological model
with massive neutrinos, we find S8 ≡ σ8(�m/0.3)0.5 = 0.79+0.05

−0.04. This value is both consistent
and competitive with that derived from cluster catalogues selected in different wavelengths.
Our result is also consistent with the combined probes analyses by the Dark Energy Survey
(DES), the Kilo-Degree Survey (KiDS), and with the cosmic microwave background (CMB)
anisotropies as measured by Planck. We demonstrate that the cosmological posteriors are
robust against variation of the richness–mass relation model and to systematics associated
with the calibration of the selection function. In combination with baryon acoustic oscillation
data and big bang nucleosynthesis data (Cooke et al.), we constrain the Hubble rate to be h =
0.66 ± 0.02, independent of the CMB. Future work aimed at improving our understanding of
the scatter of the richness–mass relation has the potential to significantly improve the precision
of our cosmological posteriors. The methods described in this work were developed for use
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in the forthcoming analysis of cluster abundances in the DES. Our SDSS analysis constitutes
the first part of a staged-unblinding analysis of the full DES data set.

Key words: galaxies: clusters: general – cosmological parameters – large-scale structure of
Universe.

1 IN T RO D U C T I O N

Galaxy clusters form from the high-density peaks of the initial
matter distribution. As such, they bear the imprints of the statistical
properties of the matter density field and its growth (for reviews,
see e.g. Allen, Evrard & Mantz 2011; Kravtsov & Borgani 2012).
The abundance of galaxy clusters has been used since the late 1990s
to constrain the mean matter density of the Universe, �m, and the
amplitude of the density fluctuations in terms of σ 8, the present-day
rms of the linear density field in spheres of 8 h−1 Mpc radii (e.g.
Eke et al. 1998; Henry 2000; Borgani et al. 2001; Pierpaoli, Scott &
White 2001; Reiprich & Böhringer 2002; Henry 2004, for early
works). Constraints on σ 8 are especially powerful in combination
with measurements of the amplitude of the matter power spectrum
at high redshift – e.g. from cosmic microwave background (CMB)
data – enabling us to study the growth of density perturbations
over cosmic time. These studies allow us to place constraints on
parameters such as the total neutrino mass, the dark energy equation
of state, and parameters governing modified gravity models.

Current studies using cluster catalogues selected in the X-ray,
optical, and millimetre wavelengths, provide consistent constraints
on σ 8 and �m (e.g. (e.g. Planck Collaboration XXIV 2016b;
Vikhlinin et al. 2009; Mantz et al. 2010, 2015; Rozo et al.
2010; de Haan et al. 2016). These data have been also used in
combination with H0 and baryon acoustic oscillation (BAO) priors
to place competitive constraints on the dark energy equation-of-state
parameter, modification of gravity and neutrino masses (e.g. Planck
Collaboration XXIV 2016b; Mantz et al. 2010, 2015; Burenin &
Vikhlinin 2012; Cataneo et al. 2015; de Haan et al. 2016). Ongoing
– e.g. the Dark Energy Survey (DES),1 the Hyper Suprime-Cam2 –
and forthcoming – the Large Synoptic Survey Telescope,3 Euclid,4

eRosita5 – wide-area surveys aim to use clusters samples with an
order of magnitude more systems than previous analyses in order
to improve upon current constraints.

The most critical difficulty that cluster abundance studies must
confront is the fact that cluster masses are not easily measured,
forcing us to rely on observational proxies that correlate with mass.
Specifically, while it is possible to predict the abundance of dark
matter haloes as a function of mass in an arbitrary cosmology
with per cent level accuracy (e.g. Sheth & Tormen 1999; Tinker
et al. 2008; Crocce et al. 2010; Bocquet et al. 2016; McClintock
et al. 2019b), halo masses themselves are not directly observable. At
present, cosmological constraints from cluster abundance analyses
at all wavelengths are limited by the uncertainty in the calibration
of the relation between the cluster mass and the observable property
used as a mass proxy, be it richness (i.e. count of member
galaxies), X-ray luminosity or the thermal Sunyaev–Zeldovich
signal.

1https://www.darkenergysurvey.org
2http://hsc.mtk.nao.ac.jp/ssp/
3https://www.lsst.org/
4http://sci.esa.int/euclid/
5http://www.mpe.mpg.de/eROSITA

Currently, weak gravitational lensing measurements provide the
gold-standard technique for estimating cluster masses (see e.g.
von der Linden et al. 2014b, for a discussion). The weak lensing
signal, i.e. the tangential alignment of background galaxies around
the foreground cluster due to gravitational lensing, is a well-
understood effect, sensitive to both dark and baryonic matter.
Moreover, in contrast to other techniques (e.g. velocity disper-
sion and hydrostatic mass measurements), weak lensing mass
measurements do not rely on assumptions about the dynamical
state of the cluster. Despite these advantages, many sources of
systematic error do affect this type of measurement, e.g. shear and
photometric redshift biases, halo triaxiality, and projection effects.
These systematics represent a significant amount of the total error
budget of many recent studies (e.g. von der Linden et al. 2014a;
Hoekstra et al. 2015; Melchior et al. 2017; Simet et al. 2017;
Medezinski et al. 2018; Miyatake et al. 2019). Not surprisingly, as
the statistical uncertainty continues to decrease, these systematics
have come to dominate the total error budget (e.g. McClintock
et al. 2019a).

In this work, we combine cluster abundances and stacked weak
lensing mass measurements from the Sloan Digital Sky Survey data
release 8 (SDSS DR8; Aihara et al. 2011) to simultaneously con-
strain cosmology and the richness–mass relation of galaxy clusters.
Our cluster sample is selected using the red-sequence Matched-
filter Probabilistic Percolation algorithm (redMaPPer; Rykoff et al.
2014), and the stacked weak lensing mass estimates are presented
in Simet et al. (2017). The analysis is similar in spirit to that of Rozo
et al. (2010) but with significant updates, particularly with regards to
the modelling of the cluster selection function. Our observables are
the number of clusters and the mean cluster mass in bins of richness
– our mass proxy – and redshift. We explicitly account for the small
cosmological dependence of the recovered weak lensing masses in
our analysis. To avoid confirmation bias, the bulk of the analysis has
been performed blind: the values of the cosmological parameters
sampled by the Monte Carlo Markov Chains (MCMC) were
randomly displaced by an amount that was unknown to us, and were
shifted back only after a broad set of validation tests were passed.
No changes were done to the analysis pipeline post-unblinding.6

This is the first cluster abundance analysis to be performed blind
in the cosmological parameters. The methods presented in this
paper were developed for the forthcoming cosmological analysis of
the DES Y1 redMaPPer cluster catalogue (DES Collaboration, in
preparation).

This paper is organized as follows. In Section 2, we introduce
the data used for this study. In Section 3, we present the model
used to perform the cosmological analysis, including expectation
values for the two observables, modelling of the systematics and
likelihood model. We validate our model by means of synthetic
data in Section 4. We detail our blinding procedure in Section 5.

6Ongoing work for DES has demonstrated that the adopted systematic error
budget was too optimistic. Details will be presented in forthcoming work.
We expect these changes will have only a minor (less than 1σ ) impact on
the current cosmological posteriors.
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Table 1. Summary of the data and systematic corrections adopted in the analysis. We use the same redshift range, 0.1
≤ z ≤ 0.3, for all the richness bins. The second column lists the observed number counts and their uncertainties, the
latter estimated as the square root of the diagonal terms of the best-fitting model covariance matrix (see Section 3.3).
The numbers between parenthesis correspond to the number counts corrected for the miscentring bias factors listed
in the third column (see Section 2.2). The values of the mean cluster mass reported here, log(M̄WL

200,m), assume �m =
0.30. The two uncertainties shown correspond to the statistical and systematic error, respectively. We assume systematic
errors to be fully correlated between the cluster bins. The fifth column lists the slopes that define the cosmological
dependence of the weak lensing mass estimates (equation 1).

�λob; z ∈ [0.1, 0.3] Number counts γ Misc log(M̄WL
200,m) [M� h−1] dlog MWL/d�m

[20, 27.9) 3604 (3711) ± 100 1.030 ± 0.011 14.111 ± 0.024 ± 0.026 −0.65
[27.9, 37.6) 1740 (1788) ± 61 1.028 ± 0.011 14.263 ± 0.030 ± 0.024 −0.66
[37.6, 50.3) 942 (978) ± 41 1.039 ± 0.014 14.380 ± 0.033 ± 0.026 −0.68
[50.3, 69.3) 461 (476) ± 27 1.034 ± 0.015 14.609 ± 0.036 ± 0.028 −0.77
[69.3, 140) 217 (223) ± 18 1.028 ± 0.016 14.928 ± 0.029 ± 0.036 −0.65

The results of our analysis are presented in Sections 6 and 7. Finally,
we conclude in Section 8.

2 DATA

2.1 Cluster and weak lensing catalogues

Both the cluster and weak lensing shear catalogues used in this
analysis are based on the SDSS DR8 (Aihara et al. 2011). A sum-
mary of the data employed in this analysis is presented in Table 1.
Throughout the paper, all masses are given in units of M� h−1,
where h = H0/100 km s−1Mpc−1, and refer to an overdensity of
200 with respect to the mean. We use ‘log’ and ‘ln’ to refer to the
logarithm with base 10 and e, respectively.

We use photometrically selected galaxy clusters identified in
∼ 10 000 deg2 SDSS DR8 with the redMaPPer cluster finding
algorithm (Rykoff et al. 2014). In brief, redMaPPer is a red-
sequence cluster that iteratively self-calibrates a model for red-
sequence galaxies. The observable mass proxy is the cluster
richness, a probabilistic estimate of the total number of galaxies
in the cluster. Typical cluster photometric redshift uncertainties are
σ z/(1 + z) � 0.01 with negligible bias. Our analysis is restricted to
the redshift range z ∈ [0.1, 0.3] to ensure accurate photometry
and a volume-limited catalogue. Only clusters of richness λ ≥
20 are used in our analysis, which ensures that 99 per cent of
the redMaPPer galaxy clusters can be unambiguously mapped to
individual dark matter haloes (Farahi et al. 2016). In this work,
we use v5.10 of the SDSS redMaPPer cluster catalogue (Rozo
et al. 2015).

The weak lensing mass estimates employed in this analysis are a
slight update from those presented in Simet et al. (2017). They rely
on the shear catalogue presented in Reyes et al. (2012), comprising
∼39 million galaxies over ∼ 9000 deg2 of the SDSS footprint.
The effective source density is 1.2 gal arcmin−2. Shear estimates
were derived from the SDSS imaging using the re-Gaussianization
algorithm of Hirata & Seljak (2003) and the appropriately calibrated
responsivity to convert the measured shape distortions into shear es-
timates. The multiplicative shear bias appropriate for this catalogue
was characterized in Mandelbaum et al. (2012, 2013, 2018). The
photometric redshifts for the sources in the shear catalogue were
obtained using the Zurich Extragalactic Bayesian Redshift Analyzer
(Feldmann et al. 2006), and the associated systematic uncertainties
were calibrated in Nakajima et al. (2012).

2.2 Cluster number counts data

Following Simet et al. (2017), we collect our galaxy clusters in
five richness bins and a single redshift bin (see Table 1). The
richness limits of our bins are λob = [20, 27.9, 37.6, 50.3, 69.3,
140]. The two key observational systematics in our analysis are
photometric redshift errors and cluster miscentring. Photomet-
ric redshift uncertainties are forward-modelled as described in
Section 3.1.

