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We analyze the Z-boson decay Z → γX into a photon (γ) plus a hypothetical light boson (X) belonging to
a dark or secluded sector. Because of its feeble interactions with Standard Model fields, this dark boson
behaves as missing energy in the detector. We consider for X the cases of spin-1 (massless dark-photon),
spin-0 (axionlike), and spin-2 (gravitonlike) particles and explore the way to untangle its spin origin. All
these scenarios predict a universal signature for this decay, characterized by a single monochromatic photon
in the Z center of mass, with energy about half of the Z mass, plus a neutrinolike missing energy associated
with the X boson. We show that if the Z → γX signal should be discovered at eþe− colliders, the angular
distribution of the monochromatic photon in eþe− → Z → γX can provide a clean probe to discriminate
between the J ¼ 1 and alternative J ¼ 0=2 spin nature of the dark boson.
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I. INTRODUCTION

The lack of any experimental evidence at the LHC for a
heavy new physics (NP) above the TeV scale [1], as
expected for the many NP scenarios in beyond the
Standard Model (SM) theory, is changing our perspective
on the search for a NP. The accessible sector of NP could
instead be made up of light new particles, feebly coupled to
SM fields, as predicted by scenarios with dark or secluded
sectors beyond the SM, where, for instance, the candidate(s)
for dark matter might reside. The dark sector, consisting of
new particles which are singlets under the SM gauge
interactions, can indeed have its own long-range interactions,
characterized by massless or very light mediators like the
dark photon, the quantum field associated with a Uð1ÞD
gauge invariance in the dark sector. These scenarios have
motivated the search for weakly coupled light particles, as
can be seen in the many theoretical and experimental works
on this subject [2].
In this framework, we focus on the effective couplings of

a light and long-lived neutral X boson with the neutral
sector of electroweak gauge bosons of the SM. In particu-
lar, we explore, in a model-independent way, the produc-
tion of X by means of the Z-boson decay into

Z → γX; ð1Þ

where X it is assumed to behave as missing energy in the
detector.
The striking experimental signature of this decay, in the

Z rest frame, is then characterized by an isolated mono-
chromatic photon, with energy (almost) half of the Z mass,
and missing energy with (almost) vanishing invariant mass
for a massless (massive) X.
The best place to look for the process in Eq. (1) is at

eþe− colliders, where the main characteristic of the
signature is maintained, although the monochromaticity
of the photon is slightly spread by the initial bremsstrah-
lung radiation. Moreover, rare Z decays are expected to be
investigated at the Future Circular Collider (FCC-ee), with
its projected production of 1013Z bosons [3]. This process
was already explored at the experimental level at the Large
Electron-Positron Collider (LEP) via

eþe− → Z → γ þ X; ð2Þ

where X stands for no other detected neutral particles.
Negative evidence for this signal, set a limit of 10−6 at the
95% C.L. on the corresponding branching ratio (BR), in the
case of a massless final state X [4]. On the other hand, at
hadron colliders this signal would be rather difficult to
detect due to the challenging reconstruction of the
Z-invariant mass and the large background of soft jets
faking the missing energy.
This process was recently analyzed in the case of X as a

massless dark photon [5]. The dark-photon scenario has
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been extensively analyzed in the literature, mainly for the
massive case, and it is also the subject of many current
experimental searches; see [6,7] for a more recent review.
Most of the experimental searches focus on massive dark
photons, where the Uð1ÞD gauge field generates, through a
potential kinetic mixing with the photon, a tree-level
(millicharged) interaction with ordinary charged SM par-
ticles. On the other hand, for a massless dark photon the
kinetic mixing can be fully rotated away, leading to dark-
photon interactions with ordinary matter mediated by
effective higher-dimensional operators [8]. The leading
coupling of a massless dark photon to SM charged particles
is provided by the magnetic- and electric-dipole inter-
actions [8,9], including the flavor-changing ones [10].
Phenomenological implications of massless dark-photon
scenarios were recently explored in the framework of Higgs
boson [11] and rare kaon decays [12].
Recently, in [5] it has been shown that Z can decay at

one loop into a photon and massless dark photon without
violating the Landau-Yang theorem [13] due to the fact
that the dark and ordinary photons are distinguishable
particles. An upper limit on the viable BR for the decay
Z → γγ̄ has been estimated to be of the order of Oð10−9Þ
[5] in the framework of a simplified model of the dark
sector. These results also hold for a massive dark photon
due to its own magnetic-dipole interactions with SM
fields.1

We will explore here the possibility that other X-spin
configurations can mimic the same signature of a massless
dark photon in Eq. (1) and show how to disentangle a
genuine spin-1 dark-photon signal against possible X
candidates with different integer spins. We will assume
an uncertainty of the order of a 1 GeV in the invariant mass
of the missing energy, mainly due to the detector
performance in the reconstruction of the missing mass.
Therefore, as an alternative to the massless dark photon, we
consider at the phenomenological level hypothetical sce-
narios of spin-0 and spin-2 particles with masses mX below
the 1 GeV scale which are inspired by known theoretical
frameworks.
In this respect, we consider first, as an alternative to

the dark photon, X to be a light axionlike particle (ALP)
in both scalar and pseudoscalar scenarios. ALPs have
been predicted in several SM extensions, motivated
mainly by the solution to the strong-CP problem, where
the ALP is a QCD axion [15], or associated with pseudo-
Nambu-Goldstone bosons corresponding to spontane-
ously broken continuous symmetries (in either the visible
or the dark sector), as well as to a moduli field in string
models [16–19]. The phenomenological aspects of the

ALPs have been extensively investigated in recent years,
especially collider search of ALPs [20–22]. The most
severe constraints on the ALP couplings are in the range
of masses below the MeV scale, mainly due to low
energy observables and constraints from astrophysics and
cosmology [21].
The Z decay process in Eq. (1), with X ¼ a as the ALP,

has been considered in the literature [23], More recently, a
dedicated study on the sensitivity of the Z → aγ decay at
the LHC and future colliders, via visible ALP decays into
two photons and/or lepton pairs [20,21], has been explored
for various mass ranges. Present constraints on the effective
scale, based mainly on previous LEP analyses on ALP
visible decays, allows for BRðZ → aγÞ as large asOð10−4Þ
for the range of masses 100 MeV≲ma ≲ 1 GeV. We will
show that, under the requirement for the ALP to behave as
missing energy in the detector, stronger constraints on the
BR for this decay apply that could reach Oð10−6Þ for
masses of the order of 1 GeV. This is also consistent with
the LEP bound [4] that applies to the corresponding
signature. These results can be easily generalized to
ALP in both the scalar and pseudoscalar cases.
Therefore, a large number of viable events for Z → aγ
at future eþe− colliders with high luminosity are expected
that could be competitive with the corresponding ones from
the Z → γγ̄ signature.
Next, we consider a more exotic scenario for X as an

