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ABSTRACT
We construct and validate the selection function of the MARD-Y3 galaxy cluster sample. This sample was selected through
optical follow-up of the 2nd ROSAT faint source catalogue with Dark Energy Survey year 3 data. The selection function is
modelled by combining an empirically constructed X-ray selection function with an incompleteness model for the optical
follow-up. We validate the joint selection function by testing the consistency of the constraints on the X-ray flux–mass and
richness–mass scaling relation parameters derived from different sources of mass information: (1) cross-calibration using South
Pole Telescope Sunyaev-Zel’dovich (SPT-SZ) clusters, (2) calibration using number counts in X-ray, in optical and in both X-ray
and optical while marginalizing over cosmological parameters, and (3) other published analyses. We find that the constraints on
the scaling relation from the number counts and SPT-SZ cross-calibration agree, indicating that our modelling of the selection
function is adequate. Furthermore, we apply a largely cosmology independent method to validate selection functions via the
computation of the probability of finding each cluster in the SPT-SZ sample in the MARD-Y3 sample and vice versa. This
test reveals no clear evidence for MARD-Y3 contamination, SPT-SZ incompleteness or outlier fraction. Finally, we discuss the
prospects of the techniques presented here to limit systematic selection effects in future cluster cosmological studies.
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1 IN T RO D U C T I O N

The number of galaxy clusters as a function of mass and redshift is
generally accepted as being one of the major sources of information
on the composition and evolution of the Universe (see for instance
Haiman, Mohr & Holder 2001; Albrecht et al. 2006; Allen, Evrard
& Mantz 2011, and references therein). Cluster numbers can be
predicted by multiplying the number density of haloes, the ‘halo mass
function’ (HMF), with the effective volume. The HMF is highly sen-
sitive to the matter density and the amplitude of matter fluctuations
and can be accurately calibrated by simulations (e.g. Jenkins et al.
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2001; Warren et al. 2006; Tinker et al. 2008; Bocquet et al. 2016;
McClintock et al. 2019b). The cosmological volume is dependent
on the expansion history. Together with the redshift evolution of the
amplitude of fluctuations, this makes the redshift evolution of the
number of clusters very sensitive to the yet unexplained late time
accelerated expansion of the Universe.

Clusters can be selected in large numbers through their observa-
tional signatures at different wavelengths. In X-rays, the intracluster
medium (ICM), heated by having fallen into the cluster’s gravi-
tational potential emits a strong and diffuse thermal emission in
X-rays (see Vikhlinin et al. 1998; Böhringer et al. 2001; Romer
et al. 2001; Clerc et al. 2014; Klein et al. 2019, for selections
based on this signature). At optical wavelengths, clusters can be
identified as overdensities of red galaxies (for recent applications

C© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/498/1/771/5891246 by guest on 04 N
ovem

ber 2020

mailto:s.grandis@lmu.de


772 S. Grandis et al.

to wide photometric surveys, see e.g. Koester et al. 2007; Rykoff
et al. 2016). In the millimetre regime inverse Compton scattering of
the cosmic microwave background (CMB) photons with the ICM
makes clusters detectable as extended shadows in CMB maps. This
phenomenon is called the Sunyaev–Zel’dovich effect (SZE, Sunyaev
& Zeldovich 1972). Scanning CMB surveys for such shadows
enables the detection of near-complete, approximately mass-limited
cluster samples (Hasselfield et al. 2013; Bleem et al. 2015; Planck
Collaboration 2016; Hilton et al. 2018; Huang et al. 2020).

Inference of the mass distribution, and thereby cosmological
constraints, is limited by the ability to characterize incompleteness,
contamination, and the observable–mass mapping in each of these
selection techniques. This leads to the problem of determining
the selection function of any cluster sample. The problem is split
into two parts: determining how the selection function depends on
the X-ray, optical, or SZE observables, and calibrating the scaling
relation between that observable and cluster mass. The latter is called
mass calibration (for a review, see Pratt et al. 2019). It is tackled
by measuring the cluster gravitational potential either through the
coherent distortion of background galaxies due to weak gravitational
lensing (e.g. Bardeau et al. 2007; Okabe et al. 2010; Hoekstra et al.
2012; Applegate et al. 2014; Israel et al. 2014; Melchior et al.
2015; Okabe & Smith 2016; Melchior et al. 2017; Schrabback et al.
2018; Dietrich et al. 2019; McClintock et al. 2019a; Stern et al.
2019), or the analysis of the projected phase space distribution of
member galaxies whose velocities are measured by spectroscopic
observations (Sifón et al. 2013; Bocquet et al. 2015; Zhang et al.
2017; Capasso et al. 2019a,b). Such techniques are direct probes of
the clusters’ gravitational potential.

Both X-ray and SZE selections are known to provide cluster
candidate lists with less contamination than those carried out in
optical surveys which suffer from projection effects (see for instance
Costanzi et al. 2019, and reference therein). In X-ray studies at
sufficiently high detection significance, extent information can be
used to control contamination (Vikhlinin et al. 1998; Pacaud et al.
2006). Nevertheless, optical confirmation is still required to estimate
the redshift of the candidates and to reduce the contamination.
Traditionally, targeted imaging of individual cluster candidates was
performed to this end.

Such campaigns of pointed follow-up have recently been super-
seded by automated optical confirmation, as for instance by the Multi-
wavelength Matched Filter tool (MCMF, Klein et al. 2018). It scans
photometric data along the line of sight toward X-ray or SZE cluster
candidates with a spatial and colour filter to identify cluster galaxies
and determine the clusters redshift. Such tools have the advantage
of exploiting the ever larger coverage of deep and wide photometric
surveys such as the Dark Energy Survey1 (DES, Dark Energy Survey
Collaboration 2016) or the upcoming Euclid Mission2 (Laureijs et al.
2011) and the Rubin Observatory Legacy Survey of Space and Time3

(LSST, Ivezic et al. 2019) to follow up candidate lists whose size
would make pointed observations impractical.

In this work, we seek to construct and validate the selection
function of an X-ray selected and optically cleaned sample. We
focus on the MARD-Y3 sample (Klein et al. 2019, hereafter K19)
which is constructed by following up the highly contaminated 2nd
ROSAT faint source catalogue (2RXS, Boller et al. 2016) with the
DES data of the first 3 yr of observations (between 2013 August and

1https://www.darkenergysurvey.org
2http://sci.esa.int/euclid/42266-summary/
3https://www.lsst.org/

2016 February, DES-Y3, DES Collaboration 2018). Strict optical
cuts lead to a final contamination of 2.5 per cent at the cost of optical
incompleteness, which we model alongside the X-ray selection. The
optical follow up also provides measurements of the optical richness
of the selected clusters.

First, we confirm the selection function model by constraining
the scalings between X-ray flux and mass, and richness and mass
in different ways. We perform a cross-calibration of our observables
with the indirect mass information contained in the SZE signature
of SPT-selected clusters by cross-matching the two samples to
derive the flux and richness scaling relation parameters. Then we
constrain the same scaling relations by fitting for the number counts
of MARD-Y3 clusters while marginalizing over cosmology. The
former method is largely independent of the selection function for
the MARD-Y3 sample, while the latter is strongly dependent on it.
Consequently, consistent scaling relation parameter constraints from
the two methods validate our selection function model.

We also test the selection functions by further developing the
formalism of cross-matching and detection probabilities introduced
by Saro et al. (2015, hereafter S15). We thereby constrain the proba-
bility of MARD-Y3 contamination, the SPT-SZ incompleteness and
the probability of outliers from the scaling relations. This also allows
us to identify a population of clusters that exhibit either a surprisingly
high X-ray flux or surprisingly low SZE signal.

The paper is organized as follows. Section 2 presents the con-
ceptual framework within which we model galaxy cluster samples;
Section 3 presents the specific validation methods used in this
work; and Section 4 contains a description of the MARD-Y3 and
the SPT-SZ cluster samples as well as the priors adopted for the
analysis. Our main results are presented in Section 5, comprising the
different cross-checks on scaling relation parameters that validate
our selection function modelling and that enable further checks of
the selection functions. The results are then discussed in Section 6,
leading to our conclusions in Section 7. The appendices contain
more extensive descriptions of the construction and validation of
the X-ray observational error model (Appendix A) and a gallery of
multiwavelength images used for visual inspection (Appendix B).

2 C O N C E P T UA L FR A M E WO R K FO R C L U S T E R
C O S M O L O G Y A NA LY S E S

In the following section, we will present in mathematical detail the
model of the cluster population used in this work to describe the prop-
erties of the cluster samples. This discussion follows the Bayesian
hierarchical framework established by Bocquet et al. (2015). The
cluster population is modelled by a forward modelling approach that
transforms the differential number of clusters as a function of halo
mass M500c

4 and redshift z to the space of observed cluster properties,
such as the measured X-ray flux f̂X, the measured richness λ̂, and the
measured SZE signal-to-noise ξ . This transformation is performed
in two steps. First, scaling relations having intrinsic scatter are
utilized to estimate the cluster numbers as a function of intrinsic flux,
richness, and SZE signal-to-noise ratio. These relations have several
free parameters such as amplitude, mass and redshift trends, intrinsic
scatter around the mean relation, and correlation coefficients among
the intrinsic scatter on different observables. Constraining these free
parameters is the aim of this work, as these constraints characterize

4M500,c is the mass enclosed in a spherical over density with average density
500 times the critical density of the Universe. For sake of brevity we will
refer to M500, c as M for the rest of this work.
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the systematic uncertainty in the observable–mass relations. Second,
we apply models of the measurement uncertainty to construct the
cluster number density as a function of their measured properties. We
also present the modelling of the selection function and of the like-
lihood used to infer the parameters governing the scaling relations.

2.1 Modelling the cluster population

The starting point of our modelling of the cluster population is their
differential number as function of halo mass M500c and redshift z,
given by

dN

dM

∣∣∣
M,z

= dn

dM

∣∣∣
M,z

d2V

dzd�
dzd�, (1)

where dn
dM

∣∣
M,z

is the HMF describing the differential number density
of haloes at mass M and redshift z, as presented by Tinker et al.
(2008); d2V

dzd�
dzd� is the cosmological volume subtended by the

redshift bin dz, and the survey angular footprint d�.
The mapping from halo mass to intrinsic cluster properties is

modelled by scaling relations, which are characterized by a mean
relation with free parameters and a correlated scatter. The mean
intrinsic relations we use read as

〈ln fX〉 = ln
L0 AX

4πd2
L(z)

+ BX ln

(
M h

M0,X

)
+ 2 ln

(
E(z)

E(z0,X)

)

+CX ln

(
1 + z

1 + z0,X

)
(2)

for the rest frame [0.5, 2] keV X-ray flux (hereafter ‘X-ray flux’, for
details see Section 4.1.1 below),5

〈ln λ〉 = ln Aλ + Bλ ln

(
M h

M0,λ

)
+ Cλ ln

(
E(z)

E(z0,λ)

)
(3)

for the richness, and

〈ln ζ 〉 = ln ASZ + ln BSZ

(
M h

M0,SZ

)
+ CSZ ln

(
E(z)

E(z0,SZ)

)
(4)

for the SZE signal-to-noise ratio in a reference field. h is the
present-day expansion rate in units of 100 km s−1 Mpc−1, and E(z)
the ratio between the expansion rate at redshift z and the current
day expansion rate. The form of the redshift evolution adopted in
equations (3) and (4) has explicit cosmological dependence in the
redshift evolution that is not well motivated (see discussion in Bulbul
et al. 2019, hereafter Bu19), but we nevertheless adopt these forms
for consistency with previous studies (e.g. S15). The pivot points
in mass M0,X = 6.35 × 1014h M�h−1, M0,λ = 3. × 1014 M�h−1 =
M0,SZ, in luminosity L0 = 1044 erg s−1, and in redshift z0,X = 0.45,
z0,λ = 0.6 = z0,SZ are constants in our analysis. In contrast, the
parameters Aℵ, Bℵ, and Cℵ for ℵ ∈ (X, λ, SZ) are free parameters of
the likelihoods described in Section 3. These parameters encode the
systematic uncertainty in the mass derived from each observable.

The inherent stochasticity in the cluster populations is modelled by
assuming that the intrinsic observable scatters lognormally around
the mean intrinsic relation. Consequently, given mass M and redshift
z, the probability for the intrinsic cluster observables (fX, λ, ζ ) is
given by

P (fX, λ, ζ |M, z) = 1√
(2π )3 det C

1

fXλζ
exp

{
−1

2
�xT C−1�x

}
,

(5)

5The flux in this form makes explicit the cosmological dependencies due to
distances and to self-similar evolution while allowing for departures from
that self-similar evolution.

with

�xT = (ln fX − 〈ln fX〉, ln λ − 〈ln λ〉, ln ζ − 〈ln ζ 〉) (6)

and

C =
⎡
⎣ σ 2

X σXσλρX,λ σXσSZρX,SZ

σXσλρX,λ σ 2
λ σλσSZρλ,SZ

σXσSZρX,SZ σλσSZρλ,SZ σ 2
SZ

⎤
⎦, (7)

where σ ℵ for ℵ ∈ (X, λ, SZ) encodes the magnitude of the intrinsic
lognormal scatter in the respective observable, while the correlation
coefficients ρℵ,ℵ′ encode the degree of correlation between the in-
trinsic scatters on the respective observables. The scatter parameters
and the correlation coefficients are free parameters of our analysis.

The assumption of lognormality is motivated theoretically by two
facts: the intrinsic observables are strictly larger than zero, and a
lognormal scatter is the simplest model. Operationally, it has the
added benefit of allowing one to introduce correlated scatter in
a well-defined way. Observationally, deviations from lognormality
have not been detected (e.g. Mantz et al. 2016 did not measure any
significant skewness in several different observable–mass relations).
In this work, we introduce a new framework to test lognormality (cf.
Section 3.3).

The differential number of objects as a function of intrinsic
observables can be computed by applying the stochastic mapping
between mass and intrinsic observables to the differential number of
clusters as a function of mass, that is

d3N

dfXdλdζ

∣∣∣∣
fX,λ,ζ,z

=
∫

dMP (fX, λ, ζ |M, z)
dN

dM

∣∣∣∣
M,z

. (8)

In some parts of our subsequent analysis, we do not require the
distribution in SZE signal-to-noise ratio. The differential number
of objects as a function of intrinsic X-ray flux and richness can be
obtained either by marginalizing equation (8) over the intrinsic SZE
signal ζ , or by defining P(fX, λ|M, z) just for the X-ray and optical
observable by omitting the SZE part,

d2N

dfXdλ

∣∣∣∣
fX,λ,z

=
∫

dζ
d3N

dfXdλdζ

∣∣∣∣
fX,λ,ζ,z

=
∫

dMP (fX, λ|M, z)
dN

dM

∣∣∣∣
M,z

. (9)

2.2 Modelling measurement uncertainties

The intrinsic cluster observables are not directly accessible as only
their measured values are known. We thus need to characterize the
mapping between intrinsic and measured observables.