We assume that the correct centre of a galaxy cluster is always
coincident with a bright cluster galaxy (though not necessarily the
brightest). This assumption is motivated by the fact that modern
halo finders (e.g. Behroozi, Wechsler & Wu 2013) define the centre
of dark matter haloes as the position of the dominant dark matter
substructure within the halo. This dominant substructure is expected
to host a bright galaxy. redMaPPer identifies the central galaxy
of a cluster via an iteratively self-trained matched-filter algorithm
that combines luminosity and local galaxy density information.
This algorithm is demonstrably superior to centring clusters on the
brightest cluster-member galaxy (Hikage et al. 2018). Nevertheless,
the mis-identification of the cluster centre can still occur. The
uncertainty in the systematic corrections due to cluster miscentring
are very nearly negligible, so rather than forward modelling them,
we have opted for the simpler route of applying a correction to
the observed data vector, and adding the corresponding systematic
uncertainty in the abundances to the covariance matrix of the data
vector.

Our miscentring correction is based on the analyses in Zhang et al.
(2019) and von der Linden et al. (in preparation). To characterize
the probability of a redMaPPer cluster being miscentred, we
use subsamples of redMaPPer clusters with either Chandra or
Swift X-ray imaging. Specifically, we compared the redMaPPer
central galaxies to the X-ray derived cluster centres. Roughly
speaking, in that analysis small �100 kpc offsets are attributed to
miscentring in the X-ray data, while large offsets are attributed
to catastrophic miscentring of redMaPPer clusters. In practice,
the analysis forward-models the observed miscentring distribution.
We found that 71.5 ± 6 per cent of redMaPPer galaxy clusters are
correctly centred. This value does not appear to exhibit a trend with
richness. The result is somewhat lower than but consistent with the
estimate of Hikage et al. (2018) on the basis of the weak lensing
profile of redMaPPer clusters.

The radial offset distribution of the miscentred clusters is char-
acterized using a two-dimensional Gaussian.
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We characterize the impact of cluster miscentring on the cluster
richness by measuring the richness of the clusters at the second
most likely central galaxy. As expected, miscentring systematically
underestimates cluster richnesses, albeit with some scatter. Both the
bias and scatter increasing as the radial offset increases (Zhang et al.
2019).

Having characterized (i) the fraction of miscentred clusters;
(ii) the distribution of radial offsets of miscentred clusters; and
(iii) how the richness of a cluster changes when it is miscentred
by a given radial offset, we can readily estimate the impact of
miscentring on the cluster abundance function. Specifically, we
assigned richness values to haloes in a numerical simulation using
the model of Costanzi et al. (2018). The assigned halo richnesses
are then scattered using our centring model. We compute the ratio
γ Misc = Ncent/Nmiscent between Ncent, the number of clusters in a
bin in the absence of miscentring, and Nmiscent, the number of
clusters in a bin including the impact of miscentring. We apply the
γ Misc ∼ 1.030 (see Table 1) systematic correction to the number
of galaxy clusters we observe in our Monte Carlo experiment,
and add the corresponding covariance matrix to the covariance
matrix of the cluster counts. The uncertainty associated with cluster
miscentring in the abundance function is ≈ 1.3 per cent. That is,
cluster miscentring is subdominant to Poisson noise in all richness
bins, and easily subdominant to the uncertainty in our calibration
of the richness–mass relation.

The shaded regions in the top-left panel of Fig. 1 shows the
miscentring-corrected cluster abundances. The width of the regions
along the y-axis is set by the diagonal entries of the corresponding
covariance matrix, whereas their width along the x-axis reflects the
width of the richness bin. Our best-fitting model is shown as the
blue points. The bottom-left panel shows the corresponding per cent
residuals.

2.3 Weak lensing cluster masses

We calculate the mean mass of clusters in a richness bin using the
stacked weak lensing mass profiles of the clusters as described in
Simet et al. (2017). These profiles are modelled using a Navarro,
Frenk, and White profile (NFW; Navarro, Frenk & White 1997),
accounting for the effects of cluster miscentring, halo triaxiality,
and projection effects. The concentration of the best-fitting NFW
profiles is modelled using the mass–concentration relation presented
in Diemer & Kravtsov (2015) with a free parameter for the
amplitude.

In this work, we follow the methodology of Simet et al. (2017)
to estimate the mean cluster mass in each bin with three critical
exceptions:

(i) We correct for the 3 ± 3 per cent multiplicative shear bias due
to undetected blends that was first identified in Mandelbaum et al.
(2018).

(ii) We update the centring priors employed in the weak lensing
analysis based on the work of Zhang et al. (2019) and von der
Linden et al. (in preparation) described above. The radial offset of
miscentred clusters is described by a two-dimensional Gaussian of
width τ = (0.29 ± 0.04)Rλ, where Rλ is the cluster radius assigned
by redMaPPer.

(iii) Rather than simultaneously modelling all galaxy clusters to
derive a scaling relation that describes all richness bins, we estimate
the mean mass of each individual richness bin.

The mean cluster mass in a bin is estimated by fitting a scaling
relation with scatter to each bin independently, and using the poste-

riors to calculate the mean mass. The result is weakly dependent on
the assumed scatter in the mass–richness relation, with a degeneracy
of the form log〈M|λ, σ 〉 = log M + 0.06σ 2

ln M|λ. That is, varying
σ ln M|λ over the range [0.0, 0.5] modifies the recovered log-masses
by an amount ranging from 0 to 0.015. We adopt a fiducial correction
of 0.007 ± 0.007.

Following the analysis described in Simet et al. (2017, see section
5.5), we further estimate the systematic uncertainty in our weak
lensing masses due to modelling the lensing profile with a pure
NFW halo, without accounting for a two-halo term, or due to devi-
ations from the NFW profile (e.g. Diemer & Kravtsov 2014). The
recovered biases for each of our richness bins varies from 2 per cent
on the low-mass end to 3 per cent on the high-mass end. We apply
these corrections to our data, and assign a systematic uncertainty
on this correction equal to half the magnitude of the correction.

Since our final cosmological constraints are limited by systematic
uncertainties in mass calibration, we summarize our observational
error budget in Table 2. For details of how these are determined, we
refer the reader to Simet et al. (2017). Our results are summarized
in Table 1, where we collect the best weak lensing estimates for the
mean mass of the galaxy clusters in each richness bin. The logarithm
of the mean mass, log M̄ , for each of our five richness bins is shown
in the top-right panel of Fig. 1, along with the best-fitting model
from our cosmological analysis. The bottom-right panel shows the
corresponding residuals.

As in Simet et al. (2017), we characterize the dependence of the
recovered weak lensing masses on �m via a simple power law,

log M̄WL(�m) = log M̄WL
∣∣
�m=0.3

+
(

d log MWL

d�m

)
(�m − 0.3) .

(1)

The slopes have been obtained by fitting equation (1) to the weak
lensing masses estimated assuming a grid of fiducial �m values
ranging from �m = 0.24 to �m = 0.36 while setting �� = 1 − �m.
The resulting slopes are listed in Table 1, and are used in our
cosmological analysis to rescale log M̄WL at each step of the MCMC
by the appropriate �m value.7

3 TH E O RY A N D M E T H O D S

In what follows, all quantities labelled with ‘ob’ denote quantities
inferred from observation, while quantities labelled with ‘true’
indicate intrinsic halo properties. P(Y|X) denotes the conditional
probability of Y given X.

3.1 Expectation values

3.1.1 Base model

Let �λob
i denote richness bin i, and �zob

j denote the redshift
bin j. The expectation value of the number of galaxy clusters
N (�λob

i , �zob
j ) is given by

〈N (�λob
i , �zob

j )〉 =
∫ ∞

0
dztrue �mask(ztrue)

dV

dztrued�
(ztrue)

×〈n(�λob
i , ztrue)〉

∫
�zob

j

dzob P (zob|ztrue, �λob
i ),

(2)

7Our posterior extends to matter densities below �m = 0.24. We verified a
posteriori that the linear matter density scaling extends to �m = 0.15.
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Figure 1. Observed (shaded area) and best-fitting model (dots) of cluster number counts (left-hand panel) and mean cluster masses (right-hand panel) in the
five richness bins considered. The model predictions have been computed as described in Section 3 using the best-fitting values derived from our analysis.
The y extent of the shaded areas is given by the square root of the diagonal terms of the corresponding covariance matrix. The lower panels show the per cent
residual (left) and the residual (right) of our best-fitting model to the data.

Table 2. Error budget for the weak lensing mass calibration data used in our cosmological analysis. The ‘Gaussian
equivalent’ error for top-hat systematics refers to the square root of the variance of the top-hat prior of the appropriate
effect. For instance, a Gaussian prior for shear and photo-z biases of ±2.8 per cent has the same variance as a top-hat prior
of ±5 per cent. The statistical error quoted in the table refers to the uncertainty in the amplitude of the mass–richness
relation. The statistical uncertainty on any individual mass estimate is larger.

Source Associated error

Shear and photo-z bias 6.5 per cent top-hat (3.8 per cent Gaussian equivalent)
Source blending 3.9 per cent top-hat (2.3 per cent Gaussian equivalent)
Cluster triaxiality and projections 3 per cent Gaussian
Cluster centring ≤ 1 per cent
Modelling systematics 2.0 per cent Gaussian (richness dependent)

Scatter corrections 1.6 per cent Gaussian
Total systematic error 6.0 per cent Gaussian
Statistical error 4.8 per cent Gaussian

Total 7.7 per cent

where dV/(dztrued�) is the comoving volume element per unit
redshift and solid angle, and �mask(ztrue) is the effective survey area
at redshift z. The survey area depends on redshift because galaxy
clusters are not point-like: whether a cluster is formally within the
survey area or not depends not just on the location of the galaxy
cluster in the sky, but also on how the survey boundaries (including
star holes and any other masked regions) intersect the projected area
of the cluster in the sky. To estimate the survey area, we randomly
place clusters in the sky, and compute the fraction of the galaxy
cluster that does not fall within the survey footprint. The footprint of
the cluster survey is defined by the collection of all points for which
at least 80 per cent of the cluster falls within the photometric survey
boundaries. This 80 per cent criterion is the fiducial choice for all
redMaPPer runs, and is chosen as a compromise between requiring
clusters not be heavily masked, and losing a minimal amount of

area due to masking. In principle, this masking criteria implies that
the survey area depends on cluster richness (via the scale radius Rλ),
but we find this dependence to be negligible (≤ 1 per cent over the
redshift range z ∈ [0.1, 0.3] employed in this study).

The second integral of equation (2) accounts for the uncertainty
in the photometric redshift estimate. We model P (zob|ztrue,�λob

i ) –
the probability of assigning to a cluster at redshift ztrue a photometric
redshift zob – with a Gaussian distribution having mean ztrue and a
redshift and richness-dependent variance. The variance is set by
the reported photometric redshift uncertainty in the redMaPPer
cluster catalogue. Specifically, we fit a third-order polynomial to
the redMaPPer photometric redshift errors as a function of redshift
for galaxy clusters in each of our five richness bins (we find
this is sufficient to fully describe our data). Photometric redshift
uncertainties range from ≈0.005 at z ≈ 0.15 to ≈0.014 at z ≈ 0.3,
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with richer clusters having somewhat smaller photometric redshift
uncertainties than low-richness clusters.