ultralight massive spin-2 particle G. Fundamental massive
spin-2 fields have been predicted in several extensions of
gravity theories, like the massive Kaluza-Klein (KK)
excitations of the standard massless graviton in quantum
gravity theories in large extra dimensions (Arkani-
Hamed–Dimopoulos–Dvali (ADD) [24] and Randal-
Sundrum [25] scenarios), as well as the massive graviton
in bimetric theories [26–28]. For the purposes of this
analysis, we do not make any assumptions about the
origin of this field. Since we are interested only in the
phenomenological implications of Z → γG decay, we
restrict the analysis to the effects of the linear theory
(with an on-shell G field as an external source) in flat
space-time, a characteristic common to many extended
gravity scenarios. For consistency, we assume the spin-2
field to be universally coupled to the energy-momentum
tensor of the SM fields, as for the linear gravitonlike
coupling to the SM fields, with an effective scale ΛG.
Then the effective ZγG vertex is predicted as a function
of ΛG to be finite, induced at one loop by SM fields
running as virtual particles.
To avoid constraints from short-range gravity experi-

ments (see [29] for a recent review) and mimic a neutrino-
like signature, we restrict its mass to lie the range
eV≲mG ≲ 1 GeV, with an effective scale ΛG ≥ TeV,
and require that it does not decay inside the detector.
We will show that, for a spin-2 particle subject to these

1The Z → γV decay was also explored in [14] for a massive
vectorial field V (not exactly a dark photon) coupled with
anomalous nonconserved Uð1Þ currents by gauging anomalous
Uð1Þ symmetries of the SM [14].
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specific constraints, predictions for BRðZ → γGÞ as large
as Oð10−8Þ are possible, and thus in the sensitivity range
considered here for Z → γX.2

Now, assuming the process in Eq. (1) will be observed
with a BR in the sensitivity range of BRðZ → γXÞ∼
10−12 − 10−6 given the possibility that X might belong
to one of these scenarios, one may wonder if its spin nature
could be disentangled by analyzing the angular distribu-
tions of the outgoing photon. Clearly, the answer is no if the
Z boson is unpolarized. Indeed, in the unpolarized Z → γX
decay the photon will be isotropically distributed inde-
pendently of the spin nature of the X particle. However, a
nontrivial angular distribution of the photon that depends
on the X spin can appear in the case of polarized Z decays.
Remarkably, one of the main features of the eþe− colliders
at the resonant Z peak is that the on-shell Z boson is always
produced polarized, thus transmitting the Z-spin correla-
tions to the final state. In this regard, we will show that the
angular distribution of the monochromatic photon in the
eþe− → Z → γX process at the Z peak can offer a clean
probe to untangle the spin-1 nature of the X boson against
other possible spin-0=2 interpretations.
The paper is organized as follows. In Sec. II, we give the

expressions for the effective Lagrangians relevant to the
decay Z → γX for the three spin scenarios mentioned
above, providing the corresponding amplitudes and total
rates, as well as a discussion on the corresponding allowed
range of branching ratios. In Sec. III, we analyze the
angular distributions of polarized Z decays in each spin-X
scenario, while the corresponding results for a Z produced
in a resonant s-channel at eþe− colliders is presented in
Sec. IV. Finally, our conclusions are reported in Sec. V.

II. EFFECTIVE LAGRANGIANS AND
AMPLITUDES

A. Spin 1: Massless dark photon

We consider here the case of X as a massless dark photon
γ̄ which is effectively coupled to the photon γ and Z gauge
boson. A generalization to the massive dark photon in the
limit of small mass is straightforward. We first recall the
main results obtained in [5].
The lowest-dimensional gauge-invariant Lagrangian

(CP even) for the leading contribution to the effective
Zγγ̄ vertex was derived in [5]. We parametrize this
Lagrangian as

Leff ¼
e

ΛMZ

X3
i¼1

CiOiðxÞ; ð3Þ

where e is the unit of electric charge, Λ is the scale of the
new physics, the dimension-6 operators Oi are given by

O1ðxÞ ¼ ZμνB̃μαAν
α; ð4Þ

O2ðxÞ ¼ ZμνBμαÃν
α; ð5Þ

O3ðxÞ ¼ Z̃μνBμαAν
α; ð6Þ

the field strengths Fμν ≡ ∂μFν − ∂νFμ, for Fμν ¼
ðZ; B; AÞμν, correspond to the Z-boson (Zμ), dark-photon
(Bμ), and photon (Aμ) fields, respectively, and F̃μν ≡
εμναβFαβ is the dual field strength. The expression for
the coefficients CM in Eq. (7), derived in [5], can be found
in the Appendix.
As mentioned in the Introduction, the Landau-Yang

theorem [13] can be avoided in Z → γγ̄ due the fact that
the photon and the massless dark photon are distinguish-
able particles. Less obvious is how this effective vertex can
be generated from a UV theory. In [5] it has been
demonstrated that the above Lagrangian in Eq. (3) arises
at low energy as an effective one-loop contribution, with
SM fermions running in the loop, because the dark photon
does not have tree-level couplings with SM fields. Indeed,
the leading coupling of a massless dark photon to charged
SM fermions is via magnetic- or electric-dipole operators,
namely,

Ldipole ¼
X
f

eD
2Λ

ψ̄fσμνðdfM þ iγ5d
f
EÞψfBμν; ð7Þ

where Bμν is the corresponding Uð1ÞD field strength of the
dark-photon field, the sum runs over all the SM fields, eD is
the UDð1Þ dark elementary charge (we assume universal
couplings), Λ is the effective scale of the dark sector, and
ψf is a generic SM fermion field. The scale Λ appearing in
Eq. (3) is the same as that in Eq. (7). The magnetic- and
electric-dipole coefficients dfM and dfE, respectively, can be
computed from a renormalizable UV completion theory for
the dark sector [5].
If the dark photon would have been coupled at tree level

with SM charged fermions (as with the ordinary photon or
the millicharge couplings of a massive dark photon), the
loop contribution would have been zero for each fermion
running in the loop, which is in agreement with what is
predicted by the Landau-Yang theorem. Therefore, from
the point of view of a renormalizable UV completion of the
theory, the effective Lagrangian in Eq. (3) is the result of a
two-loop effect, including the effective dipole interactions
that originate from one loop [5]. The same conclusions hold

