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Abstract—Motor-Imagery based BCI (MI-BCI) 
neurorehabilitation can improve locomotor ability and reduce 
the deficit symptoms in Parkinson’s Disease patients. Advanced 
Motor-Imagery BCI methods are needed to overcome the 
accuracy and time-related MI BCI calibration challenges in 
such patients. In this study, we proposed a Multi-session FBCSP 
(msFBCSP) based on inter-session transfer learning and we 
investigated its performance compared to the single-session 
based FBSCP. The main result of this study is the significantly 
improved accuracy obtained by proposed msFBCSP compared 
to single-session FBCSP in PD patients (median 81.3%, range 
41.2-100.0% vs median 61.1%, range 25.0-100.0%, respectively; 
p<0.001). In conclusion, this study proposes a transfer learning-
based multi-session based FBCSP approach which allowed to 
significantly improve calibration accuracy in MI BCI 
performed on PD patients. 
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Parkinson's disease, Motor-Imagery Classification 

I. INTRODUCTION  

A Brain-Computer Interface (BCI) based on 
electroencephalography (EEG) provides a direct 
communication channel for subjects and refers to the closed-
loop utilization of real-time acquisition of neural data that's 
then transformed and prepared for the extraction of relevant 
features. The output of trained BCI model is then presented 
back to the subject in the form of visual, auditory, or tactile 
feedback.  

Motor imagery (MI) related brain oscillatory activity can 
be predictably modulated and therefore a BCI system can 
identify these sensorimotor changes in EEG and produce the 
relevant output. Among many other applications, MI BCI 
technology may be used for neurorehabilitation. Indeed, it has 
been shown to positively affect motor execution, cognitive 
capabilities, and coordination, in healthy individuals, as well 
as in patients, such as post-Stroke patients, Parkinson's disease 
and Autism spectrum disorders [1]–[3]. Furthermore, since no 
peripherals (muscles and nerves) are involved, it can be 
applied in assistive technologies for paralyzed patients both 
for rehabilitation and as and for communication. 

The most common motor symptoms in Parkinson’s 
Disease (PD) are tremors, rigidity and gait disorders [4]. 
Motor-Imagery (MI) based BCI (MI-BCI) with different 
paradigms [5] facilitates activation of the visual, motor and
premotor cortex and as a consequence can improve 
individual’s locomotor ability, and reduce the aforementioned 
PD symptoms [1], [6].  

In the classical MI BCI approach, a control system is set 
up to exploit a specific EEG feature which is known to be 
susceptible to subject's volitional control, such as, 
characteristic changes in sensorimotor rhythms (SMR) during 
MI [7]. The initial part of each BCI session, also known as the 
calibration phase, is used to train and produce personalized 
BCI models that meet specificities of the subjects' current 
brain signals. The step is achieved by applying data-driven 
pre-processing steps and machine learning approaches to 
create BCI models. For the BCI participants, this initial 
calibration phase is the most tedious part of the BCI session, 
and it can last from 10min up to 30-40min for healthy BCI 
naïve participants and even longer for PD patients. To achieve 
a good BCI model that will be capable of accurately 
classifying non-stationary EEG signals and to improve 
performance in the case of patients, the initial calibration 
phase may be considerably longer taking into account the 
possible psychological state and other comorbidities such as 
mild cognitive decline. A long initial phase can be 
demotivational for patients and can have a negative impact on 
the rehabilitation procedure. Besides, Parkinson's disease 
patients, often characterized by cognitive decline, especially 
evident in the domain of executive functions [2], may also 
present a lower BCI performance with respect to the healthy 
subjects [8] imposing additional challenges for the creation of 
accurate BCI model during the calibration. 

