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Abstract
We study a reliable pole selection for the rational approximation of the resolvent of 
fractional powers of operators in both the finite and infinite dimensional setting. The 
analysis exploits the representation in terms of hypergeometric functions of the error of the 
Padé approximation of the fractional power. We provide quantitatively accurate error 
estimates that can be used fruitfully for practical computations. We present some numerical 
examples to corroborate the theoretical results. The behavior of rational Krylov methods 
based on this theory is also presented.
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1 Introduction

Let L be a self-adjoint positive operator with spectrum σ(L) ⊆ [c, +∞), c > 0, 
acting in a  Hilbert space H endowed with norm ‖·‖ and operator norm ‖·‖ . We assume 
that L possesses a compact inverse so that it can be written in terms of its spectral 
decomposition and the operational calculus f ( ) can be defined by working on the 

eigenvalues as in the finite-dimensional setting. Moreo
L
ver, denoting by {μ j } j

∞ 
1 the 

eigenvalues of L and assuming that they are numbered in non-decreasing order of 
=

magnitude, 
we have c = μ1. This paper deals with the numerical approximation of the resolvent of 
fractional powers

(
I + hLα

)−1
, 0 < α < 1, h > 0,
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where I denotes the identity operator. This kind of resolvent appears for instance when using
an implicit multistep or a Runge-Kutta method for solving fractional in space parabolic-type
equations in which L represents the Laplacian operator with Dirichlet boundary conditions
and h depends both on the time step and the parameters of the integrator. We quote here
[16] and the references therein contained for a comprehensive treatment of the operational
calculus involving fractional powers, in themore generic setting of linear operators in Banach
spaces.

Clearly the computation of (I + hLα)−1 is closely connected to the approximation of the
fractional power L−α because

1

1 + hλα
= λ−α

λ−α + h
, (1)

and hence, any approximant of the function λ−α in [c,+∞) can be employed to define a
method for the resolvent. In this view, recalling the analysis given in [1], the basic aim of
this work is to consider Padé-type approximations of the fractional power, centered at points
that allows to minimize as much as possible the error for (I + hLα)−1. This idea is justified
by the fact that the function (1 + hλα)−1 behaves like λ−α for large values of λ.

For any given τ > 0, let Rk−1,k(λ) be the (k − 1, k) -Padé approximant of λ−α centered
at τ, and consider the approximation

L−α ≈ Rk−1,k(L). (2)

It is well known that the choice of the parameter τ is fundamental for the quality of the
approximation, see [1,2]. Since L is assumed to be self-adjoint the analysis of this approach
can be made by working scalarly in the real interval [c,+∞). In particular, working with
unbounded operator, in [1] it has been shown how to suitably define the parameter τ by
looking for an approximation of the optimal value given by the solution of

min
τ>0

max
λ∈[c,+∞)

∣∣λ−α − Rk−1,k(λ)
∣∣ .

As for the resolvent, using λ−α ≈ Rk−1,k(λ) in (1) and writing

Rk−1,k(λ) = pk−1 (λ)

qk (λ)
, pk−1 ∈ Πk−1, qk ∈ Πk,

where Π j denotes the set of polynomials of degree at most j , we have

1

1 + hλα
≈ pk−1 (λ)

pk−1 (λ) + hqk (λ)
=: Sk−1,k(λ). (3)

Obviously Sk−1,k inherits the dependence on τ , and the main contribute of this paper is to
define the parameter τ in order to minimize as much as possible the error

Ek :=
∥∥∥
(
I + hLα

)−1 − Sk−1,k(L)

∥∥∥
H→H

(4)

so that the idea here is to define τ by looking for the solution of

min
τ>0

max
λ∈[c,+∞)

∣∣∣
(
1 + hλα

)−1 − Sk−1,k(λ)

∣∣∣ . (5)

We derive an approximate solution τk of (5) that depends on k and h, and we are able to 
show that the error Ek decays like O(k−4α), that is, sublinearly. We experimentally show that 
using this new parameter sequence it is possible to improve the approximation attainable by
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taking τk as in [1] for L−α and then using (1) to compute (I + hLα)−1. The latter approach
has recently been used in [4].