2The decay in Eq. (1) with a massive spin-2 X was analyzed in
[30] in the framework of the ADD scenario [24], predicting a
viable BR of the order ofOð10−11Þ forD ¼ 2. However, there the
signature differs from the one analyzed here due to the absence of
events with a monochromatic photon characteristic. Indeed, in
ADD this decay can be observed only as inclusive production of
an (almost) continuum spectrum of KK graviton excitations,
behaving as missing energy, thus reflected in an (almost)
continuum photon spectrum.
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for the massive dark photon since the effective Zγγ̄ can be
induced by its own dipole-type interactions, as in Eq. (7).
Analogously, the CP-odd Lagrangian induced by the

electric-dipole moment is instead

LðEÞ
eff ¼ e

ΛMZ
CEOðxÞ; ð8Þ

where the dimension-6 operator is

OðxÞ ¼ ZμνAμαBν
α: ð9Þ

The expression for the coefficients CE in Eq. (7) is reported
in the Appendix and in [5]. The operators in Eqs. (3) and (8)
are CP even and odd, respectively.
Concerning the decay Z → γγ̄, the corresponding ampli-

tudes in momentum space can be found in [5]. Finally,
taking into account the effective Lagrangians in Eqs. (3)
and (8), the total width for the unpolarized Z decay is
given by

ΓðZ → γγ̄Þ ¼ αM3
Z

6Λ2
ðjCMj2 þ jCEj2Þ; ð10Þ

where CM ¼ P
i Ci. The same results hold for the massive

dark photon in the massless limit, with the scale Λ
corresponding to its dipole interactions in Eq. (7).
As discussed in [5], in the framework of a UV complete

model for the dark sector, responsible for generating at one
loop the dipole interactions in Eq. (7), it has been estimated
that the largest allowed values for the BR could lie between
BRðZ → γγ̄Þ ∼ 10−11 and BRðZ → γγ̄Þ ∼ 10−9 depending
on the values of αD, the Uð1ÞD coupling in the dark sector,
and the dfM;E couplings in the dipole-type interactions in
Eq. (7). However, these upper limits could be relaxed if a
nonperturbative dynamics is responsible for these cou-
plings potentially pushing up the BR close to the LEP
upper bound of BRðZ → γγ̄Þ ≃ 10−6.
As mentioned in the Introduction, the best place to study

this kind of signature is at the eþe− colliders. In particular,
these BRs are in the ballpark of sensitivity of future Z
factories at eþe− colliders, like, for example, the FCC-ee
colliders [3]. Assuming a collected number NZ ¼ 1013 of
Z-boson events at the FCC-ee, an expected 102 − 104

number of Z → γγ̄ events would be possible, depending
on the dark sector couplings.

B. Spin 0: ALP scalar and pseudoscalar

Here we consider a scenario for X as an ALP that can
mimic the Z → γX signature of a massless or ultralight dark
photon. We consider both the scenarios for X as massive
scalar φS and pseudoscalar φP particles and require them to
behave as missing energy in the detector.
Let us assume that this process is induced by a UV

physics well above the electroweak (EW) scale. In this

case, an effective low energy Lagrangian approach
can be used. Then we can parametrize the gauge-invariant
contribution of the lowest-dimensional operators (of
dimension 5) to the corresponding effective Lagrangians as

LS
eff ¼

1

ΛS
φSZμνFμν; ð11Þ

LP
eff ¼

1

ΛP
φPZμνF̃μν; ð12Þ

where ΛS;P are the corresponding effective scales.
Using the Lagrangians in Eq. (12), the corresponding

amplitudes MS (MPÞ for the Z decay into scalar (pseudo-
scalar) plus photon channel are

ZðpÞ → γðkÞφAðqÞ; ð13Þ

with A ¼ S; P given by

MS ¼
i
ΛS

εμZðpÞεν⋆ðkÞT̂S
μνðp; kÞ;

MP ¼ i
ΛP

εμZðpÞεν⋆ðkÞT̂P
μνðp; kÞ; ð14Þ

where T̂S
μνðp; kÞ ¼ 2ðημνðp · kÞ − kμpνÞ and T̂P

μνðp; kÞ ¼
4ϵμναβpαkβ, with ημν the Minkowski metric and ϵμναβ the
complete antisymmetric tensor. Then the corresponding
total decay width in the Z rest frame is

Γ̂A ≡ Γ̂ðZ → γφAÞ ¼
CAM3

Z

24πΛ2
S
ð1 − rAÞ3; ð15Þ

with A ¼ S, P, where CS ¼ 1 and CP ¼ 4, and
rA ¼ m2

A=M
2
Z, with mA the mass of the scalar or pseudo-

scalar particle.
Now we consider some phenomenological implications

of these results to get a feeling with the expected BRs for
the Z → γφA decays. If we assume the interactions in
Eq. (12), then the ALP is a stable particle and automatically
satisfies the missing-energy signature. However, we con-
servatively consider a more realistic scenario, which is
more theoretically justified. In particular, we assume the
ALP to be effectively coupled, in addition to Eq. (12), two
photons with the same strength as in Eq. (12), and require
that it decays (in two photons) outside the detector.
Let us focus only on the scalar case since the pseudo-

scalar scenario should give comparable bounds. Toward
this aim, we consider in addition to Eq. (12), the existence
of a new effective coupling to two photons in the
Langrangian as

LS
eff ⊃

1

Λγγ
S
φFμνFμν: ð16Þ
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The reason to also consider the two photon interaction is
that, from the point of view of a UV completion of the
theory, one cannot avoid the presence of this interaction if
the ZγφS coupling in Eq. (12) is present. Indeed, after the
rotation into EW mass eigenstates, the two scales Λγγ

S and
ΛS can be linearly related by coefficients proportional to the
cosine and sine of the Weinberg angle θW [20,21]. Then,
apart from special UV models where one of the two
couplings is tuned to cancel or be suppressed, these two
scales are expected to be of the same order. The same
conclusion does not hold for the Yukawa-like coupling of
the ALP to fermions with respect to the effective inter-
actions in Eqs. (12) and (16), where these two different
kinds of interactions could be really independent from each
other.3 To stick with the most simple but nontrivial
scenario, we assume the ALP couplings to fermions to
vanish or be strongly suppressed, thus not contributing to
the total width. Then, since we are interested in the order of
magnitude constraints on the effective scale ΛS, we assume
for simplicity Λγγ

S ∼ ΛS and set to zero all other ALP
couplings to SM fields.
Under this setup, we can now analyze the constraints on

the scalar or pseudoscalar mass against the corresponding
effective scale Λ, which come from the requirement that the
ALP does not decay inside the detector. Following the
above considerations, the total width of a scalar X as ALP is
given by

Γ̂ðS → γγÞ ¼ m3
S

16πΛ2
S
; ð17Þ

where mS is the mass of the scalar ALP.
By requiring that the ALP does not decay inside the

detector, which we conservatively take to be of length
L ¼ 10 m for eþe− colliders, and assuming Γ̂ðS → γγÞ as
the total width of ALP, we get

