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Abstract

We extend to a specific class of systems of nonlinear Schrödinger equations (NLS) the theory
of asymptotic stability of ground states already proved for the scalar NLS. Here the key point
is the choice of an adequate system of modulation coordinates and the novelty, compared to the
scalar NLS, is the fact that the group of symmetries of the system is non-commutative.

1 Introduction

In this paper we consider the system of coupled nonlinear Schrödinger equations,
#

iσ3 9u` ∆u´ βp|u|2qu “ 0,

up0, xq “ u0pxq P C2, x P R3,
(1.1)

where i is the imaginary unit and the Pauli matrices are given by

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i

i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

. (1.2)

We assume that β satisfies the following two hypotheses, which guarantee the local well-posedness
of (1.1) in H1pR3,C2q:

(H1) βp0q “ 0, β P C8pR,Rq;

(H2) there exists α P p1, 5q such that for every k P N0 there is a fixed Ck with

ˇ

ˇ

ˇ

ˇ

dk

dvk
βpv2q

ˇ

ˇ

ˇ

ˇ

ď Ck|v|α´k´1 for v P R, |v| ě 1.

We recall that under further hypotheses, there exist ground state solutions of the scalar NLS

i 9u` ∆u´ βp|u|2qu “ 0 , upt, xq|t“0 “ u0pxq P C, x P R3 (1.3)

in H1pR3,Cq which are of the form eiωtϕpxq with ω ą 0 and ϕpxq ą 0. Here we assume:
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(H3) there is an open interval O Ď p0,8q and a C8-family O Q ω ÞÑ ϕω P XnPN ΣnpR3,Cq, with
ΣnpR3,Cq defined in (2.1), such that ϕω is a positive radial solution of

´∆u` ωu` βp|u|2qu “ 0 for x P R3; (1.4)

(H4) we have d
dω }ϕω}2L2 ą 0 for ω P O;

(H5) for L` :“ ´∆ ` ω ` βpϕ2ωq ` 2β1pϕ2ωqϕ2ω with the domain H2pR3,Cq, L` has one negative
eigenvalue and kerL` “ SpantBxjϕω : j “ 1, 2, 3u.

The above hypotheses guarantee that the ground states are orbitally stable solutions of the scalar
NLS (1.3), see [22, 35]. In [14, 16] it has been proved that, under some additional hypotheses, they
are asymptotically stable, in a sense that will be clarified later. This paper shows that some solitary
waves of (1.1) are asymptotically stable. To state the result, we denote by C : Cn Ñ Cn the
operator if complex conjugation in Cn and by SUp2q the group

SUp2q “

"„

a b
´Cb Ca

ȷ

: pa, bq P C2 such that |a|2 ` |b|2 “ 1

*

. (1.5)

We consider the group
G “ R3 ˆ T ˆ SUp2q. (1.6)

There is a natural representation of G on H1pR3,C2q, with ϑ P T acting on u0 like eiϑu0, x0 P R3

acting like a translation operator, and with an element of SUp2q acting on u0 by transforming it
into pa` bσ2Cqu0. System (1.1) admits solitary waves of the form

ψω,vptq “ e
it
´

ω` v2

4

¯

e
i

2 v¨px´tvqϕωpx´ tvqÝÑe 1 , with the column vector ÝÑe 1 “ tp1, 0q. (1.7)

We will show later that, along with mass, which we will denote by Π4, linear momenta, which we
will denote by Πi|

3
i“1, and energy, system (1.1) admits 3 further invariants related to SUp2q which

we will denote by Πi|
7
i“5. By Π we will denote the vector Πi|

7
i“1. We will see later, that acting with

G on ψω,v we can generalize the solitary waves. We will have solitary waves Φp characterized by
ΠpΦpq “ p. We will prove the following theorem.

Theorem 1.1. Assume (H1)–(H5) stated above, (H6)–(H8) stated in Section 7, and (H9) stated in
Sect. 11. Pick ω1 P O. Then there exist ϵ0 “ ϵ0pω1q ą 0 and C “ Cpω1q ą 0 such that if u solves
(1.3) with u|t“0 “ u0 and if we set

ϵ :“ inf
gPG

}u0 ´ T pgqψω1,0p0q}H1pR3,C2q ă ϵ0, (1.8)

then there exist a solitary wave ψω`,v` , a function g P C1pR`,Gq and an element h` P H1pR3,C2q

with }h`}H1pR3,C2q ` |ω` ´ ω1| ` |v`| ď Cϵ, such that

lim
tÑ`8

}uptq ´ T pgptqqψω`,v` ptq ´ e´iσ3∆th`}H1pR3,C2q “ 0. (1.9)

Remark 1.2. Noncommutative symmetry groups which involve the complex conjugation, of the type
considered in this article, are interesting in particular in view of the SUp1, 1q symmetry group which
appears in the nonlinear Dirac equation with scalar-type self-interaction (the Soler model) and in
the Dirac–Klein–Gordon model; see [21, 29]. Such symmetry groups result in the emergence of two-
frequency solitary waves [8]; as a consequence, the asymptotic stability of standard (one-frequency)
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solitary waves could only make sense if one takes into account the convergence of perturbed solutions
to both one- and two-frequency solitary waves, which creates additional difficulties on the way to
treating the asymptotic stability. Let us mention that this difficulty was avoided in the proof of
asymptotic stability in the Soler model in [7, 28, 6, 12] by restricting the class of perturbations so
that the convergence to a bi-frequency solitary wave was prohibited by symmetry considerations.

Theorem 1.1 is a transposition to a system of the result proved for scalar equations in [14, 16, 17],
see also [2]. We are not aware of previous similar results for systems of PDE’s. For the orbital
stability of systems of NLS we refer to Grillakis et al. [22], see also [4] and therein.

The proof of Theorem 1.1 goes along the lines of the proof for the scalar NLS. If we look
at the analogous classical problem of the asymptotic stability of the equilibrium 0 for a system
9r “ Ar ` gprq, where gprq “ oprq at r “ 0 and with a matrix A, of key importance is the location
of the spectrum σpAq. Stability requires that if ς P σpAq then Re ς ď 0. Isolated eigenvalues on
the imaginary axis correspond to central directions whose contribution to stability or instability can
be ascertained only analyzing the nonlinear system, and not just the linearization 9r “ Ar. This
classical framework is also used for Theorem 1.1. First of all, an appropriate expansion of u at
the ground states (see Lemma 3.1 below) gives us the variable r. The analogue of A is given by
(2.24). In our case the spectrum is all contained in the imaginary axis, but the continuous spectrum
plays the same role of the stable spectrum of A, thanks to dispersion and along the lines described
in pp. 36–37 of Strauss’s introduction to nonlinear wave equations [34]. The discrete spectrum of
(2.24) plays the role of central directions. The nonlinear mechanism acting on the corresponding
discrete modes and responsible for the stabilization indicated in (1.9) has been termed Nonlinear
Fermi Golden Rule in [32] and was explored initially in [10, 33]. A detailed description, by means of
some elementary examples, is in [19, Introduction], see also [36]. The same mechanisms described
in [19] and used in [2, 3, 10, 14, 16, 17, 33] and in a number of other papers referenced therein, are
applied here to prove Theorem 1.1. The novel difficulty occurs with the choice of modulation. Here
the the idea is to use the representation (2.19). The rest of the paper is not very different from
[14, 15, 16, 17]. In the course of the proof there are some difficulties related to the fact that the
Lie algebra of G is not commutative, and correspondingly, the Poisson brackets tΠj ,Πlu are not
identically zero like in the earlier papers. This is solved quite naturally by exploiting conservation
laws and considering the reduced manifold, see [25, Ch. 6]. Thanks to an appropriate uniformity
with respect to the conserved quantities of the coordinate changes, we obtain the desired result.

2 Notation and preliminaries

We start with some notation. For ς P Cn we consider the Japanese Bracket xςy “
a

1 ` |ς|2.
Given two Banach spaces X and Y let BpX,Yq be the Banach space of bounded linear transformations
from X to Y.
Let m, k, s P R. Given a Banach space E and functions R3 Ñ E, we denote by ΣmpR3,Eq and
Hk,spR3,Eq the Banach spaces with the norms

}u}2Σm
:“ }

@

a

´∆ ` |x|2
Dm
u}2L2pR3,Eq, (2.1)

}f}Hk,spR3,Eq :“ }xxys
@

?
´∆

Dk
f}L2pR3,Eq, (2.2)

where we will use mostly E “ C2. We also consider

the space of Schwartz functions SpR3,Eq :“ XmPRΣmpR3,Eq (2.3)

and the space of tempered distributions S 1pR3,Eq :“ YmPRΣmpR3,Eq. (2.4)
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We denote by tv the transpose of v P Cn, so that the hermitian conjugate of v P Cn is given by
tpCvq. For u, v P Cn we set |v|2 “ tpCvqv. We denote the hermitian form in L2pR3,C2q by

xu, vy “ Re

ż

R3

tpCupxqq vpxq dx, u, v P L2pR3,C2q, (2.5)

and we consider the symplectic form

ΩpX,Y q :“ xiσ3X,Y y, X, Y P L2pR3,C2q. (2.6)

Definition 2.1. Given a differentiable function F , its Hamiltonian vector field with respect to a
strong symplectic form Ω is the field XF such that ΩpXF , Y q “ dF pY q for any tangent vector Y ,
with dF the Fréchet derivative. For F,G differentiable functions their Poisson bracket is tF,Gu :“
dF pXGq if G is scalar valued and F is either scalar or has values in a Banach space E.

Notice that since X Ñ xiσ3X, y defines an isomorphism of L2pR3,C2q, or of H1pR3,C2q, into
itself, our symplectic form (2.6) is strong. For u P H1pR3,C2q we have the following functionals (the
linear momenta and mass) which are conserved in time by (1.1):

Πapuq “ 2´1x♢au, uy , ♢a :“ ´iσ3Bxa
for a “ 1, 2, 3; (2.7)

Π4puq “ 2´1x♢4u, uy , ♢4 :“ 1lp“ identity operatorq; (2.8)

see [22, (2.6) and p. 343] for (2.7). We also consider the following functionals Πj , j “ 5, 6, 7:

Πjpuq :“ 2´1x♢ju, uy with ♢j :“

$

&

%

σ3σ2C, j “ 5,
iσ3σ2C, j “ 6,
σ3, j “ 7.

(2.9)

The energy is defined as follows: for Bp0q “ 0 and B1 “ β we write

Epuq :“ EKpuq ` EP puq, (2.10)

EKpuq :“ 2´1x´∆u, uy, EP puq :“ ´2´1

ż

R3

Bp|u|2q dx.

It is a standard fact which can be proved like for the scalar equation (1.3), for the latter see [11],
that (H1)–(H2) imply local well–posedness of (1.1) in H1pR3,C2q.
We denote by dE the Fréchet derivative of the energy E, see (2.10). We define ∇E by dEX “

x∇E,Xy. Notice that ∇E P C1pH1pR3,C2q,H´1pR3,C2qq, that ∇Epuq “ ´∆u ` βp|u|2qu and
henceforth that (1.1) can be written as

9u “ ´iσ3∇Epuq “ XEpuq, (2.11)

that is, as a hamiltonian system with hamiltonian E. Notice that ∇Πjpuq “ ♢ju for j “ 1 ď j ď 7.

Consider now the column vector ÝÑe 1 “ tp1, 0q. By (2.7) and (H4), pω, vq ÞÑ pΠjpeσ3
i

2 v¨xϕωÝÑe 1qq4j“1

is a diffeomorphism into an open subset of R` ˆ R3. We introduce

p “ ppω, vq P R7 defined by pjpω, vq “

$

’

&

’

%

Πjpeσ3
i

2v¨xϕωÝÑe 1q, 1 ď j ď 4;

0, j “ 5, 6;

Πjpeσ3
i

2v¨xϕωÝÑe 1q “ p4pω, vq, j “ 7.

(2.12)
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Notice that Πjpeσ3
i

2v¨xϕωÝÑe 1q “ 0 for j “ 5, 6. We denote by P the subset of R7 defined by

P “ tppω, vq; ω P O, v P R3u. (2.13)

For p “ ppω, vq P P, we set

Φppxq :“ e
i

2 v¨xϕωpxqÝÑe 1. (2.14)

Obviously Φppω,vq “ ψω,vp0q, see (1.7). We will set Φp1
“ ψω1,0p0q for the function in Theorem 1.1.

We have ΠjpΦp1q “ 0 for j “ 1, 2, 3, 5, 6. It is not restrictive to pick the initial datum s.t.

Πjpu0q “ 0 for j “ 1, 2, 3, 5, 6. (2.15)

Indeed, by continuity, Πj for j “ 1, 2, 3, 5, 6 take values close to 0 in a neigborhood of Φp1
. By

boosts and Lemma 5.1, one can act on u0 changing it into another nearby initial datum which
satisfies (2.15): we skip the elementary details. We introduce

λppq “ pλ1ppq, ..., λ7ppqq P R7 defined by λjppq :“

$

’

&

’

%

´vj , 1 ď j ď 3;

´ω ´ v2

4 , j “ 4;

0, j ě 5.

(2.16)

They are Lagrange multipliers, and an elementary computation shows that

e´iσ3tλppq¨♢Φp “ ψω,vptq (2.17)

and that Φp is a constrained critical value for the energy satisfying

∇EpΦpq ´
ÿ

j“1,...,7

λjppq♢jΦp “ 0. (2.18)

We consider the representation T : G Ñ BpH1pR3,C2q,H1pR3,C2qq defined by

T pgqu0 :“ eiσ3τ ¨♢pa` bσ2Cqu0 for g “

ˆ

τ,

„

a b
´Cb Ca

ȷ˙

where (2.19)

τ “ pτ1, τ2, τ3, τ4q P R3 ˆ T and τ ¨ ♢ :“
ÿ

j“1,...,4

τj♢j .

An elementary but very important fact to us is the following lemma.

Lemma 2.2. We have the following facts.

(1) The action of G given by (2.19) preserves the symplectic form Ω defined in (2.6).

(2) The action (2.19) preserves the invariants Πj for 1 ď j ď 4 and E.

(3) The functionals Πj, 1 ď j ď 7, and E are conserved by the flow of (1.1) in H1pR3,C2q.

Proof. (1) follows from the commutation riσ3, a` bσ2Cs “ 0. (2) is a consequence of

|pa` bσ2Cqu|2 “ Re tpCuqppCaq ` Cσ2pCbqqpa` bσ2Cqu

“ p|a|2 ` |b|2q|u|2 ` Re tpCuqppCaqbσ2C ` Cσ2aCbqu “ |u|2.
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The fact that the functionals Πj , 1 ď j ď 4, and the energy E are preserved by the flow of (1.1)
is standard. To deal with the cases j “ 5, 6, 7, we first recall that the Lie algebra of SUp2q can be
written as sup2q “ Span piσi, 1 ď i ď 3q. We have

d

dt
T pe´itσiq

ˇ

ˇ

t“0
“

$

’

&

’

%

d
dt pcosptq ´ i sinptqσ2Cq|t“0 “ ´iσ2C, i “ 1;
d
dt pcosptq ` sinptqσ2Cq|t“0 “ σ2C, i “ 2;
d
dt e

´it
ˇ

ˇ

t“0
“ ´i, i “ 3.

(2.20)

Like in [22, line 5 p.313],

d

dt
Π4`ipuq “ x♢4`iu,´iσ3∇Epuqy “ xiσ3♢4`iu,∇Epuqy

“
d

ds

@

T peisσiqu,∇Epuq
D

ˇ

ˇ

ˇ

ˇ

s“0

“
d

ds
EpT peisσiquq

ˇ

ˇ

ˇ

ˇ

s“0

“ 0,

where the 1st equality holds for sufficiently regular solutions, while the last one follows from (2). By
a density argument and well posedness of (1.1), we obtain claim (3).

Lemma 2.3. The following 10 vectors are linearly independent over R:

Bp1
Φp, Bp2

Φp, Bp3
Φp, Bp4

Φp, Bx1
Φp, Bx2

Φp, Bx3
Φp, iσ2CΦp, σ2CΦp, iΦp. (2.21)

The proof is elementary.
We consider now the “solitary manifold”

M : “

"

eiσ3τ ¨♢pa` bσ2CqΦppxq : τ P R3 ˆ T,
„

a b
´Cb Ca

ȷ

P SUp2q, p P P
*

. (2.22)

The vectors in (2.21) are obtained computing the partial derivatives in p0, p, 0q of

the function in C8pDCp0, ε0q ˆ P ˆ T ˆ R3,ΣkpR3,C2qq given by

pb, p, τq ÞÑ eiσ3τ ¨♢spbqΦp, where spbq :“
a

1 ´ |b|2 ` bσ2C. (2.23)

Then Lemma 2.3 implies that for any k ą 0 there is ε0 ą s.t. (2.23) is an embedding and M is a
manifold. The R–vector space generated by vectors in Lemma 2.3 is the tangent space TΦpM.
Consider the linearized operator Hp :“ ´iσ3p∇2EpΦpq ´ λppq ¨ ♢q. By λpppω, 0qq ¨ ♢ “ ´ω we have

Hppω,0q

ˆ

u1
u2

˙

“ ´

˜

iL
p1q
ω u1

´iL
p2q
ω u2

¸

, where

Lp1q
ω u1 “ ´∆u1 ` βpϕ2ωqu1 ` 2β1pϕ2ωqRepu1q ` ωu1,

Lp2q
ω u2 “ ´∆u2 ` βpϕ2ωqu2 ` ωu2.

(2.24)

It is well known that Hp is R-linear but not C-linear, see [9, 13]. For this reason we interpret
H1pR3,C2q as a vector space over R. Later, in Section 7, we perform a complexification. Recall the
generalized kernel NgpHpq :“ Y8

j“1 kerpHpqj . The following lemma is very important.

Lemma 2.4. We have NgpHppω,0qq “ TΦppω,0qM.
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Proof. First of all L
piq
ω for i “ 1, 2 are decoupled, so that it is enough to consider them separately. We

have the following, which is a well-known fact about ground states, see for example [30, Sect.XIII.12]:

kerpiLp2q
ω q “ NgpiLp2q

ω q “ Spantiϕω, ϕωu.

The following well-known consequence of (H4)–(H5), derived in [35], completes the proof

kerpiLp1q
ω q “ Spantiϕω, Bxa

ϕω|
3
a“1u,

NgpLp1q
ω q “ kerpiLp1q

ω q2 “ pi kerLp1q
ω q ‘ SpantBpj

e
i

2v¨xϕω|4j“1u.