To overcome the issue of long calibration procedures and 
in general to increase the accuracy of the BCI model in this 
study we propose a transfer learning approach that exploits the 
data from the previous sessions and in combination with the 
current calibration data learn most of the calibration 
parameters. Thus, we aimed at investigating the accuracy 
performance of the proposed transfer learning approach for 
creation of MI BCI models in PD patients. 
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II. MATERIALS METHODS 

A. Study population  

The experiment was conducted on 7 Parkinson's disease 
patients (4M/3F, mean age 72 ± 4.5 years). All patients had a 
history of gait’s disturbance, namely experiencing freezing of 
gate episodes (FOG), Hoehn and Yahr [9] score lower than 3, 
whereas, the cognitive capabilities were evaluated by the 
Mini-Mental State Examination (MMSE) [10]. Moreover, all 
of them had a stable pharmacological treatment for at least two 
months prior to the BCI-MI treatment. 

All the patients gave their signed consent before the start 
of treatment, and the experimental protocol was pre-approved 
by the Local Ethical Committee and was conducted according 
to the principles of the Declaration of Helsinki. 

B. BCI-MI sessions 

The BCI-MI protocol consisted of a total of 14 
neurofeedback sessions targeting lower extremities (i.e. feet 
Motor-Imagery). The session duration was from 1.5-2 hours 
repeated 2-3 times per week. The session was split into two 
parts, initial calibration phase where the patients had to 
perform feet MI on a given instruction for 35 to 40 times, and 
the online neurorehabilitation phase where they had to 
actively control the stimulus on the screen (feedback). The 
EEG signals during both phases were acquired from 11 EEG 
electrodes placed at standard 10-20 locations (F3, Fz, F4, T3, 
C3, Cz, C4, T4, P3, Pz, P4). All electrodes were referenced to 
AFz and grounded to POz and the acquisition has been 
performed with a sampling frequency rate of 256 Hz and 
impedances were kept below 5kΩ. In addition, two 
electromyography (EMG) electrodes were added and placed 
at the level of the feet, to exclude any possible limb 
movement. 

 

Visual stimulus design during the calibration phase is 
depicted in Fig. 1. The subjects were seated in front of a pc 
monitor where the text "cammina" (eng. "walk") and a blank 
grey screen (for rest) appeared interchangeably. The duration 
of the appearance of the stimulus was for 5 seconds and the 
MI stimulus was repeated for 35-40times. 

C. EEG pre-processing and classical FBCSP 

The processing of EEG data was carried out using 
MATLAB (The MathWorks Inc., Natick, MA). All channels 
were filtered from 6 to 32 Hz with the 2nd order Butterworth 
bandpass filter. The BCI models were produced with the 
BCILAB [11] framework applying Filter-Bank Common 
Spatial Filter (FBCSP) approach [12], producing 3 spatial 
patterns per class. The classification was performed with 
Fisher Linear Discriminant Analysis (LDA) classifier with 
automatic shrinkage regularization [13]. The EEG spectra 
from 6 to 32Hz were subdivided by a series of filter-banks 
yielding 7 sub-bands of 6Hz bandwidth and 2Hz overlap for 
three different time windows (Fig. 2). The time-frequency 

windows were considered for the CSP modelling and 
subsequently fed to train LDA classifier (Fig. 2). The output 
Pn of the LDA classifier is provided in a form of a discrete 
probability distribution, providing class belonging probability 
formatted as [Nx2], where the N is the number of input trials, 
and 2 columns correspond to the two classes “walk” and 
“rest”. 

D. Transfer learning Multi-session FBCSP  

In this study we propose a Multi-session FBCSP 
(msFBCSP) based on inter-session transfer learning. It 
represents an extension of the standard aforedescribed FBCSP 
approach which in this case also includes data from previous 
calibration sessions to improve model performance. The 
msFBCSP is designed to produce two separate models, one 
standard, as is in the case of classical FBCSP considering only 
data from the current calibration phase producing the class-
belonging probability Pn, and the second utilizing a merge of 
calibration data of max 4 previous sessions outputting Pp. The 
msFBCSP model for 5 consecutive sessions is depicted in Fig. 
3. Note that the integration of 4 previous sessions are applied 
in the cases where it was possible (starting from 5th session).  

