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Introduction

This thesis explores possible applications of Quantum continuous measurements
in Gravitation and Cosmology.

In the first part of the thesis, we focus on the study of models implementing a
hybrid classical-quantum dynamics through the addition of a classical noise. For
this purpose, we review the basic formalism of the theory of quantum continuous
measurements. In particular, we focus on the stochastic Schrödinger equation
that describes the evolution of a system subjected to a continuous measurement
of a given observable, and on the Markovian feedback stochastic master equation
introduced by Wiseman and Milburn [1].

We review two models implementing Newtonian gravity through a continuous
measurement and feedback mechanism. These are the Kafri-Taylor-Milburn (KTM)
[2] and the Tilloy-Diósi (TD) [3] models. We study in detail the regularization
mechanism proposed in the original work of the TD model, and discuss the con-
ditions that lead to its implementation. We compare the KTM and the TD models
in an appropriate limit and explicitly show that the associated decoherence effects
are different. Moreover, by analysing the conceptual differences between the two
models, we propose a classification of models which implement gravity through
a continuous measurement and feedback mechanism based on two main crite-
ria: the type of observable measured and the type of interaction implemented
through the feedback. We argue that within these scenarios, the TD model is the
only framework implementing a full Newtonian gravitational interaction physi-
cally consistent.

In the second part of this thesis, we study how dynamical collapse models have
been implemented within a cosmological inflationary context. Dynamical col-
lapse models are phenomenological models that introduce nonlinear and stochas-
tic modifications to the Schrödinger equation. The master equations of collapse
models can be understood in terms of quantum continuous measurements of an
observable which acts as a collapse operator. We provide a brief review of the
main motivations that led to the proposal of dynamical models as an alternative
theory to standard Quantum Mechanics, focusing on the so-called measurement
problem. In particular, we describe the main properties of the Continuous Spon-
taneous Localization (CSL) model [4].

We briefly review previous works that analyse the effects of collapse models on
scalar cosmological perturbations during inflation. Up to present date, there is
not a consistent generalization of the CSL model to the relativistic regime. We
discuss relevant aspects for such a generalization, as the choice of the collapse op-
erator and its properties. We propose an approach to treat the dynamical collapse
model contribution to the evolution of a system as a perturbation to the standard
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cosmological scenario. We analyse the modifications to the power spectrum as-
sociated to scalar cosmological perturbations during inflation and the radiation-
dominated era.
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Chapter 1

Quantum continuous measurements
and feedback

Among the frameworks which have been proposed as alternatives to the quan-
tization of gravity, one can find those models implementing the gravitational
interaction through a continuous measurement and feedback mechanism. In
this chapter, we will review the main properties characterizing the continuous
measurement of an observable, and one of the simplest protocols to implement
the feedback, namely, the Wiseman-Milburn feedback. This discussion follows
mainly from Refs. [5–7].

1.1 Gaussian quantum continuous measurements

In Quantum Mechanics, it is usually assumed that measurements take place in-
stantaneously. However, in some situations, we are interested in describing mea-
surement processes taking an appreciable time, and in which one continuously
extracts information from a system. These kind of measurements are referred to
as continuous measurements [5, 7].

We focus on Gaussian measurements of a continuous observable â, with associ-
ated eigenstates {|a⟩} that satisfy the eigenvalue equation â |a⟩ = a |a⟩. We will
now construct a measurement record which contains information about the mea-
surement of â. Let us proceed by dividing the time in which the measurement
takes place into intervals of length ∆t, which are assumed to be infinitesimal.
For each of these infinitesimal intervals, one can construct a parametrized sum of
projectors onto the eigenstates of the quantum operator â in the following way:

Â(r) =

(︃
γ∆t

2πℏ2

)︃∫︂ ∞

−∞
da exp

[︃
−γ∆t

4ℏ2
(â− r)2

]︃
|a⟩ ⟨a| , (1.1)

where the parameter γ encodes the strength of the measurement. The operator of
Eq (1.1) constitutes a Gaussian-weighted sum of projections onto the eigenstates
of the operator â [7]. The continuous index r labels the continuum of measure-
ment results.

From the operator in Eq. (1.1), one can construct the probability density P (r) of
the measurement result r as

P (r) = Tr
[︂
Â

†
(r)Â(r) |ψ⟩ ⟨ψ|

]︂
, (1.2)
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where |ψ⟩ denotes the initial state of the system. The operator Â
†
(r)Â(r) is the

positive operator associated with the result r. Therefore, the map in Eq. (1.2)
associates a positive operator with every result r, and thus constitutes a positive-
operator valued measure (POVM) [5, 8]. Writing |ψ⟩ in the basis of the operator â
as |ψ⟩ =

∫︁
daψ(a) |a⟩, one can relate the mean and the variance of the parameter

r with the mean and the variance of the quantum operator â. Indeed, it can be
shown that the mean value ⟨r⟩ of r is given by

⟨r⟩ =
∫︂ ∞

−∞
rP (r)dr =

∫︂ ∞

−∞
a|ψ(a)|2da = ⟨â⟩ , (1.3)

and the variance σ2
r reads

σ2
r =

⟨︁
r2
⟩︁
− ⟨r⟩2 = σ2

â +
ℏ2

γ∆t
. (1.4)

By assuming that the intervals ∆t are infinitesimal, the probability density P (r)
can be approximated as

P (r) ≈ 1

ℏ

√︃
γ∆t

2π
exp

[︃
−γ∆t

2ℏ2
(r − ⟨â⟩)2

]︃
. (1.5)

From the results of Eq. (1.3), Eq. (1.4) and Eq. (1.5), the measurement result r can
be understood as a stochastic quantity

r = ⟨â⟩+ ℏ
√
γ

∆Wt

∆t
, (1.6)

where ∆Wt is a Gaussian random variable with vanishing mean and variance ∆t.

We are now interested in arriving at a stochastic differential equation which de-
scribes how the quantum state of the system |ψ⟩ at a time t changes when per-
forming a continuous measurement of the observable â. The stochastic equation
for |ψ⟩ can be obtained by applying the operator of Eq. (1.1) to the state |ψ⟩, and
taking the limit in which ∆t → 0+. The dynamical equation for the state |ψ⟩ that
preserves the norm is given by

d |ψ⟩ =
{︃
− γ

8ℏ2
(â− ⟨â⟩)2dt+

√
γ

2ℏ
(â− ⟨â⟩)dWt

}︃
|ψ⟩ , (1.7)

where dWt = lim
∆t→0+ ∆Wt. The above equation for the continuous measurement

of the observable â is valid in the Itô sense.

The dynamical evolution of Eq. (1.7) is a stochastic Schrödinger equation [5]. The
appearance of the expectation value ⟨â⟩ = ⟨ψ| â |ψ⟩ in Eq. (1.7) implies that the
dynamical evolution is nonlinear in the state |ψ⟩. This is in contrast with the
standard Schrödinger equation, which is linear, and therefore implies that the ad-
dition of measurements to the dynamics of a quantum system leads to a nonlinear
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evolution.