System (1.1) is an interesting example for the stability theory in the classical paper by Grillakis
et al. [22] because all the examples of systems of NLS’s in Sect. 9 in [22] for x P R3 and upt, xq P R4

have 4–dimensional centralizers, while for (1.1) dimension is 6, see the following two remarks.

Remark 2.5. From the identification C2 “ R4 there is a natural inclusion SUp2q Ď SOp4q. By the
identification implicit in (1.5) of a P SUp2q and an element in the unit sphere ra P S3 Ă R4, the
action of a P SUp2q on v P R4 is nothing else but the product of quaternions, vra. Similarly, by
elementary computations it is possible to see that pa` bσ2Cqv “ pav (on the r.h.s. multiplication of
two quaternions) for all v P R4 and for an appropriate pa P S3. In the framework of [22] when applied
to (1.1), a key role is played by the centralizer of the group teτ4iσ3 ; τ4 P Ru inside R3 ˆSOp4q. Using
[37, p. 111], it can be shown that G, acting as in (2.19), is a connected component of this centralizer.

Remark 2.6. The key hypothesis in [22] is Assumption 3 on p. 314, stating Z “ kerpHppω,0qq for

Z :“
!

Bt rT petϖqΦppω,0q

ˇ

ˇ

ˇ

t“0
: ϖ P R3 ˆ sop4q commutes in R3 ˆ sop4q with iσ3

)

,

where for ϖ P R3 we have rT petϖq “ T petϖq and for ϖ P sop4q we set rT petϖqw “ etϖw for any
w P R4, with the usual product row column SOp4q ˆ R4 Ñ R4.
Always Z Ď kerpHppω,0qq, see [22, Lemma 2.2]. Lemma 2.4 yields the equality. Assumption 1, i.e.
local well posedness, is true and Assumption 2, about bound states, is true under our hypothesis (H3).
Other hypotheses needed in [22], such as that the centralizer, or at least its connected component
containing the unit element in R3 ˆ SOp4q, acts by symplectomorphisms which leave the energy
invariant, follow from Lemma 2.2. So by [22] the bound states (2.17) are G–orbitally stable.

3 Modulation

The manifold M introduced in (2.22) is a symplectic submanifold of L2pR3,C2q. This follows from

Ωpiσ2CΦp, σ2CΦpq “ p4 , ΩpBp4Φp, iΦpq “ 2´1Bp4xiσ3Φp, iΦpy “ Bp4p4 “ 1,

ΩpBpa
Φp, Bxa

Φpq “ 2´1Bpa
xΦp,♢aΦpy “ Bpa

pa “ 1 for a “ 1, 2, 3,

and from symplectic orthogonality of all other pairs of vectors in (2.21). We obtain a bilinear form

Ω : SpR3,C2q ˆ S 1pR3,C2q Ñ R.

Since TΦp
M Ď SpR3,C2q, we can define the subspace TKΩ

Φp
M Ď S 1pR3,C2q. Ω also defines a pairing

Ω : ΣnpR3,C2q ˆ Σ´npR3,C2q Ñ R.
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This yields the decomposition

Σ´npR3,C2q “ TΦpM ‘ pTKΩ

Φp
M X Σ´npR3,C2qq. (3.1)

We denote by pPp and Pp the projections onto the first and second term of the direct sum, respectively:

pPp : Σ´npR3,C2q Ñ TΦpM, (3.2)

Pp : Σ´npR3,C2q Ñ TKΩ

Φp
M X Σ´npR3,C2q.

A special case of (3.1) is

L2pR3,C2q “ TΦp
M ‘ pTKΩ

Φp
M X L2pR3,C2qq. (3.3)

It is easy to see that the map p ÞÑ pPp is in C8pP, BpΣ´npR3,C2q,ΣnpR3,C2qqq for any n P Z. The
following about the spbq in (2.23) is consequence of elementary computations:

pspbqq´1 “ pspbqq˚ “ sp´bq ; (3.4)

spbqσj “ σjsp´bq for all j “ 1, 2, 3 ;

Cspbq “ s p´Cbq , spbqi “ isp´bq.

Lemma 3.1 (Modulation). Fix n1 P N0 :“ NY t0u and p1 P P. Then D an open neighborhood U´n1

of Φp1 in Σ´n1pR3,C2q and functions p P C8pU´n1 ,Pq, τ P C8pU´n1 ,R3 ˆTq and b P C8pU´n1 ,Cq

such that ppΦp1q “ p1, τpΦp1q “ 0, bpΦp1q “ 0 and ϑpΦp1q “ 0 so that for any u P U´n1
,

u “ e´iσ3τpuq¨♢spbpuqqpΦppuq `Rpuqq, with Rpuq P TKΩ

Φppuq
M X Σ´n1

pR3,C2q. (3.5)

Proof. The proof is standard. For vιppq, 1 ď ι ď 10 varying among the 10 vectors in (2.21), set

Fιpu, p, τ, bq :“ Ωpeiσ3τ ¨♢sp´bqu´ Φp,vιppqq.

Next, setting
ÝÑ
F “ pF1, ..., F10q, we compute

ÝÑ
F pu, p, τ, bq

ˇ

ˇ

ˇ

u“e´iσ3τ¨♢Φp, b“0
“ 0 and the Jacobian matrix is

B
ÝÑ
F pu, p, τ, bq

Bpp, τ, bq

ˇ

ˇ

ˇ

ˇ

ˇ

u“e´iσ3τ¨♢Φp, b“0

“ rεijΩpvippq,vjppqqsi,j , 1 ď i, j ď 10, (3.6)

where the numbers εij belong to t1,´1u. Since for each vippq there is exactly one vjppq such
that Ωpvippq,vjppqq ‰ 0, it follows that all the columns in (3.6) are linearly independent. We can
therefore apply the implicit function theorem which yields the statement.

It can be proved, see [15, Lemma 2.3], that in a sufficiently small neighborhood V of p1 in P,
for any any k ě ´n1 the projection

Pp : TKΩ

Φp1
M X ΣkpR3,C2q ÝÑ TKΩ

Φp
M X ΣkpR3,C2q (3.7)

is an isomorphism. From Lemma 3.1 we have the parametrization

P ˆ pR3 ˆ Tq ˆDCp0, ε0q ˆ pTKΩ

Φp1
M XH1pR3,C2qq Ñ H1pR3,C2q (3.8)
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with the modulation coordinates

pp, τ, b, rq ÞÑ u “ e´iσ3τ ¨♢spbqpΦp ` Pprq. (3.9)

We choose p0 P P so that
Πjpu0q “ p0j for j P I “ t1, 2, 3, 4u (3.10)

(that is p0j “ 0 for j “ 1, 2, 3 and Π4pu0q “ p04, i.e. u0 and Φp0 have same charge).
In terms of coordinates (3.9), system (1.1), which we have also written as 9u “ XEpuq, see

(2.11), can be expressed in terms of the Poisson brackets as follows, see [15, Lemma 2.6]:

9p “ tp,Eu , 9τ “ tτ, Eu , 9b “ tb, Eu , 9r “ tr,Eu. (3.11)

By the intrinsic definition of partial derivative on manifolds, see [20, p.25], we have the following
vector fields (recall bR “ Repbq and bI “ Impbq):

Bτj “ ´iσ3♢ju for 1 ď j ď 4,

Bpk
“ e´iσ3τ ¨♢spbqpBpk

Φp ` Bpk
Pprq for 1 ď k ď 4,

BbA “ e´iσ3τ ¨♢BbAspbqpΦp ` Pprq for A “ R, I,

(3.12)

which are obtained by differentiating by the various coordinates the r.h.s. of the equality in (3.9).
By (3.12) we have the elementary and crucial fact that XΠj puq “ iσ3∇Πjpuq “ iσ3♢ju for 1 ď j ď 7
which corresponds to formulas (2.5)–(2.6) in [22]. In particular we have

XΠj
puq “ Bτj for 1 ď j ď 4

which immediately implies

tΠj , τku “ ´δjk, tΠj , bAu “ 0, tΠj , pku “ 0, tr,Πju “ 0 for 1 ď j ď 4.

A natural step, which helps to reduce the number of equations in (3.11) and corresponds to an
application of Noether’s Theorem to Hamiltonian systems, see [25, Theorem 6.35, p.402], is to

substitute each function pj |
4
j“1 in the coordinate system pp, τ, b, rq with the functions Πj |

4
j“1 and

move to coordinates pΠj |
4
j“1 , τ, b, rq. Indeed, as in [15, formula (34)], we have

Πj “ pj ` ϱj ` ΠjppPp ´ Pp1qrq ` xr,♢jpPp ´ Pp1qry, with ϱj :“ Πjprq and 1 ď j ď 4. (3.13)

This allows to move from pp, τ, b, rq to pΠj |
4
j“1 , τ, b, rq. Furthermore, BτkΠjpuq ” 0 for k ď 4 implies

that the vector fields Bτk |
4
k“1 are the same whether defined using the coordinates pp, τj |

4
j“1 , b, rq or

the coordinates pΠj |
4
j“1 , τj |

4
j“1 , b, rq. Hence, exploiting the invariance Epeiσ3τ ¨♢uq “ Epuq

tΠj , Eu “ ´tE,Πju “ ´dEXΠj
“ ´dEBτj “ ´BτjE “ 0 for 1 ď j ď 4.

By these identities, (1.1) in the new coordinates pΠj |
4
j“1 , τ, b, rq becomes

9Πj “ 0 for 1 ď j ď 4, 9τ “ tτ, Eu ,

9b “ tb, Eu , 9r “ tr,Eu. (3.14)

Notice that we have produced a Noetherian reduction of coordinates, because the equations of b and
r are independent from the ones in the 1st line. We point out that by Lemma 2.2 we have also

9Πj “ tΠj , Eu “ 0 for 5 ď j ď 7. (3.15)
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4 Expansion of the Hamiltonian

We introduce now the following new Hamiltonian,

Kpuq :“ Epuq ´ E
`

Φp0

˘

´
ÿ

j“1,...,4

λjppq
`

Πj ´ p0j
˘

. (4.1)

For solutions v of (1.1) with initial value v0 satisfying Πjpv0q “ p0j for 1 ď j ď 4, we have

tΠj ,Ku “ tΠj , Eu “ 0 for 1 ď j ď 7 ,

tb,Ku “ tb, Eu , tr,Ku “ tr,Eu , tτj ,Ku “ tτj , Eu ´ λjppq for 1 ď j ď 4 .

Indeed, for example, since tΠj ,Πku “ 0 for j ď 7 and any k ď 4 (which follows from r♢j ,♢ks “ 0
for j ď 7 and any k ď 4, cf. (2.7)–(2.9)) we have by Lemma

tΠj ,Kupvq “ tΠj , Eupvq ´
ÿ

j“1,...,4

`

λktΠj ,Πkupvq ` pΠjpvq ´ p0j qtΠj , λkupvq
˘

“ tΠj , Eupvq,

where we use Πjpvq “ p0j . The other Poisson brackets are computed similarly.

By BτjK ” 0 for 1 ď j ď 4, the evolution of the variables pΠjq|
7
j“1 , b, r is unchanged if we

consider the following new Hamiltonian system,

9Πj “ tΠj ,Ku “ 0 for 1 ď j ď 4, 9τ “ tτ,Ku , 9b “ tb,Ku , 9r “ tr,Ku, (4.2)

where pΠjq|
4
j“1 , τ, b, r is a system of independent coordinates, and where we consider also

9Πj “ tΠj ,Ku “ 0 for 5 ď j ď 7. (4.3)

Key in our discussion is the expansion of Kpuq in terms of the coordinates p pΠjq|
4
j“1 , rq. We

consider the expansion, with the canceled term equal to 0 by (2.18) and (2.16),

Kpuq “KpΦp ` Pprq “ KpΦpq `

((((((((((((((((((
x∇EpΦpq ´

ÿ

j“1,...,4

λjppq∇ΠjpΦpq, Ppry

`

ż 1

0

p1 ´ tq
A”

∇2EpΦp ` tPprqPprq ´
ÿ

j“1,...,4

λjppq∇2ΠjpΦp ` tPprqPprq

ı

Ppr, Ppr
E

dt.

The last line equals (cf. [15, (99)])

2´1xp´∆ `
ÿ

j“1,...,4

λjppq♢jqPpr, Ppry `

ż 1

0

p1 ´ tqx∇2EP pΦp ` tPprqPpr, Ppry dt “

2´1xp´∆ `
ÿ

j“1,...,4

λjppq♢jqPpr, Ppry `

ż

R3

dx

ż

r0,1s2

t2

2
pB2

t q
ˇ

ˇ

t“0
BsrBp|sΦp ` tPpr|2qs dt ds

`
ÿ

j“2,3

ż

R3

dx

ż

r0,1s2

tj

j!
pB

j`1
t q

ˇ

ˇ

t“0
BsrBp|sΦp ` tPpr|2qs dt ds

`

ż

R3

dx

ż

r0,1s2
dt ds

ż t

0

B5
τBsrBp|sΦp ` τPpr|2qs

pt´ τq3

3!
dτ ` EP pPprq.
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The 2nd term in the 2nd line is 2´1x∇2EP pΦpqPpr, Ppry and so in particular the second line is

2´1xp´∆ ` ∇2EP pΦpq ´
ÿ

j“1,...,4

λjppq♢jqPpr, Ppry “ 2´1xiσ3HpPpr, Ppry.

By (4.1), we have
KpΦpq “ dppq ´ dpp0q ` pλppq ´ λpp0qq ¨ p0, (4.4)

where

dppq :“ EpΦpq ´ λppq ¨ p. (4.5)

Since Bpjdppq “ ´p ¨ Bpjλppq, we conclude KpΦpq “ Oppp´ p0q2q. Furthermore, from (3.13) we have

KpΦpq “ G
´

pΠj ´ p0j q|4j“1,Πjprq|4j“1,
`

Πj

`

pPp ´ Pp1qr
˘

`
@

r,♢jpPp ´ Pp1qr
D˘ ˇ

ˇ

4

j“1

¯

, (4.6)

with G smooth and equal to zero at p0, 0, 0q up to second order. Summing up, we have the following.

Lemma 4.1. There is an expansion

Kpuq “ KpΦpq ` 2´1ΩpHpPpr, Pprq ` EP pPprq (4.7)

`
ÿ

d“3,4

xBdppq, pPprqdy `

ż

R3

B5px, p, rpxqqpPprq5pxq dx, where for any k P N:

• KpΦpq satisfies (4.4)–(4.6);

• pPprqdpxq represents d-products of components of Ppr;

• Bd P C8pP,ΣkpR3, BppR4qbd,Rqqq for 3 ď d ď 4;

• for ζ P R4, B5 depends smoothly on its variables, so that @ i P N, there is a constant Ci s.t.

}∇i
p,ζB5p¨, p, ζq}ΣkpR3,BppR4qb5,Rqq ď Ci. (4.8)

We will perform a normal form argument on the expansion (4.7), eliminating some terms from
the expansion by means of changes of variables. The first step in a normal forms argument is the
diagonalization of the homological equation, see [1, p. 182], which is discussed in Section 10.

5 Symbols Ri,j
k,m, S

i,j
k,m and restrictions of K on submanifolds

We begin with the following elementary lemma.

Lemma 5.1. Set u “ spbqψ. Then, for bR “ Repbq and bI “ Impbq, we have

Π5puq “ p1 ´ 2b2RqΠ5pψq ´ 2bIbRΠ6pψq ´ 2
a

1 ´ |b|2bRΠ7pψq,

Π6puq “ ´2bIbRΠ5pψq ` p1 ´ 2b2IqΠ6pψq ´ 2
a

1 ´ |b|2bIΠ7pψq,

Π7puq “ 2
a

1 ´ |b|2bRΠ5pψq ` 2
a

1 ´ |b|2bIΠ6pψq ` p1 ´ 2|b|2qΠ7pψq.

(5.1)
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Proof. We have

2Π5puq “ xσ3σ2Cu, uy “ xsp´bqσ3σ2Cspbqψ,ψy “ xσ3σ2sp´bqs p´CbqCψ,ψy

“ xσ3σ2

”

p1 ´ |b|2 ` bσ2CpCbqσ2Cq ´
a

1 ´ |b|2pb` pCbqqσ2C
ı

Cψ,ψy

“ xσ3σ2

”

1 ´ b2R ´��b
2
I ´ pb2R ´��b

2
I ` 2ibRbIq ´ 2

a

1 ´ |b|2bRσ2C
ı

Cψ,ψy

“ p1 ´ 2b2Rqxσ3σ2Cψ,ψy ´ 2bRbIxiσ3σ2Cψ,ψy ´ 2
a

1 ´ |b|2bRxσ3ψ,ψy.

This yields the formula for Π5puq. By a similar computation

2Π6puq “ xiσ3σ2Cu, uy “ xsp´bqiσ3σ2Cspbqψ,ψy “ xiσ3σ2spbqsp´CbqCψ,ψy

“ xiσ3σ2

”

p1 ´ |b|2 ´ bσ2CpCbqσ2Cq `
a

1 ´ |b|2pb´ pCbqqσ2C
ı

Cψ,ψy

“ xiσ3σ2

”

1 ´��b
2
R ´ b2I `��b

2
R ´ b2I ` 2ibRbI ` 2i

a

1 ´ |b|2bIσ2C
ı

Cψ,ψy

“ p1 ´ 2b2Iqxiσ3σ2Cψ,ψy ´ 2bRbIxσ3σ2Cψ,ψy ´ 2
a

1 ´ |b|2bIxσ3ψ,ψy.

This yields the formula for Π6puq. Finally, the formula for Π7puq is obtained from

2Π7puq “ xσ3u, uy “ xsp´bqσ3spbqψ,ψy “ xσ3spbqspbqψ,ψy

“ xσ3

”

p1 ´ |b|2 ` bσ2Cbσ2Cq ` 2
a

1 ´ |b|2bσ2C
ı

ψ,ψy

“ xσ3

”

1 ´ 2|b|2 ` 2
a

1 ´ |b|2bRσ2C ` 2i
a

1 ´ |b|2bIσ2C
ı

ψ,ψy

“ p1 ´ 2|b|2qxσ3ψ,ψy ` 2
a

1 ´ |b|2bRxσ3σ2Cψ,ψy ` 2
a

1 ´ |b|2bIxiσ3σ2Cψ,ψy.

We introduce the following spaces

Ξk :“ tpΠ4, ϱ, rq P R` ˆ R7 ˆ pTKΩMp1 X Σkqu for k P Z, (5.2)

where ϱ is an auxiliary variable which we will use to represent Πprq. We now introduce two classes
of symbols which will be important in the sequel.

