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Abstract. We revisit, deepen, and make more systematic, the study—
undertaken ca. 1990—of reductions of Hilbert’s tenth problem to frag-
ments of set theory, whereby sublanguages of the Zermelo-Fraenkel ax-
iomatic theory are shown to have an undecidable satisfiability problem.
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Introduction

We show that the satisfiability problems for various fragments of ZF—the
Zermelo-Fraenkel first-order set theory with regularity axiom—are undecidable.
To wit, if Φ is among those sublanguages of ZF, no algorithm can establish
whether or not any given formula ψ in Φ becomes true under suitable assign-
ments of sets to its free variables.

For each Φ taken into account, the undecidability result stems from a uniform
translation method which turns every instance D = 0 (with D ∈ Z[x1, . . . , xm])
of Hilbert’s 10th problem into a formula ψ of Φ so that ψ is satisfiable if and only
if the polynomial equation D(x1, . . . , xm) = 0 has natural solutions. Through
this translation, the algorithmic unsolvability of Hilbert’s 10th problem carries
over to the satisfiability problem for Φ.

Some of the undecidable Φ’s are slight extensions of a core language consist-
ing of all conjunctions of literals of the forms x = y∪z, x = y⊗z, x∩y = ∅, and
|x| = |y|, where x, y, z stand for variables, y ⊗ z is a variant of Cartesian prod-
uct consisting of singletons and unordered doubletons, and |x| = |y| designates
equinumerosity between x and y. Additional conjuncts entering into play can be,
e.g.: one literal of the form Finite(x), stating that x has finitely many elements,
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taken along with one literal of the form x 6= ∅. Another option would be to
extend the said syntactic core by allowing three negated equinumerosity literals
of the form |x| 6= |y| to appear in the conjunction. Our interest in these, and
similar, slim undecidable set-theoretic languages is increased by the fact that
they lie extremely close to fragments of ZF which are either known [3, Sec.11.1],
or conjectured [4, p. 239], to be decidable.

One can recast the undecidable fragments of ZF under study in a set-theoretic
language entirely devoid of function symbols (such as ∪,⊗, etc.), which only in-
volves the relators ∈ and =, propositional connectives, and also the constructs
∀x ∈ y ϕ and ∃x ∈ y ϕ involving bounded quantifiers, subject to a very re-
strained use. The fact that somewhat sophisticated notions like “being an or-
dinal”, “being the first limit ordinal ω”, “having a finite cardinality”, “being a
hereditarily finite set”, can be specified inside this collection of formulas, dubbed
(∀∃)0 formulas, gives evidence of the high expressive power of bounded quantifi-
cation in the context of ZF.

In a full-fledged language for set theory, (∀∃)0 specifications are only seldom
used in order to define mathematical notions. Hence, to support the correct-
ness of the proposed (∀∃)0-specifications of ω, equinumerosity, and finitude, we
have proved that they are equivalent to more direct and practical characteriza-
tions of the same notions. As we document at the http://aetnanova.units.

it/scenarios/SetTheoreticH10/, this formal accomplishment was carried out
with the aid of a proof-checker embodying a computational version of ZF.

1 From Hilbert’s 10th problem to unsolvable satisfiability
problems in set theory

1.1 How to flatten instances of Hilbert’s 10th problem

Consider a polynomial Diophantine equation

D(x1, . . . , xm) = 0

to be solved in N. By pulling out subterms of the polynomial D, we can flatten
this equation into a system (viz., a conjunction) of equations of the forms

x = y + z , x = y · z , x = 1 , x = y ,

where x, y, z stand for variables, to be regarded—the new ones as well as the
original ones, x1, . . . , xm—as unknowns in N (cf. [10,1]). We can then eliminate
each equation of the form x = y by rewriting it as x = y + ζ, where ζ is forced
to assume the value 0 (see equations (5) below).