In the applications, where oneworkswith a discretizationLN ofL, if the largest eigenvalue
λN of LN (or an approximation of it) is known, then the theory developed for the unbounded
case can be refined. In particular, here we present a new sequence of parameters

{
τk,N
}
k

that can be used to handle this situation and that allows to compute
(
I + hLα

N

)−1 with a
linear decay of the error, that is, of the type rk , 0 < r < 1. In both situations, unbounded and
bounded, we provide error estimates that are quantitatively quite accurate and therefore useful
for an a-priori choice of k that, computationally, represents the number of operator/matrix
inversions [cf. (3)].

The poles ofSk−1,k can also be used to define a rationalKrylovmethod for the computation

of
(
I + hLα

N

)−1
v, v ∈ R

N , and the error estimates as hints for the a-priori definition of the
dimension of the Krylov space. We remark that the poles of Sk−1,k completely change with
k, so that for a Krylov method it is fundamental to decide at the beginning the dimension
to reach, that is, the set of poles. The construction of rational Krylov methods based on the
theory presented in the paper is considered at the end of the paper.

The paper is organized as follows. In Sect. 2 the basic features concerning the rational
approximation of the fractional power L−α are recalled. Sections 3 and 4 contain the error
analysis for the infinite and finite dimensional case, respectively. Finally, in Sect. 5 some
numerical results are reported, including some experiments with rational Krylov methods.

2 The Rational Approximation

The (k − 1, k)-Padé type approximation to L−α recalled in (2) can be obtained starting from
the integral representation

L−α = sin(απ)

(1 − α)π

∫ ∞

0
(ρ1/(1−α) I + L)−1dρ (6)

that has been proved in [6, Theorem 10.1.2, p. 181] in the more general case of an operator
that is the generator of a strongly continuous semigroup in Banach space, exponentially
decaying (see [6, Chapter 4] for a background). Using the change of variable

ρ1/(1−α) = τ
1 − t

1 + t
, τ > 0, (7)

we get

L−α = 2 sin(απ)τ 1−α

π

∫ 1

−1
(1 − t)−α (1 + t)α−2

(
τ
1 − t

1 + t
I + L

)−1

dt . (8)

At this point, applying the k-point Gauss-Jacobi rule with respect to the weight function
ω(t) = (1 − t)−α (1 + t)α−1 we obtain the rational approximation [see (2)]

L−α ≈
k∑

j=1

γ j (η j I + L)−1 := Rk−1,k(L). (9)

The coefficients γ j and η j are given by

γ j = 2 sin(απ)τ 1−α

π

w j

1 + ϑ j
, η j = τ(1 − ϑ j )

1 + ϑ j
, (10)
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where w j and ϑ j are, respectively, the weights and nodes of the Gauss-Jacobi quadrature

rule. Denoting by ζr the r th zero of the Jacobi polynomial P(α,1−α)
k−1 (λ) and setting

εr = τ
1 − ζr

1 + ζr
, r = 1, 2, . . . , k − 1, (11)

from [3, Proposition 2] we can express Rk−1,k(λ) as the rational function

Rk−1,k(λ) = pk−1(λ)

qk(λ)
= χ

∏k−1
r=1(λ + εr )

∏k
j=1(λ + η j )

, (12)

where

χ = ηk

τα

(k+α−1
k−1

)

(k−α
k

)
k−1∏

j=1

η j

ε j
.

Remark 1 Clearly, unless α = 1/2, it is not possibile to have an analytic expression for the
Padé approximant, since εr and η j can only be numerically evaluated.

We refer here to [7,13,17] for other effective rational approaches based on different integral
representations and quadrature rules.

As for the resolvent, using the rational form Sk−1,k defined in (3) we have that

(
I + hLα

)−1 ≈
k∑

j=1

γ j (η j I + L)−1, (13)

where γ j are the coefficients of the partial fraction expansion of Sk−1,k and −η j are the
roots of the polynomial pk−1 (λ) + hqk (λ) ∈ Πk . From [4, Proposition 1] we know that all
the values −η j are real and simple. To locate them on the real axis, we recall that ϑ j are the

zeros of the Jacobi polynomial P(−α,α−1)
k (λ). So, using (10) it is immediate to verify that

the roots of qk(λ) are all real, simple and negative, which implies that its coefficients are
strictly positive. The same conclusions apply to pk−1(λ). Therefore, since all the coefficients
of pk−1 (λ) + hqk (λ) are strictly positive by construction, according to the Descartes’ rule
of signs, we are also sure that −η j are negative and therefore that the approximation (13) is
well-defined.