ΛS ≳ 47

�
mS

100 MeV

�
2

TeV: ð18Þ

However, for masses below mS < 100 MeV, stronger
limits on the effective scale ΛS from astrophysics and low
energy experiments apply that are of the order of ΛS >
105 − 106 TeV [20,21]. These can largely exceed the
bounds in Eq. (18) with stronger constraints on ΛS.
These lower bounds imply that BRðZ → φγÞ <
10−13ð10−16Þ, corresponding to ΛS > 105ð106Þ TeV. As
we can see, these BRs are too small to be detected, even for

the high statistics of Z that could be produced at the future
FCC-ee collider.
Finally, we consider the next range of mS masses—

namely, from 100 MeV up to the Oð1 GeVÞ—where the
kinematic properties of a neutrinolike X signature might
still hold, assuming that the detector uncertainties do not
allow one to resolve X masses below 1 GeV. In this range of
mass, there is still an unconstrained region of the effective
scale ΛS;P from the searches at the LEP, leading to allowed
values of the order of ΛS;P > Oð1 TeVÞ scale [20,21],
which would imply a viable BR of the order of
BRðZ → φγÞ ∼ 10−4. However, these constraints hold
under the assumption that the scale ΛS;P is of the same
order as the Λγγ one and for visible ALP decays into two
photons.
On the other hand, the bound in Eq. (18) gives a stronger

constraint on the effective scale ΛS, which now reads ΛS >
4.7 × 10ð103Þ TeV formS ≃ 0.1ð1Þ GeV, corresponding to
a BR of the order of BRðZ → φγÞ ≃ 1.8 × 10−6ð10−10Þ.
This bound is consistent with the upper limits of 10−6 on
the BR from LEP negative searches of this signature [4]. As
we can see, these BRs are even larger than the expected
ones in Z → γγ̄, and thus, potentially, larger than candidates
for the signature in Eq. (1). Analogous conclusions, with
BRs of same order, can be obtained for the pseudosca-
lar case.
In the left plot of Fig. 1, we summarize the results for the

allowed regions (in color) of the number of expected events
at eþe− colliders, based on the constraints in Eq. (18), as a
function of the scalar massmS in MeV. For comparison, the
upper bounds on the expected number of events for the
massless dark photon, given by the two horizontal lines, are
provided. They correspond to two representative choices
for the relevant free parameters in the dark sector (see
Sec. II A for additional details). For the results in Fig. 1, we
have assumed the largest statistic of NZ ¼ 1013 Z bosons
expected to be collected at the FCC-ee in the center of mass
energy

ffiffiffi
S

p ¼ 91.2 GeV at the Z peak. As we can see, a
large number of expected events are possible for an ALP
particle, which would also allow one to study with
sufficient precision angular distributions of the correspond-
ing rates.

C. Massive spin-2 particle

For our last example, we consider the case of a massive
spin-2 particle X ¼ G, which is universally coupled to the
total energy-momentum tensor Tμν of SM fields. As in the
case of a massive graviton, this coupling reads

LG ¼ −
1

ΛG
TμνGμν; ð19Þ

where Gμν is the field associated with the spin-2 particle G.
Since we assume Gμν not to be related to gravitational

3As an example, notice that the effective scales in Eqs. (12) and
(16) could also be generated in the absence of Yukawa couplings
of the ALP to SM fermions, induced, for instance, by new heavy
messenger scalar fields (EW charged and with trilinear couplings
to ALP) running in the loop.
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interactions, we take the effective scale ΛG as a free
parameter, uncorrelated from the Planck mass, and of
the order of the TeV scale. This scale is reduced to the
usual Λ−1

G ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
8πGN

p
relation in the ordinary case of a

massless graviton of general relativity, with GN the Newton
constant. Since we do not make any hypothesis on the
origin of the spin-2 field, we limit ourselves to the linear
theory in flat space, avoiding entering into the issue of a
consistent theory of massive spin-2 fields related to the
nonlinear massive graviton interactions. For the purposes of
this paper, the coupling in Eq. (19) is sufficient to generate
a finite (thus predictive) contribution at one loop for the
effective ZGγ coupling. Indeed, owing to the fact that Gμν

is coupled to the conserved energy-momentum tensor Tμν

of matter fields, the theory is renormalizable against
radiative corrections of SM matter fields only, provided
the Gμν is taken as an external field.
The free Lagrangian for the massive spin-2 particle is

given by the usual term of the Fierz-Pauli Lagrangian [31]
and we do not report its expression here. The corresponding
Feynman rules for the G interaction in Eq. (19) can be
derived from previous works on massive KK graviton
productions in ADD scenarios [32,33].
Now we require that the mass mG of the spin-2

particle is much smaller than the Z mass, but larger than
the eV scale, to avoid the strong constraints from
negative searches on the Newton law deviations at short
distances [29].
The effective ZGγ coupling at low energy is generated at

one loop starting from the couplings in Eq. (19), with Z, G,
γ the external on-shell fields, in which only virtual SM
fields run inside. As mentioned above, this contribution is
finite due to the conservation of Tμν (at the zero order in
1=ΛG). This vertex and the corresponding Z → γG decay
have been computed in the context of quantum gravity in
large extra-dimensional scenarios [30], withG the field of a
generic massive spin-2 KK excitation of the standard

graviton, and for the (massless) graviton in Einstein’s
theory [34].
Before entering into the discussion of the Z → γG decay,

we analyze the bounds on mG against the scale ΛG,
obtained by requiring that G does not decay inside the
detector, assumed as in Sec. II B to be of length L ¼ 10 m.
Since we are going to discuss a light G which decays into
SM particles, as in the ALP case, we restrict the analysis to
the range of masses

eV≲mG ≲ 1 GeV: ð20Þ

The tree-level total width of a spin-2 particle at rest,
decaying into the (massless) SM fermion pair ff̄, for the
Lagrangian interaction in Eq. (19) is given by [32]

Γ̂ðG → f̄fÞ ¼ m3
GNc

80πΛ2
G
; ð21Þ

where Nc ¼ 1 and Nc ¼ 3 for leptons and quarks, respec-
tively, while the corresponding one for the decay into two
massless gauge bosons V is [32]

Γ̂ðG → VVÞ ¼ Ngm3
G

40πΛ2
G
; ð22Þ

where NV ¼ 1 and NV ¼ 8 for V ¼ γ (photons) and V ¼ g
(gluons), respectively.
Then the total width of G in the visible sector, corre-

sponding to mG ¼ 1 GeV, can be approximated as

ΓðG → visibleÞ ∼ 15Γ̂ðG → γγÞ; ð23Þ

where we have neglected all fermion masses and included
channels in two photons, two gluons (assumed here to
hadronize in two jets of light mesons), eþe−, μþμ−, quark
pairs qq̄ for q ¼ u, d, s.