The flattening process can easily enforce that x, y, z are distinct variables
when they appear together in the same equation x = y ? z (with ? ∈ {‘+’, ‘·’});
moreover, we will keep a sole equation, o = 1, involving 1. The equi-solvability
between the system ∆ so obtained and the original equation will be obvious.

http://aetnanova.units.it/scenarios/SetTheoreticH10/
http://aetnanova.units.it/scenarios/SetTheoreticH10/
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Example 1. The equation (from [8, p. 4])

4 x31 x2 − 2 x21 x
3
3 − 3 x22 x1 + 5 x3 = 0 (1)

can be flattened into the following system ∆1 consisting of 26 equations in 28
unknowns, 3 of which are x1, x2, x3, namely the original unknowns of (1):

ζ = ζ1 + ζ2 , ζ1 = ζ2 + ζ , ζ2 = ζ + ζ1 ,
o = 1 , u2 = u1 + o , u4 = u3 + o ,
u1 = o+ ζ , u3 = u2 + o , u5 = u4 + o ,

P 1
x1

= x1 + ζ , P 2
x1

= P 1
x1
· x1 , P 3

x1
= P 2

x1
· x1 ,

P 1
x2

= x2 + ζ , P 2
x2

= P 1
x2
· x2 ,

P 1
x3

= x3 + ζ , P 2
x3

= P 1
x3
· x3 , P 3

x3
= P 2

x3
· x3 ,

M1
1 = u4 · P 3

x1
, M1 = M1

1 · x2 , M4 = u5 · x3 ,
M1

2 = u2 · P 2
x1
, M2 = M1

2 · P 3
x3
, L = M1 +M4 ,

M1
3 = u3 · P 2

x2
, M3 = M1

3 · x1 , L = M2 +M3 .

By then replacing the equation o = 1 in ∆1 by the constraints o 6= ζ and

o = o · o′ , o′ = o+ ζ , (2)

(which are equisatisfiable with o = o2 & o 6= ζ ), we get a system ∆ which is

equisolvable—in N—with the initial equation (1) and consists of: 28 equations
in 29 unknowns, of the forms

x = y + z , x = y · z , (3)

(where all compound terms y ? z involve distinct variables) and one inequality

o 6= ζ . (4)

a

Definition 1. Systems that consist of flat equations of the forms (3) conjoined
with the equations

ζ = ζ1 + ζ2 , ζ1 = ζ2 + ζ , ζ2 = ζ + ζ1 (5)

and (2) and with the inequality (4), and inside which all terms of type y+ z and
y · z involve distinct variables, are named canonical Diophantine systems.

Remark 1. One can also express multiplication in terms of the squaring oper-
ation (see [6, p. 230]). Notice, in fact, that any equation of the form x = y · z
is equisolvable in N with the flattened system of equations

p = y + z , x′ = x+ ζ ,
q = p2 , f = y2 , g = z2 ,
k = x+ x′ , h = f + g , q = k + h ,
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as can be seen from the identity

q︷ ︸︸ ︷
( y + z︸ ︷︷ ︸

p

)2 =

k︷ ︸︸ ︷
y · z︸︷︷︸
x

+ y · z︸︷︷︸
x′

+

h︷ ︸︸ ︷
y2︸︷︷︸
f

+ z2︸︷︷︸
g

.
a

From a canonical Diophantine systems ∆, we will next get a conjunction ∆̂
of set-theoretic constraints of the forms:

= ∪ union (ternary relation)
= × Cartesian product (ternary relation)
∩ = ∅ disjointness (dyadic relation)
| | = | | equinumerosity (dyadic relation)
Finite( ) finitude (property)

= { } singleton formation (dyadic relation)
6= ∅ non-emptyness (property)

| | 6= | | non-equinumerosity (dyadic relation)

Here, in light of the replaceability of multiplication by the squaring operation (as
pointed out in Remark 1), we might only employ Cartesian square y×y, without
ever resorting to the product y×z with y distinct from z.

1.2 How to translate a canonical Diophantine system ∆ into
unquantified fragments of set theory

Let ∆ be a Diophantine canonical system.
We translate each conjunct of ∆ according to the following rules:

x = y + z  uy,z = y ∪ z & y ∩ z = ∅ & |uy,z | = |x | ,
x = y · z  wy,z = y × z & |wy,z | = |x | ,
o 6= ζ  o 6= ∅ ,

where each uy,z and each wy,z is a new variable. By also adding, for each variable
u in∆, the conjunct Finite(u) (meaning that |u | ∈ N), we obtain the set-theoretic

counterpart ∆̂ of ∆.

