A review of the combined effects of climate change and other local human stressors on the marine environment

By Elena Gissi, Elisabetta Manea, Antonios D. Mazaris, Simonetta Fraschetti, Vasiliki Almpanidou, Stanislao Bevilacqua, Marta Coll, Giuseppe Guarnieri, Elena Lloret-Lloret, Marta Pascual, Dimitra Petza, Gil Rilov, Maura Schonwald, Vanessa Stelzenmüller, Stelios Katsanevakis

Appendix

Table A.1. Keywords used for the systematic literature review on cumulative effect assessments and climate change, in line with Hoegh-Guldberg and Bruno (2010).

Group	Keywords
Combined effects	"Cumulative impact*" OR "Cumulative analy*" OR "Cumulative environmental analy*" OR "Cumulative human impact*" OR "Cumulative effect*" OR "Combined
	impact*" OR "synerg* effect" OR "combined effect*" OR "additive effect*"OR"multiple stressor*"
Marine or coastal environments	"marine" OR "sea" OR "ocean" OR "coast*"
Climate change	"climate change" OR "ocean acidification" OR "global warming" OR "global change" OR "ocean warming" OR "warming" OR "sea level rise"

Table A.2. Database of the 107 eligible studies that addressed the combined effects of climate change and human stressors. References were separated accordingly to the levels of biological diversity (ecological foci) targeted in the study.

Year	Authors	Title	DOI
	At species level		
2020	Otto SA, Niiranen S, Blenckner T et al.	Life Cycle Dynamics of a Key Marine Species Under Multiple	10.3389/fmars.2020.0 0296
2010		Stressors	10.1016/i innuman 20
2019	Voss R, Quaas MF, Stiasny MH et al.	Ecological-economic sustainability of the Baltic cod fisheries under ocean warming and acidification	10.1016/j.jenvman.20 19.02.105
2019	Morrongiello JR, Sweetman PC, Thresher RE	Fishing constrains phenotypic responses of marine fish to climate variability	10.1111/1365- 2656.12999
2019	Montero-Serra I, Garrabou J,	Marine protected areas enhance structural complexity but do not buffer	10.1111/1365-
	Doak DF et al.	the consequences of ocean warming for an overexploited precious coral	2664.13321
2019	Baumann JH, Ries JB, Rippe	Nearshore coral growth declining on the Mesoamerican Barrier Reef	10.1111/gcb.14784
0010	JP et al.	System	10,1000/ 1,2010,20
2018	Sguotti C, Otto SA, Frelat R et al.	Catastrophic dynamics limit Atlantic cod recovery	10.1098/rspb.2018.28 77
2018	Sarà G, Porporato EMD,	Multiple stressors facilitate the spread of a non-indigenous bivalve in	10.1111/jbi.13184
	Mangano MC et al.	the Mediterranean Sea	
2018	Pickett E, Chan M., Cheng W et al	Cryptic and cumulative impacts on the wintering habitat of the endangered black-faced spoonbill (<i>Platalea minor</i>) risk its long-term viability	10.1017/S0376892917 000340
2018	Le Bris A, Mills KE, Wahle et al.		10.1073/pnas.1711122 115
2018	Grech, Hanert E, McKenzie et al.	Predicting the cumulative effect of multiple disturbances on seagrass connectivity	10.1111/gcb.14127
2018	Bårdsen BJ, Hanssen SA, Bustnes JO	Multiple stressors: modeling the effect of pollution, climate, and predation on viability of a sub-arctic marine bird	10.1002/ecs2.2342
2017	Pardo D, Forcada J, Wood AG et al.		10.1073/pnas.1618819 114

2016	Lunn NJ, Servanty S, Regehr EV et al.	Demography of an apex predator at the edge of its range: Impacts of changing sea ice on polar bears in Hudson Bay	10.1890/15-1256.
2016	Munroe D, Narváez Hennen D et al.		10.1016/j.ecss.2016.0 1.009
2015	Fuller E, Brush R, Pinsky ML	The persistence of populations facing climate shifts and harvest	10.1890/ES14- 00533.1
2015	Pinsky ML, Byler D	Fishing, fast growth and climate variability increase the risk of collapse	10.1098/rspb.2015.10 53
2014	Burthe S, Wanless S, Newell MA et al.	Assessing the vulnerability of the marine bird community in the western North Sea to climate change and other anthropogenic impacts	10.3354/meps10849
2014	Bartolino V, Margonski P, Lindegren M et al.	Forecasting fish stock dynamics under climate change: Baltic herring (<i>Clupea harengus</i>) as a case study	doi:10.1111/fog.1206 0
2014	Wang HY, Botsford LW, White JW et al.	Effects of temperature on life history set the sensitivity to fishing in Atlantic cod <i>Gadus morhua</i>	10.3354/meps10943
2013	Maxwell SM, Hazen EL, Bograd SJ et al.	Cumulative human impacts on marine predators	10.1038/ncomms3688
2011	Hidalgo M, Rouyer T, Molinero JC et al.	Synergistic effects of fishing-induced demographic changes and climate variation on fish population dynamics	10.3354/meps09077
2011	Eero MH, MacKenzie BR, Köster FW et al.	Multi-decadal responses of a cod (<i>Gadus morhua</i>) population to human-induced trophic changes, fishing, and climate	10.1890/09-1879.1
2010	Field I, Meekan MG, Buckworth RC et al.	Susceptibility of sharks, rays and chimaeras to global extinction	10.1016/S0065- 2881(09)56004-X
2010	Regular PM, Robertson GJ, Montevecchi WA et al.	Relative importance of human activities and climate driving common murre population trends in the Northwest Atlantic	10.1007/s00300-010- 0811-2
2010	Linares C, Doak DF	Forecasting the combined effects of disparate disturbances on the persistence of long-lived gorgonians: A case study of <i>Paramuricea clavata</i>	10.3354/meps08437
2010	Rivalan P, Barbraud C, Inchausti P et al.	Combined impacts of longline fisheries and climate on the persistence of the Amsterdam Albatross <i>Diomedia amsterdamensis</i>	10.1111/j.1474- 919X.2009.00977.x
2008	Rolland V, Barbraud C, Weimerskirch H	Combined effects of fisheries and climate on a migratory long-lived marine predator	10.1111/j.1365- 2664.2007.01360.x
	= 27 studies at species level		
	hic groups level		
2020	Reum JCP, Blanchard JL, Holsman KK et al.	Ensemble Projections of Future Climate Change Impacts on the Eastern Bering Sea Food Web Using a Multispecies Size Spectrum Model	10.3389/fmars.2020.0 0124
2019	Griffith GP, Strutton PG, Semmens JM et al.	Identifying important species that amplify or mitigate the interactive effects of human impacts on marine food webs	10.1111/cobi.13202
2019	Ehrnsten ES, Bauer B, Gustafsson BG	Combined effects of environmental drivers on marine trophic groups - A systematic model comparison	10.3389/fmars.2019.0 0492
2018	Coll M, Albo-Puigserver M, Navarro J et al.	Who is to blame? Plausible pressures on small pelagic fish population changes in the northwestern Mediterranean Sea	10.3354/meps12591
2018	Ortega-Cisneros K, Cochrane KL, Fulton EA et al.	Evaluating the effects of climate change in the southern Benguela upwelling system using the Atlantis modelling framework	10.1111/fog.12268
2018	Raoux A, Dambacher JM, Pezy J-P et al.	Assessing cumulative socio-ecological impacts of offshore wind farm development in the Bay of Seine (English Channel)	10.1016/j.marpol.201 7.12.007
2017	Serpetti N, Heymans J, Burrows R. et al.	Impact of ocean warming on sustainable fisheries management informs the Ecosystem Approach to Fisheries	10.1038/s41598-017- 13220-7
2017	Coralles X, Coll M, Ofir E et al.	Hindcasting the dynamics of an Eastern Mediterranean marine ecosystem under the impacts of multiple stressors	10.3354/meps12271
2016	Ortiz I, Aydin K, Hermann AJ et al.	Climate to fish: Synthesizing field work, data and models in a 39-year retrospective analysis of seasonal processes on the eastern Bering Sea shelf and slope	10.1016/j.dsr2.2016.0 7.009
2016	Chew LL, Chong VC	Response of marine copepods to a changing tropical environment: Winners, losers and implications	10.7717/peerj.2052
2015	Giakoumi S, Halpern BS, Loıc NM et al.	Towards a framework for assessment and management of cumulative human impacts on marine food webs	10.1111/cobi.12468
2014	Travers-Trolet M, Shin Y., Shannon LJ et al.	Combined fishing and climate forcing in the southern Benguela upwelling ecosystem: An end-to-end modelling approach reveals dampened effects	10.1371/journal.pone. 0094286