As shown in fig. 9 of Rykoff et al. (2014), the redMaPPer
photometric redshifts are excellent: they are nearly unbiased, and
the reported photometric redshift uncertainties are both small and
accurately describe the width of the photometric redshift offsets
relative to the spectroscopic cluster redshifts (where available).
Using the specific cluster sample employed in this work (λ ≥ 20,
z ∈ [0.1, 0.3]), we evaluate the systematic bias of the redMaPPer
photometric redshift by fitting a Gaussian distribution to the redshift
offset zλ − zspec, where zλ is our photometric cluster redshift
estimate, and zspec is the spectroscopic redshift of the central galaxy
assigned to the cluster (when available). We find a mean bias of
0.002, i.e. zλ = zspec + 0.002. Likewise, from a Gaussian fit to the
distribution of scaled errors (zλ − zspec)/σ z we find that the reported
photometric redshift uncertainties in redMaPPer should be boosted
by a factor of 1.014. In both cases, the statistical uncertainties
in the estimates are negligible. We have verified that the above
systematic are unimportant by running two versions of our analysis,
one without applying these corrections, and one after applying
these corrections. The resulting posteriors are nearly identical. For
specificity, from here on out we apply the above corrections, that
is, we set 〈zob|ztrue〉 = ztrue + 0.002 and increase the photometric
redshift errors by a factor of 1.014.

Finally, 〈n(�λob
i , ztrue)〉 in equation (2) is the expected number

density of haloes in the richness bin �λob
i . This quantity is given

by

〈n(�λob
i , ztrue)〉 =

∫ ∞

0
dM n(M, ztrue)

∫
�λob

i

dλob P (λob|M, ztrue),

(3)

where P(λob|M, ztrue) denotes the probability that a halo of mass M
at redshift ztrue is observed with a richness λob (see Section 3.1.2)
and n(M, ztrue) is the halo mass function that is assumed to follow
the form of Tinker et al. (2008):

n(M, z) = 3

4πR3(M)

d ln σ (M)−1

dM
f Tinker(σ (M), z). (4)

Several studies have explored how the mass function from N-body
simulations should be extended in order to incorporate the effects of
massive neutrinos (e.g. Brandbyge et al. 2010; Castorina et al. 2014;
Villaescusa-Navarro et al. 2014; Liu et al. 2018). A common finding
of these studies is that massive neutrinos play a negligible role in
the collapse of dark matter haloes, while they suppress the growth
of matter density fluctuations on scales smaller than the neutrino
free-streaming length. Here, we account for these effects following
the prescription of Costanzi et al. (2013): (i) we neglect the density
neutrino component in the relation between mass and scale – i.e.
M ∝ (ρcdm + ρb)R3 – and (ii) use only the cold dark matter and
baryon power spectrum components to compute the variance of the
density field, σ 2(M).

We can use similar arguments to the ones used to derive
equation (2) to compute the expectation value for the mean mass of
galaxy clusters within a specific richness and redshift bin. This is
given by

〈M̄(�λob
i , �zob

j )〉 =
[

〈M tot(�λob
i , �zob

j )〉
〈N (�λob

i , �zob
j )〉

]
, (5)

i.e. the ratio of the expected total mass inside the bin over the
total number of clusters inside said bin (equation 2). Note that
observationally, we stack ��, not M, and since the two are not

linearly related to each other – �� is proportional to the integrated
mass density profile – it is not necessarily the case that the recovered
weak lensing mass is identical to the mean mass of the clusters.
However, we use simulations to calibrate the relation between the
recovered weak lensing mass and the mean mass in a bin to properly
account for this effect.

The total mass of all clusters in a bin is calculated via

〈M tot(�λob
i , �zob

j )〉 =
∫ ∞

0
dztrue �mask

dV

dztrued�
(ztrue)

×〈Mn(�λob
i , ztrue)〉

∫
�zob

j

dzob P (zob|ztrue),

(6)

where the total mean mass per unit volume in the ith richness bin is
given by

〈Mn(�λob
i , ztrue)〉 =

∫ ∞

0
dM Mn(M, ztrue)

×
∫

�λob
i

dλob P (λob|M, ztrue). (7)

In practice, the integrals over the observed redshift in the
numerator and denominator of equation (5) are each weighted by
the appropriate weak lensing weight per clusters wWL(z), where w

is the mean weight applied to sources as a function of redshift –
w ∝ 〈�−1

crit〉2/(1 + z)2 – times the number of sources per cluster. We
have found including this weight changes the predicted masses by
less than 1 per cent. Nevertheless, our fiducial result includes this
additional redshift weighting.

3.1.2 The observed richness–mass relation

Turning to the probability distribution P(λob|M, ztrue), in addition
to the stochastic nature of the relation between cluster richness and
halo mass, the observed richness of a galaxy cluster is subject to
projection effects. Indeed, there are now multiple lines in support of
the existence of projection effects in the SDSS redMaPPer cluster
catalogue (Farahi et al. 2016; Busch & White 2017; Zu et al. 2017;
Sohn et al. 2018). Following Costanzi et al. (2018), we model
P(λob|M, ztrue) as the convolution of two probability distributions:

P (λob|M, ztrue) =
∫ ∞

0
dλtrue P (λob|λtrue, ztrue)P (λtrue|M, z) . (8)

The first term inside the integral accounts for projection effects
and observational noise in the richness estimates. The second term
inside the integral accounts for the stochastic relation between halo
mass and the intrinsic halo richness λtrue.

Below, we start describing the model adopted for the intrinsic
richness–mass relation P(λtrue|M, z). The probability distribution
P(λob|λtrue, ztrue) was the focus of a detailed numerical study in a
companion paper (Costanzi et al. 2018). A brief overview of that
work is presented in the subsequent subsection.

The intrinsic richness–mass relation: Different parametrizations
for P(λtrue|M, z) have been proposed in the literature, typically
assuming a lognormal distribution with the expectation value for the
richness modelled as a power law (see e.g. Rozo et al. 2010; Mana
et al. 2013; Murata et al. 2018). In this analysis, we opt for a model
that more closely resembles halo occupation distribution functions
typically used to study galaxy clustering (Berlind & Weinberg
2002; Bullock, Wechsler & Somerville 2002). A recent review of
halo occupation modelling and other approaches to modelling the
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galaxy–halo connection can be found in Wechsler & Tinker (2018)
(see also e.g. the discussion in section 4 of Jiang & van den Bosch
2016 and appendix D of Reddick et al. 2013). The total richness of
a halo of mass M is given by λtrue = λcent + λsat(M), where λcent

is the number of central galaxies (either zero or unity), and λsat is
the number of satellite galaxies in the cluster (Kravtsov et al. 2004;
Zheng et al. 2005). We model the expectation value of λcent as a step
function, 〈λcent|M〉 = 1 for M ≥ Mmin, and 〈λcent|M〉 = 0 otherwise.
While in practice these step functions have a finite width, we expect
all clusters in our sample to have masses M � Mmin, so that the
step-function approximation should be easily sufficient.

Turning to the satellite galaxy population, it has long been known
that the scatter in the number of satellites is super-Poissonian at large
occupations numbers (Boylan-Kolchin et al. 2010), but is close to
Poissonian otherwise. More recently, the number of satellites has
been shown to be sub-Poissonian at very low occupancy (Mao,
Williamson & Wechsler 2015; Jiang & van den Bosch 2016). Since
we are interested in galaxy clusters, we ignore this small deviation
from Poisson statistics at low N in our analysis. We add variance to
a Poisson distribution by modelling P(λsat|M) as the convolution of
a Poisson distribution with a Gaussian distribution. Operationally,
this is equivalent to assuming the number of satellite galaxies in a
halo of mass M is a Poisson realization of some expectation value μ,
where μ exhibits halo-to-halo scatter, e.g. due to formation history
(Mao et al. 2015). We model the halo-to-halo scatter as a Gaussian
with variance

√
Var(μ) = σintr〈λsat|M〉. This additional halo-to-halo

scatter enables us to recover the super-Poisson scatter in the halo
occupation at large occupancy numbers.

In detail, the expectation value of the satellite contribution to λtrue

is given by (Kravtsov et al. 2004; Zehavi et al. 2011)

〈λsat|M〉 =
(

M − Mmin

M1 − Mmin

)α

, (9)

Here, Mmin is the minimum mass for a halo to form a central galaxy,
while M1 is the characteristic mass at which haloes acquire one
satellite galaxy. Our parametrization enforces 〈λsat|M〉 = 0 when M
≤ Mmin. Finally, the expectation value of the Gaussian component
is set to zero, while the variance of the Gaussian term is set to
σ intr〈λsat|M〉.

The convolution of a Poisson distribution with a Gaussian dis-
tribution does not have an analytic closed form. However, we have
found that a skew-normal distribution is an excellent approximation
to the resulting distribution. Its model parameters – skewness
and variance – depend on 〈λsat|M〉 and σ intr, and are obtained
by fitting the skew-normal model to the appropriate Gaussian–
Poisson convolution (see Appendix B). By creating a lookup table
for these parameters, we can avoid having to numerically compute
the convolution of the Poisson and Gaussian distributions, signif-
icantly increasing the computational efficiency of our model. In
Section 6.2, we discuss how our choice of parametrization impacts
the cosmological constraints derived from the SDSS redMaPPer
sample.

Modelling observational scatter in richness estimates: The
scatter in the distribution P(λob|λtrue) is due to observational scatter,
i.e. noise on the estimated richness values due to photometric noise,
uncertainties in background subtraction, and projection/percolation
effects. The latter refers to the boosting of the richness of a
cluster due to member galaxies of other structures along the line
of sight that are mistakenly associated with it (projections), and the
resulting loss of associated member galaxies for the masked clusters
(percolation). In Costanzi et al. (2018), we developed a formalism
that quantitatively characterizes these effects, demonstrated the

Figure 2. P(λob|λtrue) as a function of the true richness at redshift z = 0.2.
The inset shows a section of P(λob|λtrue) for λtrue = 25 (dashed line in the
main plot). Note the non-Gaussian tail to high richness due to projection
effects, and the low-richness tail due to percolation effects.

accuracy and precision of this formalism, and combined it with
numerical simulations to calibrate the impact of projection effects
and observational noise in the SDSS DR8 redMaPPer catalogue.
Here, we provide a succinct summary of the conclusions from that
work, and refer the reader to Costanzi et al. (2018) for details.

The background subtraction and photometric noise terms are
Gaussian, and characterized through random injection of synthetic
clusters into the data. Projection and percolation are characterized
through the use of numerical simulations. The projection noise
is characterized as an exponential, and the percolation noise is
modelled through partial masking of a cluster richness.

Fig. 2 shows the distribution P(λob|λtrue) as a function of λtrue at
redshift z = 0.2. The inset shows a cross-section of the distribution
for λtrue = 25. The three main components of the distribution are
obvious by eye: a Gaussian kernel due to observational noise, a large
tail to high richness due to projection effects, and a low-richness
tail due to percolation effects.

We note that the calibration of P(λob|λtrue) depends on the
input cosmology and richness–mass relation parameters adopted
to generate the synthetic cluster catalogue. However, we verified
in Costanzi et al. (2018) that this assumption has no impact on
the posterior of the cosmological parameters. In Section 6, we
explicitly test the robustness of our cosmological constraints to
different calibrations of P(λob|λtrue).

3.2 Mass function systematics

The modelling of the cluster counts and mean cluster masses
depends on the halo mass function. Here, we use the Tinker
et al. (2008) halo mass function. Tinker et al. (2008) report their
mass function formula to be accurate at the ≈ 5 per cent level,
but we do not have a robust estimate of the associated systematic
uncertainty as a function of mass. Moreover, a number of studies
comparing different halo finders and fitting functions suggest a
systematic uncertainty of the order of 10 per cent (e.g. Knebe et al.
2013; Hoffmann, Bel & Gaztañaga 2015; Despali et al. 2016). To
characterize the systematic uncertainty in the halo mass function in
dark matter only simulations we introduce two nuisance parameters
q and s relating the Tinker et al. (2008) mass function to the true
mass function via

n(M, z) = n(M, z)Tinker
(
s log(M/M∗) + q

)
, (10)
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where the pivot mass is set to log(M∗) = 13.8 h−1 M�. Note that if
q = 1 and s = 0, then the halo mass function is given by the Tinker
et al. (2008) formula.