3 Error Analysis

Before starting we want to emphasize that the rational forms Rk−1,k and Sk−1,k depend on
the value of τ in (7). Anyway, in order to keep the notations as simple as possible, in what
follows we avoid to write the explicit dependence on this parameter. Moreover, throughout
this and the following section we frequently use the symbol ∼ to compare sequences, with
the underlying meaning that ak ∼ bk if ak = bk(1 + εk) where εk → 0 as k → +∞.

First of all we recall the following result given in [1, Proposition 2], and based on the
representation of the error arising from the Padé approximation of the fractional power

(14)ek (λ) := λ−α − Rk−1,k (λ)

in terms of hypergeometric functions whose detailed analysis can be found in [10].
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Proposition 1 For large values of k, the following representation of the error holds

ek(λ) = 2 sin(απ)λ−α

[
λ1/2 − τ 1/2

λ1/2 + τ 1/2

]2k (
1 + O

(
1

k

))
. (15)

Now, let

rk(λ) := (1 + hλα
)−1 − Sk−1,k(λ). (16)

Proposition 2 For large values of k, the following representation holds

rk(λ) =
2h sin(απ)λ−α

[
λ1/2−τ 1/2

λ1/2+τ 1/2

]2k

(
λ−α + h

)2

(
1 + O

(
1

k

))
+ O ((ek(λ))2

)
.

Proof By (14) we have

rk(λ) = λ−α

λ−α + h
− Rk−1,k(λ)

Rk−1,k(λ) + h

= λ−α

λ−α + h
− λ−α − ek(λ)

λ−α − ek(λ) + h

= hek(λ)
(
λ−α + h

) (
λ−α − ek(λ) + h

)

= hek(λ)
(
λ−α + h

)2 + O ((ek(λ))2
)
.

(17)

Therefore by Proposition 1 we find the result. 	

In order to minimize the error Ek defined in (4), by Proposition 2 the basic aim is now to

study the nonnegative function

gk(λ) =
λ−α
[

λ1/2−τ 1/2

λ1/2+τ 1/2

]2k

(
λ−α + h

)2 (18)

and, in particular, to approximate the solution of

min
τ>0

max
λ∈[c,+∞)

gk(λ). (19)

Proposition 3 The function gk(λ) given in (18) has the following properties:

1. gk(λ) = 0 for λ = τ ;
2. gk(λ) → 0 for λ → 0+ and for λ → +∞;
3. gk(λ) has exactly two maxima λ1 and λ2 such that

0 < λ1 � α2τ

4k2
, λ2 � 4k2τ

α2 .

Proof Items (1) and (2) are obvious. As for item (3) the study of d
dλ

gk(λ) = 0, after some
algebra, leads to the equation

λ−α = h
α
(
1 − τ

λ

)− 2k
(

τ
λ

)1/2

α
(
1 − τ

λ

)+ 2k
(

τ
λ

)1/2 . (20)
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The function on the right

d(λ) := h
α
(
1 − τ

λ

)− 2k
(

τ
λ

)1/2

α
(
1 − τ

λ

)+ 2k
(

τ
λ

)1/2

is the ratio of two parabolas in the variable λ1/2. Moreover d(λ) → h for λ → 0+ and for
λ → +∞, and it is not defined (in [0,+∞)) at

λ∗ = τ

(
−k + √

k2 + α2

α

)2
∼ α2τ

4k2
.

Moreover d(λ) = 0 for

λ∗∗ = τ

(
k + √

k2 + α2

α

)2
∼ 4k2τ

α2 .

Therefore starting from the point with coordinates (0, h), d(λ) is growing and d(λ) → +∞
for λ → λ∗−. Moreover, d(λ) → −∞ for λ → λ∗+. From λ∗ to +∞ the function d(λ) is
still growing, and d(λ) < 0 for λ ∈ (λ∗, λ∗∗) and d(λ) > 0 for λ > λ∗∗. As consequence
the Eq. (20) has exactly two solutions, λ1 < λ∗ and λ2 > λ∗∗. 	