Definition 5.2. For A Ă Rd an open set, k P N0, A Ă Ξ´k an open neighborhood of pp14, 0, 0q, we
say that F P CmpA ˆ A,Rq is Ri,j

k,m if there exists C ą 0 and an open neighborhood A1 Ă A of

pp14, 0, 0q in Ξ´k such that

|F pa,Π4, ϱ, rq| ď C}r}
j
Σ´k

p}r}Σ´k
` |ϱ| ` |Π4 ´ p14|qi in I ˆ A1. (5.3)

We will write also F “ Ri,j
n,m or F “ Ri,j

k,mpa,Π4, ϱ, rq. We say F “ Ri,j
k,8 if F “ Ri,j

k,l for all l ě m.

We say F “ Ri,j
8,m if for all l ě k the above F is the restriction of an F P CmpA ˆ Al,Rq with Al

an open neighborhood of p0, 0q in R7 ˆ pTKΩMp1 X Σ´lq and F “ Ri,j
l,m. If F “ Ri,j

8,m for any m,

we set F “ Ri,j
8,8.

Remark 5.3. Above we can have d “ 0, that is A missing. We will also use the following cases:
d “ 1 with a time parameter; A an open neighborhood of the origin of R ˆ sup2q. The last case is
used only in Appendix A.
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Definition 5.4. T P CmpAˆA,ΣkpR3,C2qq, with AˆA like above, is Si,j
k,m, and we write as above

T “ Si,j
k,m or T “ Si,j

k,mpa,Π4, ϱ, rq, if there exists C ą 0 and a smaller open neighborhood A1 of
p0, 0q such that

}T pa,Π4, ϱ, rq}Σk
ď C}r}

j
Σ´k

p}r}Σ´k
` |ϱ| ` |Π4 ´ p14|qi in I ˆ A1. (5.4)

We use notation T “ Si,j
k,8, T “ Si,j

8,m and T “ Si,j
8,8 as above.

Lemma 5.5. On the manifold Πj “ p0j for 1 ď j ď 4 there exist functions R1,2
8,8 such that

pj “ p0j ´ Π4prq ` R1,2
8,8pp04,Πjprq |

4
j“1 , rq. (5.5)

Proof. By implicit function theorem to (3.13) is elementary.

Inside the space parametrized by pΠj |
4
j“1 , τ, b, rq we consider

M6
1pp0q defined by Πj |

6
j“1 “ p0j

ˇ

ˇ

6

j“1
. (5.6)

Notice that the intersection of M6
1pp0q with a small neighborhood of teiϑΦp1 : ϑ P Ru is a manifold.

Indeed, on the soliton manifold M the differential forms dpj |
4
j“1 , dbR, dbI are linearly independent.

In the points of M formula (3.13) implies dpj “ dΠj for 1 ď j ď 4 while the 1st two lines of (5.1)
imply dΠ5 “ ´2p4dbR and dΠ5 “ ´2p4dbI . Hence, since Πj P C8pH1pR3,C2q,Rq, it follows that

dΠj |
6
j“1 are linearly independent in a neighborhood of teiϑΦp1 : ϑ P Ru. Then since M6

1pp0q is

defined by Πj “ p0j for j ď 6 we obtain our claim on M6
1pp0q for any p0 sufficiently close to p1.

M6
1pp0q is invariant by the system (4.2). The following shows that, when we factor M6

1pp0q by
the action of R3 ˆ T, the corresponding manifold is parametrized by r P TKΩMp1 XH1pR3,C2q.

Lemma 5.6. There exist functions R1,2
8,8pp04,Πprq, rq and functions R2,0

8,8pp04,Πprqq dependent only
on pp04,Πprqq s.t. on M6

1pp0q

bR “ p2p04q´1Π5prq ` R2,0
8,8pp04,Πprqq ` R1,2

8,8pp04,Πprq, rq ,

bI “ p2p04q´1Π6prq ` R2,0
8,8pp04,Πprqq ` R1,2

8,8pp04,Πprq, rq.
(5.7)

Proof (sketch). Since Π5 “ Π6 “ 0 by the first two equations in (5.1), by ΠjpΦp ` Pprq “ ΠjpPprq

for j “ 5, 6 and by Π7pΦp ` Pprq “ p4 ` Π7pPprq we have

2
a

1 ´ |b|2bRpp4 ` Π7pPprqq “ p1 ´ 2b2RqΠ5pPprq ´ 2bIbRΠ6pPprq,

2
a

1 ´ |b|2bIpp4 ` Π7pPprqq “ ´2bIbRΠ5pPprq ` p1 ´ 2b2IqΠ6pPprq.
(5.8)

We consider the following change of coordinates, which defines xR and xI :

2p04bR “ Π5prq ` xR and 2p04bI “ Π6prq ` xI . (5.9)

Substitute in the l.h.s. of (5.8) both (5.9) and (5.5), and write ΠjpPprq “ Πjprq `R1,2
8,8pp04,Πprq, rq

everywhere in (5.8). Then from the 1st equation in (5.8) we get

p1 `Opb2qq
“

1 ´ Π4prq{p04 ` Π7prq{p04 ` R1,2
8,8pp04,Πprq, rq

‰

pΠ5prq ` xRq

“ Π5prq `Opb2Πprqq ` R1,2
8,8pp04,Πprq, rqq.
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So, after an obvious cancelation, we have

p1 `Opb2qq
“

1 ´ Π4prq{p04 ` Π7prq{p04 ` R1,2
8,8pp04,Πprq, rq

‰

xR

“ R2,0
8,8pΠprqq `O

`

b2Πprq
˘

` R1,2
8,8pp0,Πprq, rqq.

which in turn implies for A “ R

xA “ R2,0
8,8pp04,Πprqq `Opb2Πprqq ` R1,2

8,8pp04,Πprq, rqq

where the big O is smooth. Since a similar equality holds also for A “ I, substituting again b by
means of (5.9) and applying the Implicit Function Theorem, we obtain

xA “ R2,0
8,8pp04,Πprqq ` R1,2

8,8pp04,Πprq, rqq for A “ R, I.

Lemma 5.7. In M6
1pp0q we have

Π7 “ p04 ` Π7prq ` R2,0
8,8pp0,Πprqq ` R1,2

8,8pp0,Πprq, rq. (5.10)

Proof. By the 3rd identity in (5.1) and by the definition of Pp, we have

Π7 “ 2
a

1 ´ |b|2bRΠ5pPprq ` 2
a

1 ´ |b|2bIΠ6pPprq ` p1 ´ 2|b|2qpp4 ` Π7pPprqq.

Using Lemmas 5.5 and 5.6, we obtain (5.10).

6 Expressing Ω in coordinates

Normal forms arguments are crucial in the proof of Theorem 1.1. It is important to settle on a
coordinate system where the homological equations look manageable. While the symplectic form Ω
has a very simple definition (2.6) in terms of the hermitian structure of L2pR3,C2q, it has a rather

complicated representation in terms of the coordinates pΠj |
4
j“1 , τ, b, rq. Eventually we will settle on

a coordinate system where the symplectic form is equal to the form Ω0 to be introduced in Section 7.
In this section we consider some preliminary material.
We consider rΓ :“ 2´1xiσ3u, ¨ y. Using the definition of exterior differentiation it is elementary to

show that drΓ “ Ω. We consider now the function

ψpuq :“ 2´1xiσ3e
´iσ3τ ¨♢spbqΦp, uy

and set Γ :“ rΓ ´ dψ ` d
ř

j“1,...,4 Πjτj . Obviously dΓ “ Ω. We have the following.

Lemma 6.1. We have

Γ “
ÿ

j“1,...,4

τjdΠj ` 2´1ΩpPpr, drq `
ÿ

j“1,...,4

2´1Ωpr, PpBpj
Pprqdpj ` ς, where (6.1)

ς :“

˜

Π5
bRbI

a

1 ´ |b|2
´ Π6

1 ´ b2I
a

1 ´ |b|2
´ Π7bI

¸

dbR `

˜

Π5
1 ´ b2R

a

1 ´ |b|2
´ Π6

bRbI
a

1 ´ |b|2
` Π7bR

¸

dbI .
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Proof. The proof is elementary. The identity operator is du, which can be expanded

du “ ´
ÿ

j“1,...,4

iσ3♢judτj `
ÿ

j“1,...,4

e´iσ3τ ¨♢spbqBpj
pΦp ` Pprqdpj

`
ÿ

A“,R,I

e´iσ3τ ¨♢BbAspbqpΦp ` PprqdbA ` e´iσ3τ ¨♢spbqPpdr.

Then, inserting this in rΓ and after some elementary simplification which uses also (3.4), we obtain

rΓ “ 2´1xiσ3u, duy “ ´
ÿ

j“1,...,4

Πjdτj `
ÿ

A“,R,I

2´1xiσ3spbqpΦp ` Pprq, BbAspbqpΦp ` PprqydbA

`
ÿ

j“1,...,4

2´1xiσ3pΦp ` Pprq, Bpj pΦp ` Pprqydpj ` 2´1xiσ3pΦp ` Pprq, Ppdry. (6.2)

We have

2nd line of (6.2) “
ÿ

j“1,...,4

2´1xiσ3Ppr, BpjPprydpj ` 2´1xiσ3Ppr, Ppdry ` d2´1xiσ3Φp, Ppry, (6.3)

where we used what follows:

xiσ3Ppr, BpjΦpy “ 0 from the definition of Pp;

xiσ3Φp, Bpj
Φpy “ xie

i

2 v¨xϕω, Bpj
e

i

2 v¨xϕωy “ 0 from formula (2.14).

Hence, by the definition of Γ, ψpuq and spbq we obtain

Γ “
ÿ

j“1,...,4

τjdΠj `
ÿ

j“1,...,4

2´1xiσ3Ppr, BpjPprydpj ` 2´1xiσ3r, Ppdry (6.4)

´ 2´1
ÿ

A“R,I

xiσ3BbAp
a

1 ´ |b|2 ` bσ2CqpΦp ` Pprq, p
a

1 ´ |b|2 ` bσ2CqpΦp ` Pprqy dbA.

For A “ R the bracket in the last line equals

xiσ3

˜

´bR
a

1 ´ |b|2
` σ2C

¸

p
a

1 ´ |b|2 ´ bσ2Cqu, uy “

xiσ3

«

´bR ` b`

˜

a

1 ´ |b|2 `
bRb

a

1 ´ |b|2

¸

σ2C

ff

u, uy “

xiσ3

«

´ibI `
1 ´��b

2
R ´ b2I `��b

2
R ` ibRbI

a

1 ´ |b|2
σ2C

ff

u, uy “

xiσ3

«

´ibI `
1 ´ b2I

a

1 ´ |b|2
σ2C `

bRbI
a

1 ´ |b|2
iσ2C

ff

u, uy “ bIΠ7 `
1 ´ b2I

a

1 ´ |b|2
Π6 ´

bRbI
a

1 ´ |b|2
Π5.
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For A “ I the bracket in the last line of (6.4) equals

xiσ3

˜

´bI
a

1 ´ |b|2
` iσ2C

¸

p
a

1 ´ |b|2 ´ bσ2Cqu, uy “

xiσ3

«

´bI ` ib`

˜

i

a

1 ´ |b|2 `
bIb

a

1 ´ |b|2

¸

σ2C

ff

u, uy “

xiσ3

«

ibR `
ip1 ´ b2R ´��b

2
Iq `��ib

2
I ` bRbI

a

1 ´ |b|2
σ2C

ff

u, uy “

xiσ3

«

ibR `
1 ´ b2R

a

1 ´ |b|2
iσ2C `

bRbI
a

1 ´ |b|2
σ2C

ff

u, uy “ ´bRΠ7 ´
1 ´ b2R

a

1 ´ |b|2
Π5 `

bRbI
a

1 ´ |b|2
Π6.

This completes the proof of Lemma 6.1.

Lemma 6.2. Consider the immersion i : M6
1pp0q ãÑ H1pR3,C2q and the pullback i˚Γ, which by an

abuse of notation we will still denote by Γ. We have

Γ “ i˚Γ “ 2´1Ωpr, drq ` xR0,2
8,8pp04,Πprq, rq ¨ ♢r ` S1,1

8,8pp04,Πprq, rq, dry ` Π7ϖ where (6.5)

ϖ “ pbR dbI ´ bI dbRq “
1

4pp04q2
pΠ5prqdΠ6prq ´ Π6prqdΠ5prqq ` R2,0

8,8pp04,ΠprqqdΠprq

` xS2,1
8,8pp04,Πprq, rq, dry. (6.6)

Proof. The starting point is formula (6.1) for Γ. Obviously for the restrictions we have dΠk|M6
1pp0q “

0 for 1 ď k ď 6. So that the 1st summation in the r.h.s. of (6.1) contributes 0.
Next, notice that for 1 ď j ď 4 from (5.5) we obtain

dpj “ ´x♢jr ` S1,1
8,8, dry `

ÿ

kď4

R0,2
8,8dpk,

which, solved in terms of the dpj ’s, gives

dpj “ ´
ÿ

kď4

xpδjk ` R0,2
8,8q♢kr ` S1,1

8,8, dry. (6.7)

Substituting dpj by (6.7) in (6.1) and using and Ppr “ r ` S1,1
8,8pp0,Πprq, rq on M6

1pp0q, we obtain
terms like the 2nd in the r.h.s. of (6.5).
Finally, by Π5 “ Π6 “ 0, we obtain ς “ Π7ϖ. To get the r.h.s. in (6.6), we use the following
formulas,

dbR “ p2p04q´1xσ3σ2Cr, dry ` R1,0
8,8pp04,ΠprqqdΠprq ` xS1,1

8,8, dry,

dbI “ p2p04q´1xiσ3σ2Cr, dry ` R1,0
8,8pp04,ΠprqqdΠprq ` xS1,1

8,8, dry,
(6.8)

where R1,0
8,8pp04,ΠprqqdΠprq stands for

ř

j“1,...,7 R
1,0
8,8pp04,ΠprqqdΠjprq with different real-valued

functions from the class R1,0
8,8pp04,Πprqq. Formulas (6.8) are obtained differentiating in (5.7).

Substituting Π7 by (5.10) in (6.5) and using (2.7)– (??) we obtain

Γ “ 2´1Ωpr, drq ` xS1,1
8,8pp04,Πprq, rq, dry

` p4p04q´1pΠ5prqdΠ6prq ´ Π6prqdΠ5prqq `
`

R2,0
8,8pp04,Πprqq ` R0,2

8,8pp04,Πprq, rq
˘

dΠprq. (6.9)
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7 Spectral coordinates associated to Hp1

By assumption p1 “ ppω1, 0q. Recall that the operator Hp1 defined in L2pR3,C2q is not C-linear
(because of L

p1q

ω1 ), but rather R-linear. To make it C-linear, we consider the complexification

L2pR3,C2q bR C.

To avoid the confusion between C in the left factor and C on the right, we will use ıı to denote
the imaginary unit in the latter space; that is, given u P L2pR3,C2q, we will have u b pa ` ıı bq P

L2pR3,C2q bR C. Notice that the domain of Hp1 in L2pR3,C2q is H2pR3,C2q; we extend it to
L2pR3,C2q bR C with the domain H2pR3,C2q bR C by setting Hp1pv b zq “ pHp1vq b z.
We extend the bilinear form x , y defined in (2.5) to a C-bilinear form on L2pR3,C2q bR C by

xub z, v b ζy “ zζxu, vy, u, v P L2pR3,C2q, z, ζ P C.

We also extend Ω onto L2pR3,C2q bR C, setting ΩpX,Y q “ xiσ3X,Y y. Then the decomposition
(3.3) extends into

L2pR3,C4q bR C “ pTKΩ

Φp1
M bR Cq ‘ pTΦp1

M XH1pR3,C2qq bR C. (7.1)

Note that the extention of Hp1 onto L2pR3,C2q bR C is such that its action preserves the decompo-
sition (7.1). The complex conjugation on L2pR3,C2q bR C is defined by v b z :“ v b z.
Notice that if ııHp1ξl “ elξl with el ą 0, then by complex conjugation we obtain ııHp1ξl “ ´elξl.
By Weyl’s theorem, σepııHp1q “ p´8,´ω1s Y rω1,8q. We assume spectral stability, i.e. σepııHp1q Ă

R. We assume the set of eigenvalues σppııHp1q Ă p´ω1, ω1q, ˘ω1 are not resonances and the following.

(H6) For any e P σppııHp1qzt0u, algebraic and geometric multiplicities coincide and are finite.

(H7) There is a number N P N and positive numbers 0 ă e1 ă e2 ă . . . ă eN ă ω1 such that
σppHp1q consists exactly of the numbers ˘ıı eℓ and 0. Furthermore, the points ˘ıı ω1 are not
resonances ( that is, if Hp1Θ “ ˘ıı ω1Θ for one of the two signs, and if xxyΘ P L8, then Θ “ 0).

Denote dℓ :“ dimkerpHp1 ´ ıı eℓq and let

n :“
ÿ

ℓ“1,...,N

dℓ.

(H8) We define
N :“ sup

ℓ
inftn P N : neℓ P σepııHp1qu ´ 1. (7.2)

If eℓ1 ă ... ă eℓi are distinct and µ P Zi satisfies |µ| :“
ři

j“1 µj ď 4N ` 4, we assume that

µ1eℓ1 ` ¨ ¨ ¨ ` µkeℓi “ 0 ðñ µ “ 0.

It is easy to prove the symmetry of σppııHp1q Ă R around 0. We have

kerpııHp1 ¯ elq
˘

Ă SpR3,C2q bR C

and using Ω we consider the set Xc Ă S 1pR3,C2q bR C defined by

Xc :“
”´

TMΦp1
bR C

¯

‘˘ ‘N
l“1

`

kerpııHp1 ¯ elq
˘˘

ıKΩ

. (7.3)
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It is possible to prove the following decomposition:

pTKΩ

Φp1
M X L2pR3,C2qq bR C “

`

‘˘ ‘N
l“1 kerpııHp1 ¯ elq

˘

‘
`

Xc X
`

L2pR3,C2q bR C
˘˘

. (7.4)

The decomposition in (7.4) is Hp1-invariant.