We set the priors on q and s using the ensemble of simulations
developed as part of the Aemulus project (DeRose et al. 2019). This
is a set of 40 N-body simulations spanning a range of cosmologies
in the redshift range 0.0 < z < 1.0. Each simulation box has a length
L = 1050 h−1 Mpc and contains 14003 particles. The particle mass
is cosmology dependent, and averages ≈ 3.5 × 1010 h−1 M�. The
cosmologies sampled by the simulation spans the 4σ confidence
interval from WMAP (Hinshaw et al. 2013) and Planck (Planck
Collaboration XIII 2016a) in combination with BAO data (Anderson
et al. 2014) and the Union 2.1 Super-Nova (SN) data (Suzuki
et al. 2012). Halo catalogues were generated using the ROCKSTAR
algorithm (Behroozi et al. 2013). Further details of the simulation
data as well as the convergence tests done to ensure the reliability
of these simulations are presented in DeRose et al. (2019).

We fit the simulation halo abundance data for the nuisance
parameters s and q at each snapshot of each of the 40 simulations
by computing the ratio nSims(M, z)/n(M, z)Tinker. Next, we model the
distribution of (s, q) values as Gaussian, and fit for the mean values
and covariance matrix describing the scatter of (s, q) across all 320
snapshots. We find s̄ = 0.037 and q̄ = 1.008, with a covariance
matrix:

C(s̄, q̄) =
[

0.00019 0.00024

0.00024 0.00038

]
. (11)

The above matrix accounts for both statistical uncertainties in the
recovered s and q means, and fluctuations in s and q across simula-
tions. The variance of q corresponds to a 6 per cent uncertainty in
the amplitude of the halo mass function, consistent with the quoted
precision in Tinker et al. (2008). The above covariance matrix and
best-fitting values define the bivariate Gaussian priors for s and q
in our cosmological analysis. Future analyses will benefit from the
significantly higher precision that can be achieved using emulators
(e.g. McClintock et al. 2019b).

The above analysis does not account for the impact of baryons
on the halo mass function. Several recent works have estimated
the impact of baryonic feedback on total masses of haloes and,
thereby, the mass function (e.g. Cui, Borgani & Murante 2014;
Velliscig et al. 2014; Bocquet et al. 2016; Springel et al. 2017).
These works all find that baryonic impact decreases with increasing
radial aperture. For the specific mass definition we adopt, namely a
200 overdensity criterion relative to mean, the impact of AGN-based
full physics is modest for massive (M � 1014 h−1 M�) haloes. In the
IllustrisTNG simulation, full physics leads to a mean enhancement
of ∼ 3 per cent while multiple methods analysed by Cui et al. (2014)
produce mainly decrements in M200c of roughly similar magnitude.
Due to the current uncertainty in modelling baryonic effects, we
defer its inclusion into the error budget of the halo mass function to
future work. For now, we simply note that a 3 per cent systematic
uncertainty in the halo mass function is already subdominant to
the precision of the Tinker mass function, as characterized by our
model parameters s and q.

3.3 Covariance matrix

Having specified the expectation values for our observables (cf.
Section 3.1) we need to define the covariance matrix of our data
vector in order to fully specify the likelihood function. Here, we
assume that the abundance and weak lensing data are uncorrelated.

This assumption is well justified: the weak lensing error budget is
strongly dominated by shape noise, and the dominant systematic
is the overall multiplicative shear and photo-z bias of the source
catalogue. None of these errors affect the abundance data, so the
two are clearly uncorrelated.

Our Gaussian likelihood model takes the form

L(d|θ ) ∝ exp
[− 1

2 (d − m(θ ))T C−1 (d − m(θ ))
]

√
(2π )Mdet(C)

. (12)

where C is the total covariance matrix detailed below, and d
and m(θ ) are, respectively, the data vectors (see Table 1) and the
expectation values for the number counts and log M (equations 2
and 5, respectively).

In reality, the likelihood for the abundance data is a convolution
of a Poisson error on the counts and a Gaussian error due to density
fluctuations within the survey area (e.g. Hu & Cohn 2006; Takada &
Spergel 2014). Such a convolution does not have an analytic closed
form. Here, we take care to ensure that all of our richness bins are
well populated – our least populated richness bin contains over 200
galaxy clusters – so that the Poisson component can be adequately
modelled with a Gaussian distribution. Consequently, our likelihood
for the abundance data can be modelled as a Gaussian with a total
covariance matrix having three distinct contributions:

(i) A Poisson contribution due to the Poisson fluctuation in the
number of haloes at given mass in the survey volume.

(ii) A sample variance contribution due to the fluctuations of the
density field in the survey volume.

(iii) A contribution due to uncertainty in the miscentring correc-
tions detailed in Section 2.2.

The Poisson and sample variance contributions to the covariance
matrix are computed analytically at each step of the chain to properly
account for their dependence on cosmology and model parameters.
At high richness, the Poisson contribution dominates, with sample
variance becoming increasingly important at low richness (Hu &
Kravtsov 2003). The analytical expression used to derive these two
terms is provided in Appendix A, and it is validated by comparing
it to Jackknife estimates of the same derived from simulated
catalogues (see Fig. 3).

Turning to the uncertainty in the weak lensing mass estimates,
we use the posteriors from the stacked weak lensing analysis
described in Section 2.3 (see Table 1). These posteriors are found
to be nearly Gaussian in the log. The errors include not just the
statistical uncertainty of the measurement, but also systematic
uncertainties due to shear and photo-z biases (multiplicative shear
bias), cluster projections, halo triaxiality, and miscentring effects.
The overall shear and photo-z multiplicative bias is shared across
all richness bins, so this systematic is modelled as being perfectly
correlated across bins. The mass error in each bin associated with
the multiplicative bias is estimated as in Melchior et al. (2017,
section 5.7) and McClintock et al. (2019b, section 5.6).

In summary, our likelihood:

(i) Is Gaussian in the abundances, and includes Poisson, sample
variance, and miscentring uncertainties.

(ii) Is lognormal in the weak lensing masses, as per the posteriors
of Simet et al. (2017). It also accounts for the covariance due to
shared multiplicative shear and photo-z biases, blended sources,
and cluster triaxiality and projection effects. These systematics are
assumed to be perfectly correlated across all richness bins.

(iii) Has no covariance between the abundance and weak lensing
data. We expect this to be an excellent approximation.
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Figure 3. Comparison between the analytically derived variance for the
number counts and the one derived from the mock catalogue. Different
colours correspond to the different number of patches used to estimate
the Jackknife covariance matrix. Error bars are estimated from the jackknife
covariance matrices itself assuming the jackknife realizations to be Gaussian
distributed.

The posteriors from our analysis are fully marginalized over all
sources of systematic uncertainty described above.

4 VALIDATION TESTS

We validate our likelihood framework by placing cosmological
constraints from a synthetic cluster catalogue whose cosmology
and richness–mass relation is known a priori. The mock data are
generated starting from an N-body simulation run with 14003 dark
matter particles in a box of comoving size L = 1050 Mpc h−1. The
code used is L-GADGET, a variant of GADGET (Springel 2005). The
simulation assumes a flat-� cold dark matter (�CDM) model with
�m = 0.286, h = 0.7, �b = 0.047, ns = 0.96, and σ 8 = 0.82. Light-
cone data, including a halo catalogue down to M200m = 1012.5h−1M�,
is constructed from the simulation on the fly. The halo finder is
rockstar (Behroozi et al. 2013). For further details, see DeRose
et al. (2019); this is one realization of the L1 box described in that
work.

We build a synthetic cluster catalogue as follows. First, each halo
is assigned a richness λtrue drawn from the P(λtrue|M, z) distribution
detailed in Section 3.1. We set our fiducial model parameters to: α =
0.704, log Mmin = 11.0, log M1 = 12.12, and σ ln λ = 0.25. These
fiducial values have been chosen by inverting the mass–richness
relation of Simet et al. (2017). The assigned richnesses are then
modified to account for observational noise plus projection effects
as described in Costanzi et al. (2018, see their section 3.2).

Given this synthetic cluster catalogue, we compute our observable
data vectors. The cluster counts are measured using the same
binning scheme as for the real data (see Table 1). The synthetic
weak lensing masses are set to the mean halo mass in each richness
bin. We also add a lognormal noise to the mean weak lensing masses
by drawing from the covariance matrix described in Section 3.3. To
mimic the fact that the weak lensing masses are estimated assuming
�m = 0.3 while the simulation use the fiducial value �m = 0.286,
we invert equation (1) to arrive to our final mock data vector:

log M̄WLMOCK = log M̄WL
∣∣
�m=0.286

−
(

d log MWL

d�m

)
(0.286−0.3).

Fig. 4 shows the constraints obtained by analysing a realization
of our synthetic data set with our pipeline. This analysis varies
the same parameters and assumes the same priors as the real data
analysis (see Section 6). It successfully recovers the true values of
the parameters of our synthetic data set (red lines in the triangle
plots). Because this test relied on a single simulation, we could not
use it to validate the width of our posteriors.

5 B L I N D I N G A N D U N B L I N D I N G

In order to avoid confirmation biases our cosmological analysis
was performed blinded. By ‘blinded’, we mean that the following
protocols were followed:

(i) The cosmological parameters in the MCMC were randomly
displaced before being stored, and the random displacement was
stored in binary (i.e. a not-human-readable format).

(ii) All modelling choices – specifically which set of cosmologi-
cal models and models for the scaling relations we would consider
– were made before unblinding. In this work, we chose to focus
exclusively on flat �CDM cosmologies with massive neutrinos.
Our choice to let neutrino mass vary follows the practice of the
DES Year 1 combined probe analysis (DES Collaboration 2018).

(iii) The set of scaling relation models considered in our anal-
ysis was fully specified before unblinding. These are detailed in
Section 6.2.

(iv) All priors were set before unblinding
(v) The metrics for consistency with external data sets were

selected before unblinding. Here, we distinguish between data sets
with which we intend to combine our analysis and other large-scale-
structure data sets that constrain the S8 ≡ σ 8(�m/0.3)1/2 parameter.
For the latter, we consider analyses A and B to be consistent if
their central values of S8 deviate by no more than 3σ tot, where
σ 2

tot = σ 2
A + σ 2

B . For the former, consistency between two data
sets A and B was established by testing whether the hypothesis
pA − pB = 0 is acceptable (see method ‘3’ in Charnock, Battye &
Moss 2017). Here, pA and pB are the model parameters of interest
as constrained by data sets A and B, respectively. The two data sets
were deemed to be consistent if the point pA − pB = 0 falls within
the 99 per cent confidence level of the multidimensional distribution
of pA − pB . If two data sets were found to be inconsistent with one
another, we did not consider the combined analysis. We note that in
order for this test to be the sharpest possible test, it is important to
restrict one-self to parameter sub-spaces that are well constrained
in both data sets. To that end, in all cases we restrict the parameter
space for comparison to the set of parameters whose posterior is at
most half as uncertain as the prior of each individual data set.

(vi) No comparison of our cosmological constraints to any other
data sets were performed prior to unblinding.