For the X-ray flux, we assume that the fractional error on the flux
σ̂X is the same as the fractional error in the count rate. For each object
(i) in our catalogue we can determine

P
(
f̂

(i)
X |fX

) = 1√
2π

(
σ̂

(i)
X

)2

1

f̂
(i)
X

exp

{
−1

2

(
ln f̂

(i)
X − ln fX

)2(
σ̂

(i)
X

)2

}
,

(10)

where f̂
(i)
X is the measured flux, and fX is the intrinsic flux. For an

application described below, it is necessary to know the measurement
uncertainty on the X-ray flux for arbitrary f̂X, also those fluxes
for which there is no corresponding entry in the catalogue. As
described in more detail in Appendix A, we extrapolate the relative
measurement uncertainty rescaled to the median exposure time in our
footprint, creating a function σ̂ 2

X(f̂X, z, texp), which in turn allows us
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to compute

P (f̂X|fX, z, texp) = 1√
2πσ̂ 2

X(f̂X, z, texp)

1

f̂X

× exp

{
−1

2

(ln f̂X − ln fX)2

σ̂ 2
X(f̂X, z, texp)

}
. (11)

Following S15, the measurement uncertainty on the optical rich-
ness is modelled as Poisson noise in the Gaussian limit, that is

P (λ̂|λ) = 1√
2πσ 2

λ

exp

{
−1

2

(λ̂ − λ)2

σ 2
λ

}
, (12)

where λ̂ is the measured richness as opposed to the intrinsic richness λ

and σ 2
λ = λ. For each intrinsic richness, this distribution in internally

normalized. The measurement uncertainty on the SZE signal-to-
noise ratio follows the prescription of Vanderlinde et al. (2010), who
have determined the relation between measured SZE signal-to-noise
ξ and the intrinsic signal-to-noise ratio, as a function of the effective
field depth γ f,6 namely

P (ξ |ζ, γf) = 1√
2π

exp

{
−1

2
(ξ −

√
γ 2

f ζ 2 + 3)2

}
. (13)

2.3 Modelling selection functions

The selection functions in optical and SZE observables are easy to
model as the mapping between measured and intrinsic observables
is known and the selection criterion is a sharp cut in the measured
observable. For the optical case, the removal of random superposi-
tions by imposing fcont < 0.05 in the optical follow-up leads to a
redshift-dependent minimal measured richness λmin(z), as discussed
in K19. This leads to the optical selection function or probability that
a cluster is selected within the DES data P (DES|λ̂, z), which is a
step function in measured richness

P (DES|λ̂, z) = �(λ̂ − λmin(z)), (14)

where �(x) is the Heavyside step function with value 0 at x < 0,
and 1 at x ≥ 0. Using the measurement uncertainty on richness
(equation 12), we construct the optical selection function in terms of
intrinsic richness λ as

P (DES|λ, z) = P (λ̂ > λmin(z)|λ) =
∫ ∞

λmin(z)
dλ̂P (λ̂|λ), (15)

where DES can take the values ‘true’ (i.e. the cluster is in the sample)
or ‘false’ (i.e. the cluster fails to make it into the sample).

The SPT catalogue we use in this work is selected by a lower limit
to the measured signal-to-noise ξ > 4.5, which, analogously to the
optical case, is a step function in ξ and leads to an SZE selection
function or probability that a cluster is selected within the SPT survey
P(SPT|ζ , γ f) given by

P (SPT|ζ, γf) = P (ξ > 4.5|ζ, γf) =
∫ ∞

4.5
dξP (ξ |ζ, γf). (16)

6In de Haan et al. (2016), these factors are presented as renormalizations of the
amplitude of the SZE-signal–mass relation. Our notation here is equivalent,
but highlights that they describe a property of the mapping between intrinsic
SZE and measured signal, and not between intrinsic signal and mass.

2.3.1 Constraining the X-ray selection function

The selection criterion used to create the 2RXS catalogue is given
by the cut ξX > 6.5, where ξX is the significance of existence of a
source, computed by maximizing the likelihood that a given source
is not a background fluctuation (Boller et al. 2016). In the space of
this observable, the selection function is a simple step function, as
shown in the left-hand panel of Fig. 1. In X-ray studies however, the
selection function in the space of intrinsic X-ray flux is traditionally
determined by image simulations (Vikhlinin et al. 1998; Pacaud et al.
2006; Clerc et al. 2018). In such an analysis, the emission from
simulated clusters is used to create simulated X-ray images or event
files, which are then analysed with the same source extraction tools
that are employed on the actual data. As a function of intrinsic flux,
the fraction of recovered clusters is then used to estimate the selection
function P(X-det|fX, ...), shown in the right-hand panel of Fig. 1.
This process captures, to the degree that the adopted X-ray surface
brightness model is consistent with that of the observed population,
the impact of morphological variation on the selection.

In this work, we take a novel approach, inspired by the treatment
of optical and SZE selection functions outlined above. This approach
is based on the concept that the traditional selection function can be
described as a combination of two distinct statistical processes: the
mapping between measured detection significance ξX and measured
flux f̂X (transition between left-hand and central panels in Fig. 1),
and the mapping between measured flux f̂X and intrinsic flux fX

(transition between central and right-hand panels in Fig. 1), that is

P (X-det|fX, ...) =
∫

df̂XP (X-det|f̂X, ..)P (f̂X|fX, ...), (17)

where the second part of the integrand is the description of the
measurement uncertainty of the X-ray flux. This mapping is needed
to perform the number counts and any mass calibration, so it needs to
be determined anyway. Its construction is described in Appendix A.
In the case of the Roentgen All Sky Survey (RASS), the first term can
be easily computed from the mapping between measured flux f̂X and
X-ray significance ξX, P (ξX|f̂X, ..). Indeed, it is just the cumulative
distribution of that mapping for ξX > 6.5.

The mapping between measured flux f̂X and X-ray significance
ξX can be seen in Fig. 2 for the MARD-Y3 clusters, where we plot
the detection significance against the measured fluxes. The relation
displays significant scatter, which is partially due to the different
exposure times (colour-coded). Also clearly visible is the selection
at ξX > 6.5 (black line). As an empirical model for this relation, we
make the ansatz

〈ln ξX〉 = ln ξ0(z) + α0 + α1 ln

(
f̂X

f0(z)

)
+ α2 ln

(
texp

400s

)
, (18)

where ξ 0(z) and f0(z) are the median significance and measured flux
in redshift bins. To reduce measurement noise, we smooth them in
redshift. We then assume that the significance of each cluster scatters
around the mean significance with a lognormal scatter σα . This pro-
vides the distribution P (ξX|f̂X, z, texp) = ξ−1

X N (ln ξX|〈ln ξX〉, σ 2
α ).

To fit the free parameters of this relation, namely (α0, α1, α2, σα),
we determine the likelihood of each cluster i as

Lα,i = P
(
ξ

(i)
X |f̂ (i)

X , z(i), t (i)
exp

)
P
(
ξX > 6.5|f̂ (i)

X , z(i), t
(i)
exp

) , (19)

where the numerator is given by evaluating P (ξX|f̂X, z, texp) for each
cluster, while the denominator ensures proper normalization for the
actually observable data, that is clusters with ξX > 6.5. In properly
normalizing we account for the Malmquist bias introduced by the
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MARD-Y3 and SPT-SZ validation 775

Figure 1. Schematic representation of the construction of the X-ray selection function: in the space of detection significance ξX (left), the selection function
is simply a step function. Objects above the selection cut are selected, and objects below not. Using the stochastic mapping P (ξX|f̂X, texp) between detection
significance and measured flux f̂X at a given exposure time texp, we construct the selection function in the space of measured flux f̂X and exposure time texp

(centre). Accounting for the solid angle weighted exposure time distribution P(texp) and the measurement uncertainty on the flux P (f̂X|fX, texp), results in the
X-ray selection function in the space of intrinsic flux fX (right). The latter is usual determined in image simulations making specific assumption on the cluster
morphology. In contrast, our method empirically determines the mapping between detection significance and measured flux, thereby accounting for the real
morphological variation in the cluster population as well as its uncertainty.

Figure 2. The measured X-ray flux f̂X and the X-ray detection significance
ξX, colour coded by the exposure time. The black horizontal line indicates the
X-ray selection criterion ξX > 6.5. While X-ray flux and significance clearly
display scaling, the scatter around this scaling correlates with exposure time.
This relation and the scatter around it can be used to estimate the X-ray
selection function (cf. Section 2.3.1).

X-ray selection. Note also that we do not require the distribution of
objects as a function of f̂X to perform this fit, as it would multiply
both the numerator and the denominator and hence cancel out.

The total log-likelihood of the parameters (α0, α1, α2, σα) is given
by the sum of the log-likelihoods ln Lα = ∑

iln Lα,i. This likelihood
provides stringent constraints on the parameters (α0, α1, α2, σα). We
find the best-fitting values α0 =−0.113 ± 0.020, α1 = 1.275 ± 0.031,
α2 = 0.799 ± 0.038, and σα = 0.328 ± 0.012. Noticeably, the
constraints are very tight, indicating that the sample itself provides
precise information about this relation.

Given this relation, the X-ray selection function can be
computed as

P (RASS|f̂X, z, texp) = P (ξX > 6.5|f̂X, texp, z)

=
∫ ∞

6.5
dξXP (ξX|f̂X, texp, z). (20)

Whenever the X-ray selection function is required, we sample the
extra nuisance parameters with the ancillary likelihood (equation 19),
marginalizing over the systematic uncertainties in this element of

the X-ray selection function. Further discussion of the parameter
posteriors and their use to test for systematics in the selection function
can be found in Section 6.1.

2.3.2 Testing for additional dependencies

Empirically calibrating the relation governing the X-ray selection
function has three benefits. (1) We take full account of the marginal
uncertainty in the X-ray selection function. (2) Compared to image
simulation, we do not rely on the realism of the clusters put into
the simulation. Indeed, we use the data themselves to infer the
relation. Together with the aforementioned marginalization this
ensures that we do not artificially bias our selection function. (3)
We can empirically explore any further trends of the residuals of the
significance–flux relation with respect to other quantities.

Trends of the residuals are shown in Fig. 3, where the residual
σ−1

α (ln ξ
(i)
X − 〈ln ξX〉(i)) is plotted against redshift (upper left panel),

Galactic hydrogen column density (upper right), background count
rate in an aperture of 5 arcmin radius (lower left), and measured extent
(lower right). As black dots we show the means of the populations in
bins along the x-axis. We find a weak trend with hydrogen column
density. For simplicity, we let this trend contribute to the overall
scatter σα . We find no correlation with the background brightness.
There is a clear trend with measured extent, as can be expected for
extended sources like clusters. We do not, however, follow up on this
trend, as 442 of the 708 cluster that we consider have a measured
extent of 0 (due to the large point spread function of RASS).

Disturbingly, we find a trend with redshift which is not captured
by our model, as can be seen in the upper left panel of Fig. 3. We
tend to underestimate the significance given flux and exposure time
at intermediate and high redshifts. This residual systematic manifests
itself at different stages in our analysis, and we discuss this as it arises
and again in Section 6.1.

3 VA L I DAT I O N ME T H O D S

As described above, the selection model for the clusters is specified
by the form of the mass–observable relation and the intrinsic and ob-
servational scatter of the cluster population around the mean relation.
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776 S. Grandis et al.

Figure 3. Residuals of the fitted significance–flux relation against redshift
(upper left panel), Galactic foreground neutral hydrogen column density
(upper right), background counts rate in the aperture (lower left), and
measured extent. Colour coded is the count rate of the objects. The residuals
are normalized by the best-fitting value of the intrinsic scatter around the
mean relation. As black point we show the means of these points in bins
along the x-axis. This plot indicates that the addition of a redshift trend or
and extent trend would be natural extension of our model. The current level
of systematic and statistical uncertainties however does not require these
extensions.

The choice of the form of this relation should be driven primarily by
what the data themselves demand, with guidance from the principle
of preferred simplicity (Occam’s razor) and informed by predictions
from structure formation simulations. This scaling relation should
be empirically calibrated using methods such as weak-lensing and
dynamical masses, whose systematics can be calibrated and corrected
using by comparison with structure formation simulations. Finally, a
key step in cosmological analyses of cluster samples is to check
consistency of the cluster sample with the best-fitting model of
cosmology and mass–observable relation (e.g. goodness of fit; see
Bocquet et al. 2015).

The mass–observable relation can be calibrated using multiple
sources of mass information, including direct mass information and
from the cluster counts themselves (which is the distribution in
observable and redshift of the cluster sample). In future cosmology
analyses, blinding of the cosmological and nuissance parameters will
be the norm, and cluster cosmology is no exception. The validation of
a cluster sample through the requirement that all different reservoirs
of information about the scaling relation lead to consistent results
can be carried out in a blinded manner and should lead to improved
stability and robustness in the final, unblinded cosmological results.
We note that given the sensitivity of mass measurements to the
distance–redshift relation and the sensitivity of the counts to both
distance–redshift and growth of structure, these blinded tests should
in general be carried out within each family of cosmological
models considered (e.g. flat or curved ν–�CDM, flat or curved
ν–wCDM, etc).

In this work, we seek to perform the following tests to validate
the selection function modelling of the MARD-Y3 sample: (1) we
investigate whether the X-ray flux–mass and richness–mass relation
obtained by cross-calibration using SPT-SZ mass information is

consistent with the relation derived from the number counts of the
MARD-Y3 sample; (2) we compare the scaling relation constraints
from different flavours of number counts with each other (e.g. number
counts in X-ray flux and redshift, in optical richness and redshift, and
in both X-ray flux, optical richness, and redshift); and (3) finally, we
constrain the probability of incompleteness in the SPT-SZ sample or
contamination in the MARD-Y3 sample by comparing the clusters
with and without counterparts in the other survey to the probabilities
of having or not having counterparts as estimated using the selection
functions. We take advantage in these validation tests of the fact that
these scaling relations have been previously studied, and so we can
compare our results not only internally but also externally to the
literature. Finally, a key validation test could be carried out with the
weak-lensing information from DES, but we delay that to a future
analysis where we hope also to present unblinded cosmological
results.

Given the stochastic description of the cluster population outlined
above, we set-up different likelihood functions for each of these tests.
These likelihoods are functions of the parameters determining the
mapping between intrinsic observables and mass, the scatter around
these relations and the correlation coefficients among the different
components of scatter. Consequently, sampling these likelihoods
with the data constrains the parameters. In the following sections, we
present the likelihoods used for each of the three validation methods
listed above.