Proposition 4 For the maximum λ2 it holds

λ2 ∼ λ2 := sk
4k2τ

α2 , (21)

where

sk = exp

⎛

⎜
⎝
1

α
W

⎛

⎜
⎝

4α

h
(
4k2τ
α2

)α

⎞

⎟
⎠

⎞

⎟
⎠ , (22)

and W denotes the Lambert-W function.

Proof Since λ2 > λ∗∗ > 4k2τ
α2 , there exists s > 1 such that

λ2 = s
4k2τ

α2 . (23)

Therefore
(

τ

λ2

)1/2
= 1√

s

α

2k
.

Using (20), for large values of k we find

α
(
1 − τ

λ

)− 2k
(

τ
λ

)1/2

α
(
1 − τ

λ

)+ 2k
(

τ
λ

)1/2 =
α
(
1 − 1

s
α2

4k2

)
− α√

s

α
(
1 − 1

s
α2

4k2

)
+ α√

s

∼
1 − 1√

s

1 + 1√
s

. (24)

Moreover, since the function d(λ) is concave for λ > λ∗∗ and d(λ) → h as λ → +∞ we
have that s → 1 as k → +∞, so that we can use the approximation

1 − 1√
s

1 + 1√
s

∼ ln s

4
. (25)
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By (20) and (23) we then have to solve
(
s
4k2τ

α2

)−α

= h
ln s

4
, (26)

whose solution is given by (22). 	

Remark 2 Since W (x) = x + O(x2) for x close to 0 (see, e.g., [8, Eq. (3.1)]), for sk defined
in (22) we have

sk ∼ exp

(
4

h

(
α2

4k2τ

)α
)

. (27)

Proposition 5 For the function gk defined in (18) it holds

gk(λ2) ∼ 1

h2

(
α2

4k2τ

)α

exp(−2α).

Proof Observe first that sk → 1 for k → +∞ [cf. ( 22) and (27)], and hence by (21)

λ
−α

2(
λ

−α

2 + h
)2 = 1

((
sk

4k2τ
α2

)−α + h

)2

(
sk
4k2τ

α2

)−α

∼ 1

h2

(
α2

4k2τ

)α

.

(28)

Moreover,
[

λ
1/2
2 − τ 1/2

λ
1/2
2 + τ 1/2

]2k

=
[
1 − α

2k
√
sk

1 + α
2k

√
sk

]2k
∼ exp

(
− 2α√

sk

)
. (29)

The result then follows from (18). 	

At this point we need to remember that our aim is to solve (19). By Proposition 3 we have

that

max
λ∈[c,+∞)

gk(λ) = max {gk(λ1), gk(λ2)} .

Moreover, since λ1 → 0 for k → +∞, for k large enough we have

max
λ∈[c,+∞)

gk(λ) = max {gk(c), gk(λ2)} .

Since we need to minimize the above quantity with respect to τ , let us consider the functions

ϕ1(τ ) =
c−α
[
c1/2−τ 1/2

c1/2+τ 1/2

]2k

(
c−α + h

)2 = gk(c) (30)

and

ϕ2(τ ) =
(

α2

4k2τ

)α
1

h2
exp(−2α) ∼ gk(λ2).

It is easy to see that ϕ1(τ ) is monotone increasing for τ > c, whereas ϕ2(τ ) is monotone
decreasing. Therefore, for k large enough, the exact solution τ̃ of (19) can be approximated
by solving ϕ1(τ ) = ϕ2(τ ).
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Proposition 6 Let

φk = α

2ke

(
c−α + h

h

)1/α
. (31)

For k large enough the solution of ϕ1(τ ) = ϕ2(τ ) is approximated by

τk := c φ2
k exp

(
2W

(
2k

φkα

))
. (32)

Proof By (31), the equation ϕ1(τ ) = ϕ2(τ ) leads to

( c
τ

)−α
[
c1/2 − τ 1/2

c1/2 + τ 1/2

]2k
= φ2α

k . (33)

Since the exact solution of (33) goes to infinity with k, we set

x :=
( c

τ

)1/2
< 1, (34)

so that by (33) we obtain

x−2α
[
1 − x

1 + x

]2k
= φ2α

k . (35)

Since (1 + x)−1 = 1 − x + O(x2), using the approximation
[
1 − x

1 + x

]2k
∼ exp (−4kx) (36)

we then want to solve

exp (−4kx) = (φk x)
2α,

whose solution, approximation to the one of (35), is given by

x :=
[
φk exp

(
W

(
2k

φkα

))]−1

.

