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Abstract In this paper, we determine the approximation ratio of a linear-

saturated control policy of a typical robust-stabilization problem. We consider

a system, whose state integrates the discrepancy between the unknown but

bounded disturbance and control. The control aims at keeping the state within
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a target set, whereas, the disturbance aims at pushing the state outside of the

target set by opposing the control action. The literature often solves this kind

of problems via a linear-saturated control policy. We show how this policy is an

approximation for the optimal control policy by reframing the problem in the

context of quadratic zero-sum differential games. We prove that the considered

approximation ratio is asymptotically bounded by 2, and it is upper bounded

by 2 in the case of 1-dimensional system. In this last case, we also discuss how

the approximation ratio may apparently change, when the system’s demand is

subject to uncertainty. In conclusion, we compare the approximation ratio of

the linear-saturated policy with the one of a family of control policies which

generalize the bang-bang one.

Keywords Robust optimization · Bounded disturbances · Differential

games · Linear-saturated control

Mathematics Subject Classification (2000) 93D21 · 49N70 · 91A05

1 Introduction

Linear-saturated controls (LSC) are inexpensive to design, to implement and

to manage. For this reason, a decision maker may wonder whether they are

worth implementing even when they are sub-optimal solution for the problem

at hand. The aim of this paper is to support the decision makers by comparing

LSC policies with respect to optimal ones in the case of robustly ε-stabilizing

a linear system with quadratic costs over a finite horizon.

The stability analysis and the stabilization of linear systems with saturating
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controls are two main topics considered by the control research community

(see, e.g., [1–3]). Several approaches were also proposed, e.g., Lyapunov and

LMI based approaches [4–8], and Riccati based approaches in [9,10]. In partic-

ular, we refer the reader to, e.g., [11–13] for systems of integrators as the ones

considered in this paper and their generalization, even to unstable plants.

A LSC policy can be also viewed as the simplest form of piece-wise linear con-

trol policy [14]; when it assumes values on all the state space of the considered

problem, it degenerates into the linear control policy, which is robust optimal

for quadratic zero-sum games [15].

The contribution of this paper consists in assessing the approximation ratio of

the LSC policy, i.e., the ratio between the payoff induced by the LSC policy

and the one induced by the optimal control policy for a linear system in pres-

ence of quadratic costs on the state and control (while we disregard a possible

rectangular term on the same variables). We prove that this approximation

ratio tends to 2 when the horizon length tends to infinity.

This paper, in spirit with [16,17], can be framed in the literature on production-

distribution systems, that have to face an unknown but bounded demand. The

inventory problem, dealt with in [16], reduces to our problem (1). In [16], a

graph describes the topology of a production-distribution system, where the

system manager controls the flows of materials over arcs in order to meet

the demand at the nodes. The node states, i.e., the deviations from inventory

safety stocks, integrates the deviation between the demand and the flow arriv-

ing at and departing from the nodes. The objective of the system manager is to



4 Dario Bauso et al.

keep the inventory fluctuations bounded around the safety stocks. We finally

remark that the modeling of the demand as unknown but bounded variable

has a long history in control as well as in robust optimization [18].

The rest of the paper is organized as follows. In Section 2, we describe the

problem from a game-theoretic point of view. In Section 3, we prove that the

approximation ratio of the LSC policy is asymptotically bounded by 2. In Sec-

tion 4, we focus on the 1-dimensional version of the differential game and we

prove that the associated approximation ratio is upper bounded by 2. In addi-

tion, we discuss how uncertainty may affect players’ assessment of the value of

the approximation ratio. In Section 5, we compare the approximation ratio of

the LSC policy with the one associated with a family of control policies that

generalize the bang-bang one. Finally, in Section 6, we draw some conclusions.

2 Problem Setup

Consider the following ε-stabilizability problem [16] over a horizon of length T

of a linear systems with quadratic costs on the state and the control but

without rectangular terms:

J(z0, u(.), ω(.)) =
1

2

∫ T

0

(z(t)′z(t) + u(t)′u(t)) dt+
1

2
z(T )′z(T ), (1a)

ż(t) = u(t)−Dω(t), z(0) = z0, 0 ≤ t ≤ T, (1b)

u(t) ∈ U , ω(t) ∈ W, z(t) ∈ S, 0 ≤ t ≤ T, (1c)
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where z(t) ∈ Rm is the continuous time state of the system; u(t) ∈ Rm is a

bounded control; ω(t) ∈ Rn is an unknown but bounded exogenous disturbance

with n ≤ m; D ∈ Rm×n is a matrix describing the physical structure of the

system; S = {z ∈ Rm : −ε ≤ z ≤ ε}, U = {u ∈ Rm : −û ≤ u ≤ û} and

W = {ω ∈ Rn : −ω̂ ≤ ω ≤ ω̂} are three hyper-boxes, where ε, û, ω̂ > 0 are a-

priori chosen. Finally, u(.) = {u(t), 0 ≤ t ≤ T} ∈ U and ω(.) = {ω(t), 0 ≤ t ≤

T} ∈ Ω are the realizations of controls and disturbances respectively, being U

and Ω the sets of nonanticipative control in the sense of Elliot-Kalton [19].

We address the problem from a game-theoretic standpoint. We consider

two players: player 1 (the minimizer), who plays u(.) aiming at minimizing

payoff (1a) while keeping the state within the target set S; player 2 (the max-

imizer), who plays ω(.) aiming at pushing the state out of S by maximizing

payoff (1a). We say that a control policy u(.) is robust for player 1 when it

can counteract player 2 worst disturbance ω∗(.) = arg maxω(.) J(z0, u(.), ω(.)),

i.e., player 2’s best-response to u(.), so that z(t) ∈ S for all 0 ≤ t ≤ T and

J(z0, u(.), ω∗(.)) < ∞. A control policy u∗(.) is robust optimal for player 1

when it is robust and it is a best-response to player 2’s worst disturbance, i.e.,

u∗(.) = arg minu(.){maxω(.) J(z0, u(.), ω(.))}. Finally, policies (u∗(.), ω∗(.)) are

saddle-point policies of the game when they satisfy the “Isaacs condition” (see,

e.g.,[15, p.353]) that defines the value of the game J∗(z0) as:

J∗(z0) = J(z0, u
∗(.), ω∗(.)) = min

u(.)
max
ω(.)