2013	Salihoglu B, Sevinc N	Quantification of the synergistic effects of eutrophication, apex predator pressure, and internal processes on the Black Sea ecosystem	10.4194/1303-2712- v13_4_03
2013	Niiranen S, Yletyinen J, Tomczak MT et al.	Combined effects of global climate change and regional ecosystem drivers on an exploited marine food web	10.1111/gcb.12309
2013	Nye JA, Gamble RJ, Link JS	The relative impact of warming and removing top predators on the Northeast US large marine biotic community	10.1016/j.ecolmodel.2 012.08.019
2013a	Hoover C, Pitcher T, Christensen V	Effects of hunting, fishing and climate change on the Hudson Bay marine ecosystem: II. Ecosystem model future projections	10.1016/j.ecolmodel.2 013.01.010
2013b	Hoover C, Pitcher T, Christensen V	Effects of hunting, fishing and climate change on the Hudson Bay marine ecosystem: I. Re-creating past changes 1970-2009	10.1016/j.ecolmodel.2 013.02.005
2013	Quetglas A, Ordines F, Hidalgo M et al.	Synchronous combined effects of fishing and climate within a demersal community	10.1093/icesjms/fss18 1
2013	Busch MPS., Greene CM, Good TP	Estimating Effects of Tidal Power Projects and Climate Change on Threatened and Endangered Marine Species and Their Food Web	10.1111/cobi.12164
2012	Griffith GP, Fulton EA, Gorton R et al.	Predicting Interactions among Fishing, Ocean Warming, and Ocean Acidification in a Marine System with Whole-Ecosystem Models	10.1111/j.1523- 1739.2012.01937.x
2012	Araújo JN, Bundy A	Effects of environmental change, fisheries and trophodynamics on the ecosystem of the western Scotian Shelf, Canada	10.3354/meps09792
2011	Griffith MJP., Fulton A, Richardson AJ	Effects of fishing and acidification-related benthic mortality on the southeast Australian marine ecosystem	10.1111/j.1365- 2486.2011.02453.x
2010	Kaplan IC, Levin PS, Burden M et al.	Fishing catch shares in the face of global change: A framework for integrating cumulative impacts and single species management	10.1139/F10-118
2010	Lindegren M, Möllmann C, Nielsen A et al.	Ecological forecasting under climate change: the case of Baltic cod	10.1098/rspb.2010.03 53
2010	Shears NT, Ross PM	Toxic cascades: Multiple anthropogenic stressors have complex and unanticipated interactive effects on temperate reefs	10.1111/j.1461- 0248.2010.01512.x
2009	Kotta J, Kotta I, Simm M et al.	Separate and interactive effects of eutrophication and climate variables on the ecosystem elements of the Gulf of Riga	10.1016/j.ecss.2009.0 7.014
2009	Kirby RR, Beaugrand G, Lindley JA	Synergistic Effects of Climate and Fishing in a Marine Ecosystem	10.1007/s10021-009- 9241-9
-	= 27 studies at trophic groups leve	el	
	itat level	Combined allowed allowed and anticipations in a fature behilter	10.1002/lno.11446
2020	Wåhlström I, Höglund A, Almroth-Rosell E et al.	Combined climate change and nutrient load impacts on future habitats and eutrophication indicators in a eutrophic coastal sea	10.1002/110.11440
2020	Tulloch VJD, Turschwell MP, Giffin AL et al.	Linking threat maps with management to guide conservation investment	10.1016/j.biocon.2020 .108527
2020		Multi-scenario analysis in the Adriatic Sea: A GIS-based Bayesian network to support maritime spatial planning	10.1016/j.scitotenv.20 19.134972
2020	Evans RD, Wilson SK, Fisher R et al.	Early recovery dynamics of turbid coral reefs after recurring bleaching events	10.1016/j.jenvman.20 20.110666
2020	Andersen JH, Al-Hamdani Z, Harvey ET et al.	Relative impacts of multiple human stressors in estuaries and coastal waters in the North Sea–Baltic Sea transition zone	10.1016/j.scitotenv.20 19.135316
2019	Halpern BS, Frazier M, Afflerbach J et al.	Recent pace of change in human impact on the world's ocean	10.1038/s41598-019- 47201-9
2019	Furlan E, Torresan S, Critto A et al.	Cumulative Impact Index for the Adriatic Sea: Accounting for interactions among climate and anthropogenic pressures	10.1016/j.scitotenv.20 19.03.021
2018	Ortiz J-C, Wolff NH, Anthony KRN et al.	Impaired recovery of the great barrier reef under cumulative stress	10.1126/sciadv.aar612 7
2018	Magris R, Grech E, Presse et al.	Cumulative human impacts on coral reefs: Assessing risk and management implications for brazilian coral reefs	10.3390/d10020026
2018	Jones AR, Doubleday ZA, Prowse TAA et al.	Capturing expert uncertainty in spatial cumulative impact assessments	10.1038/s41598-018- 19354-6
2017	Wyatt KH, Griffin R, Guerry AD et al.	Habitat risk assessment for regional ocean planning in the U.S. Northeast and Mid-Atlantic	10.1371/journal.pone. 0188776
2017	Mach ME, Wedding LM, Reiter SM et al.	Assessment and management of cumulative impacts in California's network of marine protected areas	10.1016/j.ocecoaman. 2016.11.028
001-		Spatial and temporal changes in cumulative human impacts on the	10.1038/ncomms8615
2015	Halpern B, Frazier KE, Potapenko J et al.	world's ocean	10.1050/1001111100015