Next we prove that the canonical system ∆ is satisfiable in N if and only if
its set-theoretic counterpart ∆̂ is satisfiable in the universe of all sets. In view
of the unsolvability of Hilbert’s Tenth problem (see [8, Chapter 5]), we readily
obtain the algorithmic unsolvability of the satisfiability problem for set-theoretic
conjunctions of positive literals of the forms

x = y ∪ z , x = y × z , x ∩ y = ∅ , |x | = | y | , Finite(x) ,

plus a single inequality of the form x 6= ∅ .
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To carry out the first half of the proof, we observe that any set-assignment
v 7→ Mv over the variables of ∆̂ that satisfies ∆̂ induces naturally the corre-
sponding N-assignment

v 7→ |Mv| (6)

over the variables of ∆, and it is a simple matter to check that (6) satisfies ∆.

For instance, if x = y + z is in ∆, then the following conjuncts are in ∆̂

uy,z = y ∪ z , y ∩ z = ∅ , |uy,z | = |x | ,
Finite(x) , Finite(y) , Finite(z) .

Hence, we have:

Muy,z = My ∪Mz , My ∩Mz = ∅ , |Muy,z | = |Mx | ,
|Mx | ∈ N , |My | ∈ N , |Mz | ∈ N ,

so that
|Mx | = |Muy,z | = |My ∪Mz | = |My |+ |Mz | ,

proving that the N-assignment (6) satisfies the equation x = y + z .
Similarly, one can show that the N-assignment (6) also satisfies all equations

of the form x = y · z in ∆ as well as the inequality o 6= 0.

For the converse proof, we will make use of the following notation, for every
k ∈ N and A ⊆ N:

[k] := {1, 2, . . . , k} and k +A := {k + a : a ∈ A} .

Suppose that v 7→ vvv is a solution to ∆ in N, and let v1, v2, . . . , v` be the
distinct variables in ∆, in any fixed order. We define a set-assignment over the
variables in ∆̂ by putting:

– Mvj := kj + [vvvj ], for j = 1, . . . , `, where kj :=
∑j−1
r=1 vvvr (so that k1 = 0);

– Muy,z := My ∪Mz , for every literal x = y + z in ∆ ;

– Mwy,z := My ×Mz , for every literal x = y · z in ∆ .

We prove that the set-assignment M so defined over the variables of ∆̂ satisfies
all of the conjuncts of ∆̂ .

– Let x = y + z be in ∆. By the definition of M , we have

Muy,z = My ∪Mz ,

so that M satisfies the conjunct uy,z = y ∪ z.
Let y and z be the variables vi and vj , respectively, where without loss of
generality we are assuming i < j. Also, let x be the variable vh. Preliminarily,
we show that

Mvi ∩Mvj = ∅ . (7)
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If ∅ ∈ {Mvi , Mvj}, then (7) plainly holds. Otherwise, recalling that

Mvi := ki + [vvvi] and Mvj := kj + [vvvj ] ,

we get

maxMvi = ki + vvvi =

i−1∑
r=1

vvvr + vvvi =

i∑
r=1

vvvr 6
j−1∑
r=1

vvvr < minMvj ,

whence (7) follows in this case too. From (7), it follows that

|Muy,z | = |My ∪Mz | = |My |+ |Mz | = |Mvi |+ |Mvj |
= vvvi + vvvj = vvvh = |Mvh | = |Mx | ,

proving that the set-assignment M satisfies the conjunct |Muy,z | = |Mx |.
– It is even easier to prove that M satisfies also the literals in ∆̂ of the forms

wy,z = y × z , |wy,z | = |x | ,

resulting from the translation of equations of the form x = y · z, and the
only literal of the form x 6= ∅ in ∆̂ .

– To end, for each variable u in ∆, the assignment M also satisfies Finite(u) .

We have thus obtained that the set-assignment M satisfies the conjunction
∆̂, and hence conclude that the translation ∆ 7→ ∆̂ is satisfiability-preserving,
namely:

Theorem 1. A canonical Diophantine system ∆ is solvable in N if and only if
the corresponding conjunction ∆̂ is satisfied by some set-assignment.