J(z0, u(.), ω(.)) = max
ω(.)

min
u(.)

J(z0, u(.), ω(.)).

In [16], it is shown that player 1 robust policies and, in particular, saddle-point
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polices exist if and only if

int(U) ⊃ DW, (2)

where int(U) denotes the set of the internal points of set U , and DW =

{y ∈ Rm : ∃ω ∈ W s.t. y = Dω}. Condition (2) allows player 1’s controls

to dominate any possible realization of the disturbance at each time instant.

Formally, for each ω ∈ W, there exists ξ > 0 such that u = −(1 + ξ̄)Dω ∈ U ,

for all 0 ≤ ξ̄ ≤ ξ.

Fig. 1 Linear-saturated control.

In particular, the linear-saturated control policy

u(t) = sat[−û,û](−z(t)) :=
(
sat[−û1,û1](−z1(t)), . . . , sat[−ûm,ûm](−zm(t))

)
(3)

where sat[−ûi,ûi](−zi) =


−ûi, if zi > ûi,

−zi, if − ûi ≤ zi ≤ ûi,

ûi, if zi < −ûi,

(see Fig.1), can keep the state z within S only if ε ≥ maxω∈W{Dω} and

û > maxω∈W{Dω}, as it can be seen by integrating (1b) and imposing the

constraint z(t) ∈ S. In the following, we assume that condition (2) holds.
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Let us denote JLSC(z0) = maxω(.) J(z0, sat[−û,û](z(.)), ω(.)) as the value

of (1a) when player 1 is constrained to use the LSC policy (3) and player 2

responds with its best-response. In this paper, we interested in determining

an upper bound of the approximation ratio:

r = sup
z0

JLSC(z0)

J∗(z0)
. (4)

The ratio r allows to understand how accurately a LSC policy of player 1 can

approximate the optimal solution.

3 Asymptotic bound for r

In this section, we prove that an LSC policy is 2-approximating for the differ-

ential game (1), at least asymptotically, i.e., we show that 2 is a bound of the

approximation ratio (4) when T →∞.

Initially, let us observe that both the LSC policy u(z(.)) = sat[−û,û](−z(.))

for player 1 and a possible constant policy ω(t) = const for player 2 are

nonanticipative. Let us also introduce the following notations: Di· denotes the

ith row of matrix D; Oα : R → R+ is, for each α ∈ N, a function such that

lim
T→∞

Oα(T )

T
= 0; sign:R→ {1,−1} is a function such that sign(x) = 1 if x ≥ 0

and sign(x) = −1 if x < 0.

Finally, let us anticipate some results from next section that are necessary

for the proof of the next Theorem 3.1. Lemma 4.1 and Lemma 4.2 in Section 4

consider the 1-dimensional differential game (i.e., m = n = 1). They prove

that the best-response ω∗(.) for player 2 is constantly equal to either ω̂ or −ω̂
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for 0 ≤ t ≤ T and it is chosen so that sign(−z0Dω∗(t)) = 1, independently

from the fact that player 1 implements its best-response u∗(.) (Lemma 4.1)

or the LSC policy (Lemma 4.2). The values of the payoff are respectively

J∗(z0) = 1
2T (Dω̂)2 +O1(T ) and JLSC(z0) = T (Dω̂)2 +O2(T ).

Theorem 3.1 Given the differential game (1), the approximation ratio of the

LSC policy (3) is asymptotically bounded by 2, namely, r ≤ 2, when T →∞.

Proof We prove the result by first determining an upper bound for JLSC(z0),

a lower bound for J∗(z0), and then determining the ratio of the two bounds.

To this end, consider the generic ith component of the state dynamic (1b)

żi(t) = ui(t)−Di·ω(t), z(0) = z0i, i = 1, . . . ,m. (5)

To determine an upper bound for JLSC(z0), we assume that, for each i =

1, . . . ,m, player 1 plays the LSC policy, whereas player 2 is allowed to not

only fix the value of ω(t) but also switch its sign, that is, player 2 is free to

decide whether to consider dynamics żi(t) = ui(t)−Di·ω(t) or żi(t) = ui(t)−

Di·(−ω(t)). The results of Lemma 4.2, and their trivial generalizations when

player 2 considers the second dynamics, imply that player 2’s best-response

ω∗(t) has components ω∗j (t), j = 1, . . . , n, constantly equal to either ω̂j or

−ω̂j for 0 ≤ t ≤ T which are chosen such that sign(−z0iDi·ω
∗(t)) = 1 when

player 2 considers the first dynamics and sign(−z0iDi·(−ω∗(t))) = 1 when

player 2 considers the second dynamics, for each i = 1, . . .m. In other words,

we can consider the differential game as composed by m different 1-dimensional

differential games each one with a payoff T (Di·ω)2 +O2i(T ), for some ω ∈ W
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common to all the 1-dimensional differential games. Thus, we can conclude

that

JLSC(z0) ≤ max
ω∈W

m∑
i=1

T (Di·ω)2 +

m∑
i=1

O2i(T ).