2015	Okey T, Alidina HM,	Mapping ecological vulnerability to recent climate change in Canada's	10.1016/j.ocecoaman.
	Agbayani S	Pacific marine ecosystems	2015.01.009 10.1016/j.marpolbul.2
2015	Rodríguez-Rodríguez M, Sánchez-Espinosa A, Schröder C et al.	Cumulative pressures and low protection: a concerning blend for Mediterranean MPAs	015.09.039
2014	McManus E, Jenni K, Clancy M et al.	The 2014 Puget Sound Pressures Assessment. Puget Sound Partnership.	-
2014	Ban S, Pressey RL, Graham NAJ	Assessing interactions of multiple stressors when data are limited: A Bayesian belief network applied to coral reefs	10.1016/j.gloenvcha.2 014.04.018
2013	Walbridge S Walbridge. et al.	Cumulative Human Impacts on Mediterranean and Black Sea Marine Ecosystems: Assessing Current Pressures and Opportunities.	10.1371/journal.pone. 0079889
2012	Kappel CV, Halpern BS	Mapping cumulative impacts of human activities on marine ecosystems	10.31230/osf.io/6exng
2010	Teck SJ, Halpern BS, Kappel CV et al.	Using expert judgment to estimate marine ecosystem vulnerability in the California Current	10.1890/09-1173.1
2009	Selkoe KA, Halpern BS, Ebert CM et al.	A map of human impacts to a "pristine" coral reef ecosystem, the Papahānaumokuākea Marine National Monument	10.1007/s00338-009- 0490-z
2009	Halpern BS, Kappel CV, Selkoe KA et al.	Mapping cumulative human impacts to California Current marine ecosystems	https://doi.org/10.111 1/j.1755- 263X.2009.00058.x
2008	Halpern BS, Walbridge S, Selkoe KA et al.	A global map of human impact on marine ecosystems	10.1126/science.1149 345
Total =	24 studies at habitat level		
	system level		
2020	Singh GG, Eddy IMS, Halpern, BS et al.	Mapping cumulative impacts to coastal ecosystem services in British Columbia	10.1371/journal.pone. 0220092
2020	Negri AP, Smith RA, King O et al.	Adjusting Tropical Marine Water Quality Guideline Values for Elevated Ocean Temperatures	10.1021/acs.est.9b059 61
2020	Ehrnsten E, Norkko A, Müller-Karulis B et al.	The meagre future of benthic fauna in a coastal sea—Benthic responses to recovery from eutrophication in a changing climate	10.1111/gcb.15014
2019	Ocaña FA, Pech D, Simões N et al.	Spatial assessment of the vulnerability of benthic communities to multiple stressors in the Yucatan Continental Shelf, Gulf of Mexico	10.1016/j.ocecoaman. 2019.104900
2019	Mellin C, Matthews S, Anthony KRN et al.	Spatial resilience of the Great Barrier Reef under cumulative disturbance impacts	10.1111/gcb.14625
2019	Fisher R, Bessell-Browne P, Jones R	Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals	10.1038/s41467-019- 10288-9
2019	Ellis JI, Jamil T, Anlauf H et al.	Multiple stressor effects on coral reef ecosystems	10.1111/gcb.14819
2019	Armstrong CW, Vondolia GK, Foley NS et al.	Expert assessment of risks posed by climate change and anthropogenic activities to ecosystem services in the deep North Atlantic	10.3389/fmars.2019.0 0158
2018	Weijerman M, Veazey L, Yee S et al.	Managing local stressors for coral reef condition and ecosystem services delivery under climate scenarios	10.3389/fmars.2018.0 0425
2018	Stock A, Haupt AJ, Mach ME et al	Mapping ecological indicators of human impact with statistical and machine learning methods: Tests on the California coast	10.1016/j.ecoinf.2018. 07.007
2018	Ramírez F, Coll M, Navarro J et al.	Spatial congruence between multiple stressors in the Mediterranean Sea may reduce its resilience to climate impacts	10.1038/s41598-018- 33237-w
2018	Montefalcone M, De Falco G, Nepote E et al.	Thirty year ecosystem trajectories in a submerged marine cave under changing pressure regime	10.1016/j.marenvres.2 018.02.022
2018	Lercari ME, Defeo O, Ortega L et al	Long-term structural and functional changes driven by climate variability and fishery regimes in a sandy beach ecosystem	10.1016/j.ecolmodel.2 017.11.007
2018	Corrales X, Coll M, Ofir E et al.	Future scenarios of marine resources and ecosystem conditions in the Eastern Mediterranean under the impacts of fishing, alien species and sea warming	10.1038/s41598-018- 32666-x
2017	Singh G, Sinner A, Ellis J. et al.	Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach	10.1016/j.jenvman.20 17.05.032
2017	Andersen JH, Berzaghi F, Christensen T et al	Potential for cumulative effects of human stressors on fish, sea birds and marine mammals in Arctic waters	10.1016/j.ecss.2016.1 0.047
2016	Clarke Murray C, Mach ME, Martone RG et al.	Supporting Risk Assessment: Accounting for Indirect Risk to Ecosystem Components	10.1371/journal.pone. 0162932