Consequently, from the undecidability of Hilbert’s tenth problem we get:

Lemma 1. The satisfiability problem for set-theoretic conjunctions of any num-
ber of positive literals of the forms

x = y ∪ z , x = y × z , x ∩ y = ∅ , |x | = | y | (‡)

and of the form Finite(x), plus one negative literal of the form x 6= ∅ , is algo-
rithmically unsolvable.

Since finitude is ⊆-hereditary, any conjunction
∧
i∈I Finite(xi) of finitude

constraints can be replaced, without affecting satisfiability, by the conjunction
Finite(F ) &

∧
i∈I F = F ∪ xi containing a single finitude constraint, where F

is a newly introduced variable. The preceding undecidability result can hence be
slightly strengthened into:

Lemma 2. The satisfiability problem for set-theoretic conjunctions of any num-
ber of positive literals of the forms (‡), plus one positive finitude literal, Finite(x) ,
and one negative literal of the form x 6= ∅ is algorithmically unsolvable.
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A fortiori, we also have the following negative result:

Lemma 3. The satisfiability problem for set-theoretic conjunctions of any num-
ber of positive literals of the forms (‡), plus one positive finitude literal, Finite(x) ,
and one negative literal of the form |x | 6= | y | is algorithmically unsolvable.

The following claim gives us a way of expressing the finitude of sets:

Proposition 1. A set with at least two members is finite if and only if it is the
union of two sets whose cardinalities differ from its own cardinality.

Proof. It suffices to note that, for an infinite set s and any decomposition s = s1∪
s2, we have (independently of whether s1∩s2 = ∅ or not) | s | = max(| s1 | , | s2 |).

Thus, without affecting satisfiability, any conjunction
∧
i∈I Finite(xi) of

finitude literals can be replaced by the conjunction

F = F1 ∪ F2 & |F1 | 6= |F | & |F2 | 6= |F | &
∧
i∈I

F = F ∪ xi

containing no finitude literal, where F, F1, F2 are newly introduced variables.
In view of the preceding remark, Lemma 3 can be restated as follows.

Lemma 4. The satisfiability problem for set-theoretic conjunctions of any num-
ber of positive literals of the forms (‡), plus at most three negative literals of the
form |x | 6= | y | , is algorithmically unsolvable.

One can express finitude also in the following way:

Proposition 2. A nonempty set is finite if and only if, by removing a member
from it, one obtains a set of different cardinality.

Therefore, we have:

Lemma 5. The satisfiability problem for set-theoretic conjunctions of any num-
ber of positive literals of the forms (‡), plus two positive literals of the form
x = { y } , and one negative literal of the form |x | 6= | y | , is unsolvable.

Proof. In view of Lemma 2, it is enough to observe that:

– a negative literal of the form x 6= ∅ can be expressed via a conjunction of
the form y′ = {x′ } & x = x ∪ y′ where x′, y′ are brand new variables;

– any conjunction
∧
i∈I Finite(xi) of finitude literals can be expressed by

means of the conjunction

F ∗ = { f∗ } & F = F ∪F ∗ & F− = F \F ∗ &
∣∣F− ∣∣ 6= |F | & ∧

i∈I
F = F ∪xi

containing no finitude literal, where F, F ∗, F− are new variables;

– a literal of the form x = y \ z can be expressed by means of the conjunction

y = x ∪ x′ & x ∩ x′ = ∅ & x ∩ z = ∅ & x′ ∩ y = ∅ .
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1.3 Undecidability results regarding unordered Cartesian product

Much the same reductions can be carried out when the operation ⊗ defined by

s⊗ t :=
{
{u, v} : u ∈ s, v ∈ t

}
.

(for sets s, t whatsoever) supersedes the standard Cartesian product operator ×.

In order that Lemmas 1, 2, 3, 4, and 5 retain their validity with this unordered
product operator ⊗ in place of ×, it suffices that the above-proposed translation
rule for arithmetical constraints of the form x = y · z gets retouched as follows:

x = y · z  wy,z = y ⊗ z & y ∩ z = ∅ & |wy,z | = |x | .