Consider now the coordinate r P TKΩ

p1 MXL2pR3,C2q from the coordinate system (3.8); it corresponds

to the second summand in (7.1). Then, considered as an element from L2pR3,C2q bR C, it can be
decomposed into

rpxq “
ÿ

l“1,...,n

zlξlpxq `
ÿ

l“1,...,n

zlξlpxq ` fpxq, f P Xc with f “ f , (7.5)

with ξl eigenfunctions of Hp1 corresponding to ıı el. We claim that it is possible to choose them so
that

xiσ3ξi, ξly “ xiσ3ξi, fy “ 0 for all i, l and for all f P Xc,

xiσ3ξi, ξly “ ´ıı δil for all i, l.
(7.6)

To see the second line, observe that on one hand for Θ P pTKΩ

Φp1
MbRCqzt0u we have xiσ3Hp1Θ,Θy ą

0. Indeed, for Θ “ pΘ1,Θ2q we have

xiσ3Hp1Θ,Θy “ xiσ3Hp1Θ,Θy “ xL
p1q

ω1 Θ1,Θ
˚
1 y ` xL

p2q

ω1 Θ2,Θ2y

with xΘ2, ϕω1y “ 0, which implies xL
p2q

ω1 Θ2,Θ2y ą c0}Θ2}2L2 and with xΘ1, Baϕω1y “ xΘ1, xaϕω1y “

xΘ1, iϕω1y “ 0 which implies xL
p1q

ω1 Θ1,Θ1y ą c0}Θ1}2L2 , for a fixed c0 ą 0. On the other hand,

0 ă xiσ3Hp1ξi, ξiy “ ıı eixiσ3ξi, ξiy.

It is then possible to choose ξi so that (7.6) is true. Notice that (7.6) means that the nonzero
eigenvalues have positive Krein signature. This proves the second line of (7.6). The proof of the 1st
line is elementary.
By (7.5) and (7.6), we have

2´1xiσ3Hp1r, ry “
ÿ

l“1,...,n

el|zl|
2 ` 2´1xiσ3Hp1f, fy “: H2. (7.7)

In terms of pz, fq, the Fréchet derivative dr can be expressed as

dr “
ÿ

l“1,...,n

pdzlξl ` dzlξlq ` df, (7.8)

and by (7.6) we have

2´1xiσ3r, dry “ 2´1ıı
ÿ

l“1,...,n

pzldzl ´ zldzlq ` 2´1xiσ3f, dfy. (7.9)

Notice now that, in terms of (7.5) and (7.8),

dΠjprq “ x♢jpzξ ` z ξ ` fq, ξ dz ` ξ dz ` dfy “
ÿ

l“1,...,n

pR0,1
8,8 dzl ` R0,1

8,8 dzlq ` x♢jf ` S0,1
8,8, dfy.
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Hence, we obtain from (6.9):

Γ “ Γ0 `
ÿ

l“1,...,n

pR1,1
8,8 dzl ` R1,1

8,8 dzlq ` x
ÿ

jď7

R0,2
8,8♢jf ` S1,1

8,8, dfy, where

Γ0 :“ 2´1ıı
ÿ

l“1,...,n

pzldzl ´ zldzlq ` 2´1xiσ3f, dfy `
ÿ

jď7

R1,0
8,8pp0,Πpfqqx♢jf, dfy.

(7.10)

Then

Ω0 :“ dΓ0 “ ´ıı
ÿ

l“1,...,n

dzl ^ dzl ` xiσ3df, dfy `
ÿ

j,k

R0,0
8,8pp0,Πpfqqx♢kf, dfy ^ x♢jf, dfy, (7.11)

and, schematically, and using in the last line Bρ S1,1
8,8

ˇ

ˇ

ˇ

pp0
4,ρ,z,fq“pp0

4,Πpfq,z,fq
“ S0,1

8,8 and defining

p∇fF pΠpfq, fq :“ ∇fF ´ BΠpfqF ¨ ∇fΠpfq, (7.12)

Ω ´ Ω0 “R1,0
8,8 dz ^ dz ` xp∇fS

1,1
8,8df, dfy

` dz ^ x
ÿ

jď7

R0,1
8,8♢jf ` S1,0

8,8, dfy ` dΠpfq ^ xS0,1
8,8, dfy. (7.13)

We will transform Ω into Ω0 by means of the Darboux Theorem, performed in a non-abstract way,
to make sure that the coordinate transformation is as in Lemma 8.1.

8 Flows

The following lemma is a consequence of of Lemma A.1 in Appendix A.

Lemma 8.1. For n,M,M0, s, s
1, k, l P N0 with 1 ď l ď M , for a P A a parameter, with A an open

subset in Rd, Π4 another parameter and for rε0 ą 0, consider

#

9zptq “ R0,M0

n,M pt, a,Π4,Πpfq, z, fq

9fptq “ iσ3
ř

jď7 R
0,M0`1
n,M pt, a,Π4,Πpfq, z, fq♢jf ` Si,M0

n,M pt, a,Π4,Πpfq, z, fq,
(8.1)

with the coefficients defined for |t| ă 5, |Πpfq| ă rε0, |z| ă rε0, }r}Σ´n ă rε and |Π4 ´ p14| ď rε0.
Let k P Z X r0, n´ pl ` 1qs and set for s2 ě 1 and ε ą 0

Us2

ε,k :“tpz, fq P Cn ˆ pXc X Σs2 q : |z| ` }f}Σ´k
` |Πpfq| ď εu. (8.2)

Let a0 P A. Then for ε ą 0 small enough, (8.1) defines a flow pzt, f tq “ Ftpz, fq with

zt “ R0,M0

n´l´1,lp˚q , where ˚ “ pt, a,Π4,Πpfq, z, fq , (8.3)

f t “ eiσ3
ř4

j“1 R0,M0`1

n´l´1,lp˚q♢jT pe
ř3

i“1 R0,M0`1

n´l´1,lp˚qiσiq

´

f ` Si,M0

n´l´1,lp˚q

¯

,

where for
n´ l ´ 1 ě s1 ě s` l ě l and k P Z X r0, n´ l ´ 1s (8.4)

and for ε1 ą ε2 ą 0 sufficiently small we have

Ft P Clpp´4, 4q ˆDRdpa0, ε2q ˆ Us1

ε2,k,U
s
ε1,kq. (8.5)
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In (8.5) the Cl regularity comes at the cost of a loss of l derivatives in the space Σs2 , which is
accounted by s1 ě s` l. In Proposition 10.3 we will need the following elementary technical lemma.

Lemma 8.2. Consider two systems for ℓ “ 1, 2:

#

9zptq “ Bpℓqpt, a,Π4,Πpfq, z, fq

9fptq “ iσ3
ř

jď7 A
pℓq
j pt, a,Π4,Πpfq, z, fq♢jf ` Dpℓqpt, a,Π4,Πpfq, z, fq,

(8.6)

with the hypotheses of Lemma 8.1 satisfied, and suppose that

Bp1qpt, a,Π4,Πpfq, z, fq ´ Bp2qpt, a,Π4,Πpfq, z, fq “ R0,M0`1
n,M pt, a,Π4,Πpfq, z, fq

Dp1qpt, a,Π4,Πpfq, z, fq ´ Dp2qpt, a,Π4,Πpfq, z, fq “ S0,M0`1
n,M pt, a,Π4,Πpfq, z, fq.

(8.7)

Let pz, fq ÞÑ pzt
pℓq
, f t

pℓq
q with ℓ “ 1, 2 be the two flows. Then for s, s1 as in Lemma 8.1

|z1p1q ´ z1p2q| ` }f1p1q ´ f1p2q}Σ´s1 ď C
`

|z| ` }f}Σ´s

˘M0`1
. (8.8)

Proof. For the proof see Lemma A.2.

Lemma 8.3. Under the hypotheses and notation of Lemma 8.2 we have

Πjpf1p1qq ´ Πjpf1p2qq “ R0,M0`2
n´l´3,lpa,Π4,Πpfq, z, fq for j “ 1, 2, 3, 4. (8.9)

Proof (sketch) For ℓ “ 1, 2 and j “ 1, 2, 3, 4 we have

Πjpf1pℓqq “ Πjpf ` Spℓqq “ Πjpfq ` xf,♢jS
pℓqy ` ΠjpSpℓqq (8.10)

where, the r.h.s.’s equal to the terms of (8.3) for t “ 1 for each of the two flows,

Spℓq “ Si,M0

n´l´1,lpa,Π4,Πpfq, z, fq.

Hence ΠjpSpℓqq “ Ri,2M0

n´l´2,l, and this term can be absorbed in the r.h.s. of (8.9).

Next, observe that Spℓq is the integral
ş1

0
Dpℓqdt of the terms Dpℓq of Lemma 8.2. Formula (8.7)

implies
Sp1q ´ Sp2q “ S0,M0`1

n´l´2,lpa,Π4,Πpfq, z, fq,

as can be seen by elementary computations, and this in turn implies

xr,♢j

´

Sp1q ´ Sp2q
¯

y “ R0,M0`2
n´l´3,lpa,Π4,Πpfq, z, fq.

We consider f P Xc X ΣN0 for N0 a large number. We can pick N0 ą 2N ` 2 where N is
defined in (7.2). Notice that (3.14) preserves this space. We have the following, which is proved as
in [15], and which we discuss in Appendix B.

Lemma 8.4. Consider F “ F1 ˝ ¨ ¨ ¨ ˝ FL with Fj “ Fj
t“1 transformations as in Lemma 8.1 on the

manifold M6
1pp0q. Suppose that for any Fj theM0 in Lemma 8.1 equals mj, where 1 “ m1 ď ... ď mL

with the constant i in Lemma 8.1 (ii) equal to 1 when mj “ 1. Fix M,k with n1 " k ě N0 (n1
picked in Lemma 3.1). Then there is a n “ npL,M, kq such that if the assumptions of Lemma 8.1
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apply to each of operators Fj for pM,nq, there exist ψpp4, ϱq P C8 with ψppp4, ϱq “ Op|ϱ|2q and a
small ε ą 0 such that in Us

ε,k for s ě n´ pM ` 1q we have the expansion

K ˝ F “ ψpp04,Πpfqq `H2 ` R, (8.11)

and with what follows.

(1) We have

H2 “
ÿ

|µ`ν|“2 , e¨pµ´νq“0

gµνpp04,Πpfqqzµzν ` 2´1xiσ3Hp1f, fy. (8.12)

(2) Denote ϱ “ Πpfq. There is the expansion R “
ř

j“´1,...,3 Rj ` R1,2
k,mpp04, ϱ, fq,

R´1 “
ÿ

|µ`ν|“2 , e¨pµ´νq‰0

gµνpp04, ϱqzµzν `
ÿ

|µ`ν|“1

zµzνxiσ3Gµνpp04, ϱq, fy;

|R1,2
k,mpΠ4, ϱ, fq| ď C}f}2Σ´k

p}f}Σ´k
` |ϱ| ` |Π4 ´ p14| ` |z|q;

for N as in (H8),

R0 “
ÿ

|µ`ν|“3,...,2N`2

zµzνgµνpp04, ϱq; R1 “ ıı
ÿ

|µ`ν|“2,...,2N`1

zµzνxiσ3Gµνpp04, ϱq, fy;

R2 “
ÿ

|µ`ν|“2N`3

zµzνgµνpp04, ϱ, z, fq ´
ÿ

|µ`ν|“2N`2

zµzνxiσ3Gµνpp04, ϱ, z, fq, fy;

R3 “
ÿ

d“2,3,4

xBdpp04, ϱ, z, fq, fdy `

ż

R3

B5px, p04, ϱ, z, f, fpxqqf5pxq dx` EP pfq

with B2pp1, 0, 0, 0q “ 0. (8.13)

Above, fdpxq schematically represents d-products of components of f .

(3) For δj P Nm
0 the vectors defined in terms of the Kronecker symbols by δj :“ pδ1j , ..., δmjq,

gµν “ R1,0
k,m for |µ` ν| “ 2 for pµ, νq ‰ pδj , δjq, 1 ď j ď m;

gδjδj “ ej ` R1,0
k,m, 1 ď j ď m; Gµν “ S1,0

k,m for |µ` ν| “ 1;
(8.14)

gµν and Gµν satisfy symmetries analogous to (10.3).

(4) All the other gµν are R0,0
k,m and all the other Gµν are S0,0

k,m.

(5) Bdpp0, ϱ, z, fq P CmpU´k,ΣkpR3, BppR4qbd,Rqqq for 2 ď d ď 4 with U´k Ă R8ˆCnˆpXcXΣ´kq

an open neighborhood of pp14 , ϱ, z, fq “ p0, 0, 0, 0q.

(6) Let ζ P C2. Then for B5p¨, ϱ, z, f, ζq we have for fixed constants Cl (the derivatives are not in
the holomorphic sense)

for |l| ď m, }∇l
p0,ϱ,z,f,ζB5pp04, ϱ, z, f, ζq}ΣkpR3,BppC2qb5,Rq ď Cl. (8.15)
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9 Darboux Theorem

Recall that we have introduced a model symplectict form Ω0 in M6
1pp0q by formula (7.11). Now we

transform Ω into Ω0 by means of the Darboux Theorem, performed in a non-abstract way, to make
sure that the coordinate transformation is as in Lemma 8.1.

Lemma 9.1. For n1 the constant in Lemma 3.1 and ε2 ą 0 consider the set

U2 “
␣

pz, fq P Cn ˆ pXc XH1q : }f}Σ´n1
ď ε2, |Πpfq| ď ε2, |z| ď ε2

(

.

Then for ε2 ą 0 small enough there exists a unique vector field Yt in U2 such that iYtpΩ0 ` tpΩ ´

Ω0qq “ Γ0 ´ Γ for |t| ă 5 with components, where Π4 “ p04,

pYtqzj “ R1,1
n1,8pΠ4,Πpfq, z, fq , pYtqf “ iσ3R0,2

n,8pΠ4,Πpfq, z, fq ¨ ♢f ` S1,1
n1,8pΠ4,Πpfq, z, fq.

Proof. The proof is essentially the same as that of [15, Lemma 3.4]. The first step is to consider a
field Z such that iZΩ0 “ Γ0 ´ Γ. We claim that

pZqz “ R1,1
8,8pΠ4,Πpfq, z, fq , pZqf “ iσ3R0,2

8,8pΠ4,Πpfq, z, fq ¨ ♢f ` S1,1
8,8pΠ4,Πpfq, z, fq.

Schematically, the equation for Z is of the form

pZqz dz ` x
“

iσ3pZqf ` R0,0
8,8x♢f, pZqf y

‰

♢f, dfy “ R1,1
8,8 dz ` xiσ3R0,2

8,8 ¨ ♢f ` S1,1
8,8, dfy.

This immediately yields pZqz “ R1,1
8,8. The equation for pZqf is of the form

pZqf ` R0,0
8,8x♢f, pZqf yiσ3♢f “ iσ3R0,2

8,8 ¨ ♢f ` S1,1
8,8, (9.1)

with a solution in the form pZqf “

8
ÿ

i“0

pZq
piq
f , with pZq

p0q

f “ iσ3R0,2
8,8 ¨ ♢f ` S1,1

8,8 and

pZq
pi`1q

f “ R0,0
8,8x♢f, pZq

piq
f yiσ3♢f “ pR0,0

8,8qi`1x♢f, iσ3♢fyix♢f, pZq
p0q

f yiσ3♢f,

where by direct computation x♢jf, iσ3♢kfy is a bounded bilinear form in Xc X L2pR3,C4q for all
j, k. This implies that the series defining pZqf is convergent and that pZqf is as in (9.1).
The next step is to define an operator K by iXpΩ ´ Ω0q “ iKXΩ0. We claim that

pKXqz “ R1,0
8,8pXqz ` xR0,2

8,8♢f ` S1,0
8,8, pXqf y

pKXqf “ iσ3xS0,1
8,8, pXqf y♢f ` Bf S1,1

8,8

ˇ

ˇ

pρ,z,fq“pΠpfq,z,fq
pXqf

pXqzR0,1
8,8♢f ` pXqzS

1,0
8,8 ` x♢f, pXqf yS0,1

8,8.

(9.2)

From (7.11)–(7.13) we have schematically

ıı pKXqzdz ` x
“

iσ3pKXqf ` R0,0
8,8x♢f, pKXqf y♢f

‰

, dfy

“
`

R1,0
8,8pXqz ` xR0,1

8,8♢f ` S1,0
8,8, pXqf y

˘

dz ` x

”

Bf S1,1
8,8

ˇ

ˇ

pρ,z,fq“pΠpfq,z,fq
pXqf

`pXqzpR0,1
8,8♢f ` S1,0

8,8q ` xS0,1
8,8, pXqf y♢f ` x♢f, pXqf yS0,1

8,8

‰

, dfy

which yields immediately the first equation in (9.2). We have pKXqf “

8
ÿ

i“0

pKpiqXqf with

iσ3pKp0qXqf “ Bf S1,1
8,8

ˇ

ˇ

pρ,z,fq“pΠpfq,z,fq
pXqf ` pXqzpR0,1

8,8♢f ` S1,0
8,8q

`xS0,1
8,8, pXqf y♢f ` x♢f, pXqf yS0,1

8,8
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and

pKpi`1qXqf “ R0,0
8,8x♢f, pKpiqXqf yiσ3♢f “ pR0,0

8,8qi`1x♢f, iσ3♢fyix♢f, pKp0qXqf yiσ3♢f.

Then the series defining pKXqf converges and we get in particular the second equation in (9.2).
Now the equation defining Yt is equivalent to p1 ` tKqYt “ Z. So we have

pYtqz ` tR1,0
8,8pYtqz ` txR0,2

8,8♢f ` S1,0
8,8, pYtqf y “ R1,1

8,8

pYtqf ` itσ3xS0,1
8,8, pYtqf y♢f ` tBf S1,1

8,8

ˇ

ˇ

pρ,z,fq“pΠpfq,z,fq
pYtqf

` tpYtqzpR0,2
8,8♢f ` S1,0

8,8q ` tx♢f, pYtqf yS0,1
8,8 “ iσ3R0,2

8,8 ¨ ♢f ` S1,1
8,8.

Solving this we get the desired formulas for pYtqzj and pYtqf .
We can apply Lemma 8.1 to the flow Ft : pz, fq ÞÑ pzt, f tq generated by Yt. In terms of the

decomposition (7.5) of r formula (8.3) becomes for n “ n1

zt “ z ` R1,1
n1´l´1,lpt,Π4,Πpfq, z, fq, (9.3)

f t “ ei
ř4

j“1 σ3R0,2
n1´l´1,lpt,Π4,Πpfq,z,fq♢jT pe

ř3
a“1 R0,2

n1´l´1,lpt,Π4,Πpfq,z,fqiσaq

ˆ pf ` S1,1
n1´l´1,lpt,Π4,Πpfq, z, fqq.