Now, let ω̃ ∈ Rn be the vector ω̃ = arg maxω∈W
∑m
i=1(Di·ω)2, then we

can obtain a lower bound for J∗(z0) by assuming that the set of controls for

player 2 is reduced to the set W̃ = {ω̃} ⊂ W. Then player 2 can only play

ω(t) = ω̃ for 0 ≤ t ≤ T , while player 1 plays its best-response. Consider the

set I of the indexes i = 1, . . . ,m such that sign(−z0iDi·ω̃) = 1. For each i ∈ I,

the results of Lemma 4.1 allow to consider a 1-dimensional differential game

with a payoff 1
2T (Di·ω̃)2 +O1i(T ).

Consider now the set Ĩ of the indexes i = 1, . . . ,m such that sign(−z0iDi·ω̃) =

−1. For each i ∈ Ĩ, the disturbance ω̃ initially pushes the state zi toward 0,

while player 1 has no interest in counteracting this action given the payoff (1a)

structure. Hence, there exists a time instant 0 ≤ t̃i ≤ z0i
Di·ω̃

such that zi(t̃i) = 0.

Then, for every t ≥ t̃i we can consider the 1-dimensional differential game

whose initial state is zi(t̃i) and to which we can apply the results of Lemma 4.1

to obtain a payoff 1
2 (T − t̃i)(Di·ω̃)2 +O1i(T − t̃i).

We set t̃i = 0 for i ∈ I to define t̃ = maxi∈I∪Ĩ{t̃i}. Thus, if T ≥ t̃, we have

J∗(z0) ≥ 1

2

m∑
i=1

(T − t̃i)(Di·ω̃)2 +

m∑
i=1

O1i(T − t̃i) ≥

≥ 1

2
max
ω∈W

m∑
i=1

(T − t̃)(Di·ω)2 +

m∑
i=1

O1i(T − t̃i).

Finally,

r =
JLSC(z0)

J∗(z0)
≤

maxω∈W
∑m
i=1 T (Di·ω)2 +

∑m
i=1O2i(T )

1
2 maxω∈W

∑m
i=1(T − t̃)(Di·ω)2 +

∑m
i=1O1i(T − t̃i)

−−−−→
T→∞

2,



10 Dario Bauso et al.

then the theorem is proven. ut

4 1-Dimensional Differential Game

In this section, we consider the 1-dimensional version of the differential game (1)

and we prove that the approximation ratio of LSC policy is upper bounded

by 2 for all T ≥ 0. Hereinafter, without loss of generality, we assume D = 1,

and hence û ≥ ε > ω̂ (as we can always redefine ω̂ by multiplying its original

value by an opportune parameter), and ω̂ = û−δ, being δ a positive parameter

that makes constraints on u and ω equivalent to condition (2).

We determine the players’ best-responses using the Isaacs-Hamilton-Jacobi

equation (see, e.g., [15] when z0 ≥ 0. A symmetric reasoning applies to the

case z0 < 0.

We remark that, if z0 ≥ 0, the players’ policies we introduce next in

Lemma 4.1 and in Lemma 4.2 keep the system state positive for all t > 0.

Lemma 4.1 Given the 1-dimensional differential game (1), if z0 ≥ 0, a

saddle-point policy is

(u∗(.), ω∗(.)) =
(
sat[−û,û](−z(t)− ω̂(1− et−T )),−ω̂

)
, 0 ≤ t ≤ T. (6)

Furthermore, the exact expression of the value of the game is:

J∗(z0) =



T
2

(
δ2T 2

3 + δT (δ − z0) + (û2 − 2δz0 + z20)
)

+
z20
2 , if z0 > û+ δT,

T
2 ω̂

2 +
(t̂2δ2(2t̂−3)+6δz0 t̂(1−t̂)+6t̂z20)−3(û−z0)

2+6(δû+z0ω̂)
12 ,

if δ + ω̂e−T ≤ z0 ≤ û+ δT,

T
2 ω̂

2 +
ω̂2(e−2T−1)+4z0ω̂(1−e−T )+2z20

4 , if 0 ≤ z0 < δ + ω̂e−T ,
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where t̂ is the solution of the following equation z0 − δt̂ = δ + ω̂e−T+t̂.

The value of the game in the average converges to ω̂2/2, namely

lim
T−→+∞

J∗(z0)

T
=

1

2
ω̂2. (7)

Proof See Appendix. ut

Note that that for t→ T the argument of u∗(t) in (6) tends to −z(t) that

is u∗(t) converges to the LSC policy obtained for the static game. On the other

hand, for T → +∞ we find that u∗(t) = −z(t)− ω̂, namely player 1 still plays

−z(t) with an additional term −ω̂ to compensate ω∗(t).

Let us now assume that player 1 is constrained to use the LSC policy (3).

We show that player 2’s best-response is a bang-bang control.

Lemma 4.2 Given the 1-dimensional differential game (1), if z0 ≥ 0 and

player 1 plays the LSC policy (3), then player 2’s best-response is the bang-

bang control ω∗(z(t)) = −sign(z(t))ω̂, for 0 ≤ t ≤ T .

Furthermore, the exact expression of the payoff is:

JLSC(z0) =



T
2

(
δ2T 2

3 + δT (δ − z0) + (û2 − 2δz0 + z20)
)

+
z20
2 , if z0 > û+ δT,

T ω̂2 + 1
6δ

(
− 6ω̂δ2e

−û−δT+z0
δ + (2û3 − 9δû2 + 12δ2û−

−6δ3 − 3û2z0 + 12δûz0 − 6δ2z0 + z30)
)
, if û ≤ z0 ≤ û+ δT,

T ω̂2 + ω̂(ω̂ − z0)(e−T − 1) +
z20
2 , if 0 < z0 < û.

The value of the payoff in the average converges to ω̂2, namely

lim
T−→+∞

JLSC(z0)

T
= ω̂2. (8)

Proof See Appendix. ut

We are now ready to determine the approximation ratio (4).
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Theorem 4.1 Given the 1-dimensional differential game (1), if z0 ≥ 0, the

approximation ratio (4) is upper bounded by 2, namely, r ≤ 2.