3.1 SPT-SZ cross-calibration

For each object in the matched MARD-Y3–SPT-SZ sample (see
Section 4.1.3), we seek to predict the likelihood of observing the
measured SZE signal-to-noise ξ (i) given the measured X-ray flux
f̂

(i)
X , measured richness λ̂(i), and the scaling relation parameters. This

likelihood is constructed by first making a prediction of the intrinsic
SZE-signal-to-noise ζ that is consistent with the measured X-ray flux
f̂

(i)
X and measured richness λ̂(i), depending on the scaling relation

parameters. To this end, the joint distribution of intrinsic properties
is evaluated at the intrinsic fluxes and richnesses consistent with the
measurements

P
(
ζ |f̂ (i)

X , λ̂(i), z(i)
) ∝

∫
dλP (λ̂(i)|λ)

∫
dfXP

(
f̂

(i)
X |fX

)
× d3N

dfXdλdζ

∣∣∣
fX,λ,ζ,z(i)

. (21)

This expression of expected intrinsic SZE signal takes account of
the Eddington bias induced by the observational and intrinsic scatter
in the X-ray and optical observable acting in combination with the
fractionally larger number of objects at low mass, encoded in the last
term of the expression.

To evaluate the likelihood of the measured SZE signal-to-noise
ξ (i) given the measured X-ray flux f̂

(i)
X and measured richness λ̂(i),

we need to compare the predicted distribution P (ζ |f̂ (i)
X , λ̂(i), z(i))

with the likely values of intrinsic SZE signal derived from
the measurement ξ (i) and the measurement uncertainty. This is
written

P
(
ξ (i)|f̂ (i)

X , λ̂(i), z(i)
) =

∫
dζ P

(
ξ (i)|ζ, γ

(i)
f

)
P
(
ζ |f̂ (i)

X , λ̂(i), z(i)
)

∫
dζ P

(
SPT|ζ, γ

(i)
f

)
P
(
ζ |f̂ (i)

X , λ̂(i), z(i)
) ,

(22)

where in the denominator SPT denotes that the cluster is detected
in the SPT selection. Notably, the denominator ensures the proper
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normalization and also takes into account the Malmquist bias7

introduced by the SPT-SZ selection. Also note that the normalization
cancels the dependence of this likelihood on the amplitude of
the number of objects at the redshift z(i), measured flux f̂

(i)
X , and

measured richness λ̂(i). This strongly weakens its cosmological
dependence and makes it independent of the X-ray and the optical
selection function (see also Liu et al. 2015). For sake of brevity
we omitted that this likelihood depends on the scaling relation
parameters and the cosmological parameters, all needed to compute
the distribution of intrinsic properties.

The total log-likelihood of SPT-SZ cross-calibration over the
matched sample is given by the sum of the individual log likelihoods

ln LSPTcc =
∑

i∈matched

ln P
(
ξ (i)|f̂ (i)

X , λ̂(i), z(i)
)
, (23)

which is a function of the scaling relation parameters and cosmology.
Sampling it with priors on the SZE scaling relation parameters that
come from an external calibration will then transfer that calibration
to the X-ray flux and richness scaling relations.

3.2 Calibration with number counts

The number of clusters as a function of measured observable and
redshift is a powerful way to constrain the mapping between observ-
able and mass, because the number of clusters as a function of mass
is known for a given cosmology (see self-calibration discussions in
Majumdar & Mohr 2003, 2004; Hu 2003).

3.2.1 X-ray number counts

The likelihood of number counts is given by

ln Lnc X =
∑

i

ln N
∣∣
f̂

(i)
X ,z(i) − Ntot, (24)

where the expected number of objects as a function of measured flux
f̂

(i)
X and redshift z(i) is

N |
f̂

(i)
X ,z(i) = P

(
RASS|f̂ (i)

X , z(i), t (i)
exp

) ∫
dfXP

(
f̂

(i)
X |fX

)
×

∫
dλ P (DES|λ, z(i))

d2N

dfXdλ

∣∣∣
fX,λ,z(i)

df̂X, (25)

where the first factor takes into account the X-ray selection, the
second factor models the measurement uncertainty on the X-ray
flux, and the third factor models the optical incompleteness. As
for DES and SPT previously, P (RASS|f̂ (i)

X , z(i), t (i)
exp) represents the

probability that a cluster is selected within the RASS survey.
The total number of objects is computed as

Ntot =
∫

dtexpP (texp)
∫

dz

∫
df̂XP (RASS|f̂X, z, texp)

×
∫

dfXP (f̂X|fX, z, texp)
∫

dλP (DES|λ, z)
d2N

dfXdλ

∣∣∣
fX,λ,z

,

(26)

7In cluster population studies redshift information is usually available. Thus,
the term ‘Malmquist bias’ does not refer to the larger survey volume at
which high flux objects can be detected, when compared to low flux objects.
It refers to that fact that in the presence of scatter among observables,
upscattering objects are more likely to pass any selection criterion than
downscattered objects. This biases observable–observable plots close to the
selection threshold.

where P(texp) is the solid angle weighted exposure time distribution,
as determined in K19. We highlight here that, unlike previous work,
we explicitly model not only the selection on the X-ray observable,
but also fold in the incompleteness correction due to the MCMF
optical cleaning via the term P(DES|λ, z).

3.2.2 Optical number counts

While not customary for a predominantly X-ray-selected sample, the
number counts of clusters can also be represented as a function of
optical richness. In this case, the likelihood reads

ln Lnc λ =
∑

i

ln N
∣∣
λ̂(i),z(i) − Ntot, (27)

where Ntot is given by equation (26), whereas the expected number
of clusters as a function of measured richness λ̂(i) and redshift z(i) is
computed as follows

N |λ̂(i),z(i) =
∫

dtexpP (texp)
∫

df̂XP (RASS|f̂X, z, texp)

×
∫

dfXP (f̂X|fX, z, texp)

×
∫

dλP (λ̂(i)|λ, z)
d2N

dfXdλ

∣∣∣
fX,λ,z

dλ̂, (28)

where the first three integrals take account of the X-ray selection,
while the last integral models the measurement uncertainty on the
richness.

3.2.3 Combined X-ray and optical number counts

Besides determining the number counts in only one observable, one
can also determine the number counts in more than one observable
(e.g. Mantz et al. 2010), in our case by fitting for the number of
objects as a function of both measured flux f̂

(i)
X and richness λ̂(i).

We call this flavour of number counts 2D number counts, as opposed
to the 1D number counts in either X-ray flux (cf. Section 5.2.1) or
richness (cf. Section 3.2.2). The likelihood of 2D number counts
reads

ln Lnc X,λ =
∑

i

ln N
∣∣
f̂

(i)
X ,λ̂(i),z(i) − Ntot, (29)

where the expected number of objects as a function of measured flux
f̂

(i)
X and richness λ̂(i) is

N |
f̂

(i)
X ,λ̂(i),z(i) = P

(
RASS|f̂ (i)

X , z(i), t (i)
exp

) ∫
dfXP (f̂ (i)

X |fX)

×
∫

dλP (λ̂(i)|λ)
d2N

dfXdλ

∣∣∣
fX,λ,z(i)

df̂Xdλ̂, (30)

computed by folding the intrinsic number density with the measure-
ment uncertainties on flux and richness.

3.3 Consistency check using two cluster samples

Given the selection functions for two cluster samples, the probability
that any member of one sample is present in the other can be
calculated. Thus, two distinct tests can be set-up: (1) for each object
in the sample A, we can compute the probability of being detected by
the sample B, and compare this probability to the actual occurrence
of matches; and (2) inversely, we can start from the sample B,
compute the probabilities of detection by A, and compare that to
the occurrence of matches. This provides a powerful consistency
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check of the two selections functions, and if anomalies are found,
this approach can be used, for example, to probe for contamination
or unexplained incompleteness in the cluster samples.

3.3.1 MARD-Y3 detection probability for SPT-SZ clusters

For any SPT-SZ cluster with measured SZE signal-to-noise ξ (i) and
redshift z(i) in the joint SPT–DES-Y3 footprint we can compute the
probability of being detected by MARD-Y3 as follows. We first
predict the probability distribution of intrinsic fluxes and richnesses
associated with the measured SZE-signal-to-noise ratio as

P (fX, λ|ξ (i), z(i)) ∝
∫

dζP
(
ξ (i)|ζ, γ

(i)
f

) d3N

dfXdλdζ

∣∣∣
fX,λ,ζ,z(i)

. (31)

This expression needs to be properly normalized to be a distribu-
tion in intrinsic flux and richness. This is achieved by imposing∫

dfX

∫
dλ P (fX, λ|ξ (i), z(i)) = 1, which sets the proportionality

constant of the equation above. Note that this normalization can-
cels the dependence of this expression on the number of clusters
observed.

The predicted distribution of intrinsic fluxes and richnesses needs
to be folded with the selection functions to compute the detection
probability. The optical selection function is simply given by equa-
tion (15) evaluated at the cluster redshift z(i). On the other hand, when
computing the X-ray selection function we take the RASS exposure
time at the SPT-SZ position into account, while marginalizing over
all possible measured fluxes. The X-ray selection function thus reads

P
(
RASS|fX, t (i)

exp, z
(i)
) =

∫
df̂XP

(
RASS|f̂X, t (i)

exp, z
(i)
)

×P
(
f̂X|fX, t (i)

exp, z
(i)
)
, (32)

where the second factor is taken from equation (11), the expression
for the X-ray measurement error at arbitrary measured flux f̂X.

The probability of detecting in MARD-Y3 an SPT-SZ cluster
with measured SZE-signal-to-noise ξ (i) and redshift z(i) can then
be computed by folding the predicted distribution of fluxes and
richnesses with the selection functions in flux and richness as follows

p
(i)
M|S := P (RASS, DES|ξ (i), z(i))

=
∫

dfXP
(
RASS|fX, t (i)

exp, z
(i)
)

×
∫

dλP (DES|λ, z(i))P
(
fX, λ|ξ (i), z(i)

)
, (33)

where we omit the dependence on the SPT-SZ field depth γ
(i)
f at the

position of the SPT-SZ selected cluster.
Given these probabilities, we can define two interesting classes

of objects: (1) unexpected MARD-Y3 confirmations of SPT-SZ
detections, that is SPT-SZ objects that should not have an MARD-
Y3 match given their low probability but have been none the
less matched, and (2) missed MARD-Y3 confirmations of SPT-SZ
detections, that is SPT-SZ objects with a very high chance of being
matched by MARD-Y3 that have none the less not been matched. For
the discussion in this paper we adopt a low probability threshold of
p

(i)
M|S < 0.025 for the unexpected confirmations, and we adopt a high

probability threshold of p
(i)
M|S > 0.975 for the missed confirmations.

Anticipating that we find a few unexpected MARD-Y3 confirma-
tions and no missed confirmations, we introduce here the probability
π t that an SPT-SZ cluster that should not be confirmed based on his
p

(i)
M|S is confirmed none the less. The likelihood of π t can be computed

by following the probability tree shown in Fig. 4. The probability
of being matched is (1 − p

(i)
M|S)πt + p

(i)
M|S, while the probability of

Figure 4. Probability tree describing the probability of an SPT-SZ cluster
being detected in MARD-Y3. Besides the matching probability computed
from the scaling between intrinsic observables and mass, the scatter around
this relation, the observational uncertainties on the observables and the
selection functions p

(i)
M|S, we also introduce the chance of either X-ray flux

and richness boosting or SZE signal dimming π t, which would lead to the
MARD-Y3 detection of SPT-SZ cluster that should otherwise not have been
matched. Summarized at the end of each branch are the probabilities of
matching or of not matching.

not being matched is (1 − p
(i)
M|S)(1 − πt). Thus, the log-likelihood is

given by

ln L(πt) =
∑

i∈match

ln
((

1 − p
(i)
M|S

)
πt + p

(i)
M|S

)
+

∑
i∈!match

ln
((

1 − p
(i)
M|S

)
(1 − πt)

)
(34)

This likelihood also depends on the scaling relation parameters
through the detection probabilities p

(i)
M|S. Marginalizing over these

scaling relation parameters accounts for the systematic uncertainty
on the observable–mass relations.

3.3.2 SPT-SZ detection probability for MARD-Y3 clusters

Similarly to the case in the previous section, for each MARD-Y3
cluster with measured X-ray flux f̂

(i)
X , measured richness λ̂(i), and

redshift z(i) in the joint SPT-SZ–DES-Y3 footprint, we can compute
the probability of it being detected by SPT

p
(i)
S|M := P

(
SPT|f̂ (i)

X , λ̂(i), z(i)
)

=
∫

dζP
(
SPT|ζ, γ

(i)
f

)
P
(
ζ |f̂ (i)

X , λ̂(i), z(i)
)
, (35)

where the first factor in the integral is the SPT-SZ selection function
evaluated for the field depth at the MARD-Y3 cluster position, while
the second factor is the prediction for the intrinsic SZE-signal-to-
noise ratio consistent with the measured X-ray and optical properties.
The latter is taken from equation (21) while ensuring that it is properly
normalized,

∫
dζP (ζ |f̂ (i)

X , λ̂(i)) = 1.
We introduce the probability of each individual MARD-Y3 cluster

being a contaminant π c, and the probability that an SPT-SZ cluster
that should be detected has not been detected π i. From the probability
tree shown in Fig. 5 we can determine the probability of a MARD-
Y3 cluster being matched by SPT-SZ as (1 − πc)p(i)

S|M(1 − πi), and
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MARD-Y3 and SPT-SZ validation 779

Figure 5. Probability tree describing the probability of an MARD-Y3 cluster
being detected by SPT. Besides the matching probability computed from
the scaling between intrinsic observables and mass, the scatter around this
relation, the observational uncertainties on the observables and the selection
functions p

(i)
S|M, we also introduce the chance that an MARD-Y3 cluster is a

contaminant π c, and the chance that SPT-SZ misses a cluster that it should
detect, indicating incompleteness in SPT, π i. Summarized at the end of each
branch are the probabilities of being matched or not matched.

the probability of a cluster not being matched as πc + (1 − πc)(1 −
p

(i)
S|M + πip

(i)
S|M). Thus, the log-likelihood is given by

ln L(πc,πi) =
∑

i∈match

ln
(
(1 − πc)p(i)

S|M(1 − πi)
)

+
∑

i∈!match

ln
(
πc + (1 − πc)

(
1 − p

(i)
S|M + πip

(i)
S|M

))
.