The final decision is expressed with: 

𝑃𝑜𝑢𝑡 = {
       𝑃𝑛,        𝑘 = 1

     
𝑃𝑝+𝑃𝑛

2
,   𝑘 > 1

                         (1) 

where the Pout, Pn, Pp, Pn ∈ ℝ𝑁𝑥2 and represent discrete 
probability distribution, providing class belonging probability 
(each column for a class), where the N is the number of trials 
fed into the classifier and k (1≤ 𝑘 ≤ 14) denotes the number 
of the session. A class with Pout > 0.5 has been selected as the 
final output of the classification process. 

 
Fig. 1. Visual stimulus design during the calibration phase. 

 
Fig. 2.  Block diagram of FBCSP approach. 

 
 
Fig. 3. Block diagram of Multi-session FBCSP (msFBCSP) approach based 
on inter-session (S) transfer learning. 
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TABLE 1. THE ACCURACY [%] OF MODELS PRODUCED USING  

MULTI- SESSION FBCSP (MSFBCSP) 
Session Sb.1 Sb. 2 Sb.3 Sb.4 Sb. 5 Sb.6 Sb.7 

1 52.9 41.2 72.2 62.5 82.4 82.4 63.2 

2 87.5 93.8 88.9 93.8 88.2 100.0 91.3 

3 94.1 88.2 89.5 81.8 75.0 93.8 87.5 

4 76.5 84.2 93.8 90.0 72.2 76.5 66.7 

5 75.0 94.1 95.7 75.0 76.5 76.5 94.1 

6 77.8 93.8 68.8 93.8 95.0 68.8 76.5 

7 77.8 94.1 87.5 81.3 82.4 93.8 82.6 

8 70.6 75.0 64.7 76.5 68.8 81.3 77.8 

9 75.0 85.0 100.0 75.0 81.3 76.5 82.4 

10 68.8 100.0 62.5 87.5 93.8 81.3 61.3 

11 87.5 77.8 68.8 75.0 90.0 76.5 75.0 

12 62.5 81.3 82.6 93.8 89.5 75.0 58.8 

13 76.5 82.4 92.6 93.8 75.0 88.2 62.5 

14 64.7 75.0 68.8 87.5 84.2 62.5 73.7 

Median 
(range) 

75.7 
(52.9-
94.1) 

84.6 
(41.2-
100.0) 

85.1 
(62.5-
100.0) 

84.7 
(62.5-
93.8) 

82.4 
(68.8-
95.0) 

78.9 
(62.5-
100.0) 

75.7 
(58.8-
94.1) 

* Sb. denotes subject 

Model validation and metrics 

Both classical and msFBCSP were evaluated on 7-13 
(30%) randomly selected trials of the current calibration 
session. The remaining 24-28 trials (70%) were used to train 
the whole BCI model in the case of the standard approach, and 
part of the model in the case of msFBCSP. All the evaluation 
has been performed offline. 

Accuracy was used for the evaluation metrics, resembling 
the number of correctly classified trials.  

E. Statistical analysis 

Variables were presented with mean and standard 
deviation or median and range depending on the distribution. 
Kolmogorov-Smirnov test was used to evaluate normal 
distribution of variables. The difference between accuracies 
obtained using the FBSCP on single-session data and 
proposed msFBCSP approach were assessed by two-sided 
Wilcoxon signed-rank test. 

III. RESULTS 

The accuracy of models produced using the FBSCP on 
single-session data and proposed msFBCSP approach for each 
patient and session are reported in Table 1 and Table 2, 
respectively. The difference in accuracy between the two 
methods over sessions is shown in Fig. 4. It can be observed 
that there is a clear improvement in most of the cases. Indeed, 
the msFBCSP approach showed a statistically higher accuracy 
compared to single-session based FBCSP (81.3% range 41.2-
100.0 vs 61.1% range 25.0-100.0, respectively; p<0.001). 