200 400 600 800 1000
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100

104
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50 100 150 200
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FIG. 1. Allowed regions (in color) of the number of expected events for the Z → γX signal, as a function of the mX mass in MeV, for
(left panel) X ¼ S, spin-0 scalar and (right panel) X ¼ G, spin-2 scalar. The two horizontal bands correspond to two representative upper
bounds of the BRðZ → γγ̄Þ for the (X ¼ γ̄) massless dark photon, depending on the choice of free parameters in the dark sector (see
Sec. II A for further details). These results are based on an assumption of NZ ¼ 1013 Z-boson events collected at the FCC-ee in the
center of mass energy

ffiffiffi
S

p ¼ 91.2 GeV at the Z peak.
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To simplify the analysis, we divide the range of mG into
two regions, below and above the dimuon mass threshold
2mμ. In the first region, only the two photon and electron
pair channel contribute to the total width. For the second
region, we assume the largest value for the total width
ΓðG → visibleÞ corresponding to mG ¼ 1 GeV, where all
channels mentioned above contribute and which is quite a
good approximation for our estimate. Then, by requiring
that the spin-2 particle does not decay into visible states
inside the detector—unlike the decay into neutrino pairs
which is allowed—we get an upper bound onmG versusΛG
as in the ALP case—namely,

ΛG ≳ 36

�
mG

100 MeV

�
2

TeV; 1 eV≲mG ≲ 2mμ

ΛG ≳ 113

�
mG

100 MeV

�
2

TeV; 2mμ ≲mG ≲ 1 GeV:

ð24Þ

Further theoretical constraints on this scenario should be
imposed on the scale Λ that can replace the bounds in
Eq. (24) for masses below 10 MeV with stronger con-
straints. In particular, to suppress potential large contribu-
tions from bremsstrahlung of G in high energy
experiments, which would break perturbative unitarity at
the TeV energy colliders, we require that ΛG > Oð1 TeVÞ
for all masses below 10 MeV. Finally, from these results we
can see that for a mass range eV < mG ∼ 10 MeV we
have ΛG ≳ 1 TeV, while for mG ∼ 50 ð100Þ MeV we
get ΛG ≳ 28ð113Þ TeV.
Now we compute the BRðZ → γGÞ as a function of the

ΛG scale. The corresponding amplitudeMG for the process

ZðpÞ → γðkÞGðqÞ ð25Þ

is induced at one loop and is given by [30]

MG ¼ FGε
μ
ZðpÞελρ⋆G ðqÞεν⋆ðkÞVG

μλρνðk; qÞ; ð26Þ

where ελρG ðqÞ is the polarization tensor of the massive spin-2
field. The FG is a form factor which is the result of a one-
loop computation. It depends only on the SM parameters.
Its expression can be found in [30,34] for massive and
massless G, respectively (with notation Fh). The effective
vertex VG

μλρνðp; qÞ is [30]

VG
μλρνðk; qÞ ¼ ðkλqν − ðk · qÞηνλÞðkρqμ − ðk · qÞημρÞ

þ fλ ↔ ρg: ð27Þ

The form factor FG is [30,34]

FG ≃ 0.41
α

ΛGM2
Zπ

: ð28Þ

After computing the square of the amplitude and summing
over all polarizations, mediating by the initial ones, the
unpolarized total width in the Z rest frame is

Γ̂G ¼ M7
Z

576π
ð7þ 3rGÞð1 − rGÞ5jFGj2; ð29Þ

where rG ¼ m2
G=M

2
Z, which, in the small mG limit,

reduces to4

Γ̂G ¼ 7M7
Z

576π
jFGj2 þOðrGÞ: ð30Þ

The result in Eq. (29) is in agreement with the correspond-
ing one in [30]. Numerically this gives

Γ̂G ≃ 2.7 × 10−9
�
1 TeV
ΛG

�
2

GeV; ð31Þ

which corresponds to a branching ratio

BRðZ → γGÞ ¼ 1.1 × 10−9
�
1 TeV
ΛG

�
2

: ð32Þ

Finally, by using the results in Eqs. (24) and (32), we find
that a viable BR for the signal in Eq. (1) mediated by a
long-lived spin-2 particle G in the range 10−12 ≲ BRðZ →
γGÞ ≲ 10−9 is possible, for a mass range between
1 eV < mG < 50 MeV. For spin-2 masses above the
50 MeV scale, the requirement of the missing-energy
signature which is set in the upper bounds in Eq. (24)
would exclude the BR above the 10−12 limit.
In the right plot of Fig. 1, the allowed regions (in color)

for the number of expected events at eþe− colliders are
shown as a function of the scalar mass mG in MeV. These
bounds are based mainly on the constraints in Eq. (24) and
are based on the NZ ¼ 1013 Z bosons collected at the FCC-
ee. For comparison, the two horizontal lines corresponding
to the expected events in the massless dark-photon sce-
nario, for two representative values of dark sector cou-
plings. The flat dependence of the upper bounds of number
events for the spin-2 case corresponds to the mass-inde-
pendent lower bound on the corresponding effective scale
for ΛG ≳ 1 TeV coming from negative searches of light
spin-2 production at LHC, as explained above, which
exceeds the lower bounds in Eq. (24) for spin-2
masses mG ≲ 30 MeV.

4Notice that the massless limit of the width in Eq. (30) differs
from the corresponding one for the pure massless graviton [34] by
a overall factor 7=6, which is due to the sum over polarizations of
the massive graviton with respect to the massless one. This is due
to the known van Dam–Veltman discontinuity in the mG → 0
limit [35].
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III. POLARIZED PROCESSES

Here we analyze the angular distributions for the decays
Z → Xγ, summed over all polarizations of the final states,
at fixed polarizations of the Z boson, for the three X
scenarios discussed above. The reason to focus on the
polarized processes is that the Z boson (on shell) is always
produced as polarized at colliders due to its couplings to
SM fermions. We will discuss this feature in more detail in
the following for the particular case of Z-boson production
in a resonant s-channel at eþe− colliders.
To analyze the polarized Z decays, we need to identify a

special direction against which to consider its projections.
In this respect, we choose a frame in which the Z is
boosted, and identify this direction with the one parallel to
the Z 3-momentum p⃗Z that we choose along the z-axis, in
particular,

pZ ¼ EZð1; 0; 0; βÞ; ð33Þ

where β ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − M2

Z
E2
Z

r
is the Z velocity. In this frame the

differential Z decay width dΓ reads

dΓ ¼ jMj2M2
Z

32πE3
Zð1 − βzÞ2 dz; ð34Þ

where jMj2 is the corresponding (Lorentz-invariant) square
modulus of the amplitude z≡ cos θγ , with θγ the angle
between the Z and the photon 3-momenta. The distribu-
tions for the various spin cases SX ¼ 1, 0, 2 in this frame
are discussed below.