(36)

This likelihood also depends on the scaling relation parameter
through the detection probabilities p

(i)
M|S. Marginalizing over the scal-

ing relation parameters accounts for the the systematic uncertainties
on the observable–mass relations. Finally, note that the probability
of MARD-Y3 contamination π c and of SPT incompleteness π i are
perfectly degenerate in this context. We find that the likelihood of
SPT confirmation of MARD-Y3 clusters (equation 36) effectively
only constrains the difference between the two probabilities. That is
π c = 0.1 and π i = 0.0 is approximately as likely as π c = 0.0 and
π i = 0.1.

3.3.3 Physical interpretation

Several physical effects might bias cluster observables in an un-
usually significant level compared to the exception from the scatter
in observables. In the case of the X-ray flux these effects are, for
instance, active galactic nucleus (AGN) contamination and cluster
core phenomena. Line-of-sight projections might bias the richness of
an object, while extreme astrophysical contamination from correlated
radio or dusty emission might bias the SZE signal. The object classes
defined above (Sections 3.3.1 and 3.3.2) allow one to select likely
candidates for these effects from the comparison of two surveys. This
is especially useful in the low signal-to-noise regime where the mass
incompleteness of cluster samples in large. In this regime, physical
effects within clusters are not resolved. Selecting target lists for high

signal-to-noise follow-up might thus further our understanding on
the mass incompleteness.

For instance, the classification as an unexpected MARD-Y3
confirmations of an SPT-SZ object can be due to an underestimated
detection probability caused by an unexpectedly low SZE signal, or to
the X-ray flux and richness being biased high, leading to an actual de-
tection despite the low detection probability. It would thus be indica-
tive of interesting physical properties such as extremely cool cluster
cores, strong astrophysical contamination of the SZE signal or strong
projection effects in the optical. The presence and impact of these
effects would have to be studied with high-resolution X-ray or (sub-
)millimetre imaging, or spectroscopic follow-up of the cluster mem-
bers, respectively. Also note that this class of objects in unlikely to be
an MARD-Y3 contaminant, as we find an SPT-SZ object at the same
position. Given that the SPT-SZ objects and the putative MARD-Y3
contaminants are both rare on the plane of the sky, the chance of
randomly superposing two objects from these classes is small.

As another example, missed MARD-Y3 confirmations of SPT-
SZ objects can be due to high SZE signals biasing the detection
probability high, or to the X-ray flux and richness being biased low,
leading to a non-detection despite the high detection probability.
This circumstance is less likely to occur, as astrophysical SZE
contaminants usually bias the SZE fluxes low, projection effects bias
the richness high, and AGN contamination and cluster core emission
bias the X-ray fluxes high. Nevertheless, such an object would be an
interesting candidate for an SPT-SZ contaminant, or a case of excess
incompleteness in the MARD-Y3 sample. Following the same logic,
a missed SPT-SZ confirmation of MARD-Y3 object would indicate
either the presence of physical effects that bias the X-ray flux and the
richness high, astrophysical contamination that biases the SZE signal
low, MARD-Y3 contamination or SPT-SZ excess incompleteness.

4 DATA SE T A N D P R I O R S

We present here the cluster samples and then the priors used in
obtaining the results presented in the following section.

4.1 Cluster samples

Here, we summarize not only the main properties of the prime focus
of our validation, the MARD-Y3 cluster sample, but also the SPT-
SZ sample that we use for validation and for cross-matching with
MARD-Y3.

4.1.1 MARD-Y3 X-ray-selected clusters

In this work, we seek to validate the mass information and the selec-
tion function modelling of the MARD-Y3 cluster sample, presented
in K19. In that work, optical follow-up with the MCMF algorithm
(Klein et al. 2018) of the 2RXS (Boller et al. 2016) is performed by
scanning the DES photometric data with a spatial filter centred on
the X-ray candidate position and inferred mass, and a colour filter
based on the red-sequence model at a putative redshift. This process
provides a cluster richness estimate λ̂ and photometric redshift z.
Comparison to the richness distribution in lines of sight without X-
ray candidates allows one to estimate the probability fcont that the
X-ray source and optical system identified by MCMF are a random
superposition (contamination). In cases of multiple richness peaks
along a line of sight toward a 2RXS candidate, the redshift with lowest
fcont is identified as the optical counterpart. The redshifts display
subpercent level scatter with respect to spectroscopic redshifts, and
the richnesses λ̂ can be adopted as an additional cluster mass proxy.
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Figure 6. MARD-Y3 sample of 708 clusters constructed by cleaning the
2RXS catalogue with DES data. While not used in the rest of the analysis,
the X-ray inferred mass MX is used here to highlight the mass range of
our sample. The colour encodes the measured richness of the counterpart in
the DES data. The black line indicates the forecast of the estimated mass
corresponding to 40 photon counts in the first eROSITA full sky survey after
half a year of observing time.

In this work, we focus on the z > 0.15 sample with fcont < 0.05
plus an additional rejection of luminosity–richness outliers with an
infrared signature compatible with an AGN (cf. K19, section 3.11).
Our MARD-Y3 sample is then 708 clusters in a footprint of 5204 deg2

with an expected contamination of 2.6 per cent (K19).
For these clusters, several other X-ray properties, such as the de-

tection significance ξX and the RASS exposure time texp are available
from 2RXS. Boller et al. (2016) originally report luminosities in the
[0.1,2.4] keV band extracted from a fixed aperture with radius of
5 arcmin. K19 rescaled these luminosities to luminosities in the rest
frame [0.5,2] keV band and within R500c, the radius enclosing an
overdensity of 500 wth respect to the critical density. The rescaling
is derived from the cross-matching with the meta-catalogue of X-
ray detected clusters of galaxies (MCXC) catalogue by Piffaretti
et al. (2011). This correction is only reliable at z > 0.15. Using
the luminosity–mass scaling relation by Bu19 and correcting for
Eddington bias, K19 gave an point estimate of the X-ray inferred
mass MX, that we use for plotting purposes. The X-ray flux f̂X

we employ is computed as f̂X = LX/(4πd2
L(z)), where LX is the

X-ray luminosity within R500c, and dL(z) is the luminosity distance
evaluated at the reference cosmology. This leads to the fact that
technically our X-ray flux corresponds to the rest frame [0.5,2] keV.
The transformation from the observed [0.1,2.4] keV band to this band
is discussed in K19. It is also noteworthy that MCMF allows one to
detect the presence of more than one significant optical structure
along the line of sight toward an X-ray candidate.

In Fig. 6, we show the redshift–X-ray inferred mass distribution
of this sample, colour coded to reflect the cluster richnesses. We also
show as a black line the mass corresponding to 40 photon counts
in the first eROSITA full sky survey (eRASS1), computed using
the eROSITA count rate–mass relation forecast by Grandis et al.
(2019). This indicates that the MARD-Y3 sample we study here is
comparable to the one we expect to study in the eRASS1 survey.

4.1.2 SPT-SZ SZE-selected clusters

We adopt the catalogue of clusters selected via their SZE signatures
in the SPT-SZ 2500 deg2 survey Bleem et al. (2015). Utilizing this
sample to an SZE signal-to-noise ratio of 4.5, we confirm the clusters

in the DES-Y3 footprint using MCMF (Klein et al. in preparation).
The low contamination level of the parent sample allows one to
achieve a low level of contamination by imposing the weak cut of
fcont < 0.2. Above a redshift of z > 0.2 this provides us with a
sample of 436 clusters. The X-ray properties, as well as the optical
properties of these objects have been extensively studied (see for
instance McDonald et al. 2014; Saro et al. 2015; Hennig et al. 2017;
Chiu et al. 2018; Bulbul et al. 2019; Capasso et al. 2019a, and
references therein). Furthermore, successful cosmological studies
have been performed with the ξ > 5 subsample (Bocquet et al. 2015;
de Haan et al. 2016; Bocquet et al. 2019), indicating that the survey
selection function is well understood and that the mass information
derived from the SZE is reliable. This motivates us to employ this
sample as a reference for our validation of the observable mass
relations and the selection function of the MARD-Y3 sample.

4.1.3 Cross-matched sample

To identify clusters selected both by SPT-SZ and by MARD-Y3, we
perform a positional matching within the angular scale of 2 Mpc at
the MARD-Y3 cluster redshift. We match 120 clusters in the redshift
range z ∈ (0.2, 1.1). We identify three clusters where the redshift
determined by the MCMF run on RASS, zRASS, is significantly
different from the redshift MCMF assigns for the SPT-SZ candidate,
zSPT. Specifically, for these objects |zRASS − zSPT| > 0.02(zRASS +
zSPT)/2, which is equivalent to more than 3σ with respect to the
typical MCMF photometric redshift accuracy (Klein et al. 2018,
2019). While for all three cases zRASS < zSPT, in all cases the MCMF
run on the SPT-SZ candidate list identifies optical structures at zRASS

as well. Both their X-ray fluxes and SZE signals are likely biased
with respect to the nominal relation for individual clusters due to the
presence of several structures along the line of sight. Disentangling
the respective contributions of the different structures along the line
of sight is complicated by different scaling of X-ray flux and SZE
signal with distance. We exclude these objects from the matched
sample.

In only one case, two MARD-Y3 clusters are associated with the
same SPT-SZ cluster: ‘SPT-CL J2358-6129’, zSPT = 0.403. Visual
inspection (cf. Fig. B1) reveals that one of the MARD-Y3 clusters,
zRASS = 0.398, is well centred on the SZE signal, and also coincides
with a peak in the galaxy density distribution. The second MARD-
Y3 cluster in the north–north-west, zRASS = 0.405, is offset from the
peaks in galaxy density, and does not correspond to any SZE signal.
Given the lack of the SZ-counterpart, we do consider this MARD-Y3
cluster not being matched by SPT. We also identify a pair of SPT
clusters (‘SPT-CL J2331-5051’ and ‘SPT-CL J2332-5053’) matched
to the same MARD-Y3 cluster (2RXS-J233146.5-505227), shown in
Fig. B2. Both SPT clusters are at redshift ∼0.57, as is the MARD-Y3
clusters. The X-ray emission is blended into one source in the RASS
image, but Chandra follow-up by (Andersson et al. 2011) clearly
shows that 95 per cent of the X-ray originates from ‘SPT-CL J2331-
5051’, which is also more significant in the SZe. We therefore take
that to be the match.

4.2 Priors

In this section, we present the priors used in the likelihood analysis.
We first discuss the cosmological priors assumed. Then, we describe
the priors on the SZE signal–mass relation, the X-ray luminosity–
mass relation, and the richness–mass relation. These priors are
summarized in Table 1. In the respective subsections, we describe in
which analysis step the specific prior is used.
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MARD-Y3 and SPT-SZ validation 781

Table 1. Summary of the informative priors employed in this work.
These priors are implemented as Gaussian probability distributions,
where we present the mean μ and the standard deviation σ as μ ± σ .

Cosmological parameters

H0 70.6 ± 2.6 Rigault et al. (2018)
�M 0.276 ± 0.047 SPT (Bo19)
S8 = σ 8(�M/0.3)0.2 0.766 ± 0.025 SPT (Bo19)

SZE ζ–mass relation
ASZ 5.24 ± 0.85 SPT (Bo19)
BSZ 1.53 ± 0.10
CSZ 0.47 ± 0.41
σ SZ 0.16 ± 0.08

X-ray LX–mass relation
AX 4.20 ± 0.91 SPT–XMM(Bu19)
BX 1.89 ± 0.18
CX − 0.20 ± 0.50
σX 0.27 ± 0.10

Optical λ–mass relation
Aλ 71.9 ± 6.1 SPT-DES (S15)
Bλ 1.14 ± 0.20
Cλ 0.73 ± 0.76
σλ 0.15 ± 0.08

4.2.1 Priors on cosmology

Throughout this work, we marginalize over the following cosmo-
logical parameters to propagate our uncertainty on these parameters.
The X-ray flux–mass relation has a distance dependence making it
dependent on the present-day expansion rate, also called the Hubble
constant H0. We therefore adopt the prior H0 = 70.6 ± 2.6 km
s−1 Mpc−1 from cepheid calibrated distance ladder measurements
presented by Rigault et al. (2018).8

For our number counts analysis in Section 5.2, we constrain
scaling relation parameters by comparing the measured cluster
number counts to a prediction based on our scaling relation model
with assumed cosmological priors. We assume priors �M =
0.276 ± 0.047 and S8 = σ 8(�M/0.3)0.2 = 0.766 ± 0.025, derived
by Bocquet et al. (2019, hereafter Bo19) from the number counts
analysis of 343 SZE-selected galaxy clusters supplemented with
gas mass measurements for 89 clusters and weak lensing shear
profile measurement for 32 clusters. Note that the aforementioned
H0 prior is consistent with the constraints from Bo19. Furthermore,
we assume that the Universe is flat and that the dark energy can be
represented by a cosmological constant.

4.2.2 Priors on SZE ζ–mass relation

When performing the SPT-SZ cross-calibration (Section 5.1) we
assume priors on the SZE scaling relation parameters to infer the
X-ray flux–mass and richness–mass scaling relation parameters.
These priors are derived from the X-ray and WL calibrated number
counts of SPT-SZ selected clusters as described in Bo19. The
adopted values are reported in Table 1. These priors were derived
simultaneously with the cosmological priors discussed above, and
both rely on the assumption that the SPT-SZ selection function is well
characterized and that the SZE-signal–mass relation is well described

8Given the still unresolved controversy on the exact value of the Hubble
constant, the value adopted here has the benefit of not being in significant
tension with any other published result.

by equation (4). These priors are also used when estimating the outlier
fraction, the MARD-Y3 contamination and the SPT incompleteness
(Section 5.4). Note that Bo19 only considered SPT-SZ clusters with
SZE–signal-to-noise ξ > 5 and z > 0.25, while we adopt their results
to characterize a sample with ξ > 4.5 and z > 0.2. Considering that
this is an extrapolation from typical masses of ∼3.6 × 1014 M� for
ξ = 5 to ∼3.3 × 1014 M� for ξ = 4.5, we view this as a minor change.

4.2.3 Priors on X-ray LX–mass relation

The X-ray luminosity–mass relation (cf. Table 1) used as comparison
for the luminosity–mass relations we derive from the SPT-SZ cross-
calibration (Section 5.1) and the number count fits (Section 5.2)
has been determined by Bu19, who studied the X-ray luminosities
of 59 SPT-SZ-selected clusters observed with XXM-Newton.9 The
authors then use priors on the SZE-signal–mass relation to infer the
luminosity–mass relation parameters. These measurements are also
used as priors for the optical number counts (Section 5.2.1) and when
determining the systematic uncertainty on the outlier probability π t,
the MARD-Y3 contamination π c and the SPT-SZ incompleteness π i

(Section 5.4).