2016	Marzloff MR, Little LR,	Building Resilience Against Climate-Driven Shifts in a Temperate	10.1007/s10021-015-
	Johnson CR	Reef System: Staying Away from Context-Dependent Ecological Thresholds	9913-6
2015	Weijerman ME, Fulton EA, Kaplan IC et al.	An integrated coral reef ecosystem model to support resource management under a changing climate	10.1371/journal.pone. 0144165
2015	Wakelin S, Artioli Y,	Modelling the combined impacts of climate change and direct	10.1016/j.jmarsys.201 5.07.006
	Butenschön M et al.	anthropogenic drivers on the ecosystem of the northwest European continental shelf	
2015	Cornwall CE, Eddy TD	Effects of near-future ocean acidification, fishing, and marine protection on a temperate coastal ecosystem	10.1111/cobi.12394
2015	Ban SS, Pressey RL, Graham NAJ	Assessing the effectiveness of local management of coral reefs using expert opinion and spatial Bayesian modeling	10.1371/journal.pone. 0135465
2014	Cook GS, Fletcher PJ, Kelble	Towards marine ecosystem based management in South Florida:	10.1016/j.ecolind.201 3.10.026
	CR	Investigating the connections among ecosystem pressures, states, and services in a complex coastal system	51101020
2012	Neumann T, Eilola K,	Extremes of Temperature, Oxygen and Blooms in the Baltic Sea in a	10.1007/s13280-012- 0321-2
2012	Gustafsson B et al.	Changing Climate	10.1007/s13280-012-
2012	Meier HM, Müller-Karulis B, Andersson HC et al.	Impact of Climate Change on Ecological Quality Indicators and Biogeochemical Fluxes in the Baltic Sea: A Multi-Model Ensemble	0320-3
	Andersson me et al.	Study	
2012	Coll M, Piroddi C, Albouy C	The Mediterranean Sea under siege: spatial overlap between marine	10.1111/j.1466- 8238.2011.00697.x
• • • • •	et al.	biodiversity, cumulative threats and marine reserves	
2011	Cai W, Hu KE, Huang W et al.	Acidification of subsurface coastal waters enhanced by eutrophication	10.1038/ngeo1297
2011	Meier HE, Eilola K, Almroth	Climate-related changes in marine ecosystems simulated with a 3-	10.3354/cr00968
	Е	dimensional coupled physical-biogeochemical model of the Baltic Sea	
2010	Darling ES., Mcclanahan TR,	Combined effects of two stressors on Kenyan coral reefs are additive or	10.1111/j.1755-
	Côté IM	antagonistic, not synergistic	263X.2009.00089.x
Total =	= 29 studies at ecosystem level		

Table A.3	. Classification	of methods	considered b	y the review	of Stelzenmüller	et al. (2018).

Methods	Definition	References
Integrative assessment	Methods that include multiple ecosystem components (e.g., biological, chemical, physical, social, economic), numerous biodiversity elements (e.g., from microbes to cetaceans), different assessment scales, some criteria to define spatial scales and some guidance on integrating information. Borja et al. (2014) identified a number of different approaches of integrative assessment that combined a number of variables (which could be metrics, indicators, or criteria) into an overall assessment. Any integration and aggregation principle used for different indicators or descriptors should be ecologically relevant, transparent and well documented (Borja et al., 2016). Integrative assessment methods were proposed for determining environmental status and assessing marine ecosystems health. In those cases, methods currently available are applied to synthesize the ecosystem complexity, by aggregating and integrating information when assessing the ecosystem status.	Borja et al., 2016, 2014
Quantitative food web modelling Statistical modelling - linear & non-linear models	Methods that include the analysis through food web modelling with quantitative analysis of trophic level interactions. Methods that applies linear or non-linear models, such as Generalized Linear Models (GLM) or Generalized Additive Models (GAM)	Pauly et al., 2000
Mechanistic modelling	Methods to demonstrate a causality of input–output relationships, seeking to establish a mechanistic relationship between inputs and outputs. A mechanistic model should be able to provide an explanation for the patterns, which should (at least in principle) provide a platform for extrapolation beyond the test conditions (e.g., from constant to time-varying exposure, and from ad libitum to limiting food availability).	Baker et al., 2018; Jager, 2016

Expert judgement	Methods that adopt expert interpretation and synthesis on specific subjects to make existing research directly useful to management, because of the lack of comprehensive empirical information (e.g., expert knowledge on ecosystem vulnerability because of the lack on ecosystem—stressor interactions comprehensive information). Expert judgement is used when data are scarce and uncertainty exists These gaps are overcome by using the best available scientific judgments.	Teck et al., 2010
Qualitative food web modelling Spatial analysis – GIS tools Species distribution models (SDMs) Other	Methods that include the analysis through food web modelling without quantitative analysis of trophic level interactions in quantitative terms Methods that assess the cumulative effects assessment by applying a spatial analysis, usually with GIS tools Species distribution models (SDMs) are numerical tools that combine observations of species occurrence or abundance with environmental estimates. Other types of methods	Halpern et al., 2015, 2008 Elith and Leathwick 2009

Table A.4. Classification of the categories and classes by which local stressors (LS) were grouped, and the frequency at which LS were combined with climate change (CC) effects at different biological levels and in total. The categories are meant to represent the relevance of the different LS in relation to the management and planning of the different coastal and maritime activities. The types of LS are represented as D = driver, and P = pressure according to Stelzenmüller et al. (2018).

							S			Т	otal
No.	Category	Description	No.	Human stressors	Туре	Species	20 Trophic groups	Habitats	Ecosystems	No.	%
1	Industrial fisheries	This category includes the LS deriving from industrial fisheries	1.1	Industrial fisheries	D	19	20	19	20	78	72.9
2	Other	This category includes all the	2.1	Artisanal fishery	D	3	3	11	4	21	19.6
	fishery- and	other fishery- and aquaculture	2.2	Aquaculture	D	1	1	12	3	17	15.9
	aquaculture-	related LS that are not	2.3	Recreational fishing	D	1	1	5	5	12	11.2
	related LS	included under the category	2.4	Harvesting	D	3	2	1	1	7	6.5
		"industrial fisheries"	2.5	Hunting	D	1				1	0.9
3	Pollution-	This category includes the LS	3.1	Organic pollutants	Р	1	1	14	10	26	24.3
	related LS	that are pollution-related	3.2	Ocean-based pollution*	Р	3		13	6	22	20.6
		pressures in the ocean,	3.3	Marine litter	Р	2		7	3	12	11.2
		classified as addressed in each	3.4	Inorganic pollutants	Р	1		7	3	11	10,3
		study	3.5	Oil pollution	Р	2		6	2	10	9.3
			3.6	Eutrophication	Р	3	5	1	1	10	9.3
			3.7	Light pollution	Р	1		6		7	6.5
			3.8	Thermal stress	Р		1	2		3	2.8
			3.9	Atmospheric deposition	Р			3		3	2.8
			3.10	Human-induced diseases	Р			2	1	3	2.8
			3.11	Deteriorating water quality due to discharges	Р		1	1		2	1.9
			3.12	Нурохіа	Р			1		1	0.9
			3.13	Other contaminants	Р	1				1	0.9
4		This category includes the LS	4.1	Shipping	D	1	1	19	6	27	25.2
		that represent drivers at sea.	4.2	Coastal engineering	D	2	1	10	4	17	15.9