The result then follows immediately from (34). 	

In Fig. 1 we consider the graphical interpretation of the analysis that leads us to the

definition of τk in Proposition 6. Assuming to work with a spectrum contained in [c,+∞),

with c = 1, we define τk by solving gk(c) = gk(λ2). As already pointed out, the leftmost
maximum λ1 becomes smaller than c for k large enough.

Finally, we are on the point to give the following result, that provides an error estimate
since [see (4) and (16)]

∥∥∥
(
I + hLα

)−1 − Sk−1,k(L)

∥∥∥
H→H

≤ max
λ∈[c,+∞)

|rk(λ)|.

Theorem 1 Let τk be defined according to (32). Then for k large enough

max
λ∈[c,+∞)

|rk(λ)| ∼ 2 sin(απ)c−α

h

(
2ke1/2

α

)−4α
(

ln

[
4k2e

α2

(
h

c−α + h

) 1
α

])2α

.
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Fig. 1 Behavior of the function gk defined in (18) versus λ (in logarithmic scale) for α = 0.75, k = 15, h =
10−2 and τk as defined in (32) with c = 1

Proof By Proposition 2 and (18) we have that

|rk(λ)| ∼ 2h sin(απ)gk(λ).

Then using Proposition 6, that is, taking τ = τk as in (32), we have

max
λ∈[c,+∞)

|rk(λ)| ∼ 2h sin(απ) max
λ∈[c,+∞)

gk(λ) ∼ 2h sin(απ)ϕ2(τk). (37)

Since for large z

W (z) = ln z − ln(ln z) + O
(
ln(ln z)

ln z

)
,

cf. [14], we have that

exp (2W (z)) ∼ z2

(ln z)2
,

and hence

τk ∼ c φ2
k

(
2k

φkα

)2 (
ln

2k

φkα

)−2

.

By inserting this approximation in (37) we obtain the result. 	


4 The Case of Bounded Operators

Let LN be an arbitrary fine discretization of Lwith spectrum contained in [c, λN ],where λN

denotes the largest eigenvalue of LN . The theory just developed can easily be adapted to the
approximation of

(
I + hLα

N

)−1
. In this situation, in order to define a nearly optimal value

for τ , similarly to (19) we want to solve

min
τ>0

max
c≤λ≤λN

gk(λ). (38)
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Looking at Proposition 4 we have λ2 = λ2(k) → +∞ as k → +∞. As a consequence,
for λ2 ≤ λN (k small), the solution of (38) remains the one approximated by (32) and
the estimate given in Theorem 1 is still valid. On the contrary, for λ2 > λN (k large), the
estimate can be improved as follows. Remembering the features of the function gk(λ) given
in Proposition 3, we have that for λ2 > λN the solution of (38) is obtained by solving

ϕ1 (τ ) = ϕ3 (τ ) for τ > c, (39)

where ϕ1 (τ ) is defined in (30) and

ϕ3 (τ ) :=
λ−α
N

[
λ
1/2
N −τ 1/2

λ
1/2
N +τ 1/2

]2k

(
λ−α
N + h

)2 = gk(λN ).

It can be easily verified that the equation ϕ1 (τ ) = ϕ3 (τ ) has in fact two solutions, one in
the interval (0, c) and the other in (c, λN ). Anyway since ϕ3 (τ ) is monotone decreasing in
[0, λN ) we have to look for the one in (c, λN ) as stated in (39).

Proposition 7 For k large enough, the solution of (39) is approximated by

τk,N :=
(

−σk +
√

σ 2
k + (c λN )1/2

)2
, (40)

where

σk := αλ
1/2
N

8k
ln

⎛

⎝λN

c

(
λ−α
N + h

c−α + h

)2/α⎞

⎠ . (41)

Proof From (39) we have

c−α

(c−α + h)2

[
τ 1/2 − c1/2

τ 1/2 + c1/2

]2k
= λ−α

N

(λ−α
N + h)2

[
λ
1/2
N − τ 1/2

λ
1/2
N + τ 1/2

]2k
. (42)

Setting x = (c/τ)1/2 < 1 and y = (τ/λN )1/2 < 1 by (42) we obtain

(
1 − x

1 + x

)
=
(

λN

c

)− α
2k
(
c−α + h

λ−α
N + h

) 1
k (1 − y

1 + y

)
.