2 Undecidability of a restrained collection of
bounded-quantifier formulas in set theory

So far we have been designating various set-theoretic operations (e.g., dyadic
union, Cartesian product, cardinality) and properties and relations (finitude,
disjointness, etc.) by means of ad hoc signs ( ∪ , × , Finite( ), ∩ = ∅ , etc.)
which, if adopted beforehand as primitives in the language supporting set theory,
would make the undecidable fragments reviewed in Sec. 1 devoid of quantifiers.

Most often, set theories get formalized in a first-order language devoid of
constants and function symbols, whose only relators are ∈ and =. How complex
then becomes the syntactic structure of the formulas lying in the undecidable
fragments? As we will see next, a very modest usage of quantification is needed
to state them: only bounded quantifiers, and just one quantifier alternation are
needed, with (bounded) universal quantifiers in leading position.

2.1 The syntax of (∀∃)0 formulas

Consider the first-order language L∈ endowed with:

– an infinite supply ν0, ν1, ν2, . . . of set variables;

– dyadic relators ∈,= designating membership and equality;

– the familiar propositional connectives ¬ (monadic) and & , ∨ ,→,↔ (dyadic);

– associated with each set variable νi , the familiar quantifiers ∀ νi and ∃ νi.

We enhance the usual syntax of formulas with two handy shortening devices:

Definition 2. Universal and existential bounded quantifiers are introduced
as follows:

(∀x ∈ y)ϕ ↔Def (∀x)(x ∈ y → ϕ) ;

(∃x ∈ y)ϕ ↔Def (∃x)(x ∈ y & ϕ) .
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Definition 3. We dub (∀∃)0-formula any conjunction Φ of the form

M∧
j=0

(∀yj1 ∈ y′j1) · · · (∀yjpj ∈ y′jpj ) (∃xj1 ∈ x′j1) · · · (∃xjqj ∈ x′jqj ) ϕj

where, for each j, the formula ϕj is devoid of quantifiers and either pj > 0,
qj > 0 or pj = qj = 0 holds.

2.2 (∀∃)0 specifications

Definition 4. We dub (∀∃)0 specification of an m-place relationship R over
sets a (∀∃)0 formula Φ with free variables a1, . . . , am, x1, . . . , xκ (where κ > 0)
such that, under the axioms of set theory (see below), one can prove:

R(a1, . . . , am) ↔ (∃x1 , . . . , xκ) Φ .

E.g., the right-hand sides of

a = b \ c ↔ (∀t ∈ a)(t ∈ b & t /∈ c) & (∀t ∈ b)(t ∈ c ∨ t ∈ a) ,

Sngl(a) ↔ (∃x)
(
x ∈ a & (∀y ∈ a)(y = x)

)
are (∀∃)0 specifications of the 3-place relationship a = b \ c and, respectively, of
the property “being a singleton set”.

In the ongoing, our set-theoretic framework will be the theory ZF, axiom of
regularity included. First, in order to design a (∀∃)0 specification of the property
“being a finite set” (see Sec. 2.4), we will extend temporarily the signature of L∈
with a constant ω which is meant to designate the first limit ordinal; then we will
figure out a (∀∃)0 specification of the property “being the first limit ordinal” (see
Sec. 2.5), thus ending in an impeccable (∀∃)0 specification of finitude. Along the
way, we will also specify the important equinumerosity predicate, which relates
two sets when they have the same cardinality (see Sec. 2.4).

2.3 (∀∃)0 specifications referring to disjointness, unionset, and
weak Cartesian product

x ∩ y = ∅↔ (∀ v ∈ x)
(
v /∈ y

)
,

x ⊆ ∪y ↔ (∀x′ ∈ x)(∃ y′ ∈ y)
(
x′ ∈ y′

)
,

∪f ⊆ v ↔ (∀p ∈ f)(∀w ∈ p)(w ∈ v) ,

Mapw(f)↔ (∀p ∈ f)(∀x1, x2, x3 ∈ p)
(
x1 = x2 ∨x2 = x3 ∨x3 = x1

)
,

f ⊆ x⊗ y ↔ Mapw(f) &

(∀p ∈ f)(∃x′ ∈ x)(∃y′ ∈ y)
(
x′ ∈ p & y′ ∈ p ) &

(∀p ∈ f)(∀w ∈ p)
(
w ∈ x ∨ w ∈ y ) .