4.2.4 Priors on optical λ–mass scaling relation

The richness–mass relation used as comparison for the richness–mass
relations we derive from the SPT-SZ cross-calibration (Section 5.1)
and the number count fits (Section 5.2) was derived by S15 from a
sample of 25 SPT-SZ-selected cluster, matched with DES redmapper
selected clusters. In that work, the SZE-signal–mass relation param-
eters were determined by fitting the SPT-SZ-selected cluster number
counts at fixed cosmology. The resulting constraints on the richness–
mass relation are reported in Table 1. These measurements are also
used as prior for the X-ray number counts (Section 5.2.2) and when
determining the systematic uncertainty on the outlier probability π t,
the MARD-Y3 contamination π c, and the SPT-SZ incompleteness
π i (Section 5.4).

5 A PPLI CATI ON TO MARD-Y3 AND SPT-S Z

In this section, we present the results of validation tests on the
MARD-Y3 sample by way of examining the consistency of the
X-ray–mass and the richness–mass scaling relations derived using
different methods. First, we present the cross-calibration of the
fluxes and richnesses using the externally calibrated SPT-SZ sample
(Section 5.1). Then in Section 5.2, we derive the parameters of the
X-ray–mass scaling relation from the X-ray number counts, the
parameters of the richness–mass scaling relation from the optical
number counts, and then explore the constraints on both scaling
relations from a joint 2D X-ray and optical number counts analysis.
We explore the implied cluster masses in Section 5.3, and in
Section 5.4 we validate our selection functions by computing the
probabilities of each cluster in one sample having a counterpart in the
other and comparing these probabilities to the actual set of matched
pairs and unmatched single clusters in each sample. This last exercise
allows us to study outliers in observables beyond the measured
scaling relation and observational scatter and has implications for
the incompleteness in the SPT-SZ sample and the contamination in
the MARD-Y3 sample.

9We use the relation of type II for the core included luminosity within the
[0.5,2] keV band.
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782 S. Grandis et al.

Figure 7. Marginal posterior contours of the free parameters in the SPT-SZ cross-calibration (SPT calibration, red), the number counts in X-ray flux and
redshift (X NC, green), the number counts in richness and redshift (opt NC, orange), and the number counts in X-ray flux, richness, and redshift (2D NC, blue).
In black, the literature values from Bu19 and S15. The SPT-SZ cross-calibration shows good agreement with the different number counts constraints and the
literature. With the exception of the mass slope of the X-ray flux–mass relation inferred from 2D number counts, the constraints from the different number count
experiments also show good agreement with the literature values. This provides strong evidence that our selection function modelling is adequate.

5.1 Validation using SPT-SZ cross-calibration

As implied in the methods discussion in Section 3.1, the results of
the SPT-SZ cross-calibration of the MARD-Y3 mass indicators X-
ray flux and richness are extracted by sampling the likelihood in
equation (23). The free parameters of this fit are the parameters
of the X-ray scaling relation (AX, BX, CX, σ X), of the richness
scaling relation (Aλ, Bλ, Cλ, σλ) and the correlation coefficients
between the intrinsic scatters (ρX,λ, ρX,SZ, ρλ,SZ). We put uniform
priors on these parameters, whose bounds are adjusted to not cut
off the posterior (such priors are hereafter referred to as ‘wide,
flat priors’). In the case of the correlation coefficients, we fur-

thermore demand that det C > 0. We put informative priors on the
parameters of the SZE-signal–mass relation (ASZ, BSZ, CSZ, σ SZ)
and on the cosmological parameters (H0, �M, σ 8), as described in
Section 4.2.

The resulting marginal posterior contours on the parameters
without priors are shown in red (SPT calibration) in Fig. 7 and
Table 2. The same figure also shows as a black line the literature
values for these parameters, where we use Bu19 for the X-ray
parameters, and S15 for the optical parameters. Our constraints are
in agreement with these works, but display comparable or larger
uncertainties despite the larger number of objects. This is due to
different effects.
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MARD-Y3 and SPT-SZ validation 783

Table 2. Mean and standard deviation estimated from the 1D marginal posterior plots for the parameters of the X-ray and the richness scaling relation. Besides
the constraints of the mass trend of the X-ray–mass relation and the corresponding intrinsic scatter, we find good agreement among our different analysis
methods and with the literature values. This provides strong evidence that our selection function modelling is adequate.

AX BX CX σX Aλ Bλ Cλ σλ

Literature 4.20 ± 0.91 1.89 ± 0.18 − 0.20 ± 0.50 0.27 ± 0.10 71.9 ± 6.1 1.14 ± 0.20 0.73 ± 0.76 0.15 ± 0.08
SPT calibration 5.42 ± 2.48 1.31 ± 0.43 – 0.48 ± 0.23 81.6 ± 19.3 1.00 ± 0.22 0.39 ± 1.55 0.28 ± 0.13
X NC 3.97 ± 0.75 1.79 ± 0.14 − 0.46 ± 0.38 0.28 ± 0.17
opt NC 76.5 ± 9.3 1.09 ± 0.11 0.57 ± 0.44 0.20 ± 0.12
2D NC 2.45 ± 0.71 1.19 ± 0.12 − 0.13 ± 0.37 0.42 ± 0.17 83.1 ± 12.3 0.72 ± 0.08 1.31 ± 0.43 0.19 ± 0.11

The difference between the sizes of the uncertainties on the
richness–mass relation in this work and S15 are mainly due to the
tighter priors on the SZE-signal–mass relation parameters utilized
by S15. For instance, in S15 the prior on the amplitude of the SZE-
signal–mass relation is four times smaller than the one used in this
work. That being said, we here analyse a 4 times larger sample, which
warrants at best an improvement of the constraints by a factor of 2.
Our larger uncertainties on the richness–mass relation parameters
are thus reflecting our more conservative treatment of systematic
uncertainties on the SZE inferred masses.

This does not, however, explain why our constraints on the
luminosity–mass relation are weaker than those reported by Bu19,
as that work used priors on the SZE-signal–mass relation com-
parable to ours. Two different effects play a role in this case.
(1) The measurement uncertainty on the luminosities extracted
from pointed XMM observations is much smaller than on RASS-
based luminosities. (2) Marginalizing over the systematic uncer-
tainty on the matter density �M and the Hubble parameter H0

leads via the cosmological dependence of the luminosity distance
and E(z) to a systematic uncertainty δCX ∼ 0.37. This source
of uncertainty is not considered in Bu19. In summary, our data
are considerably less constraining then the XMM measurements,
which themselves were analysed ignoring an important systematic
uncertainty.

In Fig. 8 are plotted in different redshift bins the scaling relation
between the intrinsic X-ray flux inferred from the X-ray flux error
model (equation 10) and the intrinsic SZE signal-to-noise ratio
inferred from the SZE error model (equation 13), as black points
with 1σ and 2σ uncertainties. We also plot the predicted X-ray flux–
SZE-signal relation obtained by combining the respective scaling
relations. We show (black and grey) their marginalization over the
Bo19 cosmological parameter and SZE-scaling parameter priors, the
Bu19 X-ray-scaling parameter priors, and over the posterior of the
SPT-SZ cross-calibration (red). As already noted from the contour
plots of the marginal posteriors, our inferred scaling relation param-
eters are statistically consistent with the literature. Our calibration,
however, prefers a steeper relation, which manifests also in the lower
inferred value on the X-ray mass trend BX.

The results for the SPT-SZ cross-calibration of the richness–mass
relation are shown in Fig. 9. In different redshift bins, we plot as black
point the intrinsic richness λ and the intrinsic SZE-signal ζ inferred
from the respective error models (equations 12 and 13). We also
plot the richness–SZE scaling derived from combining the richness–
mass and the SZE-signal–mass relation. The resulting relation is
shown with the uncertainties derived from the literature priors and
the cross-calibration posteriors. The two constraints are in very good
agreement. Yet, at high redshift z > 0.5, we note the presence of
a high richness, low SZE-signal population, not well described by
either the relation in the literature or our cross-calibrated relation.
These objects will be discussed in more detail in Section 5.4.2.

5.2 Validation using number counts

As described in the method discussion in Section 3.2, we perform
three different number counts experiments in this work: (1) we infer
the X-ray flux–mass relation by fitting for the number counts of
cluster as a function of measured flux and redshift; (2) we constrain
the richness–mass relation by fitting for the number counts as a
function of measured richness and redshift; and (3) we determine
both relations by fitting the number of objects as a function measured
flux, measured richness, and redshift.

5.2.1 X-ray number counts

While sampling the likelihood of the number counts in X-ray flux
(equation 24), we let the parameters of the X-ray flux–mass relation
(AX, BX, CX, σ X) float within wide, flat priors. We adopt priors on
the relevant cosmological parameters (H0, �M, σ 8) as described in
Table 1. We also put priors on the richness–mass relation parameter
(Aλ, Bλ, Cλ, σλ). Furthermore, we empirically constrain the relation
between X-ray detection significance ξX, measured flux f̂X, and
exposure time texp from the sample. As described in more detail in
Sections 2.3.1 and 6.1, this results in four tightly constrained nuisance
parameters that impact the X-ray selection function. The resulting
posteriors on the X-ray scaling relation parameters are shown in
green in Fig. 7. We find tight agreement with the literature values, at
comparable accuracy on the marginal uncertainties.

In Fig. 10, we plot the number counts in measured X-ray flux
bins in three different redshift bins with the respective Poissonian
errors. We also plot the prediction for the number of objects in the
same bins, once marginalized over the literature values (black and
grey), over our 1D fit (green), and our 2D number counts fit (blue, cf.
Section 5.2.3). The 1D fit provides an accurate fit to the data, with the
exception of the regime where X-ray incompleteness sets in, where it
tends to slightly underestimate the number of clusters. The prediction
from the literature provides a statistically consistent description of
the data, albeit systematically more than 1σ , and less than 2σ low
at low mass. These trends, while not statistically significant, are
confirmed by inspecting the inferred masses from our posterior (see
below Section 5.3).

5.2.2 Optical number counts

Just as the number counts as a function of measured flux can be used
to infer the X-ray scaling relation parameters, the number counts in
richness can be used to infer the richness–mass relation parameters.
To this end, we sample the likelihood of number counts in richness
bins (equation 27). We let the parameters of the richness–mass
relation (Aλ, Bλ, Cλ, σλ) free within wide, flat priors, while we adopt
informative priors from the literature on the cosmological parameters
(H0, �M, σ 8). Importantly, modelling the X-ray incompleteness in
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784 S. Grandis et al.

Figure 8. Black points mark the intrinsic X-ray flux fX and SZE–signal to noise ζ inferred from the respective error models for our cross-matched sample. The
X-ray flux–SZE-signal relation is shown either marginalized over the literature priors (black and grey) or over the posterior of our cross-calibration to SPT-SZ
(red). The full lines are the median values, the filled region covers the range from the 16th to 84th percentile and the transparent lines show the 2.5th and 97.5th
percentile. While both sets of scaling relation parameters are consistent, we find a tendency for a weaker mass trend in the X-ray observable than reported in the
literature.

the space on measured richness requires a way to transform from
measured richness to X-ray flux. Thus, while the transformation
from richness to mass is fit, we need to assume a transformation
from mass to X-ray flux. This is done by putting priors on the X-
ray scaling relation parameters (AX, BX, CX, σ X). As for the X-ray
number counts, we empirically constrain the relation between X-
ray detection significance ξX, measured flux f̂X, and exposure time
texp from the sample and predict the X-ray selection function on the
fly.

The resulting marginal posterior contours are shown in Fig. 7
in orange. We find good agreement with the literature values and
with the SPT-SZ cross-calibration. The marginal uncertainties are
comparable to the literature values, despite being marginalized over
cosmological parameters. We also find that the constraints from the
number counts are more stringent than those derived from the SPT-
SZ cross-calibration.

One can visually assess the quality of the resulting fit in Fig. 11,
where we plot the number of objects in measured richness for
different redshift bins as black points with Poissonian error bars.
We also plot the predicted number of objects with the uncertainties
derived from the literature priors (black and grey) from our 1D fit
(orange), and our 2D number counts fit (blue, cf. Section 5.2.3). Also
in this case we note that the literature prediction is systematically
between 1σ and 2σ low, which manifests also in different mass
estimates (see below in Section 5.3).

5.2.3 Combined X-ray and optical number counts

We also fit for the abundance of clusters as a function of measured X-
ray flux f̂X, measured richness λ̂, and redshift, which we will refer to
a ‘2D number counts’, by sampling the likelihood in equation (30).
We allow the parameters of both the X-ray scaling relation (AX,
BX, CX, σ X) and the richness scaling relation (Aλ, Bλ, Cλ, σλ) to
float within wide, flat priors. We adopt priors on the cosmological
parameters from Table 1. Furthermore, we empirically constrain
the relation between X-ray detection significance ξX, measured
flux f̂X, and exposure time texp from the MARD-Y3 sample and
predict the X-ray selection function on the fly (cf. Sections 2.3.1
and 6.1).

In Fig. 7, we show the marginal posterior contours on the scaling
relation parameters in blue. We find good agreement with the
results from the SPT-SZ cross-calibration on all parameters. When
comparing the constraints from 2D number counts (blue) on the X-
ray scaling relation parameters to the constraints from the number
counts in X-ray flux (green), we find good agreement on the values of
the amplitude and redshift evolution. However, we find a shallower
X-ray observable mass trend than from the X-ray number counts, and
we see a similar shift in the optical mass trend parameter, although
in this case the statistical significance is small. Given the agreement
of the X-ray number counts result is with Bu19, the results from
the 2D number counts are in some tension with both. As show in
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MARD-Y3 and SPT-SZ validation 785

Figure 9. Black points mark the the intrinsic richness λ and SZE-signal-to-noise ζ inferred from the respective error models for our cross-matched sample. The
richness–SZE-signal relation is shown either marginalized over the literature priors (black) or over the posterior of our cross-calibration to SPT-SZ (red). The full
lines are the median values, the filled region covers the range from the 16th to 84th percentile and the transparent lines show the 2.5th and 97.5th percentile. Both
sets of scaling relation parameters are consistent, at 0.51 < z < 0.69, however, they fail to describe a part of the population with low SZE signal and high richness.

Figure 10. Measured number of clusters in bins of measured X-ray flux for different redshift bins as black points with Poissonian error bars. We overplot the
prediction for the number of objects with the uncertainties derived from the literature values (black and grey), from our 1D fit (green), and from our 2D fit
(blue). The full lines are the median values, the filled region covers the range from the 16th to 84th percentile and the transparent lines show the 2.5th and
97.5th percentile. The latter captures adequately both the increasing rarity of high-redshift objects, as well as the effect of X-ray incompleteness at low flux. The
measurement is also consistent with the literature values.

Section 5.3 below, these constraints however do not results in statis-
tically inconsistent mass estimates. Nevertheless, possible systematic
effects impacting our validation tests are discussed in Sections 6.1
and 6.2.