						_				_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				4.3	-	D			9	2	11	10.3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				4.4		р	1	h	r		6	5 (
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		activities	addressed in each study				1	Ζ		h		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $					6 6		1			4		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					1		1					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
5Terrestrial- based LSThis category includes the LS that represent land-based drivers and pressures, classified as addressed in each study5.1Land use/land cover changeD42921715.96Cassified as addressed in each study5.2Land-based activities (e.g. infrastructure, agriculture)D1831211.26StudyStudyStudyStudyStudyD13154.76Change in sediment based LSP13154.77Other LSThis category includes the LS that are driven by tourism and generally less frequently mentioned than the other six categories.6.1Pleasure boating presures at sea not included in previous categories and generally less frequently mentioned than the other six categories.7.1Allen species (human- induced)13165.07Other LSThis category includes the LS that are drivers and previous categories and generally less frequently mentioned than the other six categories.7.1Allen species (human- induced)01121.97Other LSThis category includes the LS that represent miscellaneous human-related drivers and previous categories and generally less frequently mentioned than the other six categories.7.1Allen species (human- induced)1121.97Other LSThis category includes the LS that represent miscellaneous <td></td> <td></td>												
based LS that represent land-based drivers and pressures, classified as addressed in each study 5.2 Land-based pollution* P 2 1 7 4 14 13.1 (e.g. infrastructure, agriculture) 5.4 Change in sediment P 3 3 3 9 8.4 (oad 5.5 Forestry D 1 3 1 5 4.7 5.6 Change in population D 5 5 5 4.7 density 5.7 Freshwater delivery P 1 1 2 3 2.8 5.8 Coastal-based impacts* P 1 1 2 1.9 5.9 Dams D 2 1 3 2.7 5.9 Dams D 2 1 3 2.8 5.10 Mining (onshore) D 1 3 3 7 6.5 5.10 Mining (onshore) D 1 3 3 7 6.5 7 Other LS This category includes the LS 7.1 Heaver boating D 3 1 4 3.7 7 Other LS This category includes the LS 7.1 Alien species (human- previous categories and generally less frequently mentioned than the other six categories. 7.4 Desalinization D 1 1 2 1.9 7.5 Temporal change D 1 1 2 2 1.9 7.5 Temporal change D 1 1 2 2 1.9 7.5 Temporal change D 1 2 2 5 4.7 7.1 Alien species (human- induced) 7.2 Change in predator P 4 3 1 8 7.5 7.4 Desalinization D 1 1 2 1.9 7.5 Temporal change in P 1 1 2 2.9 7.5 Temporal change in P 1 1 2 2.9 7.6 Research activities D 1 1 1 2.9	5	Tauna atula 1	This as to so we in she day the LC				4	2		2		
drivers and pressures, classified as addressed in each study 5.2 Land-based pollution* P 2 1 7 4 14 13.1 5.3 Land-based activities (e.g infrastructure, agriculture) D 1 8 3 12 11.2 5.4 Change in sediment load P 3 3 3 9 8.4 5.5 Forestry D 1 3 1 5 4.7 5.6 Change in population density D 1 3 1 5 4.7 5.6 Costal-based impacts* P 1 1 2 1.9 5.9 Dams D 2 1 3 3 7 6.5 6.1 Mining (onshore) D 1 3 3 7 6.5 6.2 Recreational activities D 2 2 4 3.7 6.3 Beach tourism D 3 1 4 4.7 7 Other LS This category includes the LS 6.1 Pleasure boating D 1 <td>2</td> <td></td> <td></td> <td>5.1</td> <td></td> <td>D</td> <td>4</td> <td>2</td> <td>9</td> <td>2</td> <td>1/</td> <td>15.9</td>	2			5.1		D	4	2	9	2	1/	15.9
$ \begin{array}{c} \mbox{classified as addressed in each study} \\ \mbox{study} \\ study$		based LS		5 2		р	C	1	7	4	14	121
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							Z					
agriculture)5.4Change in sediment loadP33398.4load5.5ForestryD13154.75.6Change in population densityD554.75.7Freshwater delivery 5.9P1232.85.8Coastal-based impacts* 5.9P1121.96Tourism- based LSThis category includes the LS that are driven by tourism and recreational activities at sea6.1Pleasure boating 6.2D13376.56.7DivingD12243.77Other LSThis category includes the LS that are driven by tourism and recreational activities at sea7.1Alien species (human- induced)D2224.77Other LSThis category includes the LS that represent miscellaneous human-related drivers and generally less frequently mentioned than the other six categories.7.1Alien species (human- induced)P43187.57.4Desalinization DD1121.91.921.97.5Temporal change in primary production 7.6Research activitiesD1121.97.6Research activitiesD1121.91.91.9				3.3		D		1	ð	3	12	11.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			study									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5 /		D	2		2	2	0	Q /
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5.4		r	3		3	3	9	0.4
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				5 5		р		1	2	1	5	17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								1		1		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				5.0	• • •	D			5		5	4./
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				57		Р			1	2	3	2.8
5.9Dams 5.10D2132.8 26Tourism- based LSThis category includes the LS that are driven by tourism and recreational activities at sea6.1Pleasure boating 6.2D13376.56Tourism- based LSthat are driven by tourism and recreational activities at sea6.2Recreational activities 6.3D2243.77Other LSThis category includes the LS that represent miscellaneous human-related drivers and pressures at sea not included in previous categories and generally less frequently categories.7.1Alien species (human- induced)P21131615.07.4DesalinizationD1121.9121.97.5Temporal change in primary production 7.6Research activitiesD1121.97.6Research activitiesD110.9110.9												
5.10Mining (onshore)D1121.96Tourism- based LSThis category includes the LS that are driven by tourism and recreational activities at sea6.1Pleasure boating 6.2D13376.502243.76.3Beach tourism 6.4D3143.77Other LSThis category includes the LS that represent miscellaneous human-related drivers and pressures at sea not included in previous categories and generally less frequently mentioned than the other six categories.7.1Alien species (human- induced)P21131615.07.6Research activitiesD1121.9121.97.6Research activitiesD1121.91.01.01.0												
6Tourism- based LSThis category includes the LS that are driven by tourism and recreational activities at sea6.1Pleasure boating categories at seaD13376.50012243.73.76.4Recreational activities BD3143.70012221.912254.770012254.71.41.501.61.5070112254.71.41.501.61.5070112254.71.41.501.61.5070112254.71.41.61.501.61.5070112254.71.41.61.501.61.5070112254.71.41.501.501.501.50701111.501.501.501.501.501.501.501.5070111.501.501.501.501.501.501.501.507011.501.501.501.501.501.501.501.507011.501.501.501.50 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>												
based LSthat are driven by tourism and recreational activities at sea6.2Recreational activitiesD22243.77Other LSThis category includes the LS that represent miscellaneous human-related drivers and generally less frequently mentioned than the other six categories.7.1Alien species (human- induced)D12254.77Other LSThis category includes the LS that represent miscellaneous human-related drivers and generally less frequently categories.7.1Alien species (human- induced)P21131615.07.2Change in predator density (human- induced)P43187.57.3Human Trampling primary productionP4265.67.6Research activitiesD1121.9	6	Tourism-	This category includes the LS				1					
recreational activities at sea6.3Beach tourismD3143.76.4Whale watchingD221.96.5DivingD12254.77Other LSThis category includes the LS that represent miscellaneous human-related drivers and pressures at sea not included in previous categories and generally less frequently7.1Alien species (human- induced)P21131615.07.1Change in predator density (human- induced)P43187.57.2Change in predator density (human- induced)P4265.67.3Human Trampling presures at sea not included in generally less frequently categories.7.4Desalinization primary productionD1121.97.5Temporal change in primary productionP1121.97.6Research activitiesD110.9												
6.4Whale watching 6.5D221.97Other LSThis category includes the LS that represent miscellaneous human-related drivers and pressures at sea not included in previous categories and generally less frequently7.1Alien species (human- induced)P21131615.07.2Change in predator density (human- induced)P43187.57.3Human Trampling eategories.P4265.67.4Desalinization primary productionD1121.97.6Research activitiesD110.9							3					
6.5DivingD12254.77Other LSThis category includes the LS that represent miscellaneous human-related drivers and pressures at sea not included in generally less frequently7.1Alien species (human- induced)P21131615.07.2Change in predator density (human- induced)P43187.587.3Human Trampling eategories.P4265.697.3Human Trampling primary productionD1121.997.6Research activitiesD110.9							-		2			
7Other LSThis category includes the LS that represent miscellaneous human-related drivers and pressures at sea not included in generally less frequently7.1Alien species (human- induced)P21131615.07Other LSThis category includes the LS human-related drivers and pressures at sea not included in generally less frequently7.2Change in predator density (human- induced)P43187.57Generally less frequently categories.7.3Human Trampling DP4265.67.5Temporal change in primary productionD1121.97.6Research activitiesD110.9				6.5		D	1		2	2	5	4.7
that represent miscellaneous human-related drivers and pressures at sea not included in previous categories andinduced)P43187.5generally less frequently categories.7.3Human Trampling DP4265.67.4Desalinization primary productionD1121.97.6Research activitiesD110.9	7	Other LS	This category includes the LS			Р		2				
human-related drivers and pressures at sea not included in previous categories and7.2Change in predator density (human- induced)P43187.5generally less frequently mentioned than the other six categories.7.3Human Trampling DP4265.67.4Desalinization primary productionD1121.97.6Research activitiesD110.9												
pressures at sea not included in previous categories and generally less frequentlydensity (human- induced)generally less frequently7.3Human TramplingP4265.6mentioned than the other six categories.7.4DesalinizationD1121.9categories.7.5Temporal change in primary productionP1121.97.6Research activitiesD110.9				7.2		Р	4	3	1		8	7.5
previous categories and generally less frequentlyinduced)7.3Human TramplingP4265.6mentioned than the other six categories.7.4DesalinizationD1121.97.5Temporal change in primary productionP1121.97.6Research activitiesD110.9			pressures at sea not included in									
generally less frequently mentioned than the other six categories.7.3Human Trampling DesalinizationP4265.67.4DesalinizationD1121.97.5Temporal change in primary productionP1121.97.6Research activitiesD110.9			previous categories and									
mentioned than the other six7.4DesalinizationD1121.9categories.7.5Temporal change in primary productionP1121.97.6Research activitiesD110.9				7.3	/	Р			4	2	6	5.6
primary production 7.6 Research activities D 1 1 0.9			• • • •	7.4		D		1	1		2	1.9
primary production 7.6 Research activities D 1 1 0.9			categories.	7.5	Temporal change in	Р		1		1	2	1.9
7.6 Research activities D 1 1 0.9			-									
7.7 Lack of social license [§] D 1 1 0.9				7.6		D			1		1	0.9
				7.7	Lack of social license§	D				1	1	0.9