The weak lensing analysis upon which our work relies was not
performed blind (Simet et al. 2017), though our forthcoming anal-
ysis using data from the DES data will have benefited from a blind
weak lensing analysis. Importantly, all relevant weak lensing priors
– specifically the multiplicative shear bias, photometric redshift cor-
rection, source dilution, etc – were finalized well before the advent
of our particular analysis: no tuning of any input catalogue was
done in response to the weak lensing analysis of Simet et al. (2017)
or our own cosmological analysis. Finally, we note that while some
people in our team were involved with the cosmological analysis
of the maxBCG clusters catalogue, the development of redMaPPer
was not based on inferences from maxBCG clusters, so no prior
information was ‘baked in’ into the construction of the catalogue.
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Figure 4. 68 per cent and 95 per cent confidence contours obtained running our pipeline on mock data. The input parameter values used to generate the
simulation and the mock data catalogue are shown in red. The dashed lines shown in the 1D marginalized distributions (diagonal of the triangle plot)
correspond to the 0.025, 0.16, 0.84, and 0.975 quantiles of the distributions. Not included in this plot is the parameter Mmin, which is prior dominated.

Our unblinding protocol was defined by the set of requirements
detailed below.

(i) Our inference pipeline had to successfully recover the input
cosmology in a synthetic data set. For details, see Section 4.

(ii) All SDSS-only chains (including alternative models) were
run demanding the fulfilment of the Gelman–Rubin criteria
(Gelman & Rubin 1992) with R − 1 ≤ 0.03 being our convergence
criteria.

(iii) We had to demonstrate systematics uncertainties in our
model for P(λob|λtrue, z) did not appreciably bias our cosmological

posteriors. To this end we run our analysis using an extreme model
for P(λob|λtrue, z) that neglect the contribution from correlated
structures to the observed richness (random-point-injection model,
see Section 6.2). We adopted half of the systematic shift in the
values of the cosmological parameters between our fiducial model
and this extreme model as our estimate of the associated systematic
uncertainty. Note this definition implies that the extreme random-
point-injection model is consistent with our fiducial model at 2σ

despite being clearly extreme. We demanded that these systematic
shifts be less than the corresponding statistical uncertainties.
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(iv) We explicitly verified that the priors of all parameters that
we expected would be well-constrained a priori are not informative,
that is the posteriors of such parameters did not run into the priors
within the 95 per cent confidence region. In case this condition was
not fulfilled we planned to extend the relevant prior ranges until
the requirement was met. Parameters that are prior dominated (i.e.
their posterior runs into the prior) are Mmin, σ intr, s, q, h, �bh2,
�νh2, and ns. All of these were expected to be prior dominated a
priori, and all prior ranges were purposely conservative. Of these,
the two that might be most surprising to the reader are Mmin and
σ intr, as these parameters help govern the richness–mass relation.
However, notice that Mmin is the mass at which haloes begin to host
a single central galaxy; since our cluster sample is defined with the
richness threshold λ ≥ 20, the mass regime of haloes that host a
single galaxy is not probed by our data set. Likewise, our data vector
is comprised only of the mean mass of galaxy clusters in a given
richness bin, a quantity that is essentially independent of the scatter
in the richness–mass relation (see McClintock et al. 2019a).

(v) The χ2 of the data for our best-fitting model must be
acceptable. To this end we considered the best-fitting χ2 distribution
recovered from 100 mock data realizations generated from the
best-fitting model of the data. We assumed these 100 trials were
distributed according to a χ2 distribution, and fit for the effective
number of degrees of freedom. The number of degrees of freedom
is not obvious a priori due to the presence of priors in the analysis.
We considered the χ2 of our data to be not acceptable if the
probability to exceed the observed value was less than 1 per cent,
after marginalization over the posterior for the effective number of
degrees of freedom. We emphasize that verifying an acceptable χ2

does not unblind the cosmological parameters. While our model
did indeed have an acceptable χ2 (see Section 6.1 for details), our
plan was to revisit our model and covariance matrix estimation
procedures in the case of an unacceptable χ2 value. This proved
unnecessary.

(vi) Finally, this paper underwent internal review by the collabo-
ration prior to unblinding. All members of the DES cluster working
group, as well as all internal reviewers, agreed that our analysis was
ready to unblind before we proceeded.

No changes to the analyses were made post-unblinding. Work
performed as part of the DES Y1 cluster cosmology analysis has
demonstrated that the selection effects corrections applied here were
smaller than those observed in simulations. Details will be presented
in that paper (DES collaboration, in preparation). Updated SDSS
constraints will be presented in a forthcoming work (Kirby et al., in
preparation) that further adds multiwavelength data to the analysis.
In the absence of the additional multiwavelength data, we expect
these additional corrections will result in only minor (less than 1σ )
changes in the posteriors.

6 R ESULTS

6.1 SDSS cluster abundances and weak lensing data

We model the abundance of galaxy clusters and their weak lensing
masses assuming a flat �CDM cosmological model, allowing for
massive neutrinos. The full set of cosmological parameters we
consider is: ln (1010As), �m, ns, �bh2, h, and �νh2. Neutrinos are
included assuming three degenerate neutrino species. We adopt the
same priors as in the DES Year 1 analysis of galaxy clustering and
weak lensing (DES Collaboration 2018), with the exception of h,
where we adopt the slightly more restrictive prior h = 0.7 ± 0.1.

There are also two parameters (s and q) associated with systematic
uncertainties in the halo mass function, and 4 parameters governing
the richness–mass relation : Mmin, M1, α, and σ intr. The priors for all
parameters are summarized in Table 3. We have explicitly verified
that increasing the range of the priors adopted for the richness–
mass relation parameters does not adversely impact the recovered
cosmological constraints.

The result of our MCMC fitting procedure is shown in Fig. 5,
while the marginalized posterior values are reported in Table 3.
Parameters not shown in Fig. 5 and without a quoted posterior in
Table 3 are those whose posterior is equal to their prior. Also shown
in the table is the posterior for the so-called cluster normalization
condition parameter S8 ≡ σ 8(�m/0.3)0.5. In practice, the σ 8–�m

degeneracy in our cosmology analysis corresponds to

σ8

(
�m

0.3

)0.47

= 0.80 ± 0.04. (13)

Nevertheless, unless otherwise specified in the text, from this point
on we will focus on the cluster normalization condition S8 ≡
σ 8(�m/0.3)0.5 as it has become a standard parameter in the literature.

A comparison of our best-fitting model with the data is shown in
Fig. 1. The χ2 of our best-fitting model is χ2 = 5.71. To assess the
goodness of the fit we generated 100 mock data vectors from our
best-fitting model of the data and, for each of them, we recovered
the best-fitting χ2 value. Assuming a χ2 distribution for the 100
trials we fit for the effective number of degree of freedom, finding
νeff = 7.56 ± 0.37 (see Fig. 6). This corresponds to a probability to
exceed of p = 0.64 ± 0.04, thus the model provides an acceptable
description of the data.

We wish to determine whether the error budget in the cosmologi-
cal parameter S8 is dominated by uncertainties in the abundance data
or the weak lensing data. To do so, we first compute the predicted
abundance and weak lensing data using our best-fitting model.
We then run two additional chains using the predicted expectation
values as a synthetic data vector. The key difference between the
two chains is that for one we reduce the abundance covariance
matrix by a factor of 100, while for the other chain we reduce the
covariance matrix of the weak lensing data by a factor of 100. By
comparing the cosmological posteriors for these two chains we can
determine if there is one observable that dominates our error budget.
In both cases the corresponding posterior on S8 have an error bar
σS8 = 0.03 (see left-hand panels of Fig. 7), demonstrating that both
observables contribute in comparable ways to the total error budget
of S8.

The balance between weak lensing errors and abundance uncer-
tainties is surprising in light of the fact that all analyses to date
have been dominated by uncertainties in the calibration of the
mean of the observable–mass relation. Nevertheless, this feature
of our results can be easily understood. The left-hand panel of
Fig. 7 demonstrates that there is a strong degeneracy between S8

and σ intr. Unlike previous analysis, which have incorporated well-
motivated simulation-based priors on the scatter of the observable–
mass relation, our analysis adopts a very broad prior on the scatter of
the richness–mass relation. This broad prior reflects the difficulty
inherent to predicting properties of the richness–mass relation a
priori. Since the scatter parameter impacts the detailed shape of
the abundance function – larger scatter leads to flatter abundance
functions – exquisitely precise measurements of the abundance
function can break the degeneracy between scatter and S8, leading
to significant improvements in the S8 constraints. Conversely, even
modest constraints of the scatter parameter σ intr can break the S8–
σ intr degeneracy, leading to tighter constraints.
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Table 3 Model parameters and parameter constraints from the joint analysis of redMaPPer SDSS cluster abundance and weak lensing mass estimates. In the
fourth column, we report our model priors: a range indicates a top-hat prior, while N (μ, σ ) stands for a Gaussian prior with mean μ and variance σ 2. In
the fifth column are listed the maximum likelihood values of the 1D marginalized posterior along with the 1σ errors. Parameters without a quoted value are
those having marginalized posterior distribution corresponding to their prior. Note that systematic uncertainties in the lensing masses are contained in their
covariance, and are therefore not explicitly modelled in the likelihood. For the priors on the nuisance parameters s and q we report here only the square root of
the diagonal terms of the covariance matrix defined in equation (11). The distribution characterizing the impact of observational noise, projection effects, and
percolation includes several additional parameters that are held fixed. The systematic uncertainty associated with uncertainties in these parameters is estimated
by repeating our analysis using an extreme set of values for these parameters, as estimated using random clusters in the SDSS (Costanzi et al. 2018). Because
these parameters are not marginalized over in our chains, they are not included in this table. We stress that the impact of the associated systematic error is
negligible relative to the recovered width of our cosmological posteriors.

Parameter Description Prior Posterior

�m Mean matter density [0.0, 1.0] 0.22+0.05
−0.04

ln (1010As) Amplitude of the primordial curvature perturbations [ − 3.0, 7.0] 3.97+0.67
−0.47

σ 8 Amplitude of the matter power spectrum − 0.91+0.11
−0.10

S8 = σ 8(�m/0.3)0.5 Cluster normalization condition − 0.79+0.05
−0.04

log Mmin [M� h−1] Minimum halo mass to form a central galaxy (10.0,14.0) 11.2 ± 0.2

log M1 [M� h−1] Characteristic halo mass to acquire one satellite galaxy log (M1/Mmin) ∈ [log (10), log (30)] 12.42+0.16
−0.13

α Power-law index of the richness–mass relation [0.4, 1.2] 0.65+0.05
−0.07

σ intr Intrinsic scatter of the richness–mass relation [0.1, 0.8] <0.4

s Slope correction to the halo mass function N (0.037, 0.014) −
q Amplitude correction to the halo mass function N (1.008, 0.019) −
h Hubble rate N (0.7, 0.1) −
�bh2 Baryon density N (0.02208, 0.00052) −
�νh2 Energy density in massive neutrinos [0.0006, 0.01] −
ns Spectral index [0.87, 1.07] −

We demonstrate the impact that a modestly precise prior can
have on our cosmological posteriors by redoing our analysis while
imposing a flat prior σ intr ∈ [0.1: 0.3]. The corresponding posterior
for S8 is S8 = 0.77 ± 0.03. If we now repeat our sensitivity
analysis, and shrink the weak lensing mass errors, the width of the S8

posterior decreases to σS8 = 0.01, while decreasing the abundance
errors while holding the weak lensing errors fixed has a negligible
impact on the posterior. These trends are illustrated in the right-
hand panel of Fig. 7. Evidently, external constraints on the scatter
of the richness–mass relation of redMaPPer clusters are extremely
valuable from a cosmological perspective.