The corresponding stochastic master equation for the stochastic density operator
ρ̂s = |ψ⟩ ⟨ψ| is given by

dρ̂s = − γ

8ℏ2
[â, [â, ρ̂s]]dt+

√
γ

2ℏ
({â, ρ̂s} − 2 ⟨â⟩ ρ̂s)dWt, (1.8)

which explicitly depends on the value that dWt takes at each time-step [5]. The
evolution of ρ̂s over the corresponding time period is called a quantum trajectory
[5], and depends on the particular realization of the noise, which can be defined
as a given sequence of sample values of dWt for a given time period. By taking the
stochastic average E[·] over all the realizations, one defines the density operator
to be given by ρ̂ = E [|ψ⟩ ⟨ψ|]. From Eq. (1.8), we thus obtain the master equation

dρ̂ = − γ

8ℏ2
[â, [â, ρ̂]]dt. (1.9)

We can interpret the parameter γ as the rate at which the information is extracted
by the measurement.

Thus far, we have only considered the case in which the system is only sub-
jected to the continuous measurement of â, and there is not an additional evo-
lution while being measured. If we also consider an additional evolution due to
a Hamiltonian Ĥ , the stochastic master equation for the density operator is ob-
tained by simply adding the standard evolution due to the Hamiltonian and the
contribution due to the continuous measurement. Therefore, we obtain

dρ̂s = − i

ℏ

[︂
Ĥ, ρ̂s

]︂
dt− γ

8ℏ2
[â, [â, ρ̂s]]dt+

√
γ

2ℏ
({â, ρ̂s} − 2 ⟨â⟩ ρ̂s)dWt. (1.10)

The fact that Eq. (1.10) holds independently of whether the operators Ĥ and â
commute is a consequence of the fact that Eq. (1.10) is a first-order equation in dt
[5].

A similar argument allows to consider the continuous measurement of more than
one observable, and to add each of the contributions to the dynamical evolution
of the system. Indeed, let us consider a family of observables {âλ}Mλ=1, where each
of the measurement results is given as in the continuous limit of Eq. (1.6), i.e.

rλ = ⟨âλ⟩+
ℏ

√
γ
λ

dWλ,t

dt
, (1.11)

where one assumes that dWλ,t and dWλ′,t are independent Wiener noises. At
the level of the wave function, the dynamical evolution of the system due to the
continuous measurements of the observables {âλ}Mλ=1 is given by

(d |ψ⟩)m =
M∑︂
λ=1

{︃
− γλ
8ℏ2

(âλ − ⟨âλ⟩)2 dt+
√
γλ

2ℏ
(âλ − ⟨âλ⟩)dWλ,t

}︃
|ψ⟩ , (1.12)
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where the label m in the left-hand side in the equation indicates the measure-
ment contribution. We notice that the result in Eq. (1.12) holds independently of
whether the operators {âλ}Mλ=1 commute or not. This is because at an infinitesimal
level, any contribution coming from the commutator of any two operators âλ and
âλ′ is of second order in dt. Therefore, it does not contribute to Eq. (1.12), which
is of first order in dt. The corresponding stochastic master equation reads

dρ̂s = − i

ℏ

[︂
Ĥ, ρ̂s

]︂
dt−

M∑︂
λ=1

γλ
8ℏ2

[âλ, [âλ, ρ̂s]]dt+
M∑︂
λ=1

√
γλ

2ℏ
({âλ, ρ̂s} − 2 ⟨âλ⟩ ρ̂s)dWλ,t,

(1.13)
which is a straightforward generalization of Eq. (1.10).

1.2 Quantum feedback

The quantum continuous measurement theory described in the previous section
is essential to understand the concept of quantum feedback control. Let us con-
sider a detector continuously measuring the system and correspondingly pro-
ducing an output. Such an output can be exploited to control the system at later
times. This process is called feedback control [6]. The system to be controlled
is referred to be the primary system, whereas the system that acts as a feedback
controller is denominated the auxiliary system [5]. If at least one of the systems
is quantum, then one refers to quantum feedback control.

One of the ways to implement feedback control is through the use of continuous
measurements. The idea is to take the continuum limit of the process in which one
performs a sequence of measurements on a system, and in response to the result
obtained from each of the measurements performed, one modifies the Hamilto-
nian. Therefore, in the continuum limit, the sequence of measurements turns into
a continuous measurement, and we obtain also a continuous modification of the
Hamiltonian of the system.

A single cycle of the feedback control process can be described by a continuous
measurement performed over an infinitesimal time interval dt, followed by an
unitary operation. If ρ̂(t) is the density operator at a given time t, then for a time
t+ dt, we have [5]

ρ̂λ(t+ dt) =
ÛλÂλρ̂(t)Â

†
λÛ

†
λ

tr[Â
†
λÂλ]

, (1.14)

where the index λ labels the measurement result, the set
{︂
Âλ

}︂
are the measure-

ment operators for a continuous measurement over dt, and Ûλ = exp
(︂
− i

ℏĤλdt/ℏ
)︂

,

where Ĥλ is the control Hamiltonian. When implementing the feedback using
continuous measurements, the Hamiltonian Ĥ fb becomes a functional of the mea-
surement record [5]. Usually, we have Ĥ fb =

∑︁
n µnĤn, where some among the

Ĥn operators can be modified by the controller. The parameters µn, which are
real quantities, are called control parameters.
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The corresponding stochastic master equation for the system, which includes
feedback from a continuous measurement of an operator â, is

dρ̂s=− i

ℏ

[︄
Ĥ0 +

∑︂
n

µn(ρ̂s)Ĥn, ρ̂s

]︄
dt− γ

8ℏ2
[â, [â, ρ̂s]]dt+

√
γ

2ℏ
({â, ρ̂s} − 2 ⟨â⟩ ρ̂s)dWt,

(1.15)
where we also included the action of the free Hamiltonian Ĥ0.

As the amount of computational resources required to process the measurement
output and to update the density operator ρ̂ at each time-step of the dynamical
evolution may be prohibitive, there is an interest in developing feedback proto-
cols where a complete knowledge of the density operator ρ̂ is not required [5].
Among the proposed protocols, Wiseman and Milburn introduced a quantum
treatment which consists in feeding the measurement record directly back to con-
trol the system, and therefore, performing no processing of the signal [1, 6, 9,
10]. The Wiseman-Milburn Markovian feedback stochastic master equation is
obtained by fixing a single control Hamiltonian and letting the corresponding
control parameter µ in Eq. (1.15) be directly proportional to the measurement
record r [cf. Eq. (1.6)]. Thus, the feedback Hamiltonian Ĥ fb reads

Ĥ fb = rb̂, (1.16)

with b̂ being a Hermitian operator.