The explanation of the last of these is straightforward; here it is:
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No member of f has more than two members: (∀p ∈ f)
(
|p| 6 2

)
,

where

|p| 6 2↔ (∀x1, x2, x3 ∈ p)
(
x1 = x2 ∨ x2 = x3 ∨ x3 = x1

)
.

Each member of f has the form {x′, y′} with x′ ∈ x and y′ ∈ y:

(∀p ∈ f)(∃x′ ∈ x)(∃y′ ∈ y)
(
x′ ∈ p & y′ ∈ p ) .

No member of a member of f lies outside x ∪ y: ∪f ⊆ x ∪ y .

2.4 (∀∃)0 specifications of equinumerosity, squaring, and finitude

1-1w(x, f, y)↔ x ∩ y = ∅ & f ⊆ x⊗ y & x ⊆ ∪f & y ⊆ ∪f &

(∀p , q ∈ f)(∀v ∈ p)
(
v ∈ q → p = q

)
.

Meaning:

1-1w(x, f, y) can only hold if x and y are disjoint sets, in which case f models
a one-to-one mapping between x and y by means of unordered pairs, in the
sense that:

f consists of doubletons proper;

each doubleton in f pairs up a member of x with one of y;

f pairs up exactly one member of y with each member of x;

f pairs up exactly one member of x with each member of y.

Stating that sets x, y are of the same cardinality amounts to the statement
that there is a set y′ such that

y′ can be put in one-to-one correspondence with x,

y′ can be put in one-to-one correspondence with y,

y′ and x are disjoint, and y′ and y are disjoint.

Summing up, we have:

|x| = |y| ↔ (∃ y′ , g , h )
(
1-1w(x, g, y′) & 1-1w(y, h, y′)

)
.

Clue: One way of concretizing y′, here, is by putting y′ = y ⊗ {y ∪ x}.

Likewise, stating that the cardinalities |x| , |y| are such that |x| = |y|2 amounts
to the statement that there are sets y′, x′ such that

y′ can be put in one-to-one correspondence with y,

x′ = y ⊗ y′ and x′ can be put in one-to-one correspondence with x,

x′ and x are disjoint, and y′ and y are disjoint.
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Summing up, we have:

|x| = |y|2 ↔ (∃x′ , y′ , g , h )
(
Mapw(x′) & 1-1w(x′, g, x) &

1-1w(y′, h, y) &

(∀p ∈ x′)(∃u ∈ y)(∃v ∈ y′)(u ∈ p & v ∈ p ) &

(∀u ∈ y)(∀v ∈ y′)(∃p ∈ x′)(u ∈ p & v ∈ p )
)
.

Clue: The equality x′ = y⊗y′ follows from the conjunction of Mapw(x′) with the
last two conditions, thanks to the disjointness constraint y′∩y = ∅ hidden inside
1-1w(y′, h, y). A convenient way to instantiate y′ is, again, to put y′ = y⊗{y∪x}.

A finite set is one that can be put in one-to-one correspondence with a
cardinal preceding (i.e., belonging to) the first infinite ordinal, ω :

Finite(x)↔ (∃ o)
(
o ∈ ω & |x| = |o|

)
.

More explicitly:

Finite(x)↔ (∃ o , x′ , g , h)
(
o ∈ ω & 1-1w(x′, g, x) & 1-1w(x′, h, o)

)
.

2.5 (∀∃)0 specification of ordinals and of the first limit ordinal

A set t is said to be transitive if t ⊆ P(t); equivalently, if ∪ t ⊆ t . After John
von Neumann and Raphael M. Robinson, ordinal numbers are those transitive
sets within which any two different elements can be compared by membership:

Ord(o)↔ (∀y ∈ o)(∀y′ ∈ y) y′ ∈ o &

(∀o1 ∈ o)(∀o2 ∈ o)(o1 = o2 ∨ o1 ∈ o2 ∨ o2 ∈ o1)

Those ordinal numbers o such that o 6= ∅ and o =∪o are called limit ordinals.
Plainly, the property “being a limit ordinal” is (∀∃)0-specifiable.