Classically the Darboux Theorem follows by iYtΩt “ Γ0 ´ Γ, where Ωt :“ Ω0 ` tpΩ ´ Ω0q, and by

BtpF
˚
t Ωtq “ F˚

t pLYtΩt ` BtΩtq “ F˚
t pdiYtΩ1

t ` dpΓ ´ Γ0qq “ 0 (9.4)

with LX the Lie derivative, whose definition is not needed here. Since this Ft is not a differentiable
flow on any given manifold, (9.4) is formal. Still, [15, Sect. 3.3 and Sect. 7] (i.e. a regularization
and a limit argument for Ft) yield the following, which we state without proof.

Lemma 9.2. Consider (8.1) defined by the field X t and indexes and notation of Lemma 8.1 (in
particular M0 “ 1 and i “ 1; n and M can be arbitrary as long as we fix n1 large enough). Consider
l, s1,s and k as in (8.4). Then for F1 P ClpUs1

ε2,k
,Us

ε1,k
q derived from (9.3), we have F˚

1Ω “ Ω0.

We now turn to the analysis of the hamiltonian vector fields in the new coordinate system. For
a function F let us decompose XF according to the spectral decomposition (7.5): for pXF qf P Xc,

XF “
ÿ

j“1,...,n

pXF qzjξjpxq `
ÿ

j“1,...,n

pXF qzj
ξ˚
j pxq ` pXF qf . (9.5)

By (7.11) and by iXF
Ω0 “ dF we have, schematically (recall also that here and below, Π4 “ p04,

´ ıı pXF qzldzl ` pXF qzl
dzl ` x

“

iσ3pXF qf ` R0,0
8,8pΠ4,Πpfqqx♢f, pXF qf y♢f

‰

, dfy

“ BzlFdzl ` Bzl
Fdzl ` x∇fF, dfy.

and so, schematically,

pXF qzl “ ıı Bzl
F , pXF qzl

“ ´ıı BzlF

pXF qf ` R0,0
8,8pΠ4,Πpfqqx♢f, pXF qf yPciσ3♢f “ ´iσ3∇fF.

We set

XF “ X
p0q

F `X
p1q

F with (9.6)

pX
p0q

F qzl “ ıı Bzl
F , pX

p0q

F qzl
“ ´ıı BzlF , pX

p0q

F qf “ ´iσ3∇fF (9.7)
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and where the remainder is of the form pX
p1q

F qzl “ pX
p1q

F qzl
“ 0

pX
p1q

F qf “ R0,0
8,8pΠ4,Πpfqqx♢f, iσ3∇fF yPciσ3♢f. (9.8)

Indeed, pX
p1q

F qf has to satisfy an equation of the form

pX
p1q

F qf ` R0,0
8,8pΠ4,Πpfqqx♢f, pXF q

p1q

f yPciσ3♢f “ R0,0
8,8pΠ4,Πpfqqx♢f, iσ3∇fF yPciσ3♢f.

This can be solved like in the proof of Lemma 9.1 by writing pXF q
p1q

f “

8
ÿ

i“0

Xi with

X0 “ R0,0
8,8pΠ4,Πpfqqx♢f, iσ3∇fF yPciσ3♢f and

Xi`1 “ R0,0
8,8pΠ4,Πpfqqx♢f,XiyPciσ3♢f

“ pR0,0
8,8qi`1x♢f, iσ3♢fyix♢f, iσ3∇fF yPciσ3♢f

which yields (9.8). For two functions F and G we have the Poisson brackets

tF,Gu :“ dF pXGq “ BzlF pXGqzl ` Bzl
F pXGqzl

` x∇fF, pXGqf y “ tF,Gup0q ` tF,Gup1q, (9.9)

where tF,Gupiq :“ dF pX
piq
G q and where

tF,Gup0q “ ıı pBzlFBzlG´ Bzl
FBzl

Gq ´ x∇fF, iσ3∇fGy (9.10)

and, schematically,

tF,Gup1q “ R0,0
8,8pΠ4,Πpfqqx∇fF,♢fyx♢f, iσ3∇fGy. (9.11)

Compared to [15], where the Poisson bracket equals (9.10), here we have an additional term con-
tributed by (9.11), which however is of higher order and harmless, as we will see later.

10 Birkhoff normal forms

We will reduce now to [15, Sect. 6]. We set, for the ej ’s in (H6), see Section 7,

e :“ pe1, ..., enq.

In the sequel, Π4 “ p04.

Definition 10.1. A function Zpϱ, z, fq is in normal form if Z “ Z0 `Z1, where Z0 and Z1 are finite
sums of the following type:

Z1 “
ÿ

e¨pν´µqPσepHp1 q

zµzνxiσ3Gµνpp04, ϱq, fy (10.1)

with Gµνpx, p4, ϱq P CmpU,ΣkpR3,C4qq for fixed k,m P N and U Ď R8 an open neighborhood of
pp04, 0q,

Z0 “
ÿ

e¨pµ´νq“0

gµνpp04, ϱqzµzν , (10.2)

with gµνpp4, ϱq P CmpU,Cq. We assume furthermore the symmetries gµν “ gνµ and Gµν “ Gνµ.
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Lemma 10.2. For i P t0, 1u fixed and n,M P N sufficiently large and for m ď M ´ 1 let

χ “
ÿ

|µ`ν|“M0`1

cµνpp04,Πpfqqzµzν ` ıı
ÿ

|µ`ν|“M0

zµzνxiσ3Cµνpp04,Πpfqq, fy,

with cµνpp0, ϱq “ Ri,0
n,M pp0, ϱq and Cµνpp0, ϱq “ Si,0

n,M pp0, ϱq and with

cµν “ cνµ, Cµν “ ´Cνµ (10.3)

(so that χ is real-valued for f “ f). Then we have what follows.

(1) For ϕt the flow of Xχ, see Lemma 8.1, and pzt, f tq “ pz, fq ˝ ϕt,

zt “z ` R0,M0

n´m´1,m´1pt, ,Π4,Πpfq, z, fq,

f t “eiσ3
ř4

j“1 R0,M0`1
n´m´1,m´1pt,Π4,Πpfq,z,fq♢jT pe

ř3
i“1 R0,M0`1

n´m´1,m´1pt,Π4,Πpfq,z,fqiσiq (10.4)

ˆ pf ` S0,M0

n´m´1,m´1pt,Π4,Πpfq, z, fqq.

(2) For n ´ m ´ 1 ě s1 ě s ` m ´ 1 ě m ´ 1 and k P Z X r0, n ´ m ´ 1s and for ε1 ą ε2 ą 0
sufficiently small, ϕ :“ ϕ1 P Cm´1pUs1

ε2,k
,Us

ε1,k
q satisfies ϕ˚Ω0 “ Ω0.

Proof. This result is a simple corollary of Lemma 8.1. For the proof that ϕ˚Ω0 “ Ω0, which is
obvious in the standard setups, see the comments in [15, Lemma 5.3].

Then we have the following result on Birkhoff normal forms.

Proposition 10.3. For any integer 2 ď ℓ ď 2N`2 there are transformations Fpℓq “ F1 ˝ϕ2 ˝ ...˝ϕℓ,
with F1 the transformation in (9.3) and with the ϕj’s like in Lemma 10.2, such that the conclusions
of Lemma 8.4 hold, that is such that we have the following expansion, for Π4 “ p04,

Hpℓq :“ K ˝ Fpℓq “ ψpp04,Πpfqq `H2 ` R1,2
k,mpΠ4,Πpfq, fq `

ÿ

j“´1,...,3

R
pℓq
j ,

with H 1
2 defined in (8.12) and with the following additional properties:

(i) R
pℓq
´1 “ 0;

(ii) all the nonzero terms in R
pℓq
0 with |µ` ν| ď ℓ are in normal form, that is e ¨ pµ´ νq “ 0;

(iii) all the nonzero terms in R
pℓq
1 with |µ`ν| ď ℓ´1 are in normal form, that is e¨pµ´νq P σepHp0q.

Proof. The proof of the analogue of Proposition 10.3 in [15] involves the simpler symplectic form

Ω
p0q
0 :“ ´ıı

ÿ

l“1,...,n

dzl ^ dzl ` xiσ3df, dfy.

In (8.11), we replace Πpfq with ϱ; then h “ Hpℓqpp0, ϱ, z, fq is C2N`2 near p0, 0, 0q in pϱ, z, fq P R7 ˆ

C ˆ pXc X Σkq and the statement of Proposition 10.3 is about the fact that some of the following
derivatives vanish:

gµνpp0, ϱq “
1

µ!ν!
Bµ
z Bν

zh
ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, |µ` ν| ď 2N ` 2, (10.5)

iσ3Gµνpp0, ϱq “
1

µ!ν!
Bµ
z Bν

z∇fh
ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, |µ` ν| ď 2N ` 1. (10.6)
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The proof is iterative and consists in assuming the statement correct for a given ℓ and proving it
for ℓ` 1, by picking an unknown χ as in (10.2) such that Hpℓq ˝ ϕ satisfies the conclusions for ℓ` 1,
where ϕ “ ϕ1, for ϕt the flow for the Hamiltonian vector field of χ.

Now, let us pick χ provided by [15, Theorem 6.4] when we use the symplectic form Ω
p0q
0 . We will

show that this same χ works here.

Let ϕp0q be the t “ 1 flow generated by X
p0q
χ . Notice that ϕp0q is a symplectomorphism for Ω

p0q
0 . Set

pHpℓq “ ψpp0,Πpfqq `H2 `
ÿ

j“´1,0,1

R
pℓq
j . (10.7)

Noticing that here ψpp0,Πpfqq yields 0 because it is ψpp0, ϱq with ϱ an auxiliary independent variable,

Bµ
z Bν

zH
pℓq
ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
“ Bµ

z Bν
z
pHpℓq

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, 2 ď |µ` ν| ď 2N ` 2,

Bµ
z Bν

z∇fH
pℓq
ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
“ Bµ

z Bν
z∇f

pHpℓq
ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, 1 ď |µ` ν| ď 2N ` 1

(10.8)

since all the other terms of Hpℓq not contained in pHpℓq are higher order in some of the variables, for
example order 2 or higher in f . As we pointed out, ψpp0,Πpfqq contributes nothing to (10.8). The
same is true of the term 1

2xiσ3Hp1f, fy inside H 1
2, see (8.12) (however, the pullbacks of these terms

are significant in the formulas below). So the only contributors of (10.7) to (10.8) are very regular
functions in pϱ, z, fq, where ϱ “ Πpfq is as before treated as auxiliary variable and f P pXc X Σ´kq.
This yields the useful result that while the l.h.s.’s in (10.8) require f quite regular, for example
f P Σk for a sufficiently large k, the r.h.s.’s are defined for f P Σ´k for a large preassigned k. This

because the only term in pHpℓqpp0, ϱ, z, fq that, to make sense, requires some regularity in f , that is
the 1

2xiσ3Hp1f, fy hidden inside H 1
2, see (8.12), does not contribute to (10.8).

Furthermore, by Lemma 10.2 we have

Bµ
z Bν

zH
pℓq ˝ ϕp0q

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
“ Bµ

z Bν
z
pHpℓq ˝ ϕp0q

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, 2 ď |µ` ν| ď 2N ` 1,

Bµ
z Bν

z∇fH
pℓq ˝ ϕp0q

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
“ Bν

z∇f
pHpℓq ˝ ϕp0q

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, 1 ď |µ` ν| ď 2N

(10.9)

since the pull backs of the terms of Hpℓq not contained in pHpℓq have zero derivatives because are
higher order either in z or in f , as can be seen considering that ϕp0q acts like (10.4) for M0 “ ℓ.
Since ϕ too has this structure, (10.9) is true also with ϕp0q replaced by ϕ. Set now

pHpℓq ˝ ϕ “ ψpp0, ϱq ` F with F :“ pHpℓq ˝ ϕ´ ψpp0, ϱq. (10.10)

We have dF
ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
“ 0, since by Lemma 8.4 we see that is at least quadratic in pz, fq .

Lemma 8.2 is telling us that ϕ´1 ˝ ϕp0q is the identity up to a zero of order ℓ` 1 at pz, fq “ p0, 0q in
Cn ˆ pXc X Σ´kq. Then by an elementary application of the chain rule

Bµ
z Bν

zF
ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
“ Bµ

z Bν
zF ˝ ϕ´1 ˝ ϕp0q

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, 2 ď |µ` ν| ď ℓ` 1,

Bµ
z Bν

z∇fF
ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
“ Bν

z∇fF ˝ ϕ´1 ˝ ϕp0q
ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, 1 ď |µ` ν| ď ℓ.

On the other hand, by Lemma 8.3 we have that ψpp0, ϱq and ψpp0, ϱq ˝ ϕ´1 ˝ ϕp0q differ by a zero of
order ℓ` 2 in pϱ, 0, 0q. Summing up, we conclude

Bµ
z Bν

z
pHpℓq ˝ ϕ

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
“ Bµ

z Bν
z
pHpℓq ˝ ϕp0q

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, 2 ď |µ` ν| ď ℓ` 1,

Bµ
z Bν

z∇f
pHpℓq ˝ ϕ

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
“ Bν

z∇f
pHpℓq ˝ ϕp0q

ˇ

ˇ

pϱ,z,fq“pϱ,0,0q
, 1 ď |µ` ν| ď ℓ.

Hence we have shown that [15, Theorem 6.4] implies Proposition 10.3.
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11 Formulation of the system

So we consider the Hamiltonian H :“ Hp2N`1q and the reduced system

9z “ tz,Hu , 9f “ tf,Hu. (11.1)

Recall that
H “ ψpp04,Πpfqq `H2 ` Z0 ` Z1 ` R, (11.2)

with H 1
2 like (8.12), Z0 like (10.2), Z1 like (10.1), and R “

ř

j“2,3 Rj ` R1,2
k,mpΠ4,Πpfq, fq.

We recall that, in the context of Strichartz estimates, a pair pp, qq is called admissible if

2{p` 3{q “ 3{2, 2 ď q ď 6, p ě 2. (11.3)

Theorem 11.1. For the constants 0 ă ϵ ă ϵ0 of Theorem 1.1, there is a fixed C ą 0 s.t.

}f}Lp
t pR`,W 1,q

x q ď Cϵ for all admissible pairs pp, qq, (11.4)

}zµ}L2
t pR`q ď Cϵ for all multi-indexes µ with e ¨ µ ą ω1, (11.5)

}z}W 1,8
t pR`q ď Cϵ. (11.6)

Furthermore, we have limtÑ`8 zptq “ 0.

By standard arguments that we skip, such as a simpler version of [17, Sect. 7], Theorem 11.1
is a consequence of the following continuity argument.

Proposition 11.2. For the constants 0 ă ϵ ă ϵ0 of Theorem 1.1, there exists a constant κ ą 0 s.t.
for any C0 ą κ there is ϵ0 ą 0 s.t. if the inequalities (11.4)–(11.6) hold for I “ r0, T s for some
T ą 0 and for C “ C0, then in fact the inequalities (11.4)–(11.6) hold for I “ r0, T s for C “ C0{2.

We now discuss the proof of Proposition 11.2, which is similar to the proof for the scalar NLS,

see for example [17] or [16]. We have, see (9.6), 9f “ pX
p0q

H qf ` pX
p1q

H qf .

In [16], the equation was 9f “ pX
p0q

H qf . Given multi-indexes Θ1,Θ P Nm
0 we write Θ1 ă Θ if Θ1 ‰ Θ

and Θ1
l ď Θl, 1 ď l ď m. We now introduce

M0 “
␣

µ P Nn
0 : |e ¨ µ| ą ω1 , |µ| ď 2N ` 2, |e ¨ µ1| ă ω1 if µ1 ă µ

(

, (11.7)

M “ tpµ, νq P N2n
0 : |e ¨ pµ´ νq| ą ω1 , |µ` ν| ď 2N ` 2 and

|e ¨ pµ1 ´ ν1q| ă ω1 if pµ1, ν1q ă pµ, νqu.
(11.8)

Notice that

if pµ, νq P M we have either µ “ 0 and ν P M0, or ν “ 0 and µ P M0. (11.9)

In [17, 16] it is shown that for G0
µν :“ Gµνpp0, 0q we have

pX
p0q

H qf “ Hp1f `
ÿ

j“1,...,7

pBΠjpfqHqPciσ3♢jf ´
ÿ

pµ,νqPM

zµzνG0
µν `R1 `R2, (11.10)

Pc the projection on Xc in (7.4), and there is a constant CpC0q independent of ϵ s.t.

}R1}L1
t pr0,T s,H1q ` }R2}

L2
t pr0,T s,W 1, 6

5 q
ď CpC0qϵ2. (11.11)
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We sketch briefly this point. With p∇f defined in (7.12), we define

R2 “
ÿ

pµ,νqPM

zµzν
`

G0
µν ´Gµν

˘

´ iσ3 p∇fR2 ´ iσ3B2f,

where the last term is defined schematically from p∇f

@

B2, f
2
D

„

A

p∇fB2, f
2
E

` B2f. Then the

desired estimate on R2 in (11.11) is elementary. For example

}B2f}
L2pr0,T s,W 1, 6

5 q
ď }B2}L8pr0,T s,L3{2q}f}L2pr0,T s,W 1,6q À ϵ}f}L2pr0,T s,W 1,6q À ϵ2

by (8.13) and (11.4) in r0, T s. R1 is formed by the other terms and it is standard to show that it
satisfies the bound (11.11). For example for 2 ď d ď 4

}

A

p∇fBd, f
d
E

}L1
tH

1
x

ď } sup
}g}H´1“1

A

p∇fBdg, f
d
E

}L1
t

ď

›

›

›

›

›

sup
}g}H´1“1

}p∇fBdg}Σk
}fd}

L
6{d
x

›

›

›

›

›

L1
t

À }f}2L2
tL

6
x
}f}d´2

L8
t H1

x
À ϵd

and for d “ 3, 4, for pd´ 1, qdq admissible,

}Bdf
d´1}L1

tH
1
x

À }f}L8
t H1

x
}f}d´1

Ld´1
t L

qd
x

À ϵd´1. (11.12)

The d “ 5 term can be treated similarly, but has an additional part, when the f derivative is
applied to the ζ variable in (8.15). But the resulting term is like (11.12) for d “ 6. Finally,
}∇EP pfq}L1

tH
1
x

À ϵ2 by hypotheses (H1)–(H2). Having discussed (11.11), by (9.8) we get

X
p1q

H “ R0,0
8,8pΠpfqq

“

x♢f,Hp1fy ` pBΠpfqHqx♢f, iσ3♢fy ` x♢f,R1 `R2y

´
ÿ

pµ,νqPM

zµzν x♢f,G0
µνy

‰

Pciσ3♢f. (11.13)

Then, for v obtained summing contributions from (11.13) and the
ř

j“1,...,7 in (11.10), we obtain

9f ´
`

Hp1f ` Pciσ3v ¨ ♢f
˘

“ ´
ÿ

pµ,νqPM

zµzνG0
µν `R1 `R2. (11.14)

It is easy to see, from (11.4)–(11.6) and (11.11), that

}v}L1pr0,T s,R7q`L8pr0,T s,R7q ď CpC0qϵ. (11.15)

Strichartz and smoothing estimates on f are a consequence of well-known estimates for the group
etHp1Pc which resemble those valid for eit∆, see [14] for references.