6.2 Robustness to assumptions about the richness–mass
relation

Fig. 5 shows that there is strong covariance between cosmological
parameters and parameters governing the richness–mass relation.
Consequently, one may ask to what extent are our cosmological
constraints sensitive to the detailed assumptions we have made
about the richness–mass relation. To address this question, we have
repeated our analysis with a range of richness–mass relation models
as summarized in Fig. 8. The models considered are as follows:

(i) A model that allows for the intrinsic scatter σ intr to vary with
mass via

σintr(M) = σintr,0(M/(M1 − Mmin))β . (14)

(ii) A model that neglects the perturbations on the observed
richness due to correlated structures. To this end we set P(λob|λtrue,
ztrue) equal to the probability distributions recovered from injecting
synthetic clusters at random positions in the survey mask. This
calibration provides a very strict lower limit on the scatter of
λob due to projection effects: clusters do contain correlated large-
scale structure. The difference in the posteriors of the cosmological

parameters between our fiducial run and the random-point-injection
model places a strict upper limit on the systematic associated with
our modelling of projection effects.

(iii) A model in which the richness–mass relation is a simple
power law – 〈λtrue|M〉 = λ0(M/1014.344)α – and P(λtrue|M) is a
lognormal distribution in which the total scatter it the sum of a
Poisson-like term and an intrinsic scatter term – σ 2

ln λtrue = σ 2
intr +

(〈λtrue|M〉 − 1)/〈λtrue|M〉2.
(iv) The richness–mass relation model of Murata et al. (2018).

This model assumes P(λob|M) is lognormal, the mean richness–
mass relation is a power law, and the intrinsic scatter is mass-
dependent, and given by σ intr(M) = σ intr,0 + βln (M/2.2 × 1014).
According to Murata et al. (2018) all integrals are truncated at
Mmin = 1012 h−1 M�. Reassuringly, when we mirror the analysis of
Murata et al. (2018) and fix our cosmological parameters to Planck
Collaboration XIII (2016a) we reproduce their results despite
significant methodological differences in how the weak lensing data
is incorporated into the likelihood.

As can been seen in Fig. 8 our cosmological posteriors are all
consistent with one another. It is clear that the more restrictive
parametrizations (e.g. lognormal + power-law) result in somewhat
tighter constraints. Notably, our standard result – which we believe
is the most appropriate model – results in the most conservative
posteriors. In particular, we see that opening up the freedom of
a mass-dependent intrinsic scatter does not negatively impact the
posterior on S8. We also note that our random-point-injection model,
which grossly underestimates the impact of projection effects, had
a small impact on the posterior of the intrinsic scatter, modifying
instead the best-fitting value for the slope of the richness–mass
relation, a degeneracy that should be easily broken via multiwave-
length analyses of the redMaPPer clusters. Finally, we note that the
Murata-like parametrization has the largest impact on our posteriors,
with the systematic shift in S8 being comparable to the width of
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Figure 5. Marginalized posterior distributions of the fitted parameter. The 2D contours correspond to the 68 per cent and 95 per cent confidence levels of the
marginalized posterior distribution. The dashed lines on the diagonal plots correspond, respectively, to the 2.5th, 16th, 84th, and 97.5th percentile of the 1D
posterior distributions. The description of the model parameters along with their posterior are listed in Table 1. Not included in this plot is the parameter Mmin,
which is prior dominated.

the posterior. We will address the origin of this shift in the next
section.

6.3 The observable–mass relation for redMaPPer clusters

The left-hand panel of Fig. 9 shows the observed richness–mass
relation 〈λob|M〉 for our fiducial model at the mean sample redshift
z = 0.22. The error bars reflect the posterior of the mean relation
at each mass. These are computed as follows: for each point in
our chains we evaluate 〈λob|M〉 along a grid of masses. The mean
and variance of 〈λob|M〉 across the chain are then recorded. In
the left-hand panel of Fig. 9, we use these quantities to plot the
68 per cent confidence interval for the posterior of the mean of the
richness–mass relation. The central panel of Fig. 9 is computed in a

similar way, only now we show the posterior for the scatter Var1/2

(λob|M).8

8A reader might find useful to have simple power-law fits to the data shown
in Fig. 9. We provide such fits below:

〈λob|M〉 = 30.0

(
M

3 × 1014 [M�h−1]

)0.75

Var1/2(λob|M) = 14.7

(
M

3 × 1014 [M�h−1]

)0.54

.

The fits correspond to the best-fitting relations. No errors are provided since
these are meant to be ‘quick-look’ references. Detailed quantitative analyses
should rely on the full posterior of our model, which will be made available
at http://risa.stanford.edu/redmapper/ when the paper is published.
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Figure 6. Goodness of fit analysis. The blue histogram shows the distribu-
tion of the best-fitting χ2 values recovered from 100 mock data realizations
generated from the best-fitting model of the data. The red histogram in the
inset plot shows the posterior distribution for the effective number of degrees
of freedom obtained by fitting a χ2 distribution to the above 100 χ2 values.
The red solid line represents the χ2 distribution for the best-fitting model
(νeff = 7.56), while the vertical dashed line corresponds to the χ2 value of
the data.

For comparison we include in the two panels the richness–mass
relation and scatter derived in Murata et al. (2018), who analysed
this sample of clusters using the same weak lensing shear catalogue
we employed. There are significant methodological differences
between the two analyses. Specifically, Murata et al. (2018)

(i) use emulators instead of an analytic model for the weak
lensing profile of clusters, effectively holding the concentration
of the galaxy clusters fixed. They also place no priors on the
miscentring parameters;

(ii) adopt a lognormal model for P(λob|M);
(iii) adopt a power-law relation for both the mean and variance

of λob at fixed mass.

Despite methodological differences, the two results are remark-
ably similar over the mass range probed by the survey (M �
1013.5 M� h−1, see below). It is especially impressive how well
the scatter found in Murata et al. (2018) agrees with our finding,
confirming their argument that the mass-trend in the scatter of the
richness–mass relation they recovered is due to contamination from
projection effects.

There is, however, one notable difference between our results
and those of Murata et al. (2018). Fig. 7 of Murata et al. (2018)
shows that the mass distribution for clusters in the richness bin λob

∈ [20, 30] extends to masses as low as 1012 h−1 M�, the mass cut
imposed in that analysis. Fig. 10 shows the posterior of the mass
distribution for clusters in our analysis, as labelled. Unlike Murata
et al. (2018), we do not see any evidence for a population of low-
mass (M ≤ 1013 h−1 M�) clusters. We believe the large number
of low-mass haloes in the Murata et al. (2018) analysis is driven
by the combination of a lognormal model whose scatter increases
with decreasing mass, and a model that ignores the central/satellite
dichotomy at low masses. Our model avoids this problem by (1)
enforcing the appropriate Poisson limit in the limit of low λtrue

and (2) developing a simulation-based model for projection effects
that adequately characterizes non-Gaussian tails in the distribution
P(λob|λtrue).

As an independent check of our conclusions, we estimate the halo
masses of individual redMaPPer clusters using the stellar content of

the redMaPPer central galaxy. Specifically, we fit the photometric
SDSS data using a stellar population synthesis model to derive
the stellar mass of each of the assigned redMaPPer central galaxies
(Moustakas et al., in preparation). We then use the UniverseMachine
algorithm (Behroozi et al. 2018) to determine the relation between
the stellar mass of the central galaxy of a halo and the mass of the
parent halo. Using the relation between halo mass and the stellar
mass of the central galaxy, we can readily assign a mass estimate
to each redMaPPer cluster. We find that the stellar mass estimates
of 95 per cent of redMaPPer central galaxies correspond to a halo
mass of 2 × 1013 h−1 M� or higher. While the stellar mass to halo
mass relation of central galaxies is relatively uncertain, this result
disfavours the existence of a significant population of low-mass
(M ≤ 1013 h−1 M�) redMaPPer clusters, in agreement with our
results.

We suspect that the tail of low-mass haloes recovered in the
Murata et al. (2018) model is responsible for the ∼1σ shift in S8

seen in Fig. 8 when adopting a power-law lognormal model for the
richness–mass relation (i.e. the Murata-like analysis): the artificial
boost in the abundance of low-richness clusters is compensated by a
decrease in the predicted halo abundance, which is in turn achieved
by lowering the cluster normalization condition.

Finally, the right-hand panel of Fig. 9 shows the mass-selection
function of the galaxy clusters selected in our experiment. That is,
it shows the probability P(M, z) that a halo of mass M at redshift
z is included in the SDSS redMaPPer sample. This probability is
given by

P (M, z) =
∫ ∞

20
dλob P (λob|M, z). (15)

The probability P(M, z) is evaluated at a grid of masses for each
point in the chain, and the corresponding mean and uncertainty is
calculated. Using linear interpolation over this grid, we find that the
mass value for which the detection probability is 1/2 is log M =
14.24[M� h−1].

Using our best-fitting cosmological model we can combine the
halo mass function with our recovered richness–mass relation to
arrive at our best-fitting mass–richness relation. In particular, for
each point in the chain we can readily compute 〈M|λob〉 along a grid
of richnesses, and calculate mean and variance of these quantities
at each λob value as we sample our posterior. We estimated the
mean mass at a grid of values, and computed the corresponding
covariance matrix, and then fit the data with a power law to arrive
at the corresponding mass–richness relation. The resulting mass–
richness relation is shown in Fig. 11 along with the relation derived
in Simet et al. (2017). The posteriors for the mass–richness relation
in our analysis is

〈M|λ〉 = 1014.45±0.03

(
λ

40

)1.29±0.09

, (16)

where we used only λob > 20 data points (black dots in the figure)
to fit the power-law relation. This is to be compared to the Simet
et al. (2017) relation, 〈M|λ〉 = 1014.42 ± 0.04(λ/40)1.3 ± 0.1. Note that
the exponent 14.42 has been obtained correcting the best-fitting
value 14.37 derived in Simet et al. (2017) assuming �m = 0.30
via equation (1) using the mean �m value derived in this analysis.
Moreover, we expect a small difference in amplitude due to the
updates to our multiplicative shear bias model and the redMaPPer
centring fraction. All together, these corrections should boost the
amplitude of the mass–richness relation by ≈ 6 per cent, in good
agreement with our results.
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Figure 7. Assessment of the error budget on S8 associated with our two observables: cluster abundance data and weak lensing mass estimates. Left-hand
panels: Comparison of the (S8, σ intr) constraints derived in our reference model (grey contours) and rescaling the weak lensing data (red contours) or the
number counts (blue contours) covariance matrix by a factor 0.01. Right-hand panels: Same as the left-hand panels but including a flat prior on the scatter
parameter: σ intr ∈ [0.1: 0.3]. See the text for additional details and discussion.

Figure 8. Comparison of the 68 per cent confidence regions for �m, σ 8, and S8 derived assuming different model for P(λob|M) (see Section 6.2). The shaded
area corresponds to the constraints derived using our reference model.

7 C O M PA R I S O N TO EX T E R NA L DATA SE T S

Our analysis allows us to place the constraint S8 = 0.79+0.05
−0.04. A

comparison of our baseline result (grey shaded area) to several other
constraints from the literature can be seen in Fig. 12. To estimate
the level of tension between two analyses A and B we consider the
quantity: TA,B = |�S8|/σ tot, where . According to our consistency
criterion (see item (v) in Section 5) all the measurements of S8

from the external data sets we considered are consistent with the
one derived in this analysis (�S8 < 3σ tot). The most significant
difference comes with respect to the cluster constraints from the
Atacama Cosmology Telescope cluster sample (Hasselfield et al.