Of interest is also the constraint the 2D number counts put on
the two intrinsic scatters in X-ray flux and richness. Inspecting their
joint marginal posterior in Fig. 7 reveals a distinct degeneracy in
the form of an arc. This is the natural result of the fact that the
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786 S. Grandis et al.

Figure 11. Number of objects in bins of measured richness λ̂ in different redshift bins as black points with Poissonian error bars. Overplotted is the expected
number of objects as a function of measured richness for the same bins marginalized over the uncertainties from the literature (black and grey), from our 1D fit
(orange), and from our 2D fit (blue). The full lines are the median values, the filled region covers the range from the 16th to 84th percentile and the transparent
lines show the 2.5th and 97.5th percentile. The shape of the abundance at low richness would in principle be closer to a power law, but at low richness, the X-ray
selection of the samples leads to a decrease in the number of objects, which is well fitted by our selection model.

2D number counts can only constraint the total scatter between the
two observables, but not the two individual scatters between each
observable and mass. The total scatter between observables, being
the squared sum of the individual scatter, sets the radius of the arc.
Noticeably, this arc-like degeneracy excludes the possibility that both
the X-ray and the richness scatter are small.

For visual inspection of the 2D number counts fit in Fig. 12
we present the distribution in measured X-ray flux and measured
richness of our sample in different redshift bins as black stars.
We also plot the contours of the predicted number of objects in
equally spaced logarithmic bins (shown by the overlaid grid): in blue,
the prediction for the best-fitting value of the 2D number counts,
while in grey the prediction from the literature. The selection in
richness due to the fcont < 0.05 cut is at every redshift a sharp cut
in measured richness, as can be seen up to the intra bin scatter due
to the large bins used for plotting. The effect of the X-ray selection
function is harder to see, but can be appreciated in the shape of
the contours at low flux: they show a bend, predicting very small
numbers of objects at the lowest fluxes. Notably, the distribution
of the data displays a large dispersion, which is better captured
by our fit (blue) than by the prediction from the literature (grey).
This confirms that the measurement of a larger X-ray scatter is
indeed a feature of the data visible in the 2D cluster abundance.
Despite the larger intrinsic scatter, 2D number counts posterior
provide also a prediction of the X-ray and optical 1D number counts
that is consistent with the data within the systematic and statistical
uncertainties, as can be see by the blue predictions in Figs 10
and 11.

5.3 Validation using cluster masses

In this section, we investigate the prediction of the individual halo
masses derived from the different constraints on the scaling relation
parameters extracted above. Given that the number of objects as
a function of mass is known, this section quantifies the relative
goodness of fit of the number counts between the different fits we
performed (X-ray, optical, and combined).

To estimate the masses for each cluster given its measured X-ray
flux f̂

(i)
X (or analogously the measured richness λ̂(i)), we compute the

distribution of probable masses

P (M|f̂ (i)
X , z(i), p) ∝

∫
dfXP

(
f̂

(i)
X |fX

)
P (fX|M, z(i), p)

× dN

dM

∣∣∣
M,z(i),p

, (37)

where P(fX|M, z(i)) is the mapping between intrinsic flux and mass
obtained by only considering the first component of equation (5).
Note also that the above equation needs to be normalized in such a
way that

∫
dM P (M|f̂ (i)

X , z(i), �p) = 1, which sets the proportionality
constant.

The X-ray mass MX (and analogously the optical mass Mλ) can
then be estimated to be

ln M
(i)
X | p =

∫
dM P

(
M|f̂ (i)

X , z(i), p
)

ln M. (38)

Note that these masses naturally take account of the Eddington bias,
which is fully described by equation (37).

The X-ray and optical masses are affected by systematic uncertain-
ties in the scaling relation and cosmological parameters. We capture
this uncertainty in each case by marginalizing the mass posterior
over the appropriate posterior distribution of the parameters that we
determined above. We marginalize the mass over different scaling
relation parameter posteriors, including those from the literature
(liter.), those from the SPT-SZ cross-calibration (SPT calibr.), and
those from the combined X-ray and optical number counts (2D NC),
the X-ray number counts (X NC) and the optical number counts (opt
NC). The mass posteriors are derived for all clusters in the MARD-
Y3 sample.

In the upper row of Fig. 13, we present the ratio between the X-
ray masses derived from our posteriors to the X-ray masses obtained
from the literature (Bu19) as a function of inferred literature mass
(left-hand panel) and of redshift (right-hand panel). We find that the
mass inferred from the number counts in X-ray flux is consistent with
the literature values, while the masses inferred from the 2D number
counts and the SPT-SZ calibration are lower than the literature
masses. In the case of the SPT masses, the difference never exceeds
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MARD-Y3 and SPT-SZ validation 787

Figure 12. Number counts in both measured richness λ̂ and measured X-ray flux f̂X visualized by presenting in different redshift bins the distribution of our
sample (points), the contours of the 2D predicted number of objects for the literature values (grey, liter.) and for the maximum-likelihood point of our fit to the
data (blue, 2D NC). The number of objects shown in the contours (10, 1, 0.1 objects contours as full, dashed, and dotted lines respectively) refers to the bins
shown in the overlaid grid. Our 2D fit prefers larger scatter and provides a better description of the data than does the literature prediction.

Figure 13. Ratio of the masses derived by our analysis methods and the masses derived from the literature values, for masses inferred from their measured
X-ray flux (MX, upper row) and their measured richness (Mλ, lower row), as functions of mass (left-hand column) and redshift (right-hand column), together
with the 1σ and 2σ systematic uncertainties on the individual masses due to the incomplete knowledge of the scaling relation parameters. All masses refer to
spherical over densities 500 times the critical density of the Universe. The masses we recover from SPT-SZ cross-calibration (SPT calibr., red) and different
flavours of number counts, while being in most cases systematically low, are statistically consistent with the masses inferred by adopting the literature values.
Tension beyond 1σ , but still smaller than 2σ appears at the low-mass end of the inferred X-ray masses.

1σ at all redshifts and masses we considered. For the 2D number
count masses, we find that they are 1σ low at all redshifts, and up to
2σ low at masses of 1–2 ×1014 M�. At masses of around 1015 M�
they are in perfect agreement with the other mass estimates. This is

due to the different values of inferred mass trend. As a function of
redshift, the masses inferred from 2D number counts and the SPT-SZ
calibration are also lower, reflecting on one side the prevalence of
low-mass systems. On the other side, this shift is also due to the
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larger intrinsic scatter recovered from the 2D number counts and
the SPT-SZ calibration, that together with the shallower mass slope
leads to a larger intrinsic mass scatter. This results in larger Eddington
bias corrections and ultimately lower inferred masses. Note that the
plotted error bars are strongly correlated (e.g. shifting AX up by 1σ

shifts all masses down by 1σ ). At the current level of statistical and
systematic uncertainty we conclude that different methods predict
mutually consistent individual masses from the X-ray flux at less
than 2σ . Yet the magnitude of the intrinsic scatter of the X-ray
luminosity at fixed mass and redshift, together with its mass trend, are
indications of possible internal tensions and unresolved systematics.
These trends where already noted when comparing our best-fitting
number count models to the data (see above in Section 5.2) and will
be discussed further in Section 6.2.

In the lower row of Fig. 13, we also show the ratio between
the optical mass inferred from our fits to the value taken from the
literature (S15). Here, we find that all our methods provide a lower,
yet statistically consistent mass estimate. The difference is likely due
to an analysis choice in the literature values. Namely, S15 utilizes
priors for the SZE–scaling relation parameters derived from fitting
the SZE number counts at fixed cosmology. In that work, however,
the CMB derived cosmology from Planck Collaboration (2014) was
used, which results in ASZ, S15 = 4.02 ± 0.16, and therefore is an
overestimation of masses by ∼18 per cent compared to our work.
This shift accounts for most of the shifts seen in Mλ here. Even with-
out this correction, at the current level of systematical uncertainties,
the individual optical masses inferred from our different analysis
methods are mutually consistent. This is expected because our ASZ

prior is consistent with the value used by S15. Furthermore, while 2D
number counts predict a shallower mass trend than all other methods,
in the mass range we consider this does not lead to significant tension
with the other analysis methods.

This consistency check of mass estimates underscores the im-
portance of weak-lensing mass calibration as a component of
the validation of cluster samples. If the cosmology marginalized
constraints on cluster masses from weak lensing are not consistent
with those from cluster counts, then that would be clear evidence
of an inadequacy in the selection model or an unaccounted for bias
in the weak-lensing calibration analysis. As noted previously, we
will examine the validation with the weak-lensing constraints in a
forthcoming analysis.

5.4 Validation using independent cluster samples

Having established in the section above that our selection function
modelling allows us to infer the masses of the MARD-Y3 clusters
consistently within the systematic uncertainties, we now move on to
a further test of the selection functions of the two samples.

As described in the methods Section 3.3, we investigate the SPT-
SZ and MARD-Y3 selection functions by comparing the probability
of each MARD-Y3 object being detected by SPT-SZ to the actual
occurrence of such a detection. As established in Section 4.1.3, there
are 120 clusters in the cross-matched sample, but the validation we
do here also uses information from unmatched clusters. We first
consider the MARD-Y3 sample and compute the SPT-SZ detection
probability for each of these objects. Comparing these probabilities
to the actual occurrence of matches provides an estimate of SPT-
SZ incompleteness as well as MARD-Y3 contamination. We then
consider the SPT-SZ sample and compute the probability that an SPT-
SZ cluster is detected in MARD-Y3. In this case, we also constrain
the outlier fraction beyond the lognormal scatter, more precisely the

Figure 14. MARD-Y3 sample in the joint SPT-DES Y3 footprint at redshift z
> 0.2. Colour encodes the probability of an SPT-SZ detection for each object,
showing the characteristic mass selection of the SPT-SZ catalogue. Black
circles indicate matched clusters, while the cross marks the missing SPT-SZ
confirmations of MARD-Y3 objects. The only missed SPT confirmation is
due to a catastrophic redshift error in the application of MCMF to the SPT-SZ
sample.

fraction of objects with an abnormally high X-ray flux and optical
richness, or a surprisingly low SZE signal.

5.4.1 SPT-SZ detection of MARD-Y3 clusters

In Fig. 14, we show the MARD-Y3 cluster sample in the joint
SPT-DES Y1 footprint, plotted as a function of the X-ray-derived
mass and the redshift presented by K19. Note that the mass used
in this plot is used solely for presentation purposes, and does not
go into any further calculation. We colour-code the MARD-Y3
clusters based on their SPT-SZ detection probability p

(i)
S|M, computed

following equation (35). This prediction reflects the mass information
contained in each cluster’s measured flux f̂

(i)
X and measured richness

λ̂(i). It also nicely visualizes the approximate mass selection at
M � 3 × 1014 M� of the SPT-SZ sample.

We place black circles around the matched clusters. When deter-
mining the detection probabilities using the literature values for the
scaling relation parameters, we identify six clusters that have high
detection probability, but are not matched, so-called missed SPT
confirmations of MARD-Y3 objects. However, when determining
the detection probabilities either from the posterior of our SPT-SZ
cross-calibration or the 2D number counts, only one of these systems
is identified as a missed confirmation: 2RXS J033045.2−522845.

This object coincides in the sky with the NE part of A3128. It has
been found to be a z∼ 0.43 cluster by Werner et al. (2007) using XMM
observations, by ACT observations (Hincks et al. 2010) and the SPT-
SZ survey (Bleem et al. 2015), despite the large number of z ∼ 0.05
galaxies in the foreground (also visible the DES image in the upper
left panel of Fig. B5). The redshift z ∼ 0.43 is confirmed by MARD-
Y3. However, application of MCMF on the SPT-SZ sample found
zSPT = 0.056, sourced by the foreground galaxies. Consequently,
this object is erroneously not included in our SPT-SZ sample, which
has the redshift selection zSPT ∈ (0.2, 1.). Noticeably, MCMF run
on SPT-SZ finds also a structure with fcont,SPT = 0 at z ∼ 0.43. It is
however discarded by the automated highest peak selection as also
the z ∼ 0.05 structure has fcont,SPT = 0. In summary, this object is
missing in our SPT-SZ sample due to a catastrophic MCMF failure
when run on SPT-SZ. To keep the pipeline automated and avoid
human decision making, we do not apply any special treatment to
this object.
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We also aim to constrain the occurrence of contamination in the
MARD-Y3 sample by introducing the probability π c that an MARD-
Y3 object is not a cluster, and should not therefore be detected by
SPT. Simultaneously, we also introduce the SPT-SZ incompleteness
π i, the probability that any MARD-Y3 cluster that should have
been detected in the SPT-SZ survey was not (cf. Fig. 5). This
allows us to use the actual list of detections and non-detections
together with the raw probabilities of detection to constrain these
extra probabilities, as discussed in equation (36). We find that π c

and π i are degenerate parameters, with only the difference between
the two values constrained by our data, rather than the two values
separately. Under the assumption of an MARD-Y3 contamination of
π c = 0.025, as derived by K19 for the fcont < 0.05 sample used here,
we find πi = 0.284 ± 0.043(stat.)+0.108

−0.186(sys.), when marginalizing
over the literature priors. When marginalizing over the SPT-SZ
calibration posterior we find π i < 0.030(stat.) and π i < 0.030(sys.)
at 68 per cent confidence, while we find π i < 0.047(stat.) and π i <

0.231(sys.) at 68 per cent confidence when marginalizing over the
2D number counts constraints together with the priors from Bo19 on
the SZE–signal scaling relation.

The difference in inferred central value for the SPT-SZ incomplete-
ness is due to the different mass predictions when using the literature
priors as compared to our fits. As discussed in Section 5.3, our SPT-
SZ cross-calibration and our 2D number counts analysis imply lower
X-ray and optically derived masses than the literature priors. This
systematically lowers the SPT-SZ detection probability of MARD-
Y3 clusters, resulting in different incompleteness probabilities when
comparing to the actual number of matched objects. We interpret
this as another piece of evidence that the SPT-SZ cross-calibration
and the 2D number counts provide a more accurate picture of the
observable–mass relation than the literature priors. In fact, they reveal
that the scatter around our luminosity–mass relation is larger than
the scatter found by Bu19. Yet, within the statistical and systematic
uncertainties the results are still in agreement.