IV. DISCUSSION 

Advanced Motor-Imagery BCI methods are needed to 
allow the application of these neurorehabilitation strategies to 
the real clinical scenarios. MI BCI-based neurorehabilitation 
can improve locomotor ability and alleviate some symptoms 
in PD patients. In this study, we proposed a Multi-session 
FBCSP (msFBCSP) based on inter-session transfer learning 
to improve calibration performance. 

TABLE 2. THE ACCURACY [%] OF MODELS PRODUCED USING  

SINGLE-SESSION FBCSP  
Session Sb.1 Sb. 2 Sb.3 Sb.4 Sb. 5 Sb.6 Sb.7 

1 52.9 41.2 72.2 62.5 82.4 82.4 63.2 

2 43.8 62.5 61.1 81.3 70.6 82.4 47.8 

3 35.3 58.8 73.7 54.5 62.5 56.3 56.3 

4 47.1 52.6 81.3 80.0 72.2 52.9 61.1 

5 46.4 52.9 65.2 68.8 52.9 58.8 52.9 

6 61.1 68.8 43.8 68.8 65.0 75.0 52.9 

7 44.4 64.7 87.5 75.0 70.6 43.8 69.6 

8 41.2 56.3 41.2 64.7 56.3 56.3 50.0 

9 37.5 65.0 56.3 87.5 50.0 82.4 52.9 

10 56.3 80.0 50.0 81.3 68.8 68.8 54.8 

11 37.5 61.1 50.0 56.3 50.0 52.9 62.5 

12 25.0 75.0 65.2 100.0 68.4 50.0 47.1 

13 29.4 76.5 74.1 68.8 68.8 64.7 62.5 

14 58.8 62.5 53.1 56.3 57.9 68.8 73.7 

Median 
(range) 

44.1  
(25.0-  
61.1) 

62.5  
(41.2- 
80.0) 

63.2 
(41.2- 
87.5) 

68.8 
(54.5- 
100.0) 

66.7  
(50.0- 
82.4) 

61.8 
(43.8- 
82.4) 

55.5 
(47.1- 
73.7) 

* Sb. denotes subject 

The main result of this study is the improved accuracy 
obtained by proposed msFBCSP compared to single-session 
based FBCSP in PD patients. We showed that msFBCSP with
a simple data integration together with merged class belonging
probabilities can improve significantly classification 
accuracy. This is the first study that proposes a multi-session 
transfer learning in MI BCI based neurorehabilitation of PD 
patients. 

The improved accuracy of msFBCSP produced BCI 
models in probably due to the better identification of 
discriminative features, rather than single-session related one, 
producing as a consequence a higher generalization model. 

The proposed strategy besides the improved classification 
accuracy may have a future implication in developing multi-

 
Fig. 4. Graphical representation of the accuracy [%] of msFBCSP (session to 
session transfer learning) and single-session FBCSP (no transfer-learning)  
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session strategies that could also reduce the calibration time or 
even eliminate it as in [14]. These improved MI BCI 
performances may make it more applicable in the domain of 
neurorehabilitation, helping to improve locomotor ability and 
alleviate some symptoms in PD patients. 

Furthermore, in future work, we plan to consider multiple 
cross-validation techniques for model evaluation, as well as 
transfer learning between PDs subjects. In this preliminary 
work, the number of previous sessions utilized for the session 
to session transfer was arbitrary fixed to 4 and it is yet to be 
examined how the further increase or decrease of previous 
sessions will affect the performance of the BCI model. 

Future studies on a larger sample are needed to confirm 
these results and to assess to what extent the calibration 
session can be reduced or even eliminated starting from Nth 
session. Finally, the future work, especially in the case of 
subject data integration, needs to consider an adaptive 
weighting, not necessarily on the level of the final probability, 
but also on the level of the model training. It is yet to be 
examined how stationary or even non-stationarity in the 
session and subject space affect the final classifier 
performance. 

In conclusion, this study proposes a transfer learning-
based multi-session based FBCSP approach which allowed to 
significantly improve calibration accuracy in MI BCI 
performed on PD patients. 
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