2013), though the significance of this difference is still below 2σ tot.
As for the Planck DR18 CMB S8 constraint, the significance of the
difference between the two results is only 1.1σ tot.9

We planned to combine the SDSS redMaPPer cluster abundances
constraints with two distinct external data sets, provided that these
data sets were consistent with our results (see item (vii) in Section 5).
Namely we considered:

9The significance of the difference between our S8 posterior and that of the
Planck 2015 analysis is 1.2σ tot.
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Figure 9. Observable–mass relation and mass-selection function of the redMaPPer catalogue assuming our reference richness–mass relation model (equation 9)
at the mean sample redshift z = 0.22. Left-hand panel: Expectation value for the observed richness as a function of mass. Central panel: Scatter of λob –
Var1/2(λob|M) – as a function of mass. Right-hand panel: Detection probability as a function of cluster mass. The dashed vertical line correspond to the mass
at which the detection probability is 50 per cent (log M50 per cent = 14.24[M� h−1]). The blue area corresponds to the 68 per cent confidence interval derived
for the different quantities in this work. For comparison, the results obtained in Murata et al. (2018) are shown in yellow in the two left-hand panels.

Figure 10. Distribution of halo mass for clusters in each of the five richness
bins employed in this work, as labelled. The width of the bands correspond
to the 68 per cent confidence interval of the distribution as sampled from our
posterior.

(i) BAO data from multiple galaxy surveys, specifically the Six
Degree Field Galaxy Survey (6dF; Beutler et al. 2011), the SDSS
DR 7 Main galaxy sample (Ross et al. 2015), and data from the
Baryon Oscillation Spectroscopic Survey (Alam et al. 2017).

(ii) CMB data from Planck satellite, including low l polarization
data, from the 2015 data release (hereafter Planck DR15; Planck
Collaboration XIII 2016a).

When combining with BAO data we replace the Gaussian prior on
h by a flat prior, while when combining with CMB data we relax all
the informative priors on cosmological parameters (i.e. h, �b h2, and
�ν h2, see Table 3) and add the optical depth τ as a free parameter.

According to the protocol detailed in Section 5, both data sets
passed the consistency criterion required to perform the combined
analysis with the SDSS data. Specifically, for the combination of
the BAO and SDSS data sets we checked for consistency between
�m posteriors, finding the point pSDSS − pBAO = 0 to lie within
the 96.5 per cent confidence level of the pSDSS − pBAO distribution.
As for the consistency between Planck DR15 CMB and SDSS data
sets we considered the parameters sub-space (�m, σ 8), for which

Figure 11. Mass–richness relation derived from the redMaPPer SDSS
sample combining cluster abundance and weak lensing data (blue area).
The data points show the mean mass at a given richness, 〈M|λob〉, derived
from the posterior distributions of our reference model (see the text for
details). In analogy with the analysis of Simet et al. (2017) only the black
points (λob > 20) are used to fit the mass–richness relation. For comparison
the mass–richness relation derived in Simet et al. (2017) is shown in
yellow.

we found the point pSDSS − pCMB = 0 to fall within the 85 per cent
confidence level distribution of pSDSS − pCMB.10

Fig. 13 shows the 2D marginalized contours for each of the
above experiments in the S8–�m–h parameter sub-space (left-hand
panels), as well as the posterior for a joint clusters + BAO,
and clusters + BAO + Planck analysis (right-hand panels). The
corresponding 1D marginalized posterior are listed in Table 4.

10At the time of performing this analysis the latest Planck DR18 likelihood
is not publicly available. However, the latest Planck results (Planck Col-
laboration VI 2018) are consistent with the previous data release (Planck
Collaboration XIII 2016a) (see Fig. 13 for a comparison). According to
our consistency criterion, SDSS is consistent also with Planck DR18;
specifically we find the pSDSS − pPlanck18 = 0 point to lie within the
82 per cent confidence distribution of pSDSS − pPlanck18.
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Figure 12. Comparison of the 68 per cent confidence level constraint on S8

derived from our baseline model (shaded grey area) with other constraints
from the literature: red error bars for cluster abundance analyses, blue error
bars for weak lensing and galaxy clustering analyses and purple for the
CMB constraint. From the bottom to the top: MAXBCG from Rozo et al.
(2010); WtG from Mantz et al. (2015); ACT SZ from Hasselfield et al. (2013)
(BBN+H0 + ACTcl(dyn) in the paper); SPT SZ from de Haan et al. (2016);
Planck SZ from Planck Collaboration XXIV (2016b) (CCCP + H0+BBN
in the paper); KiDs-450 + GAMA from van Uitert et al. (2018); KiDs-
450 + 2dFLens from Joudaki et al. (2018); DES Y1 3 × 2 from DES
Collaboration (2018); Planck CMB from Planck Collaboration XIII (2016a)
(DR15); and Planck Collaboration VI (2018) (DR18). Note that all the
constraints but those from DES Y1 3 × 2 and Planck CMB have been
derived fixing the total neutrino mass either to 0 or to 0.06 eV.

The combination of galaxy clusters data and BAO measurements
results in a precise measurement of the Hubble parameter, h =
0.66 ± 0.02. This value is in excellent agreement and compet-
itive with those derived from Planck DR15 CMB data alone
h = 0.66+0.02

−0.03. By contrast, the posterior of h is in 2.7σ tension
with the one derived by the SH0ES collaboration using Type Ia
supernovae data, h = 0.732 ± 0.017 (Riess et al. 2016), and in
2.1σ tension with the recent strong-lensing based measurement
h = 0.725+0.021

−0.023 presented in Birrer et al. (2019).
The further inclusion of Planck DR15 data significantly improve

the constraints on all the cosmological parameters considered.
Specifically, the errors on �m, σ 8, and h are reduced compared
to the SDSS + BAO analysis by a factor of 4, 3, and 2, respectively.
Nevertheless, the low-redshift Universe contributes a significant
amount of new information: the errors on �m, σ 8, and h for the joint
analysis are reduced relative to the Planck DR15-only constraints
by a factor of 3.6, 2, and 3, respectively.

It is also interesting to investigate the impact that the Planck
cosmological information has on the parameters governing the
richness–mass relation of the redMaPPer clusters. The error on
α is reduced from σα = 0.06 to σα = 0.03, while the error
on log M1 goes from σlog M1 = 0.09 to σlog M1 = 0.02. The factor
of four improvement in the log M1 posterior after adding Planck
data suggests that the error budget for mass calibration in cluster
abundance studies needs to be reduced from the present ≈ 8 per cent
to ≈ 2 per cent for Planck to add no information to the cluster
abundance constraint on S8. This value can be compared to the
5 per cent mass calibration achieved by the DES collaboration in
McClintock et al. (2019b).

Remarkably, neither the BAO nor the Planck data sets improve
the posterior on the intrinsic scatter. This may seem surprising

given our earlier discussion on the degeneracy between S8 and σ intr:
if tightening the scatter prior improves the S8 posterior, why does
tightening S8 not improve the scatter posterior? The resolution is
evident from Fig. 7: the Planck data tightens S8 around the value
S8 = 0.83. This S8 value cuts across the mild S8–σ intr degeneracy
in such a way that the full range of σ intr values is sampled. Had the
Planck data favoured either a higher or lower S8, the posterior on
σ intr would have been reduced.

Finally, we find the addition of cluster data has only a modest
impact on the posterior on

∑
mν from the combination of Planck and

BAO data. To explore whether future cluster abundance analyses are
likely to result in significant improvements we ran chains adopting
unrealistically tight 1 per cent priors on the amplitude and slope
of the richness–mass relation, as well as a σ intr ≤ 0.3 prior on
the scatter. Even in this overoptimistic scenario, clusters had only
a minor impact on the posterior for

∑
mν . This is not entirely

unexpected given the small redshift range probed by our cluster
catalogue and the fact that the abundance function is only directly
sensitive to (1) �cdm + �b and (2) the amplitude of the dark matter
and baryons power spectrum (e.g. Costanzi et al. 2013). While
some sensitivity to

∑
mν at a given redshift remains via the volume

term in the abundance prediction, the sensitivity to neutrino mass
at fixed �cdm + �b and primordial power spectrum amplitude, As,
is relatively mild.

8 SU M M A RY A N D C O N C L U S I O N

We have performed a joint analysis of the abundance and weak
lensing mass measurements of the redMaPPer clusters identified
in the SDSS DR 8 (Aihara et al. 2011) to simultaneously con-
strain cosmology and the richness–mass relation parameters. The
cosmological sample consists of 6964 clusters having richness
λob ≥ 20 in the redshift range 0.1 < z < 0.3. For the weak
lensing mass estimates we employed the results of the stacked weak
lensing analysis performed by Simet et al. (2017), which achieved
a 7.7 per cent precision including both statistical and systematic
uncertainties (see Table 2). Our analysis is the first cluster abundance
study to be performed while blinded to the recovered cosmological
parameters. All the modelling choices and validation tests were
made before unblinding the cosmological results. We also verified
that our cosmological posteriors are robust to assumptions made
about the form and parametrization of the richness–mass relation
and systematics associated with the calibration of projection effects
(see Fig. 8).

Assuming a flat �CDM model with massive neutrinos, and
including modest H0 and big bang nucleosynthesis (BBN) priors
(Cooke et al. 2016), we found S8 = 0.79+0.05

−0.04. Our result is in
agreement with those obtained by other cluster abundance studies,
as well as with constraints derived from the DES Y1 3 × 2
analysis (DES Collaboration 2018) and Planck DR18 CMB data
(Planck Collaboration VI 2018). The error budget on S8 is not
dominated by a single set of observables; while mass calibration
uncertainties are typically the dominant source of error in cluster
abundance studies, the uncertainty in the scatter of the richness–
mass relation degrades the constraining power of our sample.
Since the detailed shape of the abundance function is sensitive
to the scatter, the error budget of the abundance data impacts
our S8 posterior at a level comparable to that from our mass-
calibration uncertainty. Future analyses that accurately measure the
scatter in the richness–mass relation – e.g. from multiwavelength
observations of redMaPPer clusters – will have a significant impact
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Figure 13. 68 per cent and 95 per cent confidence level constraints in the (S8, �m, h) plane. Left-hand panel: Comparison of the constraints derived from the
different data sets considered in this work: Planck DR15 (blue), BAO (grey) and SDSS clusters (red). The BAO contours are obtained including the flat prior
�ν h2 ∈ [0.0006, 0.01], as in the SDSS cluster analysis. Also shown for comparison the latest Planck results [(Planck Collaboration VI 2018); dashed black
lines]. Right-hand panel: 68 per cent and 95 per cent confidence contours obtained from the combination of the SDSS cluster sample with BAO data (magenta)
and from the combination of SDSS clusters, BAO, and Planck data (orange). For comparison, the blue contours show the constraints derived from Planck
CMB data alone. Note the different scales between the left-hand and right-hand panels.

Table 4. Parameter constraints from the combination of our analysis of the SDSS redMaPPer cluster abundances with BAO and Planck CMB data sets (see
the text for details). For reference here are also reported the constraints derived from Planck DR15 CMB and low l polarization data (Planck Collaboration
XIII 2016a), BAO data (Beutler et al. 2011; Ross et al. 2015; Alam et al. 2017), and SDSS data alone.