Another interesting aspect is the magnitude of the statistical and
systematic uncertainty on the SPT-SZ contamination. Note that
the statistical uncertainties when marginalizing over the different
posteriors are comparable. This reflects the fact that they are
derived from a sample of a given size. The minor differences
can be appreciated by noting that in equation (36) the individual
clusters likelihood of π i are weighted by the detection probabilities
p

(i)
S|M, which are different depending on which posterior is used to

compute them. On the other hand, the magnitude of the systematic
uncertainty introduced by the marginalization over the different
posteriors is quite different. Marginalizing over the SPT-SZ cross-
calibration posterior provides the smallest systematic uncertainty.
This is expected when considering that the SPT-SZ cross-calibration
constrains P (ζ |f̂ (i)

X , λ̂(i), z(i)) (cf. equations 21–23), which is the
major source of systematic uncertainty when computing the SPT-
SZ detection probabilities of MARD-Y3 cluster (cf. equation 35).
These distributions are predicted less accurately by the literature
priors and the 2D number counts.

5.4.2 MARD-Y3 detection of SPT-SZ clusters

We also test the MARD-Y3 selection function by computing the
probability of detecting each of the SPT-SZ clusters in the DES-
Y3 footprint. In Fig. 15, we show the SPT-SZ sample as a function
of redshift and SZE-derived mass. Note that the SZE-derived mass
shown in this figure is only used for presentation purposes. Colour
encodes the MARD-Y3 detection probability, computed via equa-

Figure 15. SPT-SZ selected sample in the joint SPT-DES Y3 footprint.
Colour encodes the probability of MARD-Y3 detection, showing the char-
acteristic flux selection of an X-ray survey. Black circles indicate matched
clusters, while crosses mark unexpected MARD-Y3 confirmations of SPT-
SZ objects (having an MARD-Y3 detection probability <0.025 but matched
none the less).

tion (33). The colour coding reflects the approximate flux selection
of the MARD-Y3 sample. We highlight the matched clusters with
black circles.

Out of the 120 clusters in the cross-matched sample, we identify
five unexpected MARD-Y3 confirmations, which are SPT-SZ clus-
ters that show up in MARD-Y3 even though they have an MARD-Y3
detection probability <0.025, as calculated by marginalizing over the
literature values. This list is expanded by three more unexpected
confirmations when marginalizing over the 2D number counts
posterior. When marginalizing over the SPT-SZ cross-calibration
posterior, we find two unexpected confirmations, all of which are
in common with the aforementioned (‘SPT-CLJ0324-6236’, visual
inspection in Fig. B4, and ‘SPT-CLJ0218-4233’, visual inspection in
Fig. B3). These clusters are marked in Fig. 15 with crosses. Visual
inspection of this object reveals that in both cases a clear X-ray
structure coincides with a significant SZE signal and a red sequence
galaxy overdensity at the cluster redshift. Thus, these objects are
likely genuine clusters with multiwavelength properties that are not
captured by our scaling relation model and the scatter around it.
These objects also do not display any exceptional behaviour with
respect to the mean distribution in X-ray flux, richness.

Given these indications, we investigate the probability that an
SPT-SZ object that should not be matched by MARD-Y3 is matched
anyway. It cannot a priori be excluded that the distribution of
X-ray luminosities or SZE signals at fixed mass has in actuality
tails extending beyond the lognormal scatter model we assumed
in Section 2.1. Such tails would lead to unexpected detections.
The probability of a cluster living in such a tail, that is being an
outlier, is given by the parameter π t (see Section 3.3.1). Taking
account of the detection probabilities and the actual occurrence of
detections, we use the likelihood presented in equation (34). We
find π t = 0.059 ± 0.017(stat.) ± 0.031(sys.), when marginalizing
over the literature priors. When marginalizing over the SPT-SZ
cross-calibration posterior we find π t = 0.061 ± 0.018(stat.) ±
0.040(sys.), while we find π t = 0.095 ± 0.018(stat.) ± 0.019(sys.)
when marginalizing over the 2D number counts constraints together
with the priors from Bo19 on the SZE-signal scaling relation.

These constraints are mutually consistent in a statistical sense.
Yet, the significance of the detection of the tail beyond lognormality
ranges from 1.4σ for the literature priors, over 1.6σ for the SPT-
SZ cross-calibration to 3.6σ for the 2D number counts constraints.
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Internal inconsistencies in the number counts (discussed in Sec-
tions 5.2, 5.3, 6.1, and 6.2) might affect the latter result. Better
mass information is required to distinguish whether our findings are
a statistical fluke, the result of an unresolved systematic or stem
from a genuine signal. If the presence of a lognormal tail would
be confirmed, more detailed observations are needed to understand
the source of the outliers we selected. For example, high-angular
resolution X-ray or mm-wave observations, in combination with the
spectroscopic optical data, would help to rule out any astrophysical
confusion in either the X-ray or SZ measurements and identify any
lower mass structures or objects along the line of sight, which could
be affecting any of the observables.

6 D ISCUSSION

Here, we first summarize the findings from the previous section and
then discuss implications. We focus on different aspects, including:
(1) internal indications for unresolved systematics in the selection
function modelling, (2) the outcome of our validation, (3) the
impact of optical incompleteness and the resulting benefits from
its modelling, and finally (4) the implications of this work for
cosmological studies.

6.1 X-ray selection function systematics

In Section 2.3.2, we discussed potential unresolved redshift trends of
the selection function fit. Given that the X-ray selection spans a mass
range of factor of 3 (see for instance Fig. 6) from low to high redshift,
residual redshift trends in the X-ray selection functions are likely to
impact the inferred mass trend as much as they are likely to impact
the redshift trend of the X-ray flux–mass relation. This systematic
manifests itself in different places, as discussed in the following.

When sampling the X-ray number counts (cf. Section 5.2.1), we
sample the parameters of the richness–mass scaling relation with
priors from the literature to estimate the effect of optical incomplete-
ness of the sample. While the prior on the redshift evolution is Cλ =
0.73 ± 0.76, the posterior is Cλ = 0.34 ± 0.53, indicating that the
X-ray number counts likelihoods slightly prefer a weaker redshift
trend of the richness, effectively making the optical incompleteness
larger at low redshift than at high redshift. This preference may be
compensation for the fact that our model seems to predict small an
X-ray selection function at high redshift.

Similarly, when sampling the optical number counts, we rely on
priors on the X-ray flux–mass scaling relation to propagate the X-ray
selection function to the space of measured richness. Also in this
case the prior CX = −0.20 ± 0.50 is altered to a posterior CX =
−0.50 ± 0.38. Consequently, a weaker redshift trend is preferred
by the number counts, possibly as in an attempt to compensate the
same residual systematic effect. Lastly, we find that the X-ray, as
well as the optical number counts, pull the prior we placed on �M =
0.276 ± 0.047 to a posterior �M = 0.296 ± 0.038 from X-ray
number count, and �M = 0.302 ± 0.037 from optical number counts,
respectively. If these shifts result in biases of the cosmological results
once direct mass information from weak lensing is available, they
should be further investigated.

As described in the case of a putative redshift residual, the em-
pirical calibration of the selection function provides an opportunity
to uncover unresolved systematics. From this perspective it offers
advantages in comparison to selection functions determined from
image simulations. For instance, consider in Fig. 16, the posterior
constraints on the significance–flux scaling parameters resulting from
fitting either directly to the relevant catalogue data by sampling

Figure 16. Marginal posterior contours on the extra nuisance parameters
controlling the mapping between X-ray flux and detection significance, and
hence the X-ray selection function from the direct fit to the data (red), the
sampling of that fit with the 2D number counts (blue), with the X-ray number
counts (green), and the optical number counts (orange). Shifts of the contours
with respect to the constraints from the data alone are indicative of residual
systematics.

equation (19, red) or adding different number counts likelihoods
(2D in blue, X-ray in green, and optical in orange). In principle, we
expect no extra information from the number counts on the scaling
governing the X-ray selection function. Yet the posterior of the X-
ray number counts in particular display shifts compared to the direct
fit. This might hint at unresolved systematic effects in the X-ray
number counts. Indeed, we find that the X-ray number counts predict
a smaller intrinsic scatter σ X and a steeper mass slope than both the
SPT-SZ cross-calibration and the 2D number counts. While at the
current stage these putative systematics are smaller than the statistical
uncertainties, the empirical methods here already prove to be potent
tools for validating the number counts. We plan to include such tests
as unblinding conditions for the forthcoming cosmological analysis
of this catalogue.

6.2 Outcome of the validation

As outlined in Section 5.3, different methods with different sensitiv-
ities to the selection function provide statistically consistent masses.
This provides strong evidence for the adequacy of the selection
functions we construct in this work. Interestingly, however, non-
significant tensions appear on different parameters, mainly in the
scaling relation parameters derived from 1D X-ray number counts
and 2D optical and X-ray number counts. These tensions are also
visible in the comparison of the predicted and the measured number
counts (Section 5.2), as well as in the comparison of the inferred
masses (Section 5.3). We identify two main scenarios: low intrinsic
scatter and steep luminosity–mass trend – preferred by X-ray number
counts, and large intrinsic scatter and shallow slope – preferred by
2D number counts. In the following, we will discuss evidence for
these two scenarios.

Comparison to the literature does not provide clear guidance on
which scenario is more plausible, as can be seen in Fig. 17. The
low scatter scenario is in very good agreement with the results
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Figure 17. Compilation of results on the mass trend BX and the intrinsic
scatter σX of the luminosity–mass relation, compared to our results. While
all our results lay within the dispersion of the literature results, this dispersion
among the results is larger than the reported error bars, indicating that no
consensus has yet been reached.

from Bu19 on XMM luminosities of SPT-SZ-selected clusters.
On the other hand, weak-lensing calibrated measurements of the
luminosity–mass relation on RASS-selected clusters by Mantz et al.
(2015) and Mulroy et al. (2019) find shallower mass trends and
larger intrinsic scatter in good agreement with our large scatter
scenario. In analysing number counts of RASS-selected clusters
with X-ray mass information, Vikhlinin et al. (2009) found a mass
trend and scatter value consistent with both scenarios.

Further evidence for the amount of intrinsic scatter can be obtained
by comparing different measurements of the luminosities. K19 show
that there is significant scatter among the luminosities measured by
Boller et al. (2016) and those reported by Piffaretti et al. (2011).
Namely, a lognormal scatter of 0.48 ± 0.05 for 0.15 < z < 0.3 and
0.40 ± 0.10 for 0.3 < z. This in unsettling, considering that the
luminosities reported by Piffaretti et al. (2011) are measured on the
same ROSAT data as the ones by Boller et al. (2016). Given that this
effect might be partially sourced by the fixed aperture measurements
by Boller et al. (2016), we cannot exclude that the X-ray flux mea-
surement introduces mass-dependent trends. Further investigation of
the systematics in the flux measurement methods is clearly required.

The hypothesis of larger scatter in the X-ray mass scaling is
further supported by the constraints on the SPT-SZ incompleteness
derived from the different posteriors (see Section 5.4.1). Compared
to the literature priors, which prefer small scatter but predict high
incompleteness, both the SPT-SZ cross-calibration and the 2D
number counts predict incompletenesses consistent with zero, mainly
due to the larger X-ray intrinsic scatter. On the other hand, the mass
calibrations of the SZE–mass scaling determined using different,
independent methods (Chiu et al. 2018; Capasso et al. 2019a; Dietrich
et al. 2019; Stern et al. 2019) match with the masses emerging from
a fully self-consistent cosmological analysis of the SPT-SZ cluster
sample (Bocquet et al. 2015; de Haan et al. 2016; Bocquet et al. 2019).
In the presence of high incompleteness, this agreement would be
coincidental. Larger X-ray scatter is thus made even more plausible,
because it predicts low SPT-SZ incompleteness.

In summary, the large scatter/shallower mass trend scenario is
supported by the comparison of different luminosity measures,
different literature results and the implications of these scenarios
on the inferred SPT-SZ incompleteness. Furthermore, we find that
the 2D number count fits introduce less internal tension on the

parameters of the significance-flux scaling governing the X-ray
selection function.

6.3 Impact of the optical incompleteness

As shown throughout this work, we model the selection of the
MARD-Y3 sample in a two staged approach, which mirrors the
operational creation of the catalogue: (1) we determine an X-ray
selection function based on the fact that the candidate catalogue
is selected with a X-ray detection significance threshold, and (2)
we model the optical cleaning, which is operationally equivalent
to a redshift-dependent minimum value for the measured richness.
The two result in selection functions in the space of X-ray flux and
richness, respectively (cf. Section 2.3).

For ease of representation, we utilize the observable–mass scaling
relation to transform these observable selection functions into mass
selection functions. This introduces systematic uncertainty through
the widths of the posteriors on the scaling relation parameters. The
mass selection functions in three redshift bins are shown in Fig. 18.
As stated above, the X-ray selection is dominant at most masses.
Yet, the optical cleaning introduces an excess incompleteness at the
lowest masses, leading to a suppression of the selection probability
at those masses.

The fact that the optical selection cannot be completely ignored
can be appreciated also from Figs 11 and 12. Given that in these
plots we show the number of clusters also as a function of measured
richness, we can appreciate that the MARD-Y3 sample displays a
sharp, redshift-dependent cut in measured richness. This is the result
of the optical cleaning process, which takes effect before the X-ray
selection probability nears zero.

The fact that we can consistently infer the masses when marginal-
izing over a fiducial cosmology indicates that the two stage selection
function modelling is adequately describing the sample. This in turn
means that optical cleaning with MCMF can provide clean cluster
samples even from highly contaminated candidate samples. At the
cost of tracking an extra scaling relation, the richness–mass relation,
this has the potential to significantly lowering the limiting mass of
ongoing and future surveys with SPT, eROSITA, or similar ICM
observable-based surveys while maintaining a similar contamination
level. Given that all selected clusters in such samples would have a
richness in addition to an X-ray or SZE observable, the richness–mass
relation would be calibrated along side the X-ray or SZE observable
in the context of a direct mass calibration as we have demonstrated
with our SPT-SZ cross-calibration. Furthermore, the possibility to
perform number counts not only in the X-ray or SZE observable, but
in richness alone, or even in the combination of multiple observables,
provides additional consistency checks that could be used to reveal
unappreciated systematics.

6.4 Implications for cosmological studies

In this work, we explore several techniques that allow us to validate
the selection function of a cluster survey. However, we would like to
caution that in this work we never directly determine the masses of
our clusters. This would require either the measurement of the weak-
lensing signal around our clusters, or the study of the projected phase
space distribution of spectroscopically observed cluster members.
From a formal perspective, such studies can be treated analogously
to our SPT-SZ cross-calibration. They will allow us to determine the
parameters of the scaling relations to high accuracy, enabling the use
of the number counts to study cosmology.
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792 S. Grandis et al.