In order to derive the master equation, let us first calculate, at the level of the
wave function, the evolution of the system due to the Hamiltonian Ĥ fb. The
feedback evolution can be obtained by unitarily evolving the state of the system
[11, 12], yielding

exp

[︃
− i

ℏ
Ĥ fbdt

]︃
|ψ⟩ = |ψ⟩+ (d |ψ⟩)fb, (1.17)

where the label fb indicates the feedback contribution to the dynamics, which
reads

(d |ψ⟩)fb =

{︃[︃
− i

ℏ
⟨â⟩ b̂− 1

2γ
b̂
2
]︃

dt− i
√
γ
b̂dWt

}︃
|ψ⟩ . (1.18)

We notice the presence of a term which is quadratic in the Hermitian operator
b̂. This is a consequence of the fact that in the expansion of the exponential in
Eq. (1.17), there is a contribution that comes from the second order term in Ĥ fb,
specifically from the noise term in the measurement record r of Eq. (1.6).

The wave function of the system undergoing the continuous measurement of the
observable â and the subsequent feedback control driven by Ĥ fb reads

|ψ(t+ dt)⟩ = |ψ⟩+ (d |ψ⟩)m + (d |ψ⟩)fb + (d |ψ⟩)fb(d |ψ⟩)m. (1.19)



Chapter 1. Quantum continuous measurements and feedback 8

From the above result, and using the expressions of Eq. (1.7) and Eq. (1.18), we
have that the stochastic differential equation for the wave function |ψ⟩ reads

d |ψ⟩ =
{︃
− γ

8ℏ2
(â− ⟨â⟩)2 dt+

√
γ

2ℏ
(â− ⟨â⟩)dWt +

[︃
− i

ℏ
⟨â⟩ b̂− 1

2γ
b̂
2
]︃

dt− i
√
γ
b̂dWt

− i

2ℏ
b̂(â− ⟨â⟩)dt

}︃
|ψ⟩ ,

(1.20)

where we see that the last term comes from the noise term of the feedback (d |ψ⟩)fb

applied to the state (d |ψ⟩)m resulting of the continuous measurement.

In order to obtain the master equation for the density operator, ρ̂ = E [|Ψ⟩ ⟨Ψ|],
we consider that

dρ̂ = d (E[|ψ⟩ ⟨ψ|]) = E [(d |ψ⟩) ⟨ψ|+ |ψ⟩ (d |ψ⟩) + (d |ψ⟩)(d |ψ⟩)] . (1.21)

Therefore, we can use the result of Eq. (1.20), and obtain the master equation

dρ̂
dt

= − i

2ℏ

[︂
b̂, {â, ρ̂}

]︂
− γ

8ℏ2
[â, [â, ρ̂]]− 1

2γ

[︂
b̂,
[︂
b̂, ρ̂
]︂]︂
. (1.22)

Let us now consider the continuous measurement of the family of observables
{â}Nλ=1, with associated measurement records as in Eq. (1.11), and implement a
feedback Hamiltonian of the form

Ĥ fb =
M∑︂
λ=1

rλb̂λ, (1.23)

with {b̂λ}Mλ=1 a family of Hermitian operators. Then, the stochastic differential
equation for the feedback is given by

(d |ψ⟩)fb =
M∑︂
λ=1

{︃[︃
− i

ℏ
⟨âλ⟩ b̂λ −

1

2γλ
b̂
2

λ

]︃
dt− i

√
γλ
b̂λdWλ

}︃
|ψ⟩ . (1.24)

From Eq. (1.19), we can determine the stochastic differential equation for the
wave function, and using Eq. (1.21), we can derive the master equation. After
straightforward calculations, we obtain

dρ̂
dt

=
M∑︂
λ=1

(︃
− i

ℏ

[︂
b̂λ, {âλ, ρ̂}

]︂
− γλ

8ℏ2
[âλ, [âλ, ρ̂]]−

1

2γλ

[︂
b̂λ,
[︂
b̂λ, ρ̂

]︂]︂)︃
. (1.25)

We can go one step further and generalize this master equation to describe the
continuous measurement of an observable â(x) defined at each point in space. In
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this case, the measurement record reads

a(x) = ⟨â(x)⟩+ ℏ
∫︂

dyγ−1(x,y)ξa,t(y), (1.26)

where the noise ξa,t(x) is defined through the relations

E [ξa,t(x)] = 0,

E [ξa,t(x)ξa,t′(y)] = γ(x,y)δ(t− t′).
(1.27)

The inverse kernel γ−1(x,y) appearing in the stochastic term of the measure-
ment record in Eq. (1.26) is related to the correlation kernel γ(x,y) appearing
in Eq. (1.27) by [13]

(γ ◦ γ−1)(x,y) =

∫︂
drγ(x, r)γ−1(r,y) = δ(x− y). (1.28)

At the level of the wavefunction, the contribution to the dynamic evolution due
to the continuous measurement of the observable â(x) is given by

(d |ψ⟩)m =

{︃
− 1

8ℏ2

∫︂
dxdyγ(x,y) (â(x)− ⟨â(x)⟩) (â(y)− ⟨â(y)⟩)dt

+
1

2ℏ

∫︂
dx (â(x)− ⟨â(x)⟩) ξa,t(x)dt

}︃
|ψ⟩ .

(1.29)

Let us consider now a feedback Hamiltonian of the form

Ĥ fb =

∫︂
dxa(x)b̂(x), (1.30)

with b̂(x) a Hermitian operator, which is also defined at each point of space.
The feedback contribution can be calculated using Eq. (1.17). Explicit calculation
yields

(d |ψ⟩)fb =

{︃
− i

ℏ

∫︂
dxa(x)b̂(x)dt− 1

2

∫︂
dxdyγ−1(x,y)b̂(x)b̂(y)dt

}︃
|ψ⟩ . (1.31)

Therefore, the full evolution of the wave function is obtained by merging the
contributions of the continuous measurement in Eq. (1.29) and of the feedback in
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Eq. (1.31). We obtain

d |ψ⟩ =
{︃
− 1

8ℏ2

∫︂
dxdyγ(x,y) (â(x)− ⟨â(x)⟩) (â(y)− ⟨â(y)⟩)dt

+
1

2ℏ

∫︂
dx (â(x)− ⟨â(x)⟩) ξa,t(x)dt

− i

ℏ

∫︂
dxa(x)b̂(x)dt− 1

2

∫︂
dxdyγ−1(x,y)b̂(x)b̂(y)dt

− i

2ℏ

∫︂
dxb̂(x) (â(x)− ⟨â(x)⟩)dt

}︃
|ψ⟩ ,

(1.32)

and from this, the master equation is obtained through a straightforward appli-
cation of the Itô calculus. Thus, one obtains

dρ̂
dt

=− i

2ℏ

∫︂
dx
[︂
b̂(x), {â(x), ρ̂}

]︂
− 1

8ℏ2

∫︂
dxdyγ(x,y) [â(x), [â(y), ρ̂]]

− 1

2

∫︂
dxdyγ−1(x,y)

[︂
b̂(x),

[︂
b̂(y), ρ̂

]︂]︂
.