A. Massless dark photon

We consider first the case of a X to be a massless dark
photon. We anticipate here that the angular distributions of
the photon for the polarized Z decay induced by magnetic-
and electric-dipole moments interactions will be the same.
We define the longitudinal (L) and transverse (T) Z

polarizations with respect to the Z momentum in Eq. (33),
corresponding to the eigenstates of spin projection along
the z axis Jz ¼ �1 and Jz ¼ 0, respectively. Then the final
result for these distributions is

1

Γ̂
dΓðTÞ

dz
¼ 3

4

�
MZ

EZ

�
5 1 − z2

ð1 − βzÞ4 ; ð35Þ

1

Γ̂
dΓðLÞ

dz
¼ 3

2

�
MZ

EZ

�
3 ðβ − zÞ2
ð1 − βzÞ4 ; ð36Þ

where Γ̂ is the total width in the Z rest frame given
in Eq. (10).
In Eq. (35), the distribution dΓðTÞ for the transverse

polarizations Jz ¼ �1 includes the average factor (1=2)
over the initial polarizations. The angular distributions

corresponding to the two transverse polarization states
Jz ¼ �1 are identical. As a quick check, we can see that
the angular distribution in the Z rest frame (β ¼ 0) for the
unpolarized process, given by

dΓ
dz

����
β¼0

¼
�
2

3

dΓðTÞ

dz
þ 1

3

dΓðLÞ

dz

�
β¼0

¼ Γ̂
2
; ð37Þ

is isotropic, which is in agreement with known theoretical
expectations. Also, by integrating Eq. (37) at β ≠ 0, the
value of the total width in the moving frame

R
1
−1 dz

dΓ
dz ¼

MZ
EZ

Γ̂ is recovered.
In the Z rest frame (β → 0, EZ → MZ), where any

direction is equivalent, the angle θγ is identified here with
the angle formed between the directions of photon momen-
tum and the z axis, with the latter being the axis where the
Z-spin projections have determined values. Then the
corresponding distributions of Eqs. (35) and (36) in the
Z rest frame for the massless dark photon are

1

Γ̂
dΓðTÞ

dz
¼ 3

4
ð1 − z2Þ; ð38Þ

1

Γ̂
dΓðLÞ

dz
¼ 3

2
z2: ð39Þ

We will see in the next section that, due to the Z couplings
to the electrons, in the resonant production at eþe− Z is
mainly produced polarized at rest with transverse polar-
izations with respect to the beam axis.

B. Scalar and pseudoscalar

Now we repeat the same analysis as above, but in the
case of Z decays into a photon plus a scalar S or a
pseudoscalar P in the massless limit. Since the polarized
angular distributions for the scalar and pseudoscalar cases
are the same, we will show only one of them as a
representative case. Then the results for these distributions,
normalized to the corresponding total width, are

1

Γ̂I

dΓðTÞ
I

dz
¼ 3

8

�
MZ

EZ

�
3 ð1þ z2Þð1þ β2Þ − 4βz

ð1 − βzÞ4 ; ð40Þ

1

Γ̂I

dΓðLÞ
I

dz
¼ 3

4

�
MZ

EZ

�
5 1 − z2

ð1 − βzÞ4 ; ð41Þ

with Γ̂I the total width for I ¼ S, P given in Eq. (15). The
distributions for the two transverse polarizations are the
same. As for the spin-1 case, one can check that, in the
unpolarized case, the Z the distribution in the Z rest frame
is independent by the angle θγ, and that by integrating in θγ
the total width for the unpolarized distribution in Eq. (15) is
recovered.
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In the Z rest frame and including also the exact X mass
effects, we get

1

Γ̂I

dΓðTÞ
I

dz
¼ 3

8
ð1þ z2Þ; ð42Þ

1

Γ̂I

dΓðLÞ
I

dz
¼ 3

4
ð1 − z2Þ: ð43Þ

Notice that these are the same distributions of the X ¼ S=P
massless limit.
Remarkably, for the longitudinal and transverse polar-

izations, the corresponding distributions of the massless
spin-1 and spin-0 cases are different. These distributions
are shown in Fig. 2, including the spin-2 cases X ¼ G.

C. Massive spin-2 case

Following the same analysis as above, we provide below
the polarized angular distributions for the spin-2 case in the
Z → γG decay, in the mG massless limit, normalized to the
corresponding total width in the Z rest frame, in particular,

1

Γ̂G

dΓðTÞ
G

dz
¼ 3

8

�
MZ

EZ

�
2 ð1þ z2Þð1þ β2Þ − 4βz

ð1 − βzÞ4 ; ð44Þ

1

Γ̂G

dΓðLÞ
G

dz
¼ 3

4

�
MZ

EZ

�
4 1 − z2

ð1 − βzÞ4 ; ð45Þ

where the total width Γ̂G is given in Eq. (30). The angular
distributions for the two transverse polarizations are iden-
tical. As we can see from these results, the angular
distributions of Z for the spin-2 case have the same
functional dependence by θγ of the corresponding scalar/
pseudoscalar ones at fixed polarizations; see Eqs. (40)

and (41). They differ in the boosted frame only by different
powers of MZ=EZ in the overall coefficients. This equiv-
alence holds only in the massless limit.
Below we provide the expressions for the angular

distributions in the Z rest frame and by retaining the exact
mass dependence in mG, in particular,

1

Γ̂G

dΓðTÞ
G

dz
¼ 3

8

ð1þ z2ð1 − 2δGÞ þ 2δGÞ
1þ δG

; ð46Þ

1

Γ̂G

dΓðLÞ
G

dz
¼ 3

4

ð1 − z2ð1 − 2δGÞÞ
1þ δG

; ð47Þ

where δG ¼ 3
7
rG. As we can see, spin-2 X mass corrections

are expected to break the equivalence between the spin-0
and spin-2 angular distributions (valid only in the X
massless limit) by terms of the order of rG, which in
our case are smaller than 10−4. The corresponding angular
distributions for the spin-2 distributions in the Z rest frame
are plotted in Fig. 2 (in the massless case).