Figure 18. X-ray (red), optical (blue), and combined (black and grey) selection functions as functions of mass for different redshift bins, plotted with the
systematic uncertainties derived from the 2D number counts posterior on the scaling relation parameters. The full lines are the median values, the filled region
covers the range from the 16th to 84th percentile and the transparent lines show the 2.5th and 97.5th percentile. All masses refer to spherical over densities
500 times the critical density of the Universe. While the combined selection of the sample is clearly dominated by the X-ray selection function at most masses,
the optical cleaning introduces some extra incompleteness at low masses, especially at low redshift.

In contrast, our current work assumes the cosmology derived by
Bo19 in order to determine the scaling relation parameters from
the number counts of the MARD-Y3 sample. Also, the indirect
mass information we use in form of the priors on the SZE–mass
relation were derived by Bo19 in the same analysis. So they, too, are
contingent upon that analysis. The consistency of their result with
our modelling is supported by the fact that we do not find a significant
level of SPT-SZ incompleteness.

Our work then demonstrates several techniques that we anticipate
will be important for controlling systematics in future X-ray-selected
cluster samples, especially the sample detected by eROSITA (Predehl
et al. 2010; Merloni et al. 2012). First, we have shown that the
X-ray selection function can be determined empirically from the
selected sample (see Fig. 1). As such, the simplistic assumptions
made in forecast works (e.g. Grandis et al. 2019) can easily be
replaced by a more accurate description without introducing much
numerical complexity. The empirical determination of the selection
function also allows one to check for unresolved systematic effects, as
demonstrated in Section 2.3.2. As an addition to the set of systematics
tests, such techniques are likely to improve the systematics control
within eROSITA cluster cosmological studies.

Our work also highlights the use of secondary mass proxies
to inform the number counts experiment. We demonstrate that
performing the number counts in optical richness despite the X-
ray selection provides a valuable source of mass information. In the
presence of a direct mass calibration, that mass information would
be provided externally, and optical number counts would provide
independent cosmological constraints. This in turn allows one to set
up another important consistency check, ensuring a higher level of
systematics control. On the same note, we also clearly demonstrate
the value of additional mass proxies to put direct constraints on the
scatter. Indeed, the analysis of the number counts in X-ray flux and
richness space was central to revealing the larger scatter in X-ray
observable. Given the planned application of MCMF to eROSITA
such multi-observable number counts experiments can be undertaken
also in that context.

Furthermore, we present here an expansion of earlier work by
S15 on detection probabilities of clusters selected by one survey

in another survey. Our formalism tests the selection functions of
different surveys against each other and thereby gains precious
empirical constraints on those selection functions. This method
depends on the shape of the mass function for the Eddington
bias correction, and on the redshift–distance relation for the X-
ray scaling relation. Importantly, however, it is independent of the
distribution of clusters in observable and redshift. In turn, these are
the major sources of cosmological information in the number counts
experiment. Consequently, in the presence of direct mass information
to constrain the scaling relation parameters, this technique provides
a selection function test that is insensitive to the predicted number of
clusters and its redshift evolution. As such this test is ideally suited
to validated cluster number count experiments.

Our approach would not only benefit the systematics control in
future X-ray and SZE surveys, but also future optical surveys. The
selection function in optical surveys remains a source of system-
atic uncertainty that has been mainly studied through simulations
(Costanzi et al. 2019). Applying techniques like ours to empirically
validate an optical survey cluster selection function offers important
advantages and will become more relevant with the upcoming next
generation surveys from Euclid and LSST.

7 C O N C L U S I O N S

We perform a multiwavelength analysis of the MARD-Y3 sample
(K19). This sample was selected by performing an optical follow-up
of the X-ray selected 2RXS catalogue (Boller et al. 2016) using
DES-Y3 data. The optical followup was carried out using MCMF
(Klein et al. 2018), which is a tool that includes spatial and
colour filters designed to identify optical counterparts of ICM
selected cluster candidates and to exclude random superpositions
of X-ray and optical systems. The multiwavelength data set enables
for an extensive set of cross-checks and systematics probes of
the MARD-Y3 sample, its selection function and the associated
observable–mass scaling relations.

We model the selection function (see Section 2.3) of the MARD-
Y3 sample as the combination of the X-ray selection function of
the candidate sample together with a model of the incompleteness
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introduced by the optical cleaning of that sample. We then proceed
to calibrate the X-ray luminosity–mass and optical richness–mass
relation using different sources of mass information to test whether
there is tension in the data set or a flaw in the selection function.

First, we cross-match the MARD-Y3 and the SZE-selected SPT-
SZ cluster samples, and calibrate the MARD-Y3 scaling relations
using the published calibration of the SZE signal-to-noise–mass
relation (see Section 5.1). Second, assuming priors on the cosmo-
logical parameters from the most recent SPT-SZ cluster cosmology
analysis (Bocquet et al. 2019), we calibrate the observable mass
scaling relations from the number counts of MARD-Y3 clusters
(see Section 5.2). In addition to the traditional number counts as a
function of X-ray flux and redshift, we also use the number counts
as a function of richness and redshift and the number counts as a
function of X-ray flux, richness, and redshift.

We find that the different flavours of number counts provide
scaling relation constraints that are statistically consistent with the
constraints from the SPT-SZ calibration performed on the cross-
matched sample. This validates the MARD-Y3 selection function,
because the SPT-SZ calibration is independent of the MARD-Y3
selection function, while the number count experiments are highly
sensitive to it. This leads us to the main conclusion of this work:
optical cleaning with MCMF allows one to create a clean cluster
sample with a controllable selection function. Once direct mass
information is available, we will be able to study cosmology using
the MARD-Y3 number counts. The fact that the incompleteness
(primarily at low masses) introduced by optical cleaning can be
modelled using the richness–mass relation implies that much larger,
reliable cluster samples extending to higher redshift and lower masses
can be constructed from ICM-based surveys if appropriately deep
optical and NIR data are available.

In these tests we identify some moderate tension between con-
straints on the luminosity–mass relation from X-ray number counts
and 2D (optical+X-ray) number counts: while the former prefers
small intrinsic X-ray scatter and a steep mass trend, the latter prefers
a shallower mass trend and larger intrinsic scatter. This hints at
some unresolved systematic on the X-ray side. As discussed in
Section 6.2, the high scatter scenario is supported by the scatter
among different measurements of luminosity on the same X-ray raw
data highlighted in K19, a further indicator of systematics in the flux
measurement. Nevertheless, the individual masses derived from the
different scenarios are consistent within the uncertainties. Because
there is no consensus in the literature, this question merits further
investigation once direct mass information is available.

In Section 5.3, we present the implications for MARD-Y3 masses
from different scaling relations that emerge from the tests described
above. There is a tendency for these masses to lie below those
calculated using externally calibrated relations from the literature
(Saro et al. 2015; Bulbul et al. 2019), and the largest tensions occur
at low masses.

We also study the MARD-Y3 selection function by comparing
the matched and unmatched MARD-Y3 clusters in the SPT-SZ
sample and vice versa. If the selection functions for MARD-Y3
and SPT-SZ are well understood then the number of matched and
unmatched clusters should be fully consistent with the statistical
expectations. Simply stated, this test allows us to constrain MARD-
Y3 contamination or SPT-SZ incompleteness (the two effects are
degenerate in this test). As discussed in Section 5.4.1, in the large
scatter luminosity–mass scenario, we find no evidence for either
effect, while in the low scatter scenario we find evidence at the
2σ level for either contamination or incompleteness. Given that the
MARD-Y3 sample contamination is estimated to be 2.5 per cent

(K19) and given that the SPT-SZ sample has been used to produce
cosmological constraints in good agreement with independent probes
(de Haan et al. 2016; Bocquet et al. 2019), we take this as further
evidence supporting the large scatter scenario.

Looking at the probability of an MARD-Y3 confirmation of an
SPT-SZ-selected cluster we find a subsample of clusters whose SZE
properties suggest they should not have been detected in MARD-Y3,
but they are. The size of this sample is susceptible to the scaling rela-
tion constraints assumed. As discussed in Section 5.4.2, if we model
this as an outlier fraction in the distribution of scatter about the mass–
observable relations (either abnormally high X-ray flux and richness,
or low SZE signature), we find a preference for an outlier fraction of
∼5 per cent–10 per cent with a detection significance ranging from
1.4σ to 3.6σ , depending on the scaling relation constraints assumed.
More accurate and independent mass information is needed to further
elucidate this aspect of the cluster population.

From a methodological perspective we demonstrate several new
techniques:

(i) Optical follow-up enables for three different flavours of number
counts. While we demonstrate the potential of multi-observable
number counts, the real novelty is that one can perform number
counts as a function of optical richness for a predominantly X-ray-
selected sample in a consistent manner. In a blinded WL-calibrated
cosmological analysis we would demand that the blinded cosmology
from these three likelihoods be consistent.

(ii) We improve the technique of studying matched and unmatched
clusters in two independent samples by including binomial statistics
and marginalizing over the systematic uncertainties associated with
lack of knowledge of the observable–mass relation parameters.
With the use of probability trees, extra probabilities, such as those
quantifying contamination, incompleteness or outlier fractions, can
all be constrained in a statistically sound way. This technique does
not depend on the amplitude and redshift evolution of the number of
objects, reducing its cosmological sensitivity.

(iii) We present a flexible empirical method to determine the X-ray
selection function from the data itself (see Fig. 1). It does not require
any assumptions about cluster morphology. The empirical nature
of the constraint also marginalizes over the inherent uncertainty
of the selection function by sampling extra nuisance parameters.
Shifts in these nuisance parameters when, for example, calibrating
the observable–mass relation using different sources of information
can serve as a further test of systematic.

The techniques highlighted here have the potential to enable better
control of systematic effects in cosmological studies of current and
upcoming cluster surveys. They also demonstrate the potential of
multiwavelength analysis of cluster samples not only to inform
the selection function modelling of individual surveys, but also to
identify interesting cluster populations. This will help exploit the
wealth of information provided by deep and wide surveys in X-ray,
optical, NIR, and millimetre wavelengths.
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APPEN D IX A : X -RAY FLUX ERRO R MODE L

As outlined in Section 2.2 in some application it is not sufficient
to know the measurement uncertainty only for the objects in the
catalogue, but the measurement uncertainty is also needed for
arbitrary values of measured flux f̂X and redshift z. We therefore
seek to predict σ̂ 2

X(f̂X, z, texp) from the measured entries σ̂
(i)
X . First

we note that the measurement uncertainties in the catalogue scale
with the exposure time approximately like σ̂

(i)
X ∼ t−0.5

exp . We thus bin

the quantity (σ̂ (i)
X )2 texp/400s in fine redshift and measured flux bins,

as shown in the upper panel of Fig. A1. This is then extrapolated and

Figure A1. Construction of the expected measurement uncertainty at the
median redshift (lower panel) as a function of redshift (y-axis) and measured
flux (x-axis), from the normalized measurement uncertainties reported in the
catalogue (upper panel). In the range where we have data, the predicted
observational measurement uncertainty nicely extrapolates the trends in the
catalogue.

smoothed to provide a prediction of the measurement uncertainty
σ 2

pred(f̂X, z) at each measured flux f̂X and redshift z, if the exposure
time was texp = 400 s, shown in the lower panel of Fig. A1. This
prediction can than be scaled to the desired exposure time assuming
the scaling above, that is

σ̂ 2
X(f̂X, z, texp) = σ 2

pred(f̂X, z)
400s

texp
. (A1)

Applying this prediction the cluster in our catalogue and compar-
ing the resulting uncertainties to the actual measurement uncertainty
leads to a mean relative error of 5.6 per cent. Furthermore, these
residuals display no strong trends with background brightness,
neutral hydrogen column density or measured extent. Given the
small magnitude, we choose to ignore this source of systematic
uncertainty, which could be included at the cost of sampling extra
nuisance parameters.

APPENDI X B: G ALLERY O F
MULTI WAV ELENGTH C LUSTER I MAG ES
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Figure B1. SPT-CL J2358-6129. Red sequence galaxy density map in DES at z = 0.403 (left-hand panel), exposure and background corrected count rate from
RASS (centre panel), and SPT signal-to-noise map in the smaller filter scale (right-hand panel). One pixel in the RASS count rate maps has diameter 45 arcsec,
all images have the same size. The two MARD-Y3 detected clusters (X-ray peaks in the centre panel) are matched to the same SPT-SZ detection (right-hand
panel, cf. Section 4.1.3).
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Figure B2. SPT-CL J2331-5051 and SPT-CL J2331-5053. Red sequence galaxy density map in DES at z = 0.577 (left-hand panel), exposure and background
corrected count rate from RASS (centre panel), and SPT signal-to-noise map in the smaller filter scale (right-hand panel). One pixel in the RASS count rate
maps has diameter 45 arcsec, all images have the same size. The two SPT-SZ detected clusters (right-hand panel) are matched to the same MARD-Y3 detection
(right-hand panel, cf. Section 4.1.3).
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Figure B3. SPT-CL J0218-4233. Red sequence galaxy density map in DES at z = 0.755 (left-hand panel), exposure and background corrected count rate from
RASS (centre panel), and SPT signal-to-noise map in the smaller filter scale (right-hand panel). One pixel in the RASS count rate maps has diameter 45 arcsec,
all images have the same size. This SPT-SZ detection was unexpectedly confirmed by MARD-Y3, cf. Section 5.4.2.
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Figure B4. SPT-CL J0324-6236. Red sequence galaxy density map in DES at z = 0.638 (left-hand panel), exposure and background corrected count rate from
RASS (centre panel), and SPT signal-to-noise map in the smaller filter scale (right-hand panel). One pixel in the RASS count rate maps has diameter 45 arcsec,
all images have the same size. This SPT-SZ detection was unexpectedly confirmed by MARD-Y3, cf. Section 5.4.2.

1e-3

2.7

2.4

2.1

1.8

1.5

1.2

0.9

0.6

0.3

4

3

2

1

0

-1

-2

-3

-4

8.2

7.3

6.3

5.4

4.4

3.4

2.4

1.4

0.46

12

11

9.6

8.2

6.8

5.5

4.1

2.7

1.3

Figure B5. 2RXS J033045.2-522845. DES image (upper left panel), exposure and background corrected count rate from RASS (upper centre panel), and SPT
signal-to-noise map in the smaller filter scale (upper right panel), Red sequence galaxy density map in DES at z = 0.056 (lower left panel) and at z = 0.428
(lower right panel). One pixel in the RASS count rate maps has diameter 45arcsec, all images have the same size. This MARD-Y3 detection was unexpectedly
missed by SPT-SZ, cf. Section 5.4.1. This is due to a catastrophic redshift failure of MCMF when run on SPT-SZ detections: it selected the low-redshift group
(white galaxies in the upper left panel, red sequence galaxy density in the lower left panel), while the actual structure is at intermediate redshift (galaxy density
in the lower right corner). When zooming into DES image, a blue Einstein arc around the brightest central galaxy can be seen.
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45Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona,
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