Proof Throughout this proof, we exploit that r ≤ 2 if and only if ∆(z0, T ) :=

JLSC(z0)− 2J∗(z0) ≤ 0 and that the Lambert W function is nonnegative and

increasing for x ≥ 0, and such that W (yey) = y for y ≥ 0.

Next we consider the following four cases:

i) z0 ≥ û+ δT ,

ii) û < z0 < û+ δT ,

iii) δ + ω̂e−T ≤ z0 ≤ û,

iv) 0 ≤ z0 < δ + ω̂e−T .

i) If z0 ≥ û+ δT , we have r = 1 as J∗(z0) = JLSC(z0).

ii) If û < z0 < û+ δT , we have

∆(z0, T ) = −ω̂δe
−û−δT+z0

δ + 1
6δ

(
2û3 − δ3 + 6δ2û− 6δû2 − 3û2z0 − z30

)
+ δ2

6

(
12W

(
ω̂
δ e

−δ−δT+z0
δ

)
+ 9W 2

(
ω̂
δ e

−δ−δT+z0
δ

)
+ 2W 3

(
ω̂
δ e

−δ−δT+z0
δ

))
.

Hence, we first show that ∆(z0, T ) ≤ 0 if ∆(z0,
z0−û
δ ) ≤ 0, then that

∆(z0,
z0−û
δ ) ≤ 0 actually holds. To this end, we observe that

∂∆(z0, T )

∂T
= δ

(
ω̂e

−û−δT+z0
δ − 2δW

(
ω̂

δ
e

−δ−δT+z0
δ

)
− δW 2

(
ω̂

δ
e

−δ−δT+z0
δ

))
.

As the function W (.) has nonnegative arguments, we have

∂∆(z0, T )

∂T
≤ δ

(
ω̂e

−û−δT+z0
δ − δW

(
ω̂

δ
e

−δ−δT+z0
δ

))
.

Then, we can prove that ∂∆(z0,T )
∂T ≤ 0 by showing that ω̂

δ e
−û−δ T +z0

δ ≤

W
(
ω̂
δ e

−δ−δT+z0
δ

)
. As function W (.) is increasing when its argument is
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positive, by applying the inverse function we obtain that the inequality

holds if and only if(
ω̂

δ
e

−û−δT+z0
δ

)
e

(
ω̂
δ e

−û−δT+z0
δ

)
≤ ω̂

δ
e

−δ−δT+z0
δ ⇔

e
ω̂
δ e

−û−δT+z0
δ ≤ e ω̂δ ⇔ z0 ≤ û+ δT.

As, for û ≤ z0 ≤ û+ δT , the difference ∆(z0, T ) is decreasing in T . Hence,

we have that ∆(z0,
z0−û
δ ) ≤ 0 implies ∆(z0, T ) ≤ 0 for T ≥ z0−û

δ . We

also observe that
∂∆(z0,

z0−û
δ )

∂z0
= − û+z

2
0

2δ ≤ 0. Then the maximum value for

∆(z0,
z0−û
δ ) is attained in z0 = û. Since ∆(û, 0) = − û

2

2 the statement is

proved.

iii) If δ + ω̂e−T ≤ z0 ≤ û, we have

∆(z0, T ) = ω̂(ω̂ − z0)e−T + 1
6δ

(
6δ2û− δ3 − 2z30 − 3δû2 + 3δz20 − 6δûz0

)
+

+ δ2

6

(
12W

(
ω̂
δ e

−δ−δT+z0
δ

)
+ 9W 2

(
ω̂
δ e

−δ−δT+z0
δ

)
+ 2W 3

(
ω̂
δ e

−δ−δT+z0
δ

))
,

and that

∂∆(z0, T )

∂T
= −ω̂(ω̂−z0)e−T−2δ2W

(
ω̂

δ
e

−δ−δT+z0
δ

)
−δ2W 2

(
ω̂

δ
e

−δ−δT+z0
δ

)
.

Here again, we show that ∆(z0, T ) is decreasing in T . As the function W (.)

has nonnegative arguments, ∂∆(z0,T )
∂T is trivially nonpositive if

δ + ω̂e−T ≤ z0 ≤ û. If ω̂ ≤ z0 ≤ û, we have

∂∆(z0, T )

∂T
≤ ω̂(z0 − ω̂)e−T − δ2W

(
ω̂

δ
e

−δ−δT+z0
δ

)
.

Then, we prove that ∂∆(z0,T )
∂T ≤ 0 by showing that

ω̂(z0 − ω̂)

δ2
e−T ≤W

(
ω̂

δ
e

−δ−δT+z0
δ

)
.
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By applying the W−1(.) we obtain that the inequality holds, if and only if

(
ω̂(z0 − ω̂)

δ2
e−T

)
e
ω̂(z0−ω̂)

δ2
e−T ≤ ω̂

δ
e

−δ−δT+z0
δ ⇔

⇔ z0 − ω̂
δ

e
ω̂(z0−ω̂)

δ2
e−T ≤ e

z0−δ
δ .

In the worst case, i.e., T = 0, it must hold z0−ω̂
δ e

ω̂(z0−ω̂)

δ2 ≤ e
z0−δ
δ or,

equivalently, δ2 ln
(
z0−ω̂
δ

)
+ω̂(z0−ω̂) ≤ z0δ−δ2. As ln(x) ≤ x−1 for x ≥ 0,

we consider the stronger condition δ(z0 − ω̂)− δ2 + ω̂(z0 − ω̂) ≤ z0δ − δ2,

that in turn holds if and only if z0 ≤ û.