IV. Z DECAYS AT e + e− COLLIDERS

In this section, we will analyze the photon angular
distributions coming from the Z-resonant process eþe− →
Z → γX at the Z peak. We will show that these distributions
can be easily obtained from a particular linear combination
of the polarized Z distributions analyzed above. This
approach has the advantage to avoid the computation of
the scattering cross section eþe− → Z → γX. These results
can also be applied to any final state.
In the center of mass frame of eþe−, the beam axis

identifies a special direction that we choose to be our third,
or z, axis. In this frame, we choose the initial momenta
along the beam direction—namely, pe− ¼ ðE; 0; 0; EÞ and

1.0 0.5 0.0 0.5 1.0
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0.4

0.6

0.8

1.0

1.0 0.5 0.0 0.5 1.0

0.2
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1.0

FIG. 2. Normalized distributions in cos θγ for the polarized Z → γX decay in the Z rest frame, with Γ the corresponding unpolarized
total width, for the scenarios of X as a massless dark photon (γ̄), scalar/pseudoscalar (S=P) and spin-2 (G) particles. Here θγ is the angle
between the directions of photon momentum and the Jz spin axis of the Z (see the text for details), The distributions of transverse T and
longitudinal L polarizations of the Z, corresponding to Jz ¼ �1 and Jz ¼ 0, respectively, are shown in the left and right panels,
respectively. Normalized angular distributions for a Z produced at rest via eþe− → Z → γX are shown in the left panel, for the same X
scenarios, where there θγ is the angle between the photon momentum and the beam axis in the center of mass frame.
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peþ ¼ ðE; 0; 0;−EÞ, where E ¼ ffiffiffi
S

p
=2 is the center of mass

energy (we neglect the electron mass). The transverse and
longitudinal Z polarizations for a Z at rest can now be
identified with respect to the beam axis.
In this frame, we define the two transverse Z polar-

izations vectors for a Z at rest as

εμð�Þ
Z ¼ 1ffiffiffi

2
p ð0; 1;�i; 0Þ; ð48Þ

while for the longitudinal one, for a Z at rest, we have

εμðLÞZ ¼ ð0; 0; 0; 1Þ: ð49Þ

In the case of a frame with boosted Z along the beam
direction, in which Z comes out with a velocity β ¼ kZ=EZ,
with kZ and EZ its momentum and energy, respectively, the
corresponding results for the longitudinal polarization
generalize to

εμðLÞZ ¼ 1

MZ
ðkZ; 0; 0; EZÞ: ð50Þ

Then, concerning our final state, we identify the angle θγ
as the angle formed between the direction of the outgoing
photon momentum and the initial electron momentum p⃗e− .
In particular, for the photon 4-momentum, we have

kγ ¼
E
2
ð1; sin θγ cosϕγ; sin θγ sinϕγ; cos θγÞ; ð51Þ

with ϕγ the corresponding photon azimuthal angle.
Now we can extract the cos θγ distributions of the final

photon in eþe− → Z → γX by using a linear combination
of the same polarized Z angular distributions discussed in
the previous section, provided that the θ angle appearing in
the z ¼ cos θ distributions in Eqs. (35)–(45) is identified
with the θ angle defined in Eq. (51). In this linear

combination, each contribution of the Z polarization εðλÞZ
to the width should be multiplied by a polarization-weight

coefficient 0 ≤ CðλÞ
Z ≤ 1 (where

P
λ¼�;L C

ðλÞ
Z ¼ 1), corre-

sponding to the Z production in the resonance eþe−
collision.
We find these coefficients CðλÞ

Z by performing the
matching between the resonant eþe− → Z → Xf cross
section (with Xf a generic final state) in the Breit-
Wigner approximation against the decay width of a
polarized on-shell Z boson. These coefficients are universal
since they depend only on the initial states, which in this
case are the eþe− electron-positron pair from which the Z
has been created. Therefore, these results could be applied
to any final state.
In general, for eþe− collisions, a generic distribution of

final states dΓf reads

dΓfðeþe− → Z → XfÞ ¼ Cþ
Z dΓ

þ
f þ C−

ZdΓ−
f þ CL

ZdΓL
f ;

ð52Þ

where dΓ�
f (dΓL

f ) stands for the corresponding transverse
(longitudinal) polarized distribution of the Z → Xf decay
and C�;L

Z the corresponding polarization weights. For a Z
boson at rest, we have

C�
Z ¼ 1

2

�
1 ∓ 2geVg

e
A

ðgeVÞ2 þ ðgeAÞ2
�
; CL

Z ¼ Oðme=MZÞ;

ð53Þ

with me the electron mass. As we can see from the above
results in Eq. (52), the contribution of the longitudinal
polarization εLZ is strongly suppressed and vanishing in the
limit of the vanishing electron mass. This means that the Z
boson produced in resonance at eþe− comes out mainly
transverse polarized with respect to the beam direction.
This is a well-known result that can be easily understood in
terms of chirality arguments and angular momentum
conservation.
The relation in Eq. (52) can be applied to all kinds of

distributions of final states. In particular, it reproduces the
well-known result of angular distributions of fermion pair
production eþe− → Z → ff̄ in the Z-resonant region at the
peak, including the contribution to the forward-backward
(FB) asymmetry.
In general, for a boosted frame in which the resonant Z is

produced with speed β along the beam direction, the
polarization coefficients C� read

C� ¼ 1

2

�
1 ∓ 2geVg

e
A

ðgeVÞ2 þ ðgeAÞ2
ð1 − βÞ2
1 − β2

�
: ð54Þ

These results could be also generalized to a resonant Z
production at hadron colliders via quark-antiquark annihi-
lation, provided in Eq. (54). geV;A are replaced with the
corresponding guV;A and gdV;A couplings to up and down
quarks, respectively.
The term proportional to the (∓) coefficient in Eqs. (53)

and (54) is responsible for the parity violating contribu-
tions. We find that, in all of the spin cases analyzed here for
the Z → γX process, the two angular distributions dΓþ

dz ¼
dΓ−

dz are the same for all processes. This means that the C�

polarization coefficients enter into the combination of
Cþ þ C− ¼ 1 for a Z → γX decay produced in resonance
at the eþe− colliders. This is due to the fact that the Z
bosonic effective vertices discussed above do not introduce
any parity violating contributions when Z is produced from
an unpolarized eþe− collider.
In conclusion, the photon angular (θγ) distributions

coming from the resonant Z boson produced in eþe−

are simply given by the dΓT
f=dz expressions reported in
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Eqs. (35)–(45) and are shown in the left plot of Fig. 2 for
the various X scenarios.
From these results, we could see that a massless dark-

photon signature is indeed characterized by a central
photon, produced at large angles θ with respect to the
beam, while it vanishes in the FB directions ðθ ¼ 0; πÞ.
On the other hand, for the spin-0 and spin-2 cases, the
photon will be mainly emitted in the FB directions. This
is also in agreement with results on photon angular
distributions in the KK graviton emission in the massless
limit [30]. This behavior can be easily understood by
angular momentum conservation. Owing to the conser-
vation of chirality in the Z couplings to initial eþe−