* These LS are treated as generic input layers for which the authors of the studies included in this review did not provide any further detail, for instance, on the type of pollution or on the type of impacts.

** LS from maritime activities excluding fisheries, aquaculture and tourism that are already addressed under categories 1, 2 & 6 (respectively).

[§] Singh et al. (2017) considered the combined effect of the lack of social license with other LS and CC through expert elicitation; the lack of social license is intended as the growing indifference for biodiversity, which can lead to fewer protections for biodiversity and/or less resistance to developments and policy that threaten biodiversity. With respect to aquaculture, the lack of social license stems from public wariness around aquaculture that contributes to permitting restrictions.

Table A.5. Classification of the categories and classes by which climate change (CC) effects were grouped, and frequency of the CC effects with which they have been studied in combination to local human stressors at different levels of biological diversity in the 107 studies.

									Total		
No.	Category	No.	Class	Description of aggregated effects mentioned in the studies (if any)	Species	Trophic groups	Habitats	Ecosystems	no.	%	
1	UV radiation	-	UV radiation	UV radiation anomalies, UV change, irradiance, solar radiation	1	1	12	6	20	18.7	
2	Ocean acidification	-	Ocean acidification	-	3	6	13	14	36	33.6	
3	Sea level rise	_	Sea level rise	-		1	8	3	12	11.2	
4	Change in salinity	-	Change in salinity	-	3	5	2	4	14	13.1	
5	Change in temperature	-	Change in temperature	Ocean warming, ocean temperature (generic), temperature variability, change in sea surface temperature (SST), bottom temperatures, surface air temperature, depth integrated temperature produced by SSTs, climate velocity - shift of isotherms, heat change in	23	22	21	23	89	83.2	
6	Climatic mode of variability	-	Climatic mode of variability / Change in climate patterns	freshwater temperature, thermal stress Three different annual measures of the Oceanic Niño Index, changes to El Niño– Southern Oscillation (ENSO), Southern Oscillation Index, Southern Annular Model (Antarctic Oscillation), Atlantic Multi-decadal Oscillation (AMO) index, Subtropical Indian Ocean Dipole index (SIOD)/Dipole mode index (DMI)/Indian Ocean Dipole (IOD), Winter North Atlantic Oscillation.	4	2	1	2	9	8.4	
7	Other atmospheric	7.1	Winds change	Meridional wind speed anomaly (MWSA),		3		1	4	3.7	
	and weather effects	7.2	Increase in storm	wind direction, wind changes Increase in storm frequency - cyclone frequency - rare storm events - Severe	1	1	2	3	7	6.5	
		7.3	Extreme weather events	Tropical Cyclone Extreme weather events, hot weather events, change in weather			1	3	4	3.7	
7		7.4	Change to currents	Change to currents, currents		1	•	2	3	2.8	
		7.5	Change in precipitations	Change in precipitations amounts and patterns, extreme rainfall events, decreased annual rainfall, precipitation records	1		2		3	2.8	
		7.6	River inflow altered	River inflow, altered low and peak flows from climate change, change in freshwater hydrology		2	2	1	5	4.7	
		7.7	Sea ice extent	Sea Ice Extent - sea ice decrease, sea ice concentration, loss of Artic sea ice	2	3			5	4.7	
		7.8	Climatic models scenarios	Changing/dynamic carrying capacity of the climate	2	1			3	2.8	
		7.9	Atm. Sea level pressure	change scenarios, regional climate models Atmospheric sea level pressure	1				1	0.9	
		7.10	Oxygen conditions	Hypoxic areas, oxygen conditions	2	2	2		6	5.6	
			Change in	-			1		1	0.9	
		7.12	upwellings Change in pCO2	-				2	2	1.9	
								-			
		7.13	Air-sea heat fluxes	Air-sea heat fluxes				1	1	0.9	