As, for δ+ω̂e−T ≤ z0 ≤ û, the difference ∆(z0, T ) is decreasing in T . Hence,

we have that∆(z0, ln
(

ω̂
z0−δ

)
) ≤ 0 implies∆(z0, T ) ≤ 0 for T ≥ ln

(
ω̂

z0−δ

)
≥

0. Since ∆(z0, ln
(

ω̂
z0−δ

)
) = − û

2

2 for any z0 in the considered interval, the

statement is proved.

iv) If 0 ≤ z0 < δ+ ω̂e−T , we have ∆(z0, T ) = − 1
2

(
(1− e−T )ω̂ + z0

)2 ≤ 0, and

then the statement is proven. ut

We conclude this section observing that 2 is a strict upper bound for the

approximation ratio, as from (7) and (8) we derive that lim
T→+∞

JLSC(z0)

J∗(z0)
= 2.

4.1 The Effect of Uncertainty on the Perceived Efficiency

In this subsection, we briefly discuss the ways in which uncertainty may

affect the ways in which players assess the value of the approximation ratio.

Specifically, we show that the approximation ratio (4) may appear to change

when the player-2 best-response is subject to uncertainty.
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We assume that the actual response value of player-2 is perturbed in mod-

ulus by at most σ > 0 with respect to the response that both players predict

for the opponent play. Considering the 1-dimensional differential game (1), we

note that σ has to satisfy the following condition 0 ≤ δ − σ < δ + σ < û and

ε ≥ û− δ + σ so that the conditions (2) and (1c) hold.

We consider the opposite cases where the perturbation is equal to σ or −σ.

From Lemma 4.2 we know that player 2’s best-response coincides with the

bang-bang control respectively. Then, we can assume that player 2 implements

the following policy ω∗ + (z(t)) = −sign(z(t))(û − δ) − σ for 0 ≤ t ≤ T, and

we can denote by JLSCσ (z0) the payoff of (1), where the subscript indicates

the presence of uncertainty σ. We say that the perceived efficiency of the

LSC policy is given by the ratio between the actual payoff JLSCσ (z0), given

the presence of the uncertainty, and the value that the players estimate as the

optimal payoff J∗(z0) given that they do not know that the player 2’s response

is affected by uncertainty σ, that is: rσ = sup
z0

JLSCσ (z0)

J∗(z0)
.

Using the same arguments of Lemma 4.2 we get that a strict upper bound

of the considered ratio is given by rσ ≤ 2+ζ(σ) with ζ(σ) =
2(2ω̂σ + σ2)

ω̂
> 0.

Similarly, when the perturbation is equal to −σ we get r−σ ≤ 2 + ζ(−σ) with

ζ(−σ) =
2(2ω̂(−σ) + σ2)

ω̂
< 0.

5 Comparison between different approximation ratios

In this section, we compare the approximation ratio of LSC policy with the

one of policies parametrized in the threshold value k > 0 and subject to (a
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state based) switching rule of delay-relay type (RTC) depicted in Fig. 2.

In the following, we consider a 1-dimensional system (1).

Fig. 2 Switching rule of delay-relay type.

RTC policies are formally described in [20]. They generalize the bang-

bang one by allowing hysteresis and they can be described as follows. Assume

0 ≤ z0 ≤ k and that player 2’s policy ω∗(.) pushes the state to increase its

value. Player 1’s control u(.) starts to counteract ω∗(.) jumping from 0 to −û

when the state goes above the threshold k; u(.) keeps its value equal to −û

until the state goes below 0 and then jumps to 0 so that the cycle iterates.

When z0 > k, u(.) takes on value −û from time 0 until the state goes below 0

and then both state and control values cycle as before. Symmetric argument

holds if z0 ≤ 0 and policy ω∗(.) pushes the state to decrease its value.

We remark that an RTC policy corresponds to the standard bang-bang policy

when k → 0.

Let us now compare the different player 1 policies presented in this pa-

per for a 1-dimensional system (1), with z0 = 0, û = 1 and D = 1. The

player 2’s best-response is always ω∗(t) = −ω̂ independently of the policy
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used by player 1. In particular, if player 1 implements an RTC policy we have

that the system dynamics (1b) evolves as follows:

i) ż(t) = ω̂, which implies z(t) = ω̂t for 0 ≤ t ≤ t1, where t1 = k/ω̂ is the

switching time when the state goes above the threshold k for the first time,

ii) ż(t) = −û + ω̂, which implies z(t) = (−û + ω̂)t + kû/ω̂ for t1 < t ≤ t2,

where t2 = kû/ω̂(û− ω̂) is the switching time when the state goes below 0

for the first time after t1,

iii) the system state keeps switching between the two dynamics ż(t) = ω̂ and

ż(t) = −û+ ω̂ with frequency 1/t2 = ω̂(û− ω̂)/kû.

If βt2 = T , β ∈ N, and the exit cost is null, the payoff (1a) turns out to be:

JRTC(z0) = β
1

2

(∫ t1

0

(ω̂t)2 dt+

∫ t2

t1

(
(−û+ ω̂)t+

kû

ω̂

)2
+ û2 dt

)
= T

(k2 + 3ûŵ)

6

where β is the number of switchings of control u(.) between value 0 and −û.

Table 1 allows to compare the approximation ratios of LSC and RTC poli-

cies for different values of ω̂, k and β. It highlights that the approximation

ratios of the LSC policy tends to be better than the one of the RTC policies

when ω̂ and β decrease and k increases. The approximation ratios of an RTC

policy improves when β increases and k → 0, that is, when player 1 uses a

bang-bang control that chatters with a frequency 1/t2 → ∞. Unfortunately,

this kind of controls are often very difficult to implement in the practice. For

example, the considered 1-dimensional system could be the model of a pump

(player 1) in charge of keeping the level z(.) of a water reservoir around a

reference 0 level in presence of a demand ω(.) (player 2). A policy switching

continuously the pump on and off would probably quickly damage it.
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ŵ = 0.2, k = 0.1 ŵ = 0.8, k = 0.1 ŵ = 0.2, k = 0.9 ŵ = 0.8, k = 0.9

β rLSC rRTC rLSC rRTC rLSC rRTC rLSC rRTC

1 1.19 11.84 1.19 2.92 1.81 12.90 1.81 1.83

10 1.83 5.53 1.83 1.36 1.98 11.86 1.98 1.69

100 1.98 5.12 1.98 1.27 2.00 11.76 2.00 1.67

1000 2.00 5.09 2.00 1.26 2.00 11.75 2.00 1.67

Table 1 Value of the approximation ratios of LSC and RTC policies for different values of

ω̂, k and β.