Using (36) we solve

e−2x =
(

λN

c

)− α
2k
(
c−α + h

λ−α
N + h

) 1
k

e−2y .

Therefore

−2x = − α

2k
ln

⎛

⎝λN

c

(
λ−α
N + h

c−α + h

)2/α⎞

⎠− 2y,

which implies

x − y = α

4k
ln

⎛

⎝λN

c

(
λ−α
N + h

c−α + h

)2/α⎞

⎠ .
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Substituting x by (c/τ)1/2 and y by (τ/λN )1/2 after some algebra we obtain

τ + α

4k
λ
1/2
N ln

⎛

⎝λN

c

(
λ−α
N + h

c−α + h

)2/α⎞

⎠ τ 1/2 − (c λN )1/2 = 0.

Then, solving this equation and taking the positive solution, we obtain the expression
of τk,N . 	


Consequently, by (40) and (41) we have

(
τk,N

λN

)1/2
= − σk

λ
1/2
N

+
√√
√
√
(

σk

λ
1/2
N

)2
+
(

c

λN

)1/2

= − α

8k
ln

⎛

⎝λN

c

(
λ−α
N + h

c−α + h

)2/α⎞

⎠

+
(

c

λN

)1/4
√√√√√

⎛

⎝ α

8k
ln

⎛

⎝λN

c

(
λ−α
N + h

c−α + h

)2/α⎞

⎠

⎞

⎠

2 (
λN

c

)1/2
+ 1.

Now, since (1 + x)1/2 = 1 + x/2 + O(x2), as k → +∞ we have

(
τk,N

λN

)1/2
= − α

8k
ln

⎛

⎝λN

c

(
λ−α
N + h

c−α + h

)2/α⎞

⎠+
(

c

λN

)1/4
+ O
(

1

k2

)
.

Moreover, using (36) and the above expression we obtain

ϕ3
(
τk,N
) = λ−α

N

(λ−α
N + h)2

[
λ
1/2
N − τk,N

λ
1/2
N + τk,N

]2k

∼ λ−α
N

(λ−α
N + h)2

exp

(

−4k

(
τk,N

λN

)1/2)

∼ (c λN )−α/2

(c−α + h)(λ−α
N + h)

exp

(

−4k

(
c

λN

)1/4)

,

that proves the following result.

Theorem 2 Let k be such that for each k ≥ k we have λ2 = λ2(k) > λN . Then for each
k ≥ k, taking in (7) τ = τk,N , where τk,N is given in (40), the following estimate holds

∥∥∥
(
I + hLα

N

)−1 − Sk−1,k(LN )

∥∥∥
2

∼ 2h sin(απ)
(c λN )−α/2

(c−α + h)(λ−α
N + h)

× exp

(

−4k

(
c

λN

)1/4)

,

with ‖ · ‖2 denoting the induced Euclidean norm.

11



In order to compute a fairly accurate estimate of k we need to solve the equation λ2 = λN ,

where λ2 is defined in Proposition 4. Neglecting the factor sk in (22) and taking τ = τk as in
(32), we obtain the equation

W

(
2k

φkα

)
= 1

2
ln

(
λN

c
e2
(

h

c−α + h

)2/α)

.

Since W (z1) = z2 if and only if z1 = z2ez2 , we have

4k2

α2 = 1

2
ln

(
λN

c
e2
(

h

c−α + h

)2/α)(
λN

c

)1/2

from which it easily follows that

k̄ = α

2
√
2

(

ln

(
λN

c
e2
(

h

c−α + h

)2/α))1/2 (
λN

c

)1/4
.

In practice, assuming to have a good estimate of the interval containing the spectrum of
LN , one should use τk as in (32) whenever k < k and then switch to τk,N as in (40) for k ≥ k.
In other words, for bounded operators we consider the sequence

τk,N =
{

τk if k < k,
τk,N if k ≥ k.