To deal with the term Pciσ3v ¨ ♢f , where the operator Pciσ3v ¨ ♢ does not commute with Hp1

we adopt an idea by Beceanu [5]. We consider the system 9f “ iσ3v ¨ ♢f , writing it in the form

9f “ Aptqf `Bptqf with Aptq :“
ÿ

j“1,...,4

iσ3vjptq♢j and Bptq :“
ÿ

j“5,6,7

iσ3vjptq♢j . (11.16)

Since Aptq and Bptq commute and the terms of the sum defining Aptq commute, if we denote by
W pt, sq the fundamental solution of the system (11.16), that is,

BtW pt, sq “ pAptq `BptqqW pt, sq with W ps, sq “ I, (11.17)

and by WApt, sq “ e
şt
s
Apt1q dt1

(resp. WBpt, sq) the fundamental solution of 9f “ Aptqf (resp. 9f “

Bptqf), then we have W pt, sq “ WApt, sqWBpt, sq.
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Lemma 11.3. Let M ą 5{2 and α P r0, 1{2q. Then there exists a constant C ą 0 dependent only
on M such that for all s ă t in r0, T s

}xxy´M pW pt, sq ´ 1q eiσ3p∆´ω1qpt´sqxxy´M }BpL2,L2q ď Cψαpt´ sq}v}αL1prs,tsq`L8prs,tsq

with ψαptq “ xty´ 3
2 `α for t ě 1 and ψαptq “ t´α for t P p0, 1q. (11.18)

Proof. We have
W pt, sq ´ 1 “ rpWApt, sq ´ 1qWBpt, sqs ` rWBpt, sq ´ 1s . (11.19)

In the 1st term in the r.h.s. WBpt, sq commutes with the other operators and is an isometry in L2:

}xxy´MWApt, sq ´ 1qWBpt, sqeiσ3p∆´ω1qpt´sqxxy´M }BpL2,L2q

“ }xxy´MWApt, sq ´ 1qeiσ3p∆´ω1qpt´sqxxy´M }BpL2,L2q.

Then the desired estimate of this is that of [17, Lemma 9.4]. We next consider the 2nd term in the
r.h.s. of (11.19). By the commutation properties of WBpt, sq we are reduced to bound

}xxy´Meiσ3p∆´ω1qpt´sqxxy´M }BpL2,L2q

ˆ
ż t

s

}Bpt1qWBpt1, sqdt1}BpL2,L2q

˙α

.

The first factor is bounded by c0xt ´ sy´ 3
2 while the second by |t ´ s|α}B}αL8pps,tq,BpL2,L2qq

, where

the last factor is bounded by }v}αL8pps,tq,R7q
.

Proposition 11.4. Let F ptq satisfy PcF ptq “ F ptq Consider the equation

9u´ Hp1u´ Pciσ3v ¨ ♢u “ F. (11.20)

Then there exist fixed σ ą 3{2, and an ϵ0 ą 0 such that if ϵ P p0, ϵ0q then we have

}u}Lppr0,T s,W 1,qq ď Cp}Pcup0q}H1 ` }F }L2pr0,T s,H1,σq`L1pr0,T s,H1qq @ admissible pairs pp, qq. (11.21)

Before the proof, we observe that Proposition 11.4 implies the following.

Corollary 11.5. Under the hypotheses of Theorem 11.1 there exist two constants c0 and ϵ0 ą 0
such that if ϵ P p0, ϵ0q then

}f}Lp
t pr0,T s,W 1,q

x q ď c0ϵ` c0
ÿ

pµ,νqPM

}zµ`ν}L2p0,T q for any admissible pair pp, qq. (11.22)

For the elementary proof of this corollary see for instance [17, Lemma 8.1].
Proof of Prop. 11.4. We follow [5]. Denote u0 “ Pcup0q. We set Pd :“ 1´Pc, fix δ ą 0 and consider

9Z ´ Hp1PcZ ´ Pciσ3v ¨ ♢PcZ “ F ´ δPdZ , Zp0q “ u0. (11.23)

Notice that, see (2.24),

Hp1 “ iσ3p´∆ ` ω1q ` V with V P SpR3, BpC2,C2qq; (11.24)

we then rewrite (11.23) as

9Z ´ iσ3p∆ ´ ω1qZ ´ iσ3v ¨ ♢Z “ F ` V1V2Z ´ rPdpvqZ with Zp0q “ u0,
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rPdpvq :“ Pdiσ3v ¨ ♢ ` iσ3v ¨ ♢Pd and V1V2 “ V ´ Hp1Pd ´ δPd with V2pxq a smooth exponentially

decaying and invertible matrix, and with the multiplication operator V1 : Hk,s1
Ñ Hk,s bounded for

all k, s and s1. We have:

Zptq “ W pt, 0qeiσ3p´∆`ω1qtZp0q (11.25)

`

ż t

0

eiσ3p´∆`ω1qpt´t1qW pt, t1q
”

F pt1q ` V1V2Zpt1q ´ rPdpvpt1qqZpt1q
ı

dt1.

For arbitrarily fixed pairs pK,Sq and pK 1, S1q there exists a constant C such that we have

} rPdpvqV ´1
2 }BpH´K1,´S1 ,HK,Sq ď Cϵ.

By picking ϵ small enough, we can assume that the related operator norm is small. We have

}Z}Lp
tW

q,1XL2
tH

k,´τ0 ď C}Zp0q}H1 ` C}F }L1
tH

1`L2
tH

1,τ0

` }V1 ´ rPdpvpt1qqV ´1
2 }L8

t pBpH1,H1,τ0 qq}V2Zptq}L2
tH

1 .

For rT0fptq “ V2
şt

0
eiσ3p´∆`ω1qpt´t1qW pt, t1qV1fpt1qdt1, by (11.25), we obtain:

pI ´ rT0qV2Zptq “ V2W pt, 0qeiσ3p´∆`ω1qtZp0q

´ V2

ż t

0

eiσ3p´∆`ω1qpt´t1qW pt, t1q
”

F pt1q ´ rPdpvpt1qqZpt1q
ı

dt1

We then obtain the desired result if we can show that

}pI ´ rT0q´1}L2pr0,T q,H1pR3qqý ă C1, (11.26)

for ϵC1 smaller than a fixed number. Thanks to Lemma 11.3 it is enough to prove (11.26) with rT0
replaced by

T0fptq “ V2

ż t

0

eiσ3p´∆`ω1qpt´t1qV1fpt1qdt1.

Set

T1fptq “ V2

ż t

0

ep´Hp1Pc`δPdqpt1´tqV1fpt1q dt1.

By [13] we have }T1}L2pr0,T q,H1pR3qqý ă C2 for a fixed C2. By elementary arguments, see [26],

pI ´ T0qpI ` T1q “ pI ` T1qpI ´ T0q “ I.

This yields (11.26) with rT0 replaced by T0 and with C1 “ 1 ` C2.
Now we turn to the equations 9zl “ ıı Bzl

H. We will prove the following.

Proposition 11.6. There exists a fixed c0 ą 0 and a constant ϵ0 ą 0 which depends on C0 such
that

ÿ

l

|zlptq|2 `
ÿ

pµ,νqPM

}zµ`ν}2L2p0,tq ď c0p1 ` C0qϵ2, @t P r0, T s, @ϵ P p0, ϵ0q. (11.27)

30



Proposition 11.6 allows to conclude the proof of Proposition 11.2. The proof of Proposition 11.6
follows a series of standard steps, and is basically the same as the analogous proof in [14], or in [3].

The first step in the proof of Proposition 11.2 consists in splitting f as follows:

g “ f ` Y , Y :“ ´ıı
ÿ

pµ,νqPM

zµzνR`
ııHp1

pe ¨ pν ´ µqqG0
µν , (11.28)

where R`
ııHp1

is extension from above of the resolvent and makes sense because the theory of Jensen

and Kato [23] holds also for these operators, see for example Perelman [27, Appendix 4].
The part of f that acts effectively on the variables z will be shown to be Y , while g is small, thanks
to the following lemma.

Lemma 11.7. For fixed s ą 1 there exist a fixed c such that if ϵ0 is sufficiently small we have
}g}L2pp0,T q,H0,´spR3,C4q ď cϵ.

Proof. In the same way as the proof of Proposition 11.4 (which we wrote explicitly) is similar to
analogous proofs valid for the scalar NLS (1.3), the proof of Lemma 11.7 is analogous to the proof
of [17, Lemma 8.5] contained in [17, Sect. 10] and is skipped here. The only difference between
[17] and the present situation is notational, in the sense that inside (11.20) one has iσ3v ¨ ♢u “

iσ3
ř

jď7 vj♢ju, as opposed to [17, (10.1)], where the corresponding terms are iσ3
ř4

j“1 vj♢ju. But
this does not make any difference in the proof because what matters is simply that each ♢j commutes
with ´∆ ` ω1, which was used to get (11.25).

Now we examine the equations on z. We have

´ ıı 9zj “ Bzj
pH2 ` Z0 ` Z1 ` Rq.

When we substitute (11.28) and we set R`
µν :“ R`

ııHp1
pe ¨ pν ´ µqq we obtain

´ ıı 9zl ´ Bzl
H2 “ Bzl

Z0 ` ıı
ÿ

pα,βq,pµ,νqPM

νl
zµ`αzν`β

zl
xR`

αβG
0
αβ , iσ3Gµνy

`
ÿ

pµ,νqPM

νl
zµzν

zl
xg, iσ3Gµνy ` Bzl

R.
(11.29)

Using (11.9), we rewrite this as

´ ıı 9zj ´ Bzj
H2 “ Bzj

Z0 `
ÿ

pµ,νqPM

νj
zµzν

zj
xg, iσ3Gµνy ` Ej (11.30)

` ıı
ÿ

β,νPM0

νj
zν`β

zj
xR`

0βG
0
0β , iσ3G

0
0νy (11.31)

` ıı
ÿ

α,νPM0

νj
zαzν

zj
xR`

α0G
0
α0, iσ3G

0
0νy. (11.32)

Here the elements in (11.31) can be eliminated through a new change of variables that we will see
momentarily and Ej is a remainder term defined by

Ej :“
ÿ

pµ,νqPM

νj
zµzν

zj
xg, iσ3Gµνy ` Bzj

R ´ (11.31) ´ (11.32). (11.33)

31



Set ζl “ zl ` Flpz, zq with

Flpz, zq “
ÿ

β,νPM0

ıı νlz
ν`β

e ¨ pβ ` νqzl
xR`

0βG
0
0β , iσ3G

0
0νy ´

ÿ

α,νPM0
e¨α‰e¨ν

ıı νlz
αzν

e ¨ pα ´ νqzl
xR`

α0G
0
α0, iσ3G

0
0νy.

This change of variables is such that, setting F “ pF1, ..., Fnq, we get

Ljpz, fq|f“0 : “
ÿ

l“1,...,n

pBzl
Fjpz, zqBzlH2pz, 0q ´ BzlFjpz, zqBzl

H2pz, 0qq

“ Bzl
H2pF pz, zq, 0q ` (11.31) ` (11.32).

Furthermore, by ν P M0, which implies ν ¨ e ą ω1, we have |ν| ą 1. Then, by (11.5)–(11.6),

}ζ ´ z}L2p0,T q ď Cϵ
ÿ

αPM0

}zα}L2p0,T q ď CpC0qϵ2, }ζ ´ z}L8p0,T q ď CpC0qϵ3. (11.34)

In the new ζ variables, (11.30) takes the form

´ ıı 9ζj “ Bζj
H2pζ, fq ` Bζj

Z0pζ, fq ` Dj ` ıı
ÿ

α,νPM0
e¨α“e¨ν

νj
ζαζ

ν

ζj
xR`

α0G
0
α0, iσ3G

0
0νy, (11.35)

with for Al “r.h.s. of (11.29),

Dj “ Ej ` Ljpz, 0q ´ Ljpz, fq `
ÿ

l“1,...,n

`

BzlFjpz, zqAl ´ Bzl
Fjpz, zqAl

˘

. (11.36)

From these equations by
ř

l el
`

ζlBζl
pH2 ` Z0q ´ ζjBζlpH2 ` Z0q

˘

“ 0 we get

Bt

ÿ

l“1,...,n

el|ζl|
2 “ 2

ÿ

l“1,...,n

elIm
`

Dlζl
˘

` 2
ÿ

α,νPM0
e¨α“e¨ν

e ¨ ν Re
´

ζαζ
ν
xR`

α0G
0
α0, iσ3G

0
0νy

¯

.
(11.37)

Lemma 11.8. Assume inequalities (11.4)–(11.6). Then for a fixed constant c0 we have

ÿ

j“1,...,n

}Im
`

Djζj
˘

}L1r0,T s ď p1 ` C0qc0ϵ
2. (11.38)

Proof (sketch). For a detailed proof we refer to [3, Appendix B]: here we give a sketch. First
of all, we consider the contribution of Ej . This, in turn, is a sum of various terms. For the terms
originating from R3, cf. Lemma 8.4, we have

}xBzjBdpp04,Πpfq, z, fq, fdyζj}L1
t

ď }f}d
Ld

tL
pd
x

}ζ}L8
t

À ϵd`1,

with pd, pdq admissible, and for d “ 2, 3, 4, 5. For the following term, we claim

}BzjR2ζj}L1
t

À ϵ3. (11.39)

From Lemma 8.4 we know that R2 is basically a sum of degree 2N` 3 monomials in pz, z, fq, which
are at most degree 1 in f . Let us take a term which is degree 0 in f . Then its Bzj derivative is
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in absolute value bounded above by a term |zµ`ν | with |µ| ` |ν| ě 2N ` 2. So we can write it as
|zα`β`γ | with |α| ě N ` 1, |β| ě N ` 1. But then α ¨ e ą ω1 β ¨ e ą ω1. Then

}zα`β`γζj}L1
t

ď }zα}L2
t
}zβ}L2

t
}ζj}L8

t
À ϵ3.

Terms degree 1 in f can be treated similarly, yielding (11.39). We claim also

}νj
zµ`αzν`β

zj
ζj}L1

t
À ϵ3 for |pµ´ νq ¨ e| ą ω1 and pµ, νq R M. (11.40)

In this case we can write zµzν “ zµ
1
zν

1
zγzδ with pµ1, ν1q P M and |γ| ` |δ| ą 0. Then we consider

νj
zµ`αzν`β

zj
ζj “ νjz

µ1`αzν
1`βzγzδ ` νj

zµ
1`αzν

1`β

zj
pζj ´ zjq.

By (11.5)–(11.6)

}zµ
1`αzν

1`βzγzδ}L1
t

À }zµ
1
zν

1
}L2

t
}zαzβ}L2

t
}z}

|γ|`|δ|

L8
t

À ϵ3.

and by (11.34)

}νj
zµ`αzν`β

zj
pζj ´ zjq}L1

t
À }zαzβ}L2

t
}z ´ ζ}L2

t
À ϵ3.

This yields (11.41). By similar arguments, one can prove

}νj
zµzν

zj
xg, iσ3Gµνy ζj}L1

t
À ϵ3 for |pµ´ νq ¨ e| ą ω1 and pµ, νq R M.

We next consider the following, see [3, Lemma B.1],

}BjpZ0pζ, fq ´ Z0pz, fqqζj}L1
t

À ϵ3. (11.41)

Is enough to consider zα zβ

zj
ζj ´ ζα ζβ

ζj

ζj with e ¨α “ e ¨ β and βj ą 0. By Taylor expansion these are

ÿ

k

Bk

ˆ

zαzβ

zj

˙

pζk ´ zkqζj `
ÿ

k

Bk

ˆ

zαzβ

zj

˙

pζk ´ zkqζj ` ζjOp|z ´ ζ|2q.

The remainder term is the easiest, the other two terms similar. Substituting the definition of ζ, a

typical term in the first summation is zα`AzB`β

|zk|2
, with α ¨e ą ω1, β ¨e ą ω1, A ¨e ą ω1 and B ¨e ą ω1.

and with αk ‰ 0 ‰ Bk. By (H8), e ¨ α “ e ¨ β implies that there is at least one index βℓ ‰ 0 such
that eℓ “ ek. Then, by the fact that monomials zαzβ in Z0 are such that |α| “ |β| ě 2,

›

›

›

›

zαzβzAzB

|zk|2

›

›

›

›

L1
t

ď
›

›zA
›

›

L2
t

›

›

›

›

zBzℓ
zk

›

›

›

›

L2
t

›

›

›

›

zαzβ

zℓzk

›

›

›

›

L8
t

À C2
2ϵ

|α|`|β| ď C2
2ϵ

4. (11.42)

Other contributions from (11) can be treated similarly, yielding (11.41).
The main contribution to the l.h.s. of (11.38) is originated from the following terms

}νj
zµzν

zj
xg, iσ3Gµνyζj}L1

t
ď c1C0ϵ

2 for pµ, νq P M (11.43)
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with c1 a fixed constant. Indeed the term to bound equals

νjz
µzνxg, iσ3Gµνy ` νj

zµzν

zj
xg, iσ3Gµνypζj ´ zjq.

By Lemma 11.7, the 1st term has L1
t norm bounded by

}Gµν}L8
t H0,s}zµzν}L2

t
}g}L2

tH
0,´s ď }Gµν}L8

t H0,sC0ϵcϵ ď c1C0ϵ
2

for a fixed c1. The 2nd term has L1
t norm bounded by the following, which yields (11.43),

}νj
zµzν

zj
}L8

t
}Gµν}L8

t H0,s}g}L2
tH

0,´s}ζ ´ z}L2
t

À ϵ4.

We estimated the contribution to the l.h.s. of (11.38) of Ej . There are further terms in (11.36) to
estimate. We claim

}pLjpz, 0q ´ Ljpz, fqqζj}L8
t

À ϵ4. (11.44)

A typical contribution to the l.h.s. is

pgpΠpfqq ´ gpΠp0qq
νjz

ν`β

zj
pzj ` pζj ´ zjqq with α, ν P M0,

with g P C1pR7,Cq. We can bound its L1
t norm using

}f}2L8H1}zν}L2}zβ}L2 À ϵ4

and using the argument that leads to (11.42). For the discussion of the bound for the contribution
originating from the

ř

l“1,...,n term in (11.36), which is also higher order, see [3].