6 Conclusions

In this paper, we proved that the approximation ratio of LSC policy is asymp-

totically bounded by 2 and compared it with the one of control policies gov-

erned by a switching rule. These results provide straightforward performance

indicators of the above policies if compared with the optimal ones.

Appendix

Proof of Lemma 4.1

In this proof we show that (u∗(.), ω∗(.)) =
(
sat[−û,û](−z(t)− ω̂(1− et−T )),−ω̂

)
, for 0 ≤

t ≤ T , is a saddle-point policy and we determine the state trajectory z(t).

The values of payoff J(z0, u(.), ω(.)) (1a) and of limit (7) can be trivially determined by

substituting the values of z(t) and u∗(t) in the respective formulas. In particular, we consider

the Hamiltonian (9) associated with problem (1) taking into account the constraints on z(t)

and u(t) to determine z(t), u∗(t) and ω∗(t). We have:

H(z(t), u(t), ω(t)) =
1

2
(z2(t) + u2(t)) + p(t)(u(t)− ω(t))− (9)

− ν+(t)(ε− z(t))− ν−(t)(ε+ z(t))− λ+(t)(û− u(t))− λ−(t)(û+ u(t)),
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where p(t) is the costate and ν+(t), ν−(t), λ+(t), λ−(t) are four nonnegative functions for

0 ≤ t ≤ T , such that ν+(t)(ε − z(t)) = 0, ν−(t)(ε + z(t)) = 0, λ+(t)(û − u(t)) = 0,

λ−(t)(û+u(t)) = 0. These last conditions impose that, at each time t, either ν+(t) or ν−(t),

respectively, either λ+(t) or λ−(t) must be equal to 0.

From (9) we obtain that best-responses of the two players are:

u∗(t) = arg min
u(t)

H(z(t), u(t), ω(t)) = −p(t)− λ+(t) + λ−(t) (10a)

ω∗(t) = arg max
ω(t)

H(z(t), u(t), ω(t)) = −sign(p(t))ω̂. (10b)

The latter condition implies p(0) ≥ 0, as we assume z0 > 0, and hence ω∗(0).

The dynamics on z(t) and p(t) are then

ż(t) = u(t)− ω(t) = −p(t)− λ+(t) + λ−(t) + sign(p(t))ω̂, with z(0) = z0,

ṗ(t) = −z(t)− ν+(t) + ν−(t), with p(T ) = z(T ).

We now prove that there is a saddle-point where p(t) > 0 for 0 ≤ t ≤ T . To this end,

we consider the following two different cases for p(t) and z(t): i) p(t) ≥ û, for 0 ≤ t ≤ T , ii)

0 < p(t) < û, for 0 ≤ t ≤ T , iii) p(t) > 0, for 0 ≤ t ≤ T . Specifically, we use the results of

the first two cases to address the third general case.

i) If p(t) ≥ û, condition (10a) imposes λ−(t) = p(t) + u∗(t) + λ+(t) ≥ 0. Then, when

λ−(t) > 0, we have u∗(t) = −û that in turn implies λ+(t) = 0. On the other hand,

as λ+(t) ≥ 0 must hold, λ−(t) = 0 implies p(t) = û, u∗(t) = −û, and λ+(t) = 0. As

a consequence, straightforward computations indicate the following functions as unique

candidate optimal solutions of the differential two–point boundary value problem defined

by (10) and (11), for 0 ≤ t ≤ T :

u∗(t) = −û, ω∗(t) = −ω̂ (12a)

z(t) = z0 − (û− ω̂)t = z0 − δt, p(t) =
1

2
δ(t2 − T (2 + T )) + (1− t+ T )z0. (12b)

Note that, given u∗(t) and ω∗(t), z(t) is decreasing in t, then z0 ≥ 0 in S implies

z(t) ∈ int{S}, as p(t) ≥ û implies z0 ≥ û+ δT and hence z(t) > 0 as we show next.

The candidate saddle-point policies (12a) do not contradict the assumptions p(t) ≥ û

for all 0 ≤ t ≤ T if and only if z0 ≥ û + δT . Indeed, we note that p(T ) = z0 − δT ≥ û
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only if z0 ≥ û+ δT and that function p(t) attains its minimum value in t∗ = z0
δ

which

is greater than T for z0 ≥ û+ δT .

ii) If 0 ≤ p(t) < û, condition (10a) imposes λ−(t) = 0, as λ−(t) > 0 would imply

both u∗(t) > −û, due to the current assumption on p(t), and u∗(t) = −û, due to the

slackness complementarity condition. Similarly, (10a) imposes also λ+(t) = 0. Hence

−û < u(t) < 0 and λ+(t) = λ−(t) = 0 for all 0 ≤ t ≤ T , then we have

u∗(t) = −ω̂(1− e−T cosh(t))− z0e−t, ω∗(t) = −ω̂, (13a)

z(t) = ω̂ sinh(t)e−T + z0e
−t, p(t) = ω̂(1− e−T cosh(t)) + z0e

−t. (13b)

The candidate saddle-point policies (13a) do not contradict z(t) ∈ S and the assump-

tions 0 ≤ p(t) < û for all 0 ≤ t ≤ T when 0 ≤ z0 < δ + ω̂e−T as it can be directly

verified. In particular, we observe that z(t) is a nonnegative convex function for t > 0

if z0 ≥ 0. As a consequence, z(t) ∈ S if and only if z0 and z(T ) ∈ S, which in turn

requires ε ≥ ω̂ 1+e−T

2
and which is implied by the fact that ε > ω̂ holds due to (2).

iii) If p(t) ≥ 0, we have a more general situation not included in the previous two cases

when δ + ω̂e−T ≤ z0 ≤ û+ δT .