8 CC-induced	8.1	Mass mortality	-	2				2	1.9
biological drivers of		effects							
change	8.2	Coral bleaching derived	Coral bleaching (derived from climate driven increase in temperatures).			3	3	6	5.6
	8.3	CC driven alga blooms	Climate driven alga blooms - specific events		1			1	0.9
	8.4	Disease	Disease - Temperature anomalies relevant to disease			1	2	3	2.8
	8.5	Invasive species	CC-induced invasive species increase				2	2	1.9
	8.6	Native species change	Native species changes in distribution and abundance induced by CC		1			1	0.9
	8.7	Q10 parameter	Magnitude of the Q10 parameter controlling temperature dependence		1			1	0.9

Table A.6. Frequencies of the combinations of local human stressors (LS) with climate change (CC) effects per ecological focus considered in the studies.

	Sne	cies		phic	Ца	bitats	Fcos	ystems	Total	
N 1 (LC	spe	cies	git	oups	па	onais	Ecos	stems	Total	
Number of LS combined with CC	no.	%	no.	%	no.	%	no.	%	no.	%
1	14	51.9	18	66.7	2	8.3	12	41.4	46	43.0
2	8	29.6	5	18.5	1	4.2	8	27.6	22	20.6
3	2	7.4	3	11.1			1	3.4	6	5.6
4	1	3.7			1	4.2	1	3.4	3	2.8
5					3	12.5			3	2.8
6					2	8.3	1	3.4	3	2.8
7					2	8.3			2	1.9
8	1	3.7			1	4.2	1	3.4	3	2.8
9					2	8.3	2	6.9	4	3.7
10							1	3.4	1	0.9
11					1	4.2			1	0.9
12					1	4.2			1	0.9
13					1	4.2			1	0.9
14	1	3.7	1	3.7	1	4.2			3	2.8
15					1	4.2			1	0.9
16					1	4.2			1	0.9
17							1	3.4	1	0.9
18					1	4.2	1	3.4	2	1.9
22					1	4.2			1	0.9
24					1	4.2			1	0.9
25					1	4.2			1	0.9
Tot	27	100.0	27	100.0	24	100.0	29	100.0	107	100.0

Trophic											
CC factors	Spe			groups		Habitats		Ecosystems		otal	
Combinations	no.	%	no.	%	no.	%	no.	%	no.	%	
1	16	59.2	15	55.6	5	20.8	9	31.0	45	42.0	
2	6	22.2	7	25.9	2	8.3	9	31.0	24	22.4	
3	5	18.5	1	3.7	10	41.7	7	24.1	23	21.5	
4			1	3.7	4	16.7	1	3.4	6	5.6	
5			2	7.4	2	8.3			4	3.7	
6					1	4.2	2	6.9	3	2.8	
7			1	3.7			1	3.4	2	1.8	
tot	27	100.0	27	100.0	24	100.0	29	100.0	107	100.0	

Table A.7: Frequency of the combination of effects of climate change (CC) per ecological focus at the 107 studies.

Table A.8: Number (no.) of studies at the different level of biological diversity that performed a scenario analysis per ecological focus.

Is climate change included through scenario analysis as an indirect potential driver of impacts (e.g., redistribution of species)?		Species		Trophic groups		Habitats		Ecosystems		otal
		%	no.	%	no.	%	no.	%	no.	%
No	14	51.9	6	22.2	20	83.3	16	55.2	56	52.4
Yes	13	48.1	21	77.8	4	16.7	13	44.8	51	47.6
total	27	100.0	27	100.0	24	100.0	29	100.0	107	100

Table A.9: Number (no.) of studies at the different level of biological diversity that projected scenarios at short, medium, and long-term; the percentages are referred to the total number of studies (107).

	Spee	cies	Trophic groups		Habitats		Ecosystems		То	otal
	no. %		no.	%	no.	%	no.	%	no.	%
long term (from 20 to 100 years)	9	8.4	14	13.1	2	1.9	11	10.3	36	33.6
medium term (i.e. 1 to 20 years)	3	2.8	4	3.7	2	1.9	2	1.9	11	10.3
short term (i.e. seasons within a year)	1	0.9	3	2.8	0	0.0	0	0.0	4	3.7
Total	13	12.1	21	19.6	4	3.7	13	12.1	51	47.6

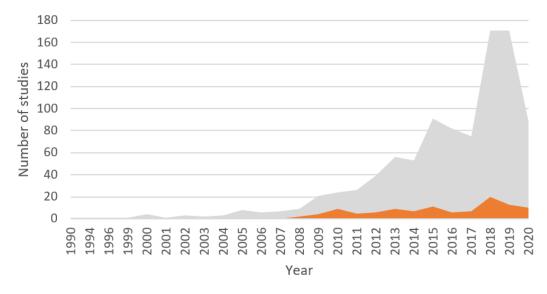


Figure A.1. Number of publications dealing with the effects of climate change individually or combined with other CC stressors (in grey), and with the combined effects of CC and at least another local human stressor in natural conditions (in orange).