(1.33)

These results represent the basic ingredients behind the implementation of the
models proposed by Kafri, Taylor and Milburn [2], and by Tilloy and Diósi [3].
We will also see how one of the most robust dynamical collapse models, the con-
tinuous spontaneous localization (CSL) model [4], can be understood within the
quantum continuous measurement theory.
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Chapter 2

Is Gravity necessarily Quantum?

2.1 The efforts to merge Quantum Mechanics and Grav-
ity

The characterization of the gravitational interaction started with the works of
Galileo and Newton, which date back to the 16th century. In the 20th century, the
theory of General Relativity by Einstein provided a more robust description of
gravity as an effect of the space-time deformation due to the presence of a mass
[14]. Some years after General Relativity appeared, the works of Schrödinger and
Heisenberg, among others, provided the theory of Quantum Mechanics, which
constitutes a general framework for describing interactions between microscopic
particles [15]. Up to date, there is no experimental evidence conflicting with ei-
ther General Relativity or Quantum Mechanics [16].

All the forces have been successfully incorporated into the framework of Quan-
tum Mechanics; but the gravitational one. Although there is no observation re-
quiring a quantum theory of gravity for its explanation [16], efforts to quantize
general relativity date back to the early 1930s [17]. However, up to the present
day, there is no quantum theory of gravity which is both fundamental and con-
sistent. Indeed, theories which result from the quantization of gravity by the
standard procedures, are non-renormalizable. Thus, they are not fundamental
and, in the best scenario, they can be taken only as effective theories [18]. In this
regard, it was shown in 1986 that conventional quantum field theory techniques
fail [19].

The key reason for the failure of quantization of gravity could be the fundamental
difference between the frameworks of the two theories. On one hand, Quantum
Mechanics indicates that all dynamical fields have quantum properties, while, on
the other hand, in General Relativity the gravitational field is assumed to be a
classical deterministic dynamical field. Moreover, Quantum Field Theory relies
on the existence of a non-dynamical background spacetime metric, but General
Relativity indicates that such metric simply does not exist in Nature [20]. This
shows that the conceptual foundations of both theories contradict each other,
which makes it difficult to reconcile them.

Some of the main motivations to find a single framework for both theories include
the following situations. In the first place, that although quantum particles can
exist in superposition states of different positions, we do not know which would
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be the corresponding gravitational field, as the latter does not exist in superpo-
sitions [18]. Secondly, General Relativity leads to the existence of singularities,
instances of infinite energy density and gravitational forces [18]. The unphysi-
cal character of these singularities shows that General Relativity cannot be true
at the most fundamental level [15]. In addition, the loss of information from the
initial configuration of a black hole through thermal radiation until its evapora-
tion is incompatible with Quantum Mechanics. This is known as the black hole
information loss problem or black hole information paradox [18]. It is expected
that quantum gravity will provide a fundamental understanding of both the early
Universe and the final stages of black-hole evolution [15].

We notice that the problems which General Relativity and Quantum Mechanics
address typically arise at very different length and energy scales [19]. It is widely
expected that the scale at which the effects of quantum gravity become relevant is
the Planck scale. This means that the classical description of spacetime provided
by General Relativity is expected to hold at scales larger than the Planck length
lp =

√︁
ℏG/c3 ∼ 10−33 cm. In contrast, once one approaches the Planck scale,

the full structure of a “quantum spacetime" should become relevant and General
Relativity should break down [20].

Another aspect that is expected to be resolved with a fundamental theory of quan-
tum gravity would be the role of time, as the concepts of time (and space-time)
in Quantum Mechanics and General Relativity are incompatible [15]. In stan-
dard Quantum Mechanics, time is treated as an external parameter, which is not
described by an operator. In General Relativity, the coordinate time is a gauge
variable, which is not observable [20], and in general, space-time is a dynami-
cal object. Some scenarios suggest that the fundamental equations of Quantum
Gravity might not be written as evolution equations in terms of an observable
time variable [20], and that the metric has to be turned into an operator [15].

2.2 A semiclassical approach

From a theoretical point of view, the semiclassical Einstein equations have consti-
tuted a key approach to study the theory of quantum fields on an external space-
time. In order to introduce them, following Ref. [15], let us recall the Einstein-
Hilbert action

SEH =
c4

16πG

∫︂
M

d4x
√
−g (R− 2Λ)− c4

8πG

∫︂
∂M

d3x
√
hK, (2.1)

where the first integral covers a region M of the space-time manifold. In this
integral, R stands for the Ricci scalar, Λ is the cosmological constant, and g is the
determinant of the metric with components gµν . The second integral is added to
obtain a consistent variational principle that leads to Einstein field equations, and
is carried out on the boundary ∂M of the region M. The boundary is assumed to
be spacelike [15]. In this surface term, h is the determinant of the induced three-
dimensional metric on the boundary, and K is the trace of the extrinsic curvature
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of ∂M [21]. The action in Eq. (2.1) defines the formalism of General Relativity,
along with the action for non-gravitational fields Sm (the so-called ‘matter ac-
tion’), which in turn leads to the energy-momentum tensor

Tµν =
2√
−g

∂Sm

∂gµν
, (2.2)

that constitutes a source of the gravitational field. The variation of the sum of the
actions SEH of Eq. (2.1) and Sm leads to the Einstein field equations

Gµν + Λgµν =
8πG

c4
Tµν , where Gµν = Rµν −

1

2
gµνR. (2.3)

In the above relation, the Einstein tensorGµν is defined in terms of the Ricci scalar
R and the Ricci tensorRµν . If we replace the energy-momentum tensor of Eq. (2.3)
with the expectation value of the energy-momentum operator Tµν with respect to
some quantum state |Ψ⟩, we obtain the semiclassical Einstein equations

Gµν + Λgµν =
8πG

c4
⟨Ψ| T̂ µν |Ψ⟩ . (2.4)

These equations give the back reaction of the matter fields on the space-time [22].
In semiclassical gravity, the metric gµν is treated classically, while all the other
forms of matter are assumed to be quantized [22, 23]. This semiclassical model
implies a nonlinearity in Quantum Mechanics, as the Schrödinger equation for
the wave function |Ψ⟩ depends on the metric, which in turn depends on the wave
function |Ψ⟩ through Eq. (2.4) [19]. As the quantum field that defines the stress-
energy tensor is an operator-valued distribution, the operator T̂ µν is ill-defined
and the corresponding expectation value ⟨Ψ| T̂ µν |Ψ⟩ is formally infinite [24]. This
leads to the implementation of renormalization techniques [25]. Under very gen-
eral assumptions, the expectation value

⟨︂
T̂ µν

⟩︂
is independent of the details of the

regularization and renormalization procedures employed [26].