We preliminary observe that we can partition the payoff (1) as follows:

J(z0, u(.), ω(.)) =

∫ t̂

0

1

2
(z2(t) + u2(t))dt︸ ︷︷ ︸ +

∫ T

t̂

1

2
(z2(t) + u2(t))dt+

1

2
z(T )2︸ ︷︷ ︸ .

K(z0, u(.), ω(.), t̂) L(z(t̂), u(.), ω(.), t̂)

for any 0 ≤ t̂ ≤ T , Then, as equation (1b) describes a first order system, we can

determine the value of the payoff (1a) in two steps. First, we compute the value of

L∗(z(t̂), t̂) = min
u(.)

max
ω(.)

L(z(t̂), u(.), ω(.), t̂)

as a function of z(t̂). Second, we solve the optimization problem

min
u(.)

max
ω(.)
{K(z0, u(.), ω(.), t̂) + L∗(z(t̂), t̂)},

where L∗(z(t̂), t̂) is seen as a final penalty term. In particular, we denote by t̂, the first

instant, if exists, such that zt̂ := z(t̂) = δ + ω̂e−T .
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We obtain the optimal value L∗(zt̂) from conditions (13) by translating the time origin

in t̂, and assuming a horizon length T − t̂:

L∗(zt̂) =
T − t̂

2
ω̂2 +

(e−2(T−t̂) − 1)ω̂2 + 4zt̂ω̂(1− e−(T−t̂)) + 2z2
t̂

4
.

Next, we solve the optimization problem with respect to K(z0, u(t), ω(t), t̂) + L∗(zt̂).

We observe that the boundary condition is

p(t̂) =
∂L∗(zt̂)

∂zt̂

∣∣∣∣
zt̂=δ+ω̂e

−(T−t̂)
= ω̂ + zt̂ − ω̂e

−(T−t̂)

Now, by contradiction, we show that u∗ = −û must hold for t ≤ t̂. Indeed, assume that

there exists an instant t̄ ≤ t̂ such that u∗(t̄) > −û. Then, the latter implies p(t̄) < û and

being ṗ(t) = −z(t) < 0 (as ν+(t) = ν−(t) = 0) also p(t̂) < p(t̄) < û which contradicts

the assumption p(t̂) = û and, hence, t̄ does not exist. In summary, the saddle-point

policies and the associated dynamics on z(t) are:

u∗(t) =


−û, if t < t̂,

−ω̂(1− e−(T−t̂) cosh(t− t̂))− z0e−(t−t̂), if t ≥ t̂,

ω∗(t) = −ω̂,

z(t) =


z0 − δt, if t < t̂,

ω̂ sinh(t− t̂)e−(T−t̂) + z0e−(t−t̂), if t ≥ t̂.

Note that even in this case ε ≥ ω̂ implies z(t) ≤ ε for 0 ≤ t ≤ T .

As a consequence t̂, if exists, is the solution of the following equation z0−δt̂ = δ+ω̂e−T+t̂

hence t̂ = −1 + z0
δ
−W

(
ω̂
δ
e

−δ−δT+z0
δ

)
, where W (.) is the Lambert W -function.

It is left to show that t̂ always exists (at most we have t̂ = T ). This is straightforward

since if t̂ did not exist, we would have the lower bound condition z(t) > δ + ω̂e−T+t

for all t ≤ T . But the latter is not possible since it must also hold the upper bound

condition z(t) < û+ δ(T − t), for all 0 ≤ t ≤ T , and for t = T we have that both bounds

are equal to û, i.e., δ + ω̂e−T+t = û+ δ(T − t) = û. ut

Proof of Lemma 4.2

In this proof we determine player 2’s best-response, under the assumption that player 1

plays the LSC policy and we determine the state trajectory z(t).
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The values of payoff J(z0, u(.), ω(.)) (1a) and of limit (8) can be trivially determined by

substituting the values of z(t) and u(t) in the respective formulas. In particular, we apply

the Pontryagin conditions associated with (1) to determine z(t) and ω∗(t). We consider

separately the two cases 0 ≤ z0 ≤ û ≤ ε and 0 ≤ z0 ≤ ε ≤ û.

If 0 ≤ z0 ≤ û ≤ ε, we have:

ω∗(t) = −sign(p(t))ω̂,

ż(t) = u(z(t)) + sign(p(t))ω̂,

ṗ(t) = −z(t)− u(z(t))
∂u(z(t))

∂z(t)
− p(t)

∂u(z(t))

∂z(t)
,

p(T ) = z(T ).

(14)

To prove that ω∗(t) = −sign(z(t))ω̂, initially, consider 0 ≤ z0 ≤ ω̂, thus u(z0) = −z0 and

observe that possible ω∗(.) and z(.) components of the solutions of (14) are:

ω∗(t) = −ω̂, z(t) = ω̂(1− e−t) + z0e
−t > 0 (and ≤ û). (15)

To prove that ω∗(t) is actually the solution of (14), we show that any other policy would lead

to a worse payoff for player 2. Indeed, suppose that player 2 uses a constant policy ω(t) = ω̂.

We obtain z(t) = −ω̂(1−e−t)+z0e−t, thus u(z(t)) = z(t) and z(T ) = −ω̂(1−e−T )+z0e−T .