The 2nd term in the r.h.s. of (11.37) equals, using G0
µν “ G0

νµ,

2
ÿ

κPK

κRe

C

R`
ııHp1

p´κq
ÿ

αPM0 , e¨α“κ

ζαG0
α0, iσ3

ÿ

νPM0 , e¨ν“κ

ζ
ν
G0

0ν

G

“

π´1
ÿ

κPK

κRe
A

R`
ııHp1

p´κqG, iσ3G
E

for G :“
?
2π

ÿ

αPM0 , e¨α“κ

ζαG0
α0,

(11.45)

where K “ tk P R : D ν P M0 s.t. κ “ e ¨ νu. Notice that κ P K ñ κ ą ω1.
As in [14, Lemma 10.5], there exist Lα0 P W k,ppR3,C4q for all k P R and p ě 1 s.t. the r.h.s. of
(11.45) is equal to

ÿ

κPK

κΛpκ, ζq for Λpκ, ζq “
1

π
Re

A

R`
ıı iσ3p´∆`ω1q

p´κqLpζq, iσ3L
E

and Lpζq :“
?
2π

ÿ

αPM0
e¨α“κ

ζαL0
α0.

We claim that each term in the above summation is non-negative. Observe that Λpκ, ζq “ Λ1pκ, ζq`

Λ2pκ, ζq, Lpζq “ tpL1pζq,L2pζqq, with

Λipκ, ζq “ π´1p´1qi`1 Re
A

R`
ıı ip´1qi`1p´∆`ω1q

p´κqLi, iLi

E

.
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Introduce now

U “
1

?
2

ˆ

1 1
ıı ´ıı

˙

such that U´1
iU “ ´ıı σ3,

with σ3 the Pauli matrix (1.2). Taking the complex conjugation, U
´1

iU “ ıı σ3. Then, using
tU “ U´1, we have, for U´1Li “ tpLi1,Li2q:

πΛipκ, ζq “ p´1qi`1 Re
A

U´1R`
ıı ip´1qi`1p´∆`ω1q

p´κqUU´1Li, U
´1

iUU
´1

Li

E

“ p´1qi`1 Re
A

R`
p´1qi`1σ3p´∆`ω1q

p´κqU´1Li, ıı σ3U
´1

Li

E

“ p´1qi`1 Re
A

R`
p´1qi`1p´∆`ω1q

p´κqLi1, ııLi1

E

´ p´1qi Re
A

R`
p´1qip´∆`ω1q

p´κqLi2, ııLi2

E

.

Using Plemelj formula we have:

Λ1pκ, ζq “
@

ıı δp∆ ´ ω1 ` κqL12, ııL12

D

“ ´
@

δp∆ ´ ω1 ` κqL12,L12

D

ď 0;

Λ2pκ, ζq “
@

ıı δp∆ ´ ω1 ` κqL21, ııL21

D

“ ´
@

δp∆ ´ ω1 ` κqL21,L21

D

ď 0.

The Fermi Golden Rule consists in two parts. The 1st part consists in showing that Λpκ, ζq are
negative quadratic forms for the vector pζαqαPM0 s.t. α¨ω1“κ. This was proved here. The 2nd part is
that the Λpκ, ζq are strictly negative quadratic forms. This is expected to be generically true (as a
similar statement was expected to be true in [10, 33]). We don’t know how to prove this. For a proof
on a different problem, see [2, Proposition 2.2]. For specific systems the strict negative condition
ought to be checked numerically. Here we assume it as an hypothesis:

(H9) (Fermi Golden Rule) the l.h.s. of (11.46), proved above to be negative, is strictly negative,
that is for some fixed constants and for any vector ζ P Cn we have

ÿ

PK

κΛpκ, ζq « ´
ÿ

αPM0

|ζα|2. (11.46)

By (H9) we have

2
ÿ

l“1,...,n

el Im
`

Dlζl
˘

Á Bt

ÿ

l“1,...,n

el|ζl|
2 `

ÿ

αPM0

|ζα|2. (11.47)

Then, for t P r0, T s and assuming Lemma 11.8, we have

ÿ

l“1,...,n

el|ζlptq|2 `
ÿ

αPM0

}ζα}2L2p0,tq À ϵ2 ` C0ϵ
2.

By (11.34) this implies |z|2L8p0,tq `
ř

αPM0
}zα}2L2p0,tq À ϵ2 ` C0ϵ

2 and yields Proposition 11.6.

In the course of the proof we have shown that }zα}2L2p0,tq À C2
0ϵ

2 and (1.8) together imply

}zα}2L2p0,tq À C0ϵ
2. This means that we can take C0 « 1. With Corollary 11.5 this completes the

proof of Proposition 11.2.
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12 Proof of Theorem 1.1

Lemma 12.1. There is f` P H1pR3,C4q such that fptq from (11.4) satisfies

lim
tÑ`8

}fptq ´W pt, 0qeiσ3p´∆`ω1qtf`}H1 “ 0, (12.1)

where W pt, sq is the fundamental solution from (11.17).

Proof. Starting from (11.10) and using (11.24), we obtain the following analogue of (11.25):

fptq “ W pt, 0qeiσ3p´∆`ω1qtfp0q

`

ż t

0

eiσ3p´∆`ω1qpt´t1qW pt, t1q
”

V fpt1q ´
ÿ

pµ,νqPM

zµpt1qzνpt1qG0
µν `R1pt1q `R2pt1q

ı

dt1.

This implies, by standard arguments (cf. [17, Sect. 11]), that W p0, tqeiσ3p∆´ω0qtfptq ÝÑ
tÑ`8

f` in

H1pR3,C4q.
Completion of the proof of Theorem 10.3. Recall that expressing u in terms of the coordinates

in (3.8) we have

uptq “ e´iσ3
ř4

j“1 τ 1
jptq♢j

`

a

1 ´ |b1ptq|2 ` b1ptqσ2C
˘`

Φp1ptq ` Pp1ptqr
1ptq

˘

, (12.2)

where we denote by pp1, τ 1, b1, r1q the initial coordinates. Using the invariance Πpuptqq “ Πpu0q we
can express pp1, b1q in terms of r1 obtaining the following:

p1
jptq “ Πjpu0q ´ Πjpr1ptqq ` R1,2

8,8

`

p04,Πpr1ptqq, r1ptq
˘

for j “ 1, 2, 3, 4;

b1
Rptq “ p2p04q´1Π5pr1ptqq ` R2,0

8,8

`

p04,Πpr1ptqq
˘

` R1,2
8,8

`

p04,Πpr1ptqq, r1ptq
˘

;

b1
Iptq “ p2p04q´1Π6pr1ptqq ` R2,0

8,8

`

p04,Πpr1ptqq
˘

` R1,2
8,8

`

p04,Πpr1ptqq, r1ptq
˘

.

(12.3)

Furthermore we can express r1 in terms of the pz, fq of the last coordinate system for ℓ “ 2N ` 1 in
Proposition 10.3:

r1ptq “ ei
ř4

j“1 σ3R0,2
k,m

`

p0
4,Πpfptqq,zptq,fptq

˘

♢jT pe
ř3

i“1 R0,2
k,mpp0

4,Πpfq,z,fqiσiq
´

fptq ` S0,1
k,m

`

p04,Πpfptqq, zptq, fptq
˘

¯

.
(12.4)

While the changes of coordinates in Lemma 9.2 and in the normal forms in Section 10 involve loss
of regularity of f , in order to be differentiable so that the pullback of the symplectic forms makes
sense, nonetheless these maps are also continuous changes of coordinates inside in H1pR3,C2q, see
Lemma 8.1 for l “ 0. Notice that (1.1) leaves ΣkpR3,C2q invariant for any k P N and that, similarly,
the system leaves Cn ˆ pXc X ΣkpR3,C2qq invariant.
By the well-posedness of (1.1) in H1pR3,C2q and of (11.1) in Cn ˆ Xc, a continuous change of
coordinates (12.2)–(12.4) maps solutions of (11.1) in Cn ˆXc into solutions in H1pR3,C2q of (1.1),
capturing the solutions of (1.1) in the statement of Theorem 10.3. See also [18, Sect. 8].
By Lemma 12.1 it is easy to conclude that R0,2

k,m ÝÑ
tÑ`8

0 in R7 and S0,1
k,m ÝÑ

tÑ`8
0 in ΣkpR3,C4q for

the terms in (12.4), and that R1,2
k,m ÝÑ

tÑ`8
0 for the terms in (12.3). Then for 1 ď j ď 4 we have

lim
tÑ`8

Πjpr1ptqq “ lim
tÑ`8

Πjpfptqq “ lim
tÑ`8

Πj

`

W pt, 0qeiσ3p´∆`ω1qtf`

˘

“ Πjpf`q
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since Πj

`

W pt, 0qeiσ3p´∆`ω1qtf`

˘

“ Πjpf`q. Hence, since p is characterized by the first four variables
(cf. (2.12)), this defines p` in (1.9).
We consider a function g P C1pR`,Gq such that

e´iσ3
ř4

j“1 τ 1
jptq♢j

`

a

1 ´ |b1ptq|2 ` b1ptqσ2C
˘

“ T pgptqq.

By (12.4) we have

T pgptqqPp1ptqr
1ptq “ T pgptqqeiσ3

ř4
j“1 R0,2

k,m♢jT pe
ř3

i“1 R0,2
k,miσiqf ` oΣk

p1q, (12.5)

where oΣk
p1q Ñ

tÑ`8
0 in ΣkpR3,C2q. We claim the following, with the proof in Appendix A.

Claim 12.2.
T pgptqqeiσ3

ř4
j“1 R0,2

k,m♢jT pe
ř3

i“1 R0,2
k,miσiq “ ĂW p0, tq (12.6)

with ĂW pt, sq the fundamental solution, in the sense of (11.17), of a system of the form

9u “ iσ3rv ¨ ♢u, where rv ¨ ♢ “
ÿ

j“1,...,7

iσ3rvjptq♢j . (12.7)

Substituting (3.9) and (12.4) into (1.1), we get for a G1 P C0pH1pR3,C2q, L1pR3,C4qq

9f “ ´iσ3∆f ` iσ3rv ¨ ♢f `G1puq, (12.8)

while from (11.14) we have for a G2 P C0pH1pR3,C2q, L1pR3,C4qq

9f “ ´iσ3∆f ` iσ3ω
1f ` iσ3v ¨ ♢f `G2puq. (12.9)

The fact that G1, G2 P C0pH1pR3,C2q, L1pR3,C4qq is rather simple. For example G2puq is given by
the sum of the r.h.s. of (11.14) with a linear term Vω1f where Vω1 P SpR3,MpC4qq is the matrix
valued function in (11.24). It is elementary to show that u Ñ f is in C0pH1pR3,C2q, L2pR3,C4qq.

The rest of G2puq comes from the r.h.s. of (11.14), obtained applying p∇f to the terms R|3j“1 in the

expansion (8.11). It is elementary that this too is in C0pH1pR3,C2q, L1pR3,C4qq.
By comparing the equation for f with G1 and the equation for f with G2, it follows that we
necessarily have rv ¨ ♢ “ ω1 ` v ¨ ♢, see [16, Lemma 13.8]. Hence, returning to (12.5), we have

T pgptqqPp1ptqr
1ptq “ ĂW p0, tqW pt, 0qeiσ3ω

1te´iσ3∆tf` ` oH1p1q,

for W pt, 0q defined by (11.17) and where

BtpĂW p0, tqW pt, 0qeiσ3ω
1tq “ ĂW p0, tqiσ3

`

pv ´ rvq ¨ ♢ ` ω1
˘

W pt, 0q “ 0.

We conclude that there exists g0 P G such that for h` “ T pg0qf` one has

T pgptqqPp1ptqr
1ptq “ e´iσ3∆th` ` oH1p1q.

This completes the proof of (1.9).
Finally, we emphasize that the proof is predicated on the values Πjpu0q “ p0j for j ď 6, with the

coordinate changes and the manifold M6
1pp0q dependent on p0. However, since the symbols Ri,j

k,m

and Si,j
k,m appearing in the coordinate changes depend continuously on p0, the estimates are uniform

in p0, as long as this is close enough to p1. This completes the proof of Theorem 1.1.
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A Appendix.

Lemma 8.1 is obtained expressing r in terms of pz, fq from the following lemma, where we omit the
dependence on the constant parameter Π4.

Lemma A.1. For n,M,M0, s, s
1, k, l P N0 with 1 ď l ď M such that (8.4) is satisfied, for a P A a

parameter, with A an open subset in Rd, and for rε0 ą 0, consider

9rptq “ iσ3
ÿ

jď7

R0,M0`1
n,M pt, a,Πprq, rq♢jr ` Si,M0

n,M pt, a,Πprq, rq, (A.1)

Let k P Z X r0, n´ pl ` 1qs and set for s2 ě 1 and ε ą 0

Us2

ε,k :“tr P TKΩ

Φp1
M X Σs2 : }r}Σ´k

` |Πprq| ď εu. (A.2)

Let a0 P A. Then, for ε ą 0 small enough, (A.1) defines a flow Ft

Ftprq “ eiσ3
ř4

j“1 R0,M0`1

n´l´1,lpt,a,Πprq,rq♢jT pe
ř3

i“1 R0,M0`1

n´l´1,lpt,a,Πprq,rqiσiq

´

r ` Si,M0

n´l´1,lpt, a,Πprq, rq

¯

,

(A.3)
where for and for ε1 ą ε2 ą 0 sufficiently small we have

Ft P Clpp´4, 4q ˆDRdpa0, ε2q ˆ Us1

ε2,k,U
s
ε1,kq. (A.4)

Proof (sketch) While the statement is the same of [15, Lemma 3.8] and [2, Lemma 3], we have
to deal with operators ♢j for j “ 5, 6, 7 which don’t commute.

For ξ P sup2q and q P R4 we consider S :“ e´iσ3
ř4

j“1 qj♢jT pe´ξqr, for T the representation in
(2.19). It is elementary that for some Fj P C8 we have

Πjprq “ ΠjpSq for j “ 1, 2, 3, 4 and

Πjprq “ ΠjpSq ` Fjpξ,ΠkpSq|7k“5q for j “ 5, 6, 7
(A.5)

where Fjp0, ˚q ” 0 ” Fjp˚, 0q for any ˚ and where for j “ 5, 6, 7 the above equality is obtained
proceeding like in Lemma 5.1. Then expressing the coefficients of (A.3) in terms of the new variables,
we have new coefficients

Dpt, ξ, ϱ, Sq :“

e´iσ3
ř4

j“1 qj♢jT pe´ξqSi,M0

n,M

´

t, ϱl|
4
l“1, ϱl|

7
l“5 ` Flpξ, ϱk|7k“5q|7l“5, e

iσ3
ř4

j“1 qj♢jT peξqS
¯

,

Ajpt, ξ, ϱ, Sq :“ R0,M0`1
n,M

´

t, ϱl|
4
l“1, ϱl|

7
l“5 ` Flpξ, ϱk|7k“5q|7l“5, e

iσ3
ř4

j“1 qj♢jT peξqS
¯

.

Notice that for 0 ď ℓ ď M we have

Dpt, ξ, ϱ, Sq “ Si,M0

n´ℓ,ℓpt, ξ, ϱ, Sq and Ajpt, ξ, ϱ, Sq “ R0,M0`1
n´ℓ,ℓ pt, ξ, ϱ, Sq.

Then consider the following system which we explain below:

9S “ Dpt, ξ, ϱ, Sq,

9qj “ Ajpt, ξ, ϱ, Sq for j “ 1, 2, 3, 4, with qjp0q “ 0,

8
ÿ

k“1

1

k!
padpξqq

k´1 9ξ “

3
ÿ

i“1

Ajpt, ξ, ϱ, Sqiσi with ξp0q “ 0, (A.6)

9ϱj “ xS,♢jDpt, ξ, ϱ, Sqy for j “ 1, 2, 3, 4 and

9ϱj “ xS,♢jDpt, ξ, ϱ, Sqy ´ BξFjpξ, ϱk|7k“5q 9ξ ´
ÿ

l“5,6,7

Bϱl
Fjpξ, ϱk|k“5,6,7q 9ϱl for j “ 5, 6, 7.
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We explain now the above equations. The 2nd and 3rd line are defined in order to simplify the
equation for S. Indeed, when we substitute S in the equation of r we get

Btr “ Btpe
iσ3

ř4
j“1 qj♢jT peξqSq “ eiσ3

ř4
j“1 qj♢jT peξq

˜

iσ3

4
ÿ

j“1

9qj♢jS ` T pe´ξqBtpT peξqqS ` 9S

¸

“

eiσ3
ř4

j“1 qj♢j

˜

T peξqiσ3

4
ÿ

j“1

Ajpt,Πprq, rq♢jS ` iσ3

7
ÿ

j“5

Ajpt,Πprq, rq♢jT peξqS

¸

` Dpt,Πprq, rq.

By the choice made in the 2nd line of (A.6) the summations over j “ 1, 2, 3, 4 cancel out. We
will show that also the summations over j “ 5, 6, 7 cancel out. By the Baker–Campbell–Hausdorff
formula, see [31, p.15], we have

Bte
ξ “

˜

8
ÿ

k“1

1

k!
padpξqq

k´1 9ξ

¸

eξ where adpξq : sup2q Ñ sup2q is adpξqϑ :“ rξ, ϑs. (A.7)

So, for 1lC2 the unit element in SUp2q, we have

BtpT peξqq “ dT p 1lC2q

˜

8
ÿ

k“1

1

k!
padpξqq

k´1 9ξ

¸

T peξq. (A.8)

On the other hand, by (2.9) and (2.20) we have
ÿ

j“5,6,7

Ajiσ3♢jT peξq “
ÿ

i“1,2,3

Ai`4dT p 1lC2qpiσiqT peξq.

So the 3rd equation in (A.6) yields the cancelation of these terms. Hence we conclude that the 1st
equation in (A.6) is true.
We also derive equations for ϱj by differentiating BtΠjpSq and by substituting ΠjpSq with ϱj .

Solving the last equation in (A.6) in terms of 9ϱj |7j“5 and replacing in the last equation 9ξ by means
of the 3rd equation, we obtain for 1 ď ℓ ď M

9S “ Si,M0

n´ℓ,ℓpt, ξ, ϱ, Sq,

9qj “ R0,M0`1
n´ℓ,ℓ pt, ξ, ϱ, Sq for j “ 1, 2, 3, 4, with qjp0q “ 0,

9ξ “ R0,M0`1
n´ℓ,ℓ pt, ξ, ϱ, Sq with ξp0q “ 0,

9ϱj “ R0,M0`1
n´ℓ´1,ℓpt, ξ, ϱ, Sq for j “ 1, ..., 7.