It should be remarked out that several issues with semiclassical gravity have been
pointed out. Among these issues, one finds inequivalent quantizations of a given
classical theory as result of field redefinition ambiguities [17]. Furthermore, when
the quantum state |Ψ⟩ is in a superposition of two macroscopically distinct states,
the measured gravitational field is given by the actual measured value of the
energy-momentum, and not by its average in the state |Ψ⟩ [23]. If one introduces
a time-dependence to tackle this issue, one is led to a violation of the conservation
equation ∇µ

⟨︂
T̂ µν

⟩︂
= 0, which leads to an inconsistency, as the Einstein tensor

is conserved [17, 23].

Given the high degree of complexity of the semiclassical Einstein equations shown
in Eq. (2.4), some authors [27, 28] consider their Newtonian limit restriction,



Chapter 2. Is Gravity necessarily Quantum? 14

which leads to the so-called Schrödinger-Newton equation

iℏ
dΨ
dt

= − ℏ2

2m
∇2Ψ−mΦΨ, where ∇2Φ = 4πGm|Ψ|2. (2.5)

In the model of Eq. (2.5), the expectation value of the mass density sources the
classical Newtonian potential Φ, which describes gravity [19]. However, in anal-
ogy to the violation of local energy-momentum conservation in the semiclassical
Einstein equations [cf. Eq. 2.4], taking the Schrödinger-Newton equation together
with the standard collapse postulate leads to superluminal effects [29].

In the case of semi-classical quantum theories of gravity, it is also important to
remark that they may or may not include quantum backreactions. The latter are
defined as the quantum fluctuations induced by the gravitational field by its cou-
pling to the quantum fields and matter [30]. The possibility of a semi-classical
quantum theory of gravity with quantum backreactions seems to be precluded in
Ref. [31].

In general, the different approaches followed to merge both Quantum Mechan-
ics and General Relativity into a fundamental Quantum Gravity theory show the
need of the new theory to predict all phenomena at the low-energy regime. In
order to classify the approaches to construct a consistent framework for Quan-
tum Gravity, a distinction between primary and secondary theories has been pro-
posed (see Ref. [15] and references within). According to this classification, in
the primary theories, heuristic quantization rules are applied to a given classi-
cal theory. If at the classical level, there is a split of space-time into space and
time, then the approach is said to be canonical, whereas if four-dimensional co-
variance is preserved at each step, the approach is referred to as covariant. In
contrast with primary theories, in secondary theories one tries to derive General
Relativity starting with a fundamental quantum framework which describes all
interactions.

2.3 Hybrid classical and quantum dynamics

Although there are diverse arguments that support the idea of a gravitational
field which is of quantum nature at a fundamental level, the difficulties to deal
with Quantum Mechanics and General Relativity within a single framework have
led to ask if the quantization of the gravitational field is necessary at all. More-
over, it is argued that various results demonstrating that the gravitational field
must be quantized in reality show the inconsistency of particular theories where
quantum-mechanical matter interacts with a classical gravitational field [32]. In
general, the question of the quantization of the gravity field tackles the issue of
constructing a consistent hybrid dynamics which couples quantum with classical
systems. These alternative approaches also have difficulties of their own. For
example, some authors [33] have studied the particular case of the coupling be-
tween a classical gravitational wave and a quantum system, pointing the incon-
sistencies that arise if the quantum nature of the measuring apparatus is not taken
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into account. Namely, if gravitational measurements do not cause wave function
collapse, then the gravitational interactions with quantum matter could be used
to transmit observable signals faster than light; and if a measurement by a grav-
itational wave leads to a wave function collapse, then the uncertainty relations
are incompatible with the momentum conservation [19]. However, it has been
argued that even if the proposed gedankenexperiments of Ref. [33] could be per-
formed (there is already a discussion about the possibility of performing them),
the need for a quantized gravity does not follow from these experiments. From
an experimental perspective, some works have discussed the possibility of de-
tecting a single graviton, concluding that, although there are no basic principles
ruling out a detection, standard physics experiments in four dimensions do not
seem to favour the detection, both because the characteristics of eventual detec-
tors are well-beyond the current technological developments, and because of the
presence of background noise, due to neutrinos and cosmic rays [34].

In standard quantum theory, the influence of classical macro-systems upon quan-
tized micro-systems is taken into account as external forces, and the correspond-
ing back-reaction of the micro-systems upon the macro-systems is usually ig-
nored [35]. This is true only under the Markov approximation. Some proposals
to construct a hybrid dynamics [36] introduce a Hamiltonian in the form

Ĥ(x, p) = ĤQ +HC(x, p)1̂ + ĤI(x, p) (2.6)

where ĤQ is the Hamilton operator appearing in the von Neumann equation de-
scribing the evolution of the density operator ρ̂Q, HC(x, p) is the Hamilton func-
tion corresponding to the Liouville equation of motion of the phase-space den-
sity ρC(x, p) of a classical canonical system, 1̂ is the identity operator, and the
interaction term ĤI(x, p) is a Hermitian operator for the quantum system, which
depends on the phase-space coordinates (x, p) of the classical system.

Other works [37] have proposed a formalism which, in the case of no interac-
tion between quantum and classical systems, reduces to standard classical and
quantum mechanics, but that leads to a violation of the correspondence principle
in the presence of an interaction. The emergence of the classical behaviour from
the underlying quantum structure has also been studied in Gaussian quantum
systems, which behave classically in some respects [38].

Some other proposals offering quantum theories of gravity, do not involve a
quantization of the gravitational field, as they regard gravity as an induced rather
than a fundamental force [30]. Some work in this line of research include recover-
ing gravity from Quantum Field Theory [39] by assuming a Lorentzian manifold
as a background on which performing Quantum Field Theory [30], or recovering
Einstein equations from black hole thermodynamics [40] inversely to the usual
approach. In addition, other works [41] have constructed states of a quantum
particle, called Ehrenfest monopole wavefunctions, for which there is an emer-
gence, at an effective level, of a classical particle following a Newtonian trajectory
in space-time.
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From the previous discussion, one sees that the formulation of a consistent hy-
brid classical-quantum theories has followed several attempts. In Ref. [42], the
following classification was suggested: (a) Theories where the description of the
quantum sector and trajectories for the classical sector are implemented by the
use of quantum states; (b) theories that formulate the quantum sector as a clas-
sical theory and then work with a completely classical system; (c) theories that
formulate the classical sector as a quantum theory and then work with a com-
pletely quantum system; (d) theories that describe both quantum and classical
sectors in a common formalism and then extend it to include interactions. It is ar-
gued that the proposals of Diósi [43] and Penrose [44], as well as that of Ghirardi
et al. [45] find additional justification in light of these models. In what follows,
we briefly discuss the Diósi-Penrose model.