To characterize uniquely the first limit ordinal, ω, among all sets, it will
suffice to conjoin together the following conditions, where Z, a, and s are meant
to represent, respectively: ω itself, an element of ω, and the successor function
(modeled as a set of doubletons, each one implicitly ordered by membership):

Z is a non-null ordinal:

a ∈ Z & Ord(Z) (8)

No member of s has more than two members:

Mapw(s) (9)

Each member of s is a doubleton {x, y} with x ∈ y ∈ Z:

(∀p ∈ s)(∃x, y ∈ p)
(
x ∈ y & y ∈ Z

)
(10)
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s is single-valued:

(∀p, q ∈ s)(∀x, y ∈ p)(∀y′ ∈ q)
(

(x ∈ y & x ∈ y′ & x ∈ q)→ p = q
)

(11)

The domain of s includes Z:

(∀x ∈ Z)(∃p ∈ s)(∃y ∈ p)
(
x ∈ p & x ∈ y

)
(12)

The multi-image of s includes Z \ {∅}:

(∀y ∈ Z)(∀e ∈ y)(∃p ∈ s)(∃x ∈ p)
(
y ∈ p & x ∈ y

)
(13)

Thus, one can prove (in ZF with regularity):

(∀Z)
(
Z = ω ↔ (∃a)(∃s)

(
(8) & · · · & (13)

) )
.

In fact:

by (10) and (12), the domain of s equals Z;
(12) and (13) yield that Z has no largest element;
consequently, by (8), Z is an ordinal such that Z /∈ ω;
if Z were such that ω ∈ Z then, by (13), there should exist some x ∈ Z such

that {x, ω} ∈ s,
which is untenable: for, since s represents an increasing function, the imme-

diate successor x ∪ {x} of x would not be in the multi-image of s. From
Z /∈ ω and ω /∈ Z, we get Z = ω.

Concluding remarks and open problems

We have revisited, deepened, and made more systematic, the study undertaken
long ago with [2] (see also [3, pp. 161–165]).

Can we do more along the directions envisioned in the following excerpt from
a historical paper?

[· · · ]the translation of a theorem of the appropriate form in some part of math-
ematics shows that the corresponding Diophantine equation has no solution.
Hence whatever methods went into proving the theorem can in fact be used
to show that a particular Diophantine equation has no solution. It is possible
that the same methods can be used to show that a class of equations includ-
ing perhaps an equation of interest in itself are unsolvable. Such an example
providing a new tool for solving Diophantine equations would be a consider-
able breakthrough. In any case, any mathematical method that has been used to
prove a theorem of the appropriate form has in fact been used to show that a
particular Diophantine equation has no solution. Thus all mathematical meth-
ods can be tools in the theory of Diophantine equations and perhaps we should
consciously attempt to exploit them. ” [5, pp. 338–339]

The quest is open. . . It may be rewarding to:
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– translate back into number theory decidability results regarding fragments
of set theory;

– mimic the proofs of the theorems, dubbed DPR and DPRM in [7], concern-
ing the exponential Diophantine representability and the polynomial Dio-
phantine representability of any r.e. set, directly inside set theory (possibly
making some technical aspects of those proofs more transparent).

Open problems

Let BSTC⊗ (Boolean Set Theory with Cardinality comparison and the unordered
Cartesian product) be the collection of conjunctions of any number of positive
literals of the forms

x = y ∪ z , x = y ⊗ z , x ∩ y = ∅ , |x | = | y | .
In sight of the still in progress decidability result for MLS⊗ (multilevel syllo-

gistic with the unordered Cartesian product), concerning a positive solution to
the satisfiability problem for conjunctions of literals of the forms

x = y ∪ z , x = y ⊗ z , x ∩ y = ∅ , x ∈ y ,
to precisely locate the boundary between decidability and undecidability, one
should attempt to find the decidability status of the satisfiability problem for
the following collections of equalities:

– BSTC⊗-conjunctions plus one negative literal of the form x 6= ∅ ,
– BSTC⊗-conjunctions plus two literals of any of the following forms:

|x | 6= | y | and x = { y } .
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