Direct computation of the respective values of the payoff shows that policy ω(t) = ω̂ is

worse, respectively not better if z0 = 0, for player 2 than the one of the policy ω∗(.) in

(15). Observe also that, player 2 does not benefit from using a time-varying policy. In this

case, we obtain −ω̂(1 − e−t) + z0e−t ≤ z(t) ≤ −ω̂(1 − e−t) + z0e−t, thus u(z(t)) = z(t)

and −ω̂(1− e−T ) + z0e−T ≤ z(T ) ≤ −ω̂(1− e−T ) + z0e−T . Even in this case the payoff of

player 2, due to its quadratic structure, takes on a worse value than the value returned by

the policy ω∗(.) in (15).

It is apparent that if player 2’s best-response is ω∗(t) = −ω̂ when 0 ≤ z0 ≤ ω̂, then the

same control policy is the best-response when z0 has a greater values. For any other policies,

both u(z(t)) and z(t) would take on smaller absolute values than in case of ω∗(t) = −ω̂.
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Given the above arguments, state trajectory z(t) associated with u(.) and ω∗(.) is the

defined as ż(t) = ũ(t) + sign(z(t))ω̂. Then,

z(t) =


z0 − δt, if z0 ≥ û+ δT,

(z0 − δt)1{t ≤ z0−û
δ
}+ (ω̂ + δe

z0−û
δ

−t))1{ z0−û
δ

< t ≤ T}, if û < z0 < û+ δT,

ω̂(1− e−t) + z0e−t, if 0 ≤ z0 ≤ û,

.

Similar arguments hold for 0 < z0 ≤ ε < û. Even in this case, player 2’s best-response is

ω̃(t) = −ω̂. Also, as z0 ≤ ε, then the state trajectory z(t) associated with ũ(.) and ω̃(.) is

z(t) = ω̂(1− e−t) + z0e−t, for 0 ≤ t ≤ T. In particular, ε ≥ ω̂ implies z(t) ≤ ε. ut

References

1. Saberi, A., Lin, Z., Teel, A.: Control of linear systems with saturating actuators. IEEE

Trans. Autom. Control 41(3), 368-377 (1996)

2. Tarbouriech, S., Garcia, G., da Silva, J. G., Queinnec, I.: Stability and Stabilization of

Linear Systems with Saturating Actuators, London, Springer-Verlag (2011)

3. Benzaouia, A., Mesquine, F., Benhayoun, M.: Saturated Control of Linear Systems. In:

Studies in Systems, Decision and Control, Springer, Cham (2018)

4. Hu, T., Teel, A.R., Zaccarian, L.: Stability and performance for saturated systems via

quadratic and nonquadratic Lyapunov functions. IEEE Trans. Autom. Control 51(11),

1770-1786 (2006)

5. Henrion, D., Tarbouriech,S.: LMI relaxations for robust stability of linear systems with

saturating controls. Automatica 35, 1599-1604 (1999)

6. Benzaouia, A., Tadeo, F., Mesquine, F.: The regulator problem for linear systems with

saturation on the control and its increments or rate: an LMI approach. IEEE Trans.

Circuits Syst. I Fundam. Theory Appl. 53(12), 2681-2691 (2006)

7. Castelan, E.B., Tarbouriech, S., da Silva Jr., J.M. G., Queinnec, I.: L2-stabilization of

continuous-time systems with saturating actuators. Int. J. Robust Nonlinear Control

16, 935-944 (2006)

8. Fang, H., Lin, Z., Hu, T.: Analysis of linear systems in the presence of actuator satura-

tion and L2-disturbances. Automatica 40(7), 1229-1238 (2004)



24 Dario Bauso et al.

9. Teel, A.R.: Semi-global stabilizability of linear null controllable systems with input

nonlinearities. IEEE Trans. Autom. Control 40(1), 96-100 (1995)

10. Lin, Z., Mantri, R., Saberi, A.: Semi-global output regulation for linear systems subject

to input saturation—a low and high gain design. Control Theory Adv. Technol 10(4),

2209-2232 (1995)

11. Teel, A.R.: Global stabilization and restricted tracking for multiple integrators with

bounded controls. Syst. Control Lett. 18, 165-171 (1992)

12. da Silva Jr, J. M. G., Tarbouriech, S.: Anti-windup design with guaranteed regions of

stability: An LMI-based approach. IEEE Trans. Autom. Control 50, 106-111 (2005)

13. Cao, Y.Y., Lin, Z., Ward, D.G.: An antiwindup approach to enlarging domain of at-

traction for linear systems subject to actuator saturation. IEEE Trans. Autom. Control

47(1), 140-145 (2002)

14. Bemporad, A., Morari, M., Dua, V., Pistikopoulos, E. N.: The explicit linear quadratic

regulator for constrained systems. Automatica 38(1), 3-20 (2002)

15. Basar, T., Olsder, G. J.: Dynamic Noncooperative Game Theory (2nd ed.). Academic

Press, London (1995)

16. Bauso, D., Blanchini, F., Pesenti, R.: Robust control policies for multi-inventory systems

with average flow constraints. Automatica, 42(8), 1255–1266 (2006)

17. Bagagiolo, F., Bauso, D.: Objective function design for robust optimality of linear con-

trol under state-constraints and uncertainty. ESAIM Control Optim. Calc. Var. 17(1),

155-177 (2011)

18. Bertsimas,D., Thiele, A.: A Robust Optimization Approach to Inventory Theory. Oper.

Res. 54(1), 150–168 (2006)

19. Elliot, R.J., Kalton, N.J.: The existence of value in differential games. Mem. Amer.

Math. Soc. 126. AMS, Providence, USA (1972)

20. Visintin, A.: Differential Models of Hysteresis. Springer-Verlag, Berlin (1994)