2.3.1 Diósi-Penrose model

The works of Diósi and Penrose modify ordinary Quantum Mechanics with the
inclusion of a gravitational contribution in order to cure some of the problems
of the macroscopic quantum theory [43, 44]. By working in the Newtonian limit,
and assuming the gravitational potential ϕ(r, t) to be a stochastic variable defined
through

E [ϕ(r, t)] = 0,

E [ϕ(r, t)ϕ(r′, t′)] = ℏ
G

|r − r′|
δ(t− t′),

(2.7)

one imposes the following equation for the state vector |ψ⟩ [43]

d |ψ(t)⟩ = −iℏ
(︃
Ĥ0 +

∫︂
drϕ(r, t)µ̂(r)

)︃
dt |ψ(t)⟩ , (2.8)

where Ĥ0 is the Hamiltonian of the system without gravity, and µ̂(r) stands for
the mass density of the system. A straightforward application of stochastic cal-
culus rules leads to the following equation

dρ̂(t)
dt

= − i

ℏ

[︂
Ĥ0, ρ̂

]︂
− G

2ℏ

∫︂
drdr′

|r − r′|
[µ̂(r), [µ̂(r′), ρ̂]] . (2.9)

The second term in the above Markovian master equation modifies the standard
unitary evolution of the system. Following a state-reduction proposal, according
to which superposed gravitational fields are unstable, Penrose determined the
deviations from the standard Schrödinger unitary evolution due to gravitational
effects [44], obtaining results compatible with the proposal of Diósi. Regarding
the short-distance behaviour of the Newtonian potential, both authors acknowl-
edged the necessity to implement a regularization mechanism to avoid diver-
gences. One of these mechanisms consists in the introduction of a coarse-grained
mass density [46], such as Gaussianly smeared mass density [47]. The evolu-
tion for ρ̂ in Eq. (2.9), together with the regularization mechanism, constitutes the
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Diósi-Penrose model [43, 44, 48]. We point out that the model by Ghirardi et al. in
Ref. [45], constructed from considerations involving dynamical collapse models,
is encoded within the Diósi-Penrose model. Indeed, it suffices to take

µ̂(r) =
∑︂
i

mi

(︂ αi

2π

)︂3/2∑︂
si

∫︂
dr′e−(αi/2)(r

′−r)2 â†(r′, si)â(r
′, si), (2.10)

where â†(r′, si) and â(r′, si) are the creation and annihilation operators of a par-
ticle at point r′ with spin component si [45], and αi are parameters of the model.
The index i runs over the different species of particles.

The Diósi-Penrose model in Eq. (2.9) model turns out to be encoded within the
formalism of the Tilloy-Diósi model [3], which we describe in the following chap-
ter.
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Chapter 3

Gravity through a continuous
measurement and feedback
mechanism

Among the proposals which merge Quantum Mechanics and Gravity without
requiring the latter to be quantized one can find some models in which gravity
is treated as classical and matter as quantum [43, 44, 49–58] . Among these we
focus on two implementing the gravitational interaction through a continuous
measurement and feedback mechanism, which were proposed respectively by
Kafri, Taylor and Milburn (KTM) [2] and by Tilloy and Diósi (TD) [3]. In what
follows, we study them in detail, and describe their relation, with the aim of
studying viable scenarios for an implementation of a full Newtonian interaction
through a feedback mechanism. The results in this section follow from our work
in Ref. [59].

3.1 The Kafri-Taylor-Milburn Model

The KTM model considers gravity as a classical interaction and implements it
through a continuous measurement and feedback mechanism. In the first step of
this process, one implements a weak continuous measurement of the positions x̂
of the masses constituting the system. After this measurement, one effectively im-
plements the gravitational interaction by feeding the measurement record of the
position of one particle to the other. The continuous measurement and feedback
mechanism induces decoherence effects along-side the desired effective gravita-
tional interaction between the constituents of the system. Concretely, KTM con-
sidered a system composed of a pair of point-like particles of masses m1 and m2

respectively. These particles are harmonically suspended at an initial distance d
as it is shown in Fig. (3.1). The existence of only two masses allows to study the
problem in one dimension. If one assumes that the initial distance d is greater
than the fluctuations q1, q2 around the initial positions of the two masses, one can
Taylor expand the gravitational interaction to second order in the relative dis-
placement. Therefore, we have

V (q1 − q2) = −Gm1m2

(︃
1

d
+

1

d2
(q1 − q2) +

1

d3
(q1 − q2)

2

)︃
. (3.1)
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Figure 3.1: Figure adapted from Ref. [59]. Two particles harmonically trapped are
separated by an initial distance d. The measurement records r1 and r2 are used to
implement a Newtonian gravitational interaction between them.

Let us define the following change of coordinates [60]

x1 = q1 +
Gm2Ω

2
2d

2G(m2Ω2
2 +m1Ω2

1)− Ω2
2Ω

2
1d

3
,

x2 = q2 +
Gm1Ω

2
1d

Ω2
2Ω

2
1d

3 − 2G(m2Ω2
2 +m1Ω2

1)
,

(3.2)

where Ω1 and Ω2 are the frequencies of the harmonic motion of the two particles.
After quantizing the system, the Hamiltonian now reads

Ĥ = Ĥ0 + Ĥgrav, (3.3)

where Ĥ0 is the Hamiltonian of a pair of uncoupled harmonic oscillators

Ĥ0 =
2∑︂

α=1

p̂2α
2mα

+
1

2
mαω

2
αx̂

2
α, with ω2

α = Ω2
α − 2Gmα

d3
, (3.4)

and Ĥgrav encodes the linearized gravitational interaction between the masses:

Ĥgrav = Kx̂1x̂2, with K =
2Gm1m2

d3
, (3.5)

where G is the gravitational constant. The proposal of KTM consists in replacing
the Hamiltonian operator Ĥgrav with an appropriate mechanism that effectively
provides the gravitational interaction due to this term. In what follows, we de-
scribe the two steps that constitute this mechanism.

The first step consists in a weak continuous measurement of the positions of the
two masses. Following the result of Eq. (1.12), we have that the stochastic differ-
ential equation that encodes this process is

(d |ψ⟩)m =
2∑︂

α=1

(︃
− γα
8ℏ2

(x̂α − ⟨x̂α⟩)2 dt+
√
γα

2ℏ
(x̂α − ⟨x̂α⟩)dWα,t

)︃
|ψ⟩ . (3.6)

After the continuous measurements, the system undergoes the feedback evolu-
tion. In this step, one replaces the Hamiltonian Ĥgrav with the following feedback
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Hamiltonian
Ĥ fb = χ12r1x̂2 + χ21r2x̂1, (3.7)

where χ12 and χ21 are parameters and the measurement records rα are defined as

rα = ⟨x̂α⟩+
ℏ

√
γα

dWα,t

dt
. (3.8)

which follows Eq. (1.11). The Wiener processes Wα,t of the measurement records
in Eq. (3.8) satisfy

E [dWα,t] = 0,

E [dWα,tdWβ,t] = δαβdt.
(3.9)

We notice that the feedback Hamiltonian Ĥ fb in Eq. (3.7) is of the form of Eq. (1.23).
Therefore, according to Eq. (1.24), the corresponding stochastic differential equa-
tion describing the evolution due to the feedback is

(d |ψ⟩)fb = −
2∑︂

α,β=1
β ̸=α

[︃
i

ℏ
rα +

χαβx̂β
2γα

]︃
χαβx̂βdt |ψ⟩ . (3.10)

From Eq. (3.6) and Eq. (3.10), the full evolution of the system is given by

d |ψ⟩ =

⎧⎪⎪⎨⎪⎪⎩−
2∑︂

α,β=1
β ̸=α

[︃
i

ℏ
rα +

χαβx̂β
2γα

]︃
χαβx̂βdt+

2∑︂
α=1

[︂
− γα
8ℏ2

(x̂α − ⟨x̂α⟩)2 dt

+

√
γα

2ℏ
(x̂α − ⟨x̂α⟩)dWα,t

]︃
− i

2ℏ

2∑︂
α,β=1
β ̸=α

χαβx̂β(x̂α − ⟨x̂α⟩)dt

⎫⎪⎪⎬⎪⎪⎭ |ψ⟩ .