(A.9)

Taking as initial conditions pr, 0, 0,Πprqq, by elementary arguments, see [15, Lemma 3.8], we get
from (A.10) a flow

Sptq “ r `

ż t

0

Si,M0

n´ℓ´1,ℓpt
1,Πprq, rqdt1 “ r ` Si,M0

n´ℓ´1,ℓpt,Πprq, rq,

qjptq “

ż t

0

R0,M0`1
n´ℓ´1,ℓpt

1,Πprq, rqdt1 “ R0,M0`1
n´ℓ´1,ℓpt,Πprq, rq for j “ 1, 2, 3, 4,

ξptq “

3
ÿ

i“1

ż t

0

R0,M0`1
n´ℓ´1,ℓpt

1,Πprq, rqdt1iσi “

3
ÿ

i“1

R0,M0`1
n´ℓ´1,ℓpt,Πprq, rqiσi,

ΠjpSptqq “ Πjprq `

ż t

0

R0,M0`1
n´ℓ´1,ℓpt

1,Πprq, rqdt1

“ Πjprq ` R0,M0`1
n´ℓ´1,ℓpt,Πprq, rq for j “ 1, ..., 7.

(A.10)
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In view of (A.5) we get also

Πjprptqq “ Πjprq ` R0,M0`1
n´ℓ´1,ℓpt,Πprq, rq for j “ 1, ..., 7 . (A.11)

This ends the proof of the parts of Lemma 8.1 which are not the same of [15, Lemma 3.8].

Lemma A.2. Consider two systems for ℓ “ 1, 2:

9rptq “ iσ3
ÿ

j“1,...,7

Apℓq
j pt,Πprq, rq♢jr ` Dpℓqpt,Πprq, rq,

with the hypotheses of Lemma A.1 satisfied, and suppose that

Dp1qpt,Πprq, rq ´ Dp2qpt,Πprq, rq “ S0,M0`1
n,M pt,Πprq, rq.

Let r ÞÑ rt
pℓq

with ℓ “ 1, 2 be the flow for each of the two systems. Then for s, s1 as in Lemma A.1

}r1p1q ´ r1p2q}Σ´s1 ď C}r}
M0`1
Σ´s

.

Proof. The proof is elementary. We consider

ÿ

ℓ“1,2

p´qℓ
d

dt
rtpℓq “

ÿ

ℓ“1,2

p´qℓiσ3R0,M0`1
n,M pt,Πprtpℓqq, rtpℓqq ¨ ♢rtpℓq

`
ÿ

ℓ“1,2

p´qℓDpℓqpt,Πprtp2qq, rtp2qq

loooooooooooooooooomoooooooooooooooooon

S
0,M0`1

n,M pt,Πprtp2qq,rtp2qq

`
ÿ

ℓ“1,2

p´qℓDp1qpt,Πprtpℓqq, rtpℓqq.

Then for xt
ℓ :“ pΠprt

pℓq
q, rt

pℓq
q

}rtp2q ´ rtp1q}Σ´s1 ď
ÿ

ℓ

ż t

0

}rt
1

pℓq}
M0`2
Σ´s

dt1 `

ż t

0

}rt
1

p2q}
M0`1
Σ´s

dt1

`

ż t

0

ż 1

0

}BΠprqDp1qpt1,xt1

1 ` τpxt1

2 ´ xt1

1 qq}Σ´s |Πprt
1

p2qq ´ Πprt
1

p1qq| dt1

`

ż t

0

ż 1

0

}BrDp1qpt1,xt1

1 ` τpxt1

2 ´ xt1

1 qq}Σ´sÑΣ´s}rt
1

p2q ´ rt
1

p1q}Σ´s dt
1.

Since there is a fixed C ą 0 such that

}rpℓqpt1q}Σ´s
ď C}r}Σ´s

from (8.3),

|Πprt
1

p2qq ´ Πprt
1

p1qq| ď }r}
M0`1
Σ´s

from the previous one and (8.3)

}BrDp1qpt,Π, ϱ, rq}Σ´sÑΣ´s
ď C}r}

M0´1
Σ´s

,

}BϱDp1qpt,Π, ϱ, rq}Σ´s
ď C}r}

M0

Σ´s
,

where the last inequalities follow from (5.4), for some fixed constant C ą 0 we obtain

}rtp2q ´ rtp1q}Σ´s1 ď C

ˆ

t}r}
M0`1
Σ´s

` }r}
M0´1
Σ´s

ż t

0

}rt
1

p2q ´ rt
1

p1q}Σ´s dt

˙

,
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for t P r0, 1s, which by Gronwall’s inequality yields (8.8).

Proof of Claim 12.2. Let g “ R4 ˆ sup2q be the Lie Algebra of G. We can assume that

the inverse of the l.h.s. of (12.6) is equal to eiσ3
ř4

j“1 Xjptq♢jT peξptqq with X P C1pR`,R4q and

ξ P C1pR`, sup2qq. Then, by (A.8), for uptq :“ eiσ3

ř4
j“1 Xjptq♢jT peξptqqu0 we have

9uptq “ iσ3

4
ÿ

j“1

9Xjptq♢juptq ` dT p 1lC2q

˜

8
ÿ

k“1

1

k!
padpξptqqq

k´1 9ξptq

¸

uptq.

We set rvjptq “ 9Xjptq for j ď 4 and, exploiting that iσl|
3
l“1 is a basis of sup2q, we define rvjptq|7j“5 by

3
ÿ

l“1

rvl`3ptqiσl “

8
ÿ

k“1

1

k!
padpξptqqq

k´1 9ξptq.

Then we conclude that (12.7) it true for this choice of uptq and of rvjptq|7j“1. Then uptq “ ĂW pt, 0qu0

and ĂW p0, tq “ ĂW´1pt, 0q is s.t. equality (12.6) it true. This yields Claim 12.2.

B Appendix.

Lemma 8.4 can be obtained from the following lemma, expressing r in terms of pz, fq and omitting
again the dependence of the symbols on Π4, which has constant value.

Lemma B.1. Consider F “ F1 ˝ ¨ ¨ ¨ ˝ FL with Fj “ Fj
t“1 transformations as in Lemma A.1 on the

manifold M6
1pp0q. Suppose that for any Fj the M0 in Lemma A.1 equals mj, where 1 “ m1 ď ... ď

mL with the constant i in Lemma 8.1 (ii) equal to 1 when mj “ 1. Fix M,k with n1 " k ě N0 (n1
picked in Lemma 3.1). Then there is a n “ npL,M, kq such that if the assumptions of Lemma 8.1
apply to each of operators Fj for pM,nq, there exist ψpϱq P C8 with ψpϱq “ Op|ϱ|2q and a small
ε ą 0 such that in Us

ε,k for s ě n´ pM ` 1q we have the expansion

K ˝ F “ ψpΠprqq ` 2´1ΩpHpPpr, Pprq ` R1,2
k,M ` EP pPprq ` R2, (B.1)

R2 :“
ÿ

d“2,3,4

xBdpΠprq, rq, pPprqdy `

ż

R3

B5px,Πprq, r, rpxqqpPprq5pxq dx,

with:

• B2p0, 0q “ 0;

• Bdpϱ, rq P CM pU´k,ΣkpR3, BppR4qbd,Rqqq, 2 ď d ď 4, with U´k Ă R7 ˆ pTKΩ

Φp1
M X Σ´kq an

open neighborhood of p0, 0q;

• for ζ P R4 pϱ, rq P U´k we have for i ď M

}∇i
r,ϱ,ζB5pϱ, r, ζq}ΣkpR3,BppR4qb5,Rq ď Ci.
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Proof. The proof is in [15], but we sketch it. First of all, by (A.4) we have, for k ď n´ LpM ` 1q,

Un´pM`1q

εL`1,k
FL

ÝÑ Un´2pM`1q

εL,k ...
F2

ÝÑ Un´LpM`1q

ε2,k
F1

ÝÑ Un´pL`1qpM`1q

ε1,k
Ă Uk`3

ε1,k
Ă UN0

ε1,k
, (B.2)

where each map is CM if we pick n1 ě n “ npL,M, kq :“ k ` 3 ` pL ` 1qpM ` 1q and then we get

F P CM pUn´pM`1q

εL`1,k
,Uk`3

ε1,k
q.

By (A.3), the r–th component of F is of the form

Fpϱ, rq “ eiσ3
ř4

j“1 R1,1
k`3,M pϱ,rq♢jT pe

ř3
i“1 R1,1

k`3,M pϱ,rqiσiqpr ` S1,1
k`3,M pϱ, rqq. (B.3)

Then by r♢j ,♢ks “ 0 for all k if j ď 4 we have

Πjprq|4j“1 ˝ F “ Πjpr ` S1,1
k`3,MΠprq, rqq|4j“1 “ Πprq|4j“1 ` R1,2

k`2,M pΠprq, rq.

From (3.13) we have

p ˝ F “ p` R1,2
k`2,M and so Φp ˝ F “ Φp ` S1,2

k`2,M .

Then we have

Epu ˝ Fq “ E
´

e´iσ3
ř4

j“1 τj♢j p
a

1 ´ |b|2 ` bσ2CqpΦp ` Pprq ˝ F
¯

“ EppΦp ` Pprq ˝ Fq “ EpΦp ` S1,2
k`2,M ` Pppeiσ3R1,1

k`2,M ¨♢
pr ` S1,1

k`2,M qq

“ EpΦp ` Ppr ` S1,2
k`2,M ` PpS

1,1
k`2,M q,

where we use the commutation (for the proof see [15, Lemma 4.1])

rPp, e
iσ3

ř4
j“1 R1,1

k`3,M♢jT pe
ř3

i“1 R1,1
k`3,M qiσisr

“ reiσ3
ř4

j“1 R1,1
k`3,M♢jT pe

ř3
i“1 R1,1

k`3,M qiσi , pPpsr “ S1,2
k`2,M .

We get similarly for 1 ď j ď 4

Πjpu ˝ Fq|4j“1 “ ΠjpΦp ` Ppr ` S1,2
k`2,M ` PpS

1,1
k`2,M q|4j“1 “ ΠjpΦp ` Pprq|4j“1 ` R1,2

k,m.

Then
KpFpuqq “ EpΦp ` Ppr ` S1,2

k`2,M ` PpS
1,1
k`2,M q ´ E

`

Φp0

˘

´
ÿ

jď4

pλjppq ` R1,2
k`2,mq

´

ΠjpΦp ` Pprq ` R1,2
k,m ´ Πj

`

Φp0

˘

¯

.
(B.4)

Like in [15, Lemma 4.3], we set

Ψ “ Φp ` S1,2
k`2,M ` PpS

1,1
k`2,M ;

we need to analyze EpΨ ` Pprq which we break into (cf. (2.10))

EpΨ ` Pprq “ EP pΨ ` Pprq ` EKpΨ ` Pprq.

It is also shown in [15, Lemma 4.3] that

EP pΨ ` Pprq “ EP pΨq ` EP pPprq ` terms that can be incorporated into R2

`
ÿ

j“0,1

ż

R3

dx

ż

r0,1s2

tj

j!
pB

j`1
t q

ˇ

ˇ

t“0
BsrBp|sΨ ` tPpr|2qs dt ds.

(B.5)
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The second line of (B.5) equals

ż

R3

dx

ż

r0,1s2
dt ds

ÿ

j“0,1

tj

j!
pB

j`1
t q

ˇ

ˇ

t“0
Bs

!

Bp|sΦp ` tPpr|2q`

`

ż 1

0

dτBτ rBp|spΦp ` τpS1,2
k`2,M ` PpS

1,1
k`2,M q ` tPpr|2qs

)

.

(B.6)

The contribution from the last line of (B.6) can be incorporated into R2 ` R1,2
k,m. Notice that from

the j “ 0 term in the first line of (B.6) we get

2

ż

R3

dx

ż 1

0

dsBsrB1p|sΦp|2qsΦp ¨ Pprs “ 2

ż

R3

dxB1p|Φp|2qΦp ¨ Ppr “ x∇EP pΦpq, Ppry. (B.7)

The j “ 1 term in the first line of (B.6) is 2´1x∇2EP pΦpqPpr, Ppry; thus,

EP pΨ ` Pprq “ EP pΨq ` EP pPprq ` x∇EP pΦpq, Ppry ` 2´1x∇2EP pΦpqPpr, Ppry ` R2 ` R1,2
k,m.(B.8)

Then,

EKpΨ ` Pprq “ EKpΨq ´ x∆Φp, Ppry `

R1,2
k,m

hkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkj

x´∆pS1,2
k`2,M ` PpS

1,1
k`2,M q, Ppry `EKpPprq. (B.9)

Using (2.10), (2.6), (2.18) and the fact that iσ3λppq ¨ ♢Φp P TΦpM, see (2.21), we have

x´∆Φp ` ∇EP pΦpq, Ppry “ x∇EpΦpq, Ppry “ ´Ωpiσ3∇EpΦpq, Pprq

“ ´Ωpiσ3λppq ¨ ♢Φp, Pprq “ 0.

Adding (B.8) and (B.9) and using the cancellation of the sum of the second term in the right-hand
side of (B.9) with the term (B.7) which follows from the above relation, we arrive at

EpΨ ` Pprq “ EpΨq ` EpPprq ` 2´1x∇2EP pΦpqPpr, Ppry ` R2 ` R1,2
k,m, (B.10)

where we used (2.10). From (2.18),

EpΨq “ EpΦpq `

0
hkkkkkkkkkkkkikkkkkkkkkkkkj

x∇EpΦpq, PpS
1,1
k`2,M y `

R1,2
k`2,M

hkkkkkkkkkkkikkkkkkkkkkkj

x∇EpΦpq,S1,2
k`2,M y `R1,2

k,M “ EpΦpq ` R1,2
k,M ,

(B.11)

where the R1,2
k,M in the right-hand side is absorbed by R1,2

k,M in (B.1).
We have

´λppq ¨ ΠpΦp ` Pprq “ ´λppq ¨ ΠpΦpq ´ λppq ¨ ΠpPprq ´ xλppq ¨ ♢Φp, Ppry

“ ´λppq ¨ ΠpΦpq ´ λppq ¨ ΠpPprq,
(B.12)

where we used xλppq ¨ ♢Φp, Ppry “ Ωp´iσ3λppq ¨ ♢Φp, Pprq “ 0.
Substituting (B.10) (where we apply (B.11)) and (B.12) into (B.4), we have:

KpFpuqq “ EpΦpq ` EpPprq ` 2´1x∇2EP pΦpqPpr, Ppry ´ EpΦp0q

´ λppq ¨ ΠpΦpq ´ λppq ¨ ΠpPprq ` λppq ¨ ΠpΦp0q ` R2 ` R1,2
k,m..
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By (4.5), dppq “ EpΦpq ´ λppq ¨ ΠpΦpq. Then we have

EpΦpq ´ EpΦp0q ´ λppq ¨ pΠpΦpq ´ ΠpΦp0qq “ dppq ´ dpp0q ´ pλpp0q ´ λppqq ¨ p0

“ KpΦpq “ OppΠjprq|4j“1q2q ` R2,2
8,8, (B.13)

where OppΠjprq|4j“1q2q is ψpΠjprqq in (B.1) and R2,2
8,8 is absorbed inside R1,2

k,M . Thus,

KpFpuqq “ ψpΠprqq ` EpPprq ` 2´1x∇2EP pΦpqPpr, Ppry ´ λppq ¨ ΠpPprq ` R2 ` R1,2
k,m.

Breaking EpPprq “ EP pPprq ` EKpPprq and using the relation

2´1x∇2EP pΦpqPpr, Ppry ` EKpPprq ´ λppq ¨ ΠpPprq

“ 2´1xp∇2EpΦpq ´ λppq ¨ ♢qPpr, Ppry “ 2´1ΩpHpPpr, Pprq,

we arrive at the conclusion of the lemma.
The following is an elementary consequence of Lemma B.1 and is proved in [15, Lemma 4.4].

Lemma B.2. Under the hypotheses and notation of Lemma 8.4, for R1 like R2, for ψ P C8pR4,Rq

with ψpϱq “ Op|ϱ|2q, we have

K ˝ F “ ψpΠjprq|j“1,...,4q ` 2´1ΩpHp1r, rq ` R1,2
k,m ` EP prq ` R1, (B.14)

R1 :“
ÿ

d“2,3,4

xBdpΠprq, rq, rdy `

ż

R3

B5px,Πprq, r, rpxqqrq5pxq dx,

the Bd for 2 ď d ď 5 with similar properties of the functions in Lemma 4.1.

Proof. The proof, for whose details we refer to [15], is obtained by writing

Ppr “ r ` pPp ´ Pp1qr “ r ` S1,1
8,8

and substituting Ppr “ r ` S1,1
8,8 inside (B.1). That from EP pPprq ` R2 in (B.1) we obtain a term

which is contained in R1,2
k,m ` EP prq ` R1 in (B.14) is elementary and is discussed in [15]. We have

2´1ΩpHpPpr, Pprq “ 2´1x´∆Ppr, Ppry ´ λppq ¨ ΠpPprq ` 2´1x∇2EP pΦpqPpr, Ppry. (B.15)

Then

x´∆Ppr, Ppry “ x´∆r, ry ` R1,2
k,m, ΠpPprq “ Πprq ` R1,2

k,m,

x∇2EP pΦpqPpr, Ppry “ x∇2EP pΦp1qr, ry ` R1,2
k,m ` xp∇2EP pΦpq ´ ∇2EP pΦp1qqr, ry,

λppq “ λpp1q ` R1,0
8,8pΠjprq|4j“1q ` R1,2

k,m,

where for the last line we considered (3.13) which implies

p “ Π ´ Πprq ` R1,2
8,8

and where R1,0
8,8pΠprqq is smooth in the argument and is Op|Πprq|q.

Then we conclude that the right hand side of (B.15) is

2´1ΩpHp1r,rq
hkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkj

2´1xp´∆ ´ λpp1q ¨ ♢ ` ∇2EP pΦp1qqr, ry `R2,0
8,8pΠjprq|4j“1q ` R1,2

k,m

` 2´1xp∇2EP pΦpq ´ ∇2EP pΦp1qqr, ry,

(B.16)

where the last term can be absorbed in the d “ 2 term ofR1 by (3.13). Setting ψpϱq “ ψpϱq`R2,0
8,8pϱq

with the R2,0
8,8 in (B.16), we get the desired result.
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