(43)

5 Numerical Experiments

In this section we present the numerical results obtained by considering two simple cases
of self-adjoint positive operators. The first one is totally artificial since we just consider a
diagonal matrix with a large spectrum. In the second one we consider the standard central
difference discretization of the one dimensional Laplace operator with Dirichlet boundary
conditions.

We remark that in all the experiments theweights andnodes of theGauss-Jacobi quadrature
rule are computed by using the Matlab function jacpts implemented in Chebfun by Hale
and Townsend [12]. In addition, the errors are always plotted with respect to the Euclidean
norm.

Example 1 We define A = diag(1, 2, . . . , N ) and LN = Ap so that σ(LN ) ⊆ [1, N p].
Taking N = 100, p = 7, and h = 10−2, in Fig. 2, for α = 0.2, 0.4, 0.6, 0.8 we plot the
error obtained using τk taken as in ( 32) and τ̃k as defined in [1, Eq. (24)], that is,

τ̃k := c
( α

2ke

)2
exp

(
2W

(
4k2e

α2

))
. (44)

In addition, we draw the values of the estimate given in Theorem 1.
In Fig. 3 we consider the choice of τ = τk,N as in ( 43) since we take p = 3, that is, an

operator with a moderately large spectrum. We compare this choice with the analogous one
proposed in [1, Eq. (37)] and given by

τ̃k,N :=
⎛

⎜
⎝−αλ

1/2
N

8k
ln

(
λN

c

)
+
√√√√
(

αλ
1/2
N

8k
ln

(
λN

c

))2
+ (c λN )1/2

⎞

⎟
⎠

2

. (45)
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Fig. 2 Error comparison using τk taken as in (32) (solide line) and τ̃k as defined in (44) (dashed line) for
Example 1 with N = 100, p = 7, and h = 10−2. The dotted line represents the values of the estimate given
in Theorem 1

In the pictures we also plot the error estimate (43).

Example 2 We consider the linear operator Lu = −u′′, u : [0, b] → R, with Dirichlet
boundary conditions u(0) = u(b) = 0. It is known that L has a point spectrum consisting
entirely of eigenvalues

μs = π2s2

b2
, for s = 1, 2, 3, . . . .

Using the standard central difference scheme on a uniform grid and setting b = 1, in this
example we work with the operator

LN := (N + 1)2 tridiag(−1, 2,−1) ∈ R
N×N . (46)

The eigenvalues are

λ j = 4(N + 1)2 sin2
(

jπ

2(N + 1)

)
, j = 1, 2, . . . , N ,

so that σ(LN ) ⊆ [π2, 4(N + 1)2].
Taking N = 1000 and h = 10−2, in Fig. 4 we plot the error obtained using τk,N taken as

in (43) and τ̃k,N as in (45).

Example 3 In this final example we want to consider the use of the poles arising from the
rational approximation introduced in Sect. 2 for the construction of rational Krylov methods
(RKM), see e.g. [5,9,11]. In this view, let

Wk(LN , v) = Span{v, (η1 I + LN )−1v, . . . , (η1 I + LN )−1 · · · (ηk−1 I + LN )−1v},

13
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Fig. 3 Error comparison using τ = τk,N as in ( 43) (solide line) and τ̃k,N as defined in (45) (dashed line) for
Example 1 with N = 100, p = 3, and h = 10−2. In the pictures we also plot the error estimate (43) (dotted
line)

be the k-dimensional rational Krylov subspace in which {η1, . . . , ηk−1} is the set of abscissas
as in (13), LN defined by (46), and v is a given vector. Denoting by Vk the orthogonal matrix
whose columns span Wk(LN , v) we consider the rational Krylov approximation

ωk := Vk
(
I + hHα

k

)−1
V T
k v ≈ (I + hLα

N

)−1
v, (47)

in which Hk = V T
k LN Vk . We remark that

(
I + hLα

N

)−1
v is just the result of one step of

length h of the implicit Euler method applied to the discrete fractional diffusion problem

y′ = Lα
N y, y(0) = v.