(3.11)

From the above result, one obtains the corresponding master equation for the
density operator by averaging over the Wiener processes

dρ̂
dt

= − i

ℏ

[︂
Ĥ0, ρ̂

]︂
− i

2ℏ

2∑︂
α,β=1
β ̸=α

χαβ [x̂β, {x̂α, ρ̂}]−
2∑︂

α=1

⎛⎜⎜⎝ γα
8ℏ2

+
2∑︂

β=1
β ̸=α

χ2
βα

2γβ

⎞⎟⎟⎠ [x̂α, [x̂α, ρ̂]] .

(3.12)
In this equation, which agrees with the general result of Eq. (1.25), we also in-
cluded the evolution due to Ĥ0. The last term in Eq. (3.12) leads to decoherence
effects as a result of the noise part in the dynamics of the system. The second term
will allow, under the particular choices of the parameters χαβ = K, to effectively
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mimic the gravitational interaction. In this case, Eq. (3.12) becomes

dρ̂
dt

= − i

ℏ

[︂
Ĥ0 +Kx̂1x̂2, ρ̂

]︂
−

2∑︂
α=1

⎛⎜⎜⎝ γα
8ℏ2

+
2∑︂

β=1
β ̸=α

K2

2γβ

⎞⎟⎟⎠ [x̂α, [x̂α, ρ̂]] . (3.13)

Hence, we see that we recover the gravitational interaction defined by Ĥgrav in
Eq. (3.5), and thus the KTM model indeed retrieves the gravitational interaction
through a continuous measurement and feedback mechanism. This constitutes
an example of a local operation and classical communication (LOCC) dynamics
[61–64]. In this case, the local operations are the continuous measurements and
the feedback dynamics works as a classical communication. This scheme allows
to simulate the action of a gravitational field. However, this particular mecha-
nism also includes the appearance of terms which lead to decoherence effects,
whose strength is quantified by γα. For equal masses, it is reasonable to assume
that the measurement processes have the same rate [2], so one can set γ1 = γ2 = γ.
Although the value of γ can be obtained only through experiments, one can the-
oretically determine the value of γ that minimizes such decoherence effects. The
structure of the decoherence terms in Eq. (3.13) allows a minimization procedure
with respect to γ. Under this procedure, Eq. (3.13) becomes

dρ̂
dt

= − i

ℏ

[︂
Ĥ0 + Ĥgrav

]︂
− K

2ℏ

2∑︂
α=1

[x̂α, [x̂α, ρ̂]] . (3.14)

This result corresponds to an information gain rate equal to γmin = 2ℏK [2].

3.2 Generalizations of the KTM model

The KTM model describes the gravitational interaction of two particles and pro-
vides a one-dimensional master equation [cf. Eq. (3.13)]. It is natural to ask
whether one may generalize this model to describe an arbitrary finite number of
particles in three dimensions, within a linearized Newtonian interaction context.
In what follows, we consider two possible generalizations of the KTM model.
The difference between them is given by the way the measurement is performed.

3.2.1 Pairwise KTM model

We define a pairwise model to be a framework in which the interaction between
the constituents of the systems is established in pairs. Namely, we define mea-
surement records for each pair of particles. Consequently, the information about
a given particle depends also on the particle receiving such an information. A
pairwise generalization of the KTM model was first proposed by Altamirano et
al. [55]. In their work, which is based on a quantum collisional approach [55, 65]
rather than a continuous measurement and feedback formalism, they describe the
interaction between two bodies of N1 and N2 constituents of the system. In their
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Figure 3.2: Figure adapted from Ref. [59]. In the pairwise generalization of KTM,
the measurement records rαβ (solid arrows) link the particles in pairs. The position
of each particle is measured by all the others, and allows to implement Newtonian
gravity through the feedback interaction (dashed arrows).

approach, the system interacts with a Markovian environment in a suitably cho-
sen parameter regime [65]. The particular system studied in their work allowed
an effective one-dimensional description of the system dynamics. The master
equation of Altamirano et al. [55] reads

dρ̂
dt

= − i

ℏ

⎡⎢⎢⎣Ĥ0 +
1

2

N1+N2∑︂
α,β=1
β ̸=α

V̂ αβ, ρ̂

⎤⎥⎥⎦− 1

2

N1+N2∑︂
α,β=1
β ̸=α

Γαβ ([x̂α, [x̂α, ρ̂]] + [x̂β, [x̂β, ρ̂]]) , (3.15)

where V̂ αβ stands for the gravitational potential expanded up to the second order
in the positions x̂α, and the constants Γαβ are the decoherence rates.

Now, we proceed to lift the one-dimensional effective restriction and generalize
the KTM model to describe the gravitational interaction for N particles in three
dimensions. A scheme of this pairwise generalization of the KTM model is shown
in Fig. (3.2). For any two particles, the gravitational potential V (xα,xβ) can be
approximated in the following form

V (xα,xβ) =− Gmαmβ

|dαβ − xα + xβ|

≈ −Gmαmβ

(︃
1

|dαβ|
− 1

|dαβ|
dαβ · (−xα + xβ)

− 1

2

1

|dαβ|3
(−xα + xβ)

2 +
3

2

1

|dαβ|5
(dαβ · (−xα + xβ))

2

)︃
,

(3.16)

where the vector dαβ joins the positions of the two particles of masses mα and
mβ respectively. One can redefine the coordinates xα in such a way that, after
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quantization, the potential V̂ (x̂α, x̂β) reads

V̂ (x̂α, x̂β) ≈
N∑︂

α=1

Ŷ α +
1

2

N∑︂
α,β=1
β ̸=α

3∑︂
l,j=1

Kαβljx̂αlx̂βj, (3.17)

where the Latin indices denote the directions in space. In the above equations, Ŷ α

denotes a second-order polynomial in the components of the position operator
x̂α. The constants Kαβlj are defined as

Kαβlj = Gmαmβ

[︃
3dαβldαβj
|dαβ|5

− δlj
|dαβ|3

]︃
. (3.18)

The above expression is the generalization of the constant K defined in Eq. (3.5).