Data sets �m σ 8 h S8 log Mmin log M1 α σ intr

Planck15 0.328+0.039
−0.026 0.81+0.03

−0.05 0.662+0.019
−0.028 0.841 ± 0.026 − − − −

BAO 0.373 ± 0.053 − 0.694 ± 0.033 − − − − −
SDSS 0.22+0.05

−0.04 0.91+0.11
−0.10 − 0.79+0.05

−0.04 11.2 ± 0.2 12.42+0.16
−0.13 0.65+0.05

−0.07 <0.4

SDSS + BAO 0.316 ± 0.036 0.78 ± 0.06 0.662+0.019
−0.022 0.792+0.039

−0.037 11.38 ± 0.17 12.63 ± 0.09 0.76 ± 0.05 <0.2

SDSS + BAO + Planck15 0.316+0.010
−0.008 0.81 ± 0.02 0.671+0.006

−0.008 0.829+0.022
−0.020 11.42 ± 0.15 12.65 ± 0.02 0.76 ± 0.03 <0.2
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on the cosmological conclusions that can be drawn from optical
cluster samples.11

Having ascertained the statistical consistency of our data set
with Planck DR15 CMB data and BAO priors, we combined the
SDSS cluster abundance analysis with these two external data sets.
From the joint analysis of SDSS and BAO data we obtain �m =
0.32 ± 0.04, σ 8 = 0.78 ± 0.06, and h = 0.66 ± 0.02. These
constraints are consistent with and of comparable size to the CMB
constraints from Planck data. The further inclusion of the Planck
DR15 data improves the precision of the parameters S8, h, and α by
a factor of 2 and log M1 by a factor of 4.5. Adding clusters data to
Planck + BAO has a negligible impact on the posterior of the sum of
the neutrino masses,

∑
mν . This conclusion holds for local cluster

surveys even if cluster mass calibration uncertainties decrease to
the percent level. Table 4 summarizes the posteriors of the SDSS
clusters after combining with the BAO and Planck DR15 external
data sets.

We have also compared our posteriors on the richness–mass
relation to other analyses. In particular, we find that our posterior for
the richness–mass relation is in excellent agreement with the results
of Murata et al. (2018), except for the lowest richness bin. That
work claims ≈ 10 per cent of the clusters in our lowest richness bin
have masses M ≤ 1013 h−1 M�, whereas we find all our clusters
have mass M � 2 × 1013 h−1 M�. We argue that this difference
is driven by a theoretical systematic associated with the model
adopted in Murata et al. (2018), rather than systematic uncertainties
inherent to the data. The stellar mass of the central galaxies in
our clusters is consistent with this interpretation. The otherwise
excellent agreement between our work and that of Murata et al.
(2018) is notable given the significant methodological differences
between the two works.

In short, our results are best summarized by saying that the
SDSS cluster abundance data is consistent with the best-fitting flat
�CDM cosmology from Planck. Our results are also consistent
with but have somewhat larger errors than current state-of-the-
art analysis combining the auto- and cross-correlations of galaxies
and shear (e.g. DES Collaboration 2018; Joudaki et al. 2018; van
Uitert et al. 2018; see Fig. 12). Future analyses that reduce the
mass-calibration uncertainties, combined with measurements of the
scatter of the richness–mass relations, will make cluster abundances
studies competitive with these combined-clustering results. The first
demonstration of this coming power will be the upcoming analysis
of the DES Y1 data set (DES collaboration, in preparation).
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(IEEC/CSIC), the Institut de Fı́sica d’Altes Energies, Lawrence
Berkeley National Laboratory, the Ludwig-Maximilians Universität
München and the associated Excellence Cluster Universe, the
University of Michigan, the National Optical Astronomy Obser-
vatory, the University of Nottingham, The Ohio State University,
the University of Pennsylvania, the University of Portsmouth,
SLAC National Accelerator Laboratory, Stanford University, the
University of Sussex, Texas A&M University, and the OzDES
Membership Consortium.

This study is based in part on observations at Cerro Tololo Inter-
American Observatory, National Optical Astronomy Observatory,
which is operated by the Association of Universities for Research
in Astronomy (AURA) under a cooperative agreement with the
National Science Foundation.

The DES data management system is supported by the Na-
tional Science Foundation under Grant Numbers AST-1138766
and AST-1536171. The DES participants from Spanish institu-
tions are partially supported by MINECO under grants AYA2015-
71825, ESP2015-66861, FPA2015-68048, SEV-2016-0588, SEV-
2016-0597, and MDM-2015-0509, some of which include ERDF
funds from the European Union. IFAE is partially funded by the
CERCA program of the Generalitat de Catalunya. Research leading
to these results has received funding from the European Research
Council under the European Union’s Seventh Framework Program
(FP7/2007-2013) including ERC grant agreements 716762, 240672,
291329, and 306478. We acknowledge support from the Australian

MNRAS 488, 4779–4800 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/488/4/4779/5533340 by U
niversita degli Studi di Trieste user on 05 N

ovem
ber 2020



4798 M. Costanzi et al.

Research Council Centre of Excellence for All-sky Astrophysics
(CAASTRO), through project number CE110001020.

This manuscript has been authored by Fermi Research Alliance,
LLC under Contract No. DE-AC02-07CH11359 with the U.S.
Department of Energy, Office of Science, Office of High Energy
Physics. The United States Government retains and the publisher, by
accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable,
world-wide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for United States
Government purposes.

RE FERENCES

Aihara H. et al., 2011, ApJS, 193, 29
Alam S. et al., 2017, MNRAS, 470, 2617
Allen S. W., Evrard A. E., Mantz A. B., 2011, ARA&A, 49, 409
Anderson L., et al., 2014, MNRAS, 441, 24
Behroozi P., Wechsler R., Hearin A., Conroy C., 2018, MNRAS, 488, 3143
Behroozi P. S., Wechsler R. H., Wu H.-Y., 2013, ApJ, 762, 109
Berlind A. A., Weinberg D. H., 2002, ApJ, 575, 587
Beutler F. et al., 2011, MNRAS, 416, 3017
Birrer S. et al., 2019, MNRAS, 484, 4726
Bocquet S., Saro A., Dolag K., Mohr J. J., 2016, MNRAS, 456, 2361
Borgani S. et al., 2001, ApJ, 561, 13
Boylan-Kolchin M., Springel V., White S. D. M., Jenkins A., 2010, MNRAS,

406, 896
Brandbyge J., Hannestad S., Haugbølle T., Wong Y. Y. Y., 2010, J. Cosmol.

Astropart. Phys., 9, 014
Bullock J. S., Wechsler R. H., Somerville R. S., 2002, MNRAS, 329, 246
Burenin R. A., Vikhlinin A. A., 2012, Astron. Lett., 38, 347
Busch P., White S. D. M., 2017, MNRAS, 470, 4767
Castorina E., Sefusatti E., Sheth R. K., Villaescusa-Navarro F., Viel M.,

2014, J. Cosmol. Astropart. Phys., 2, 049
Cataneo M. et al., 2015, Phys. Rev. D, 92, 044009
Charnock T., Battye R. A., Moss A., 2017, Phys. Rev. D, 95, 123535
Cooke R. J., Pettini M., Nollett K. M., Jorgenson R., 2016, ApJ, 830, 148
Costanzi M., Villaescusa-Navarro F., Viel M., Xia J.-Q., Borgani S.,

Castorina E., Sefusatti E., 2013, J. Cosmol. Astropart. Phys., 12, 012
Costanzi M. et al. 2019, MNRAS, 482, 490
Crocce M., Fosalba P., Castander F. J., Gaztañaga E., 2010, MNRAS, 403,
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Allgood B., Primack J. R., 2004, ApJ, 609, 35
Kravtsov A. V., Borgani S., 2012, ARA&A, 50, 353
Liu J., Bird S., Zorrilla Matilla J. M., Hill J. C., Haiman Z., Madhavacheril

M. S., Petri A., Spergel D. N., 2018, J. Cosmol. Astropart. Phys., 2018,
49

Mana A., Giannantonio T., Weller J., Hoyle B., Hütsi G., Sartoris B., 2013,
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APPENDIX A : C LUSTER NUMBER COUNT S
C OVA R I A N C E M AT R I X

The covariance matrix for the cluster number counts is computed
adding the different contributions listed in Section 3.3:

C = CPoisson + CSampVar + CMisc . (A1)

The first two terms, which account for the statistical uncertainty,
are computed analytically along the MCMC for the relevant cos-
mological and model parameters. The Poisson contribution to the
covariance matrix is simply given by the expectation value for the
number counts in the specific bin (cf. equation 2):

CPoisson = δii〈N〉i . (A2)

The sample variance terms read (Hu & Kravtsov 2003)

CSampVar
ij = 〈

bN
(
�λob

i , �zob
i

)〉 〈
bN

(
�λob

j ,�zob
j

)〉
σ 2(Vi, Vj ).

(A3)

where the first two terms are defined as

〈bN (�λob
i , �zob

i )〉 =
∫ ∞

0
dztrue �mask

dV

dztrued�

×
∫

�zob
i

dzob P (zob|ztrue)�λob
i

×
∫

dMb(M, z) n(M, z)

×
∫

�λob
i

dλobP (λob|M, z), (A4)

and the last one corresponds to the rms variance of the linear density
field:

σ 2(Vi, Vj ) =
∫

dk
(2π )3

√
PL(k, zi)PL(k, zj )Wi(k)Wj (k) . (A5)

Here, b(M, z) is the linear halo bias for which we use the Tinker
et al. (2010) formula, Vi is the comoving volume corresponding to
the redshift bin zob, and Wi(k) the Fourier transform of the window
function. Approximating the survey mask with a top-hat window
symmetric around the azimuthal axis, and setting the angular area
�mask = 2π (1 − cos (θ s)) equal to the total survey area, Wi(k) reads

Wi(k) =
(

dV

d�

∣∣∣∣
�zi

)−1 ∫
�zi

dz
dV

dzd�
4π

×
∞∑
l=0

l∑
m=−l

(i)ljl(kχ (z))Yl,m(k̂)Kl, (A6)

where jl(x) are the spherical Bessel functions, χ (z) is the comoving
distance to redshift z, Yl,m(k̂) are the spherical harmonics, and Kl the
coefficients of the expansion in spherical harmonics of the angular

part of the window function:

for l = 0 Kl = 1

2
√

π

for l �= 0 Kl =
√

π

2l + 1

Pl−1(cos(θs)) − Pl+1(cos(θs))

�mask
,

(A7)

where Pl(x) are the Legendre polynomials.
Finally, the term due to the miscentring correction, CMisc, is

estimated numerically from 1000 realizations of the number counts
data (corrected for the miscentring error) obtained sampling the
offset distribution parameters from their priors as described in
Zhang et al. (2019).

A P P E N D I X B: SK E W-N O R M A L
APPROX IMATION

The richness–mass relation P(λtrue|M) is a convolution of a Poisso-
nian and a Gaussian distribution. In this work, we approximate the
resulting convolution with a skew-normal distribution:

P (λtrue|M) = 1√
2πσ 2

e− (λtrue−〈λsat |M〉)2
2σ2 erfc

[
−α

λtrue − 〈λsat|M〉√
2σ 2

]
.

(B1)

The values of the model parameters α and σ vary as a function of
the expectation value 〈λsat|M〉 and intrinsic scatter σ intr. We derive
these values by fitting the skew-normal distribution to realizations of
a normal-Poissonian convolution obtained by varying 〈λsat|M〉 and
σ intr along the relevant range of values for this analysis. Each P(λtrue)
realization is generated from 106 realizations of the true richness
obtained as λtrue = 1 + �Poisson + �Gauss, where �Poisson is a random
number drawn from a Poisson distribution having mean 〈λsat〉 and
�Gauss a random number drawn from a Gaussian distribution having
null mean and scatter equal to σ intr〈λsat〉. Fig. B1 compares the
histograms obtained from these realizations to the resulting best-
fitting skew-normal distribution. We calibrate the parameters of the
skew-normal distribution along a dense grid in 〈λsat〉 and σ intr and
linearly interpolate along this 2D grid to define the skew-normal
parameters at every point in parameter space.

Figure B1. Comparison of the convolution of a normal and Poissonian
distribution (histograms) with a skew-normal distribution (solid lines) for
different values of 〈λsat|M〉 and σ intr (see labels).
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