By taking τk as in (32) to define the set {η1, . . . , ηk−1}, in Fig. 5 we consider the error of
the approximation (47), for h = 10−2 and v corresponding to the discretization of the scalar
function v(x) = x(1 − x), for x ∈ [0, 1]. Since the construction of the Krylov subspace of
dimension k requires the knowledge of the whole set {η1, . . . , ηk−1}, for k = 10, 15, . . . , 30
we compute the corresponding set and consider the final Krylov approximation. In order to
appreciate the quality of the approximation we compare this approachwith the analogous one
in which the set of shifts arises from τ̃k as in (44 ), and also with respect to the shift-and-invert
Krylov method (SIKM), in which we take η1 = . . . = ηk−1 = h−1/α , following the analysis
given in [15].

We remark that for practical purposes one should be able to a-priori set the dimension of
the Krylov subspace and this of course requires an accurate error estimate. In this view, the
estimate given in Theorem 1 can be used to this purpose, since (cf. [11, Corollary 3.4])

∥∥∥
(
I + hLα

N

)−1
v − ωk

∥∥∥
2

≤ 2 min
pk∈Πk

max
c≤λ≤∞

∣∣∣∣
(
1 + hλα

)−1 − pk(λ)

qk(λ)

∣∣∣∣ ‖v‖2 . (48)
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Fig. 4 Error comparison using τk,N taken as in (43) (solide line) and τ̃k,N as defined in ( 45) (dashed line)
for Example 2 with N = 1000, and h = 10−2

Anyway we have to point out that using Theorem 1 in (48) the resulting bound may be
much conservative for two main reasons. The first one is that we are in fact considering a
(k−1, k) approximation. The second one is that Theorem 1 provides an estimate for general
unbounded operator whereas the Krylov method is tailored on the initial vector v and also
depends on the eigenvalue distribution. For these reasons a practical hint can be to define k
at the beginning using Theorem 1 and then monitor the quality of the approximation at each
Krylov iteration j ≤ k by means of the generalized residual given by

vTj+1LNv j

∣∣∣∣e
T
j

(
I + hHα

j

)−1
V T
j v

∣∣∣∣ ,

where v j , j = 1, . . . , k, are the columns of Vk and e j = (0, . . . , 0, 1)T ∈ R
j .

6 Concluding Remarks

In this paper we have presented a reliable (k − 1, k) rational approximation for the function
(1 + hλα)−1 on a positive unbounded interval, that can be fruitfully used to compute the
resolvent of the fractional power in both the infinite and finite dimensional setting. Moreover
the theory can also be employed for the construction of rational Krylov methods, with very
good results. With respect to the simple use of rational approximations to λ−α , extended to
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Fig. 5 Error comparison between SIKM, RKM with τ̃k as in (44), RKM with τk as in (32) for LN defined in
(46), with N = 3000, and h = 10−2

compute (1 + hλα)−1 bymeans of (1), in thisworkwehave shown that allowing a dependence
on h it is possible to improve the quality of the approximation. We have provided good error
estimates that can be used for the a-priori choice of the number of poles, that is, the number
of inversions.

Remaining in the framework of Padé-type approximations, we want to point out that many
other strategies are possible. Among the others we present here two of them already tested
experimentally.

1. Writing

1

1 + hλα
= 1

1 + hλλα−1 ,

we can consider the Padé-type approximation (2), with −α replaced by α − 1. In this
way we obtain the approximation

1

1 + hλα
≈ 1

1 + hλRk−1,k(λ)

= qk (λ)

qk (λ) + hλpk−1 (λ)
,

that in fact represents a (k, k) form. Unfortunately this approach is observed to be in
general less effective than the one defined in (3)–(13).

2. Let Rk,k(λ) be the (k, k)-Padé approximant of λ−α centered at τ, whose error repre-
sentation with respect to the variable z = 1− λ/τ has been derived in [10, Sect. 3]. As
in (2) we can consider the formula

λ−α ≈ Rk,k(λ)
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that yields the (k, k) rational approximation

1

1 + hλα
≈ pk(λ)

qk(λ) + hpk(λ)
=: Sk,k(λ),

in which pk, qk ∈ Πk are such that Rk,k(λ) = pk(λ)/qk(λ). Using this approach, the
relationship with the Gauss-Jacobi rule explained in Sect. 2 is lost. Nevertheless, the
error analysis is identical to the one given in Sect. 3, since the representation (15) is still
valid with k replaced by k + 1. Also experimentally, this approach is almost identical
to the one presented in the paper.
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