states, the total angular momentum JZ along the beam
axis could be JZ ¼ �1. On the other hand, at θ ¼ 0; π,
where orbital angular momentum vanishes, the two final
photon states can have JZ ¼ 2, 0 but not JZ ¼ 0. This
forces the angular distribution rate to vanish at θ ¼ 0; π,
as shown in the left plot of Fig. 2. This conclusion does
not hold for the Z decay into a spin-0 or spin-2 particle
accompanied by a photon, for which the total JZ ¼ 1 is
possible at θ ¼ 0, leading to a nonvanishing distribution
rate in the FB directions.
These results suggest that, from the study of the photon

angular distributions of the Z → γX decay at an unpolar-
ized eþe− collider, it would be possible to disentangle the
(massless) JP ¼ 1− nature of the X particle from the other
JP ¼ 0−; 2− hypothesis. In particular, following the results
of [36], based on the search for dark-photon signal Z → γγ̄
at hadronic and eþe− future colliders, the lower bound N
for the expected and observed numbers of signal events
needed to exclude the JP ¼ 0− test hypothesis under the
JP ¼ 1− assumption are, respectively, N ¼ 6 and N ¼ 17

at the 95% C.L. Combining these results with the expected
number of allowed events in Fig. 1 for the massive ALP
particles with these characteristics, we can conclude that
there should be a sufficient number of viable events to
disentangle the spin-1 versus spin-0 hypotheses at the
future linear FCC-ee.
On the other hand, it would not be possible to distinguish

the JP ¼ 0− from the JP ¼ 2− signals, even by using the
facility of polarized beams in the linear eþe− colliders. In
general, the latter can offer great advantages in enhancing
the sensitivity to new physics signal events against the SM
background, as, for instance, in the search for scalar lepton
partners in supersymmetry inspired models [37]. In our
case, in a polarized eþe− collider one can, in principle,
select the polarization weights Cð�Þ of the transverse

polarizations εð�Þ
Z of the Z boson in the resonant Z-boson

production at eþe−, offering an extra tool in addition to the
unpolarized circular eþe− colliders where these coefficients
are fixed.

However, in the Z → γX decay, because of the kind of
interactions involved, the angular distributions of the X
spin-0 and spin-2 masses are identical (in the X massless
limit) for the two Z transverse polarizations (with respect to

the beam axis) εðþÞ
Z and εð−ÞZ . Then the only way to

disentangle the X spin-0 mass against the spin 2 is by
using the sensitivity in the angular distribution to the X
mass ðmXÞ effects [see Eqs. (42) and (46)], but this task can
also be achieved by an unpolarized eþe− collider.
Concerning the sensitivity of the angular distributions

of the spin-0 versus the spin-2 mass, we can see that this
is quite hopeless if the mass of an invisible X of a spin-0
or spin-2 mass is restricted to be below the 1 GeV scale.
On the other hand, for larger X masses, the requirement
to behave as an invisible particle in the detector sets quite
strong constraints on the associated scale for masses
larger than 1 GeV (see the BR allowed regions in Fig. 2),
thus resulting in too few (viable) events needed to
analyze the angular distributions.

V. CONCLUSIONS

We analyzed the decays of the Z boson into Z → γX,
with X a long-lived light dark boson, assumed to behave
as missing energy in the detector. We discussed three
potential scenarios for X based on their spin origin: a
massless or ultralight dark photon for the spin-1 particle,
an ALP in both the scalar and pseudoscalar cases for the
spin-0 particle, and a light spin-2 particle. For the spin-0
and spin-2 scenarios, the masses are assumed to be in the
range of [100 MeV–1 GeV] for the ALP, and [1 eV–
1 GeV] for the spin-2 particle. Moreover, we required the
ALP and spin-2 particles not to decay inside the detector.
We showed that for these scenarios the largest BRs could
be in the observable range of 10−12 ≲ BRðZ → γXÞ≲
10−6, depending on the spin and allowed values
of the corresponding effective scales. All these BRs
are in the ballpark of sensitivity range of future Z
factories at eþe− colliders, like, for instance, the FCC-
ee facility, with its projected production of 1013Z
bosons [3].
These scenarios have in common the same signature,

characterized by a monochromatic photon plus an almost
neutrinolike missing energy. In case this signature should
be discovered, a spin test to discriminate about the spin-1
dark-photon origin against the spin-0=2 ones was pro-
posed. Owing to the fact that the Z boson is always
polarized when it is resonantly produced at eþe− col-
liders, we showed that the spin-1 nature of X could be
disentangled from the spin-0 and spin-2 particles by
analyzing the angular distribution of the monochromatic
photon. The massless dark-photon signature is indeed
characterized by a photon mainly produced centrally and
at large angles with respect to the eþe− beam axis. On
the other hand, for the spin-0 and spin-2 cases (which
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have the same angular distributions) the monochromatic
photon is mainly expected along the forward/backward
directions.
In conclusion, due to the clean environment of the FCC-

ee facility, together with its expectations on the high
statistics of the Z bosons collected, the rare Z → γX decay
could be a golden place to search for a light X dark boson at
the FCC-ee, also offering the possibility of untangling its
spin origin.
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APPENDIX: Zγγ̄ EFFECTIVE VERTEX

We provide here the expression of the C1−3 and CE
coefficients appearing in Eqs. (3) and (8) for the effective
Zγγ̄ interactions as a function of the dfM;E coefficient in
Eq. (7). By matching the on-shell amplitude for the Z → γγ̄
process—as obtained by using the effective Lagrangian in
Eqs. (3) and (8)—with the corresponding one obtained by
the one-loop computation with the insertion of the dipole
operators in Eq. (7), we obtain [5]

C1 ¼ −
X
f

dfMXf

4π2
ð5þ 2Bf þ 2Cfðm2

f þM2
ZÞÞ;

C2 ¼ −3
X
f

dfMXf

4π2
ð2þ BfÞ;

C3 ¼ 2
X
f

dfMXf

4π2
ð4þ 2Bf þ CfM2

ZÞ ðA1Þ

and

CE ¼
X
f

dfEXf

4π2
ð3þ Bf þ 2m2

fCfÞ; ðA2Þ

where Xf ≡ mf

MZ
Nf

cg
f
AQfeD, with mf the mass, gfA the Z

axial coupling, Qf the EM charge of SM fermions f in
units of e, and Nc ¼ 1ð3Þ for leptons (quarks). The sum
over the index f runs over all EM charged SM fermions.
The Bf and Cf terms are defined as

Bf ≡ Disc½B0ðM2
Z;mf;mfÞ�;

Cf ≡ C0ð0; 0;M2
Z;mf;mf;mfÞ; ðA3Þ

where B0 and C0 are the scalar two- and three-point
Passarino-Veltman functions, respectively (see [38] for
their explicit expressions), and Disc½B0� stands for the
discontinuity of the B0 function. These terms are both finite
functions which can be evaluated numerically, for example,
by using PACKAGE-X [39].
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