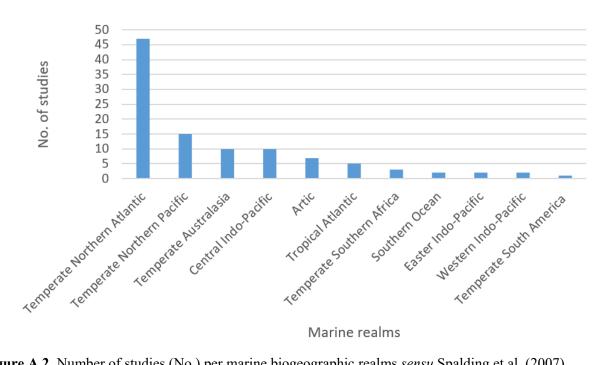
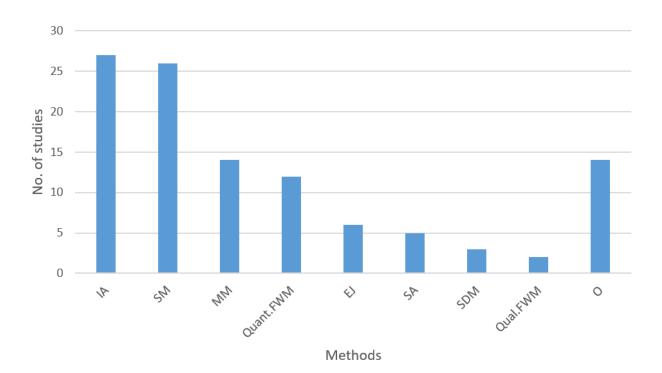
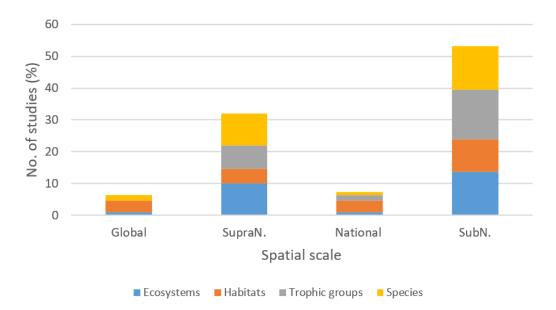




Figure A.2. Number of studies (No.) per marine biogeographic realms sensu Spalding et al. (2007).

Figure A.3: Methods applied in the analysis of multiple effects of combined climate change and human stressors; EJ=Expert judgement, IA=Integrative assessments, MM=Mechanistic modelling, O=Other, Qual.FWM=Qualitative food-web modelling, Quant.FWM=Quantitative food-web modelling, SA=Spatial analysis with GIS tools, SDM=Species distribution models, SM=Statistical modelling – linear and non-linear models.

Figure A.4. Spatial scales at which the combined effects of climate change and human stressors have been studied across levels of biological diversity; SubN.=Subnational, SupraN.=Supranational.

References

- Baker, R.E., Peña, J.M., Jayamohan, J., Jérusalem, A., 2018. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biol. Lett. https://doi.org/10.1098/rsbl.2017.0660
- Borja, A., Elliott, M., Andersen, J.H., Berg, T., Carstensen, J., Halpern, B.S., Heiskanen, A.-S., Korpinen, S., Lowndes, J.S.S., Martin, G., Rodriguez-Ezpeleta, N., 2016. Overview of Integrative Assessment of Marine Systems: The Ecosystem Approach in Practice. Front. Mar. Sci. https://doi.org/10.3389/fmars.2016.00020
- Borja, A., Prins, T.C., Simboura, N., Andersen, J.H., Berg, T., Marques, J.-C., Neto, J.M., Papadopoulou, N., Reker, J., Teixeira, H., Uusitalo, L., 2014. Tales from a thousand and one ways to integrate marine ecosystem components when assessing the environmental status. Front. Mar. Sci. 1, 72. https://doi.org/10.3389/fmars.2014.00072
- Elith, J., Leathwick, J.R., 2009. Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annu. Rev. Ecol. Evol. Syst. https://doi.org/10.1146/annurev.ecolsys.110308.120159
- Halpern, B.S., Frazier, M., Potapenko, J., Casey, K.S., Koenig, K., Longo, C., Lowndes, J.S., Rockwood, R.C., Selig, E.R., Selkoe, K.A., Walbridge, S., 2015. Spatial and temporal changes in cumulative human impacts on the world's ocean. Nat. Commun. 6. https://doi.org/10.1038/ncomms8615
- Halpern, B.S., Walbridge, S., Selkoe, K.A., Kappel, C. V, Micheli, F., D'Agrosa, C., Bruno, J.F., Casey, K.S., Ebert, C., Fox, H.E., Fujita, R., Heinemann, D., Lenihan, H.S., Madin, E.M.P., Perry, M.T., Selig, E.R., Spalding, M., Steneck, R., Watson, R., 2008. A global map of human impact on marine ecosystems. Science 319, 948–52. https://doi.org/10.1126/science.1149345
- Hoegh-Guldberg, O., Bruno, J.F., 2010. The impact of climate change on the world's marine ecosystems. Science (80-.). https://doi.org/10.1126/science.1189930
- Jager, T., 2016. Dynamic Modeling for Uptake and Effects of Chemicals, in: Marine Ecotoxicology. https://doi.org/10.1016/b978-0-12-803371-5.00003-5
- Pauly, D., Christensen, V., Walters, C., 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries, in: ICES Journal of Marine Science. https://doi.org/10.1006/jmsc.2000.0726
- Singh, G.G.G., Sinner, J., Ellis, J., Kandlikar, M., Halpern, B.S.B.S.B.S., Satterfield, T., Chan, K.M.A.K.M.A.K.M.A., 2017. Mechanisms and risk of cumulative impacts to coastal ecosystem services: An expert elicitation approach. J. Environ. Manage. 199, 229–241. https://doi.org/10.1016/j.jenvman.2017.05.032
- Spalding, M.D., Fox, H.E., Allen, G.R., Davidson, N., Ferdaña, Z.A., Finlayson, M., Halpern, B.S., Jorge, M.A., Lombana, A., Lourie, S.A., Martin, K.D., Mcmanus, E., Molnar, J., Recchia, C.A., Robertson, J., 2007. Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. Bioscience 57, 573. https://doi.org/10.1641/B570707
- Stelzenmüller, V., Coll, M., Mazaris, A.D., Giakoumi, S., Katsanevakis, S., Portman, M.E., Degen, R., Mackelworth, P., Gimpel, A., Albano, P.G., Almpanidou, V., Claudet, J., Essl, F., Evagelopoulos, T., Heymans, J.J., Genov, T., Kark, S., Micheli, F., Pennino, M.G., Rilov, G., Rumes, B., Steenbeek, J., Ojaveer, H., 2018. A risk-based approach to cumulative effect assessments for marine management. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.08.289
- Teck, S.J., Halpern, B.S., Kappel, C.V., Micheli, F., Selkoe, K.A., Crain, C.M., Martone, R., Shearer, C., Arvai, J., Fischhoff, B., Murray, G., Neslo, R., Cooke, R., 2010. Using expert judgment to estimate marine ecosystem vulnerability in the California Current. Ecol. Appl. 20, 1402–1416. https://doi.org/10.1890/09-1173.1