From this expansion of the gravitational potential, one can follow in a straightfor-
ward way the original approach of KTM. The stochastic differential equation for
the wave function that describes the continuous measurements of the positions
x̂αl is given by

(d |ψ⟩)m =
N∑︂

α,β=1
β ̸=α

3∑︂
l,j=1

(︃
−γαβlj

8ℏ2
(x̂αl − ⟨x̂αl⟩)2 dt+

√
γαβlj

2ℏ
(x̂αl − ⟨x̂αl⟩)dWαβlj,t

)︃
|ψ⟩ ,

(3.19)
where the parameters γαβlj encode the information gain rate of the measure-
ments. The standard Wiener processes Wαβlj,t in the above equation are defined
through the following relations

E [dWαβlj,t] = 0,

E [dWαβlj,tdWα′β′l′j′,t] = δαα′δββ′δll′δjj′dt.
(3.20)

The measurement records now read

rαβlj = ⟨x̂αl⟩+
ℏ

√
γαβlj

dWαβlj,t

dt
, (3.21)

and manifestly show that the information about the position of the particle α
along the l-th direction influences the dynamics of the particle β along the j-th
direction. Moreover, they describe a pairwise implementation of the continuous
measurement and feedback mechanism. As mentioned before, the measurement
record links the particles in pairs: those whose position is measured (identified
with the index α in Eq. (3.21)), and those receiving the information encoded in
the measurement record. For a fixed particle, the other particles receive the infor-
mation about its position through a different measurement record.
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From the measurement records in Eq. (3.21), we can define the following feedback
Hamiltonian

Ĥ fb =
N∑︂

α,β=1
β ̸=α

3∑︂
l,j=1

χαβljrαβljx̂βj, (3.22)

where we assume that the symmetries χαβlj = χβαlj = χαβjl hold. The above
Hamiltonian indicates that, for a given value of α, the measurement record rαβlj
influences the evolution of the positions of the rest of the masses constituting the
system. From Eq. (3.22), one obtains the following evolution due to the feedback

(d |ψ⟩)fb = −
N∑︂

α,β=1
β ̸=α

3∑︂
l,j=1

[︃
i

ℏ
rαβlj +

χαβljx̂βj
2γαβlj

]︃
χαβljx̂βjdt |ψ⟩ . (3.23)

From Eq. (3.19) and Eq. (3.22), one obtains

dρ̂
dt

=− i

ℏ

[︂
Ĥ0, ρ̂

]︂
− i

2ℏ

N∑︂
α,β=1
β ̸=α

3∑︂
l,j=1

Kαβlj [x̂αlx̂βj, ρ̂]

−
N∑︂

α,β=1
β ̸=α

3∑︂
l,j=1

(︃
γαβlj
8ℏ2

+
1

2

K2
αβlj

γαβlj

)︃
[x̂αl, [x̂αl, ρ̂]] ,

(3.24)

where we assumed that γαβlj = γβαlj = γαβjl, and the operators Ŷ α were absorbed
in the Hamiltonian Ĥ0.

Although the model is mathematically consistent, it was ruled out through com-
parison with results from experiment [55].

3.2.2 Universal KTM model

In contrast with the pairwise approach that leads to Eq. (3.24), we can consider the
scenario in which, once a given particle is measured, the remaining constituents
of the system receive the same information about the measurement. We will refer
to this approach as a universal one. The situation is depicted in Fig. (3.3). For
simplicity, one can consider a one-dimensional scenario. In this case, the mea-
surement record is given as in Eq. (3.8), and the continuous measurement contri-
bution to the evolution of the system is described in Eq. (3.6). One implements
the gravitational interaction through the following feedback Hamiltonian

Ĥ fb =
N∑︂

α,β=1
β ̸=α

χαβrαx̂β. (3.25)



Chapter 3. Gravity through a continuous measurement and feedback
mechanism 25

Figure 3.3: Figure adapted from Ref. [59]. In the universal generalization of the
KTM model, there is a single measurement record rα (solid arrows) of the position
of each particle. Newtonian gravity is implemented through the feedback interac-
tion (dashed arrows).

This leads to the master equation

dρ̂
dt

=− i

ℏ

[︂
Ĥ0, ρ̂

]︂
− i

2ℏ

N∑︂
α,β=1
β ̸=α

χαβ [x̂β, {x̂α, ρ̂}]−
N∑︂

α=1

γα
8ℏ2

[x̂α, [x̂α, ρ̂]]

−
N∑︂

α,β,ϵ=1
β,ϵ ̸=α

χαβχαϵ

2γα
[x̂β, [x̂ϵ, ρ̂]] .

(3.26)

Although this model reduces to the KTM model for the case of N = 2 particles,
one can show that if one has two bodies of N1 and N2 constituents respectively,
an considers them as two single objects, with center of mass position operators
x̂1 and x̂2, inconsistencies arise at the level of the master equation. Namely, after
tracing the relative degrees of freedom of the two bodies, one does not recover the
KTM master equation for two particles, as one gets extra contributions propor-
tional to [x̂1, [x̂2, ρ̂]]. Therefore, this approach for implementing the gravitational
interaction is also discarded.

3.3 TD model

The Tilloy-Diósi (TD) model retakes the KTM idea of implementing gravity through
a continuous measurement and feedback mechanism to the full Newtonian inter-
action. Instead of the measurements of the position, they focus on those of the
mass density µ̂(x) of the system. The Hamiltonian that describes the gravita-
tional interaction of the system is

Ĥgrav =
1

2

∫︂
dxdyV(x−y)µ̂(x)µ̂(y), where V(x−y) = − G

|x− y|
. (3.27)
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The TD model implements a continuous measurement and feedback mechanism
to replace Ĥgrav in Eq. (3.27), and effectively recover the gravitational interaction
at the level of the master equation. The contribution due to the continuous mea-
surement of the mass density is

(d |ψ⟩)m =

[︃
− 1

8ℏ2

∫︂
dxdyγ(x,y) (µ̂(x)− ⟨µ̂(x)⟩) (µ̂(y)− ⟨µ̂(y)⟩)dt

+
1

2ℏ

∫︂
dx (µ̂(x)− ⟨µ̂(x)⟩) ξµ,t(x)dt

]︃
|ψ⟩ .

(3.28)

In the above equation, the noise ξµ,t(x) is defined through the relations [cf. Eq. (1.27)]

E [ξµ,t(x)] = 0,

E [ξµ,t(x)ξµ,t′(y)] = γ(x,y)δ(t− t′).
(3.29)

In this case, the measurement record at each point of space is defined as

µ(x) = ⟨µ̂(x)⟩+ ℏ
∫︂

dyγ−1(x,y)ξµ,t(y), (3.30)

where γ−1(x,y) is the inverse kernel of γ(x,y) [cf. Eq. (1.28)]. From the measure-
ment record, we can define the corresponding feedback Hamiltonian

Ĥ fb =

∫︂
dxdyV(x− y)µ̂(x)µ(y). (3.31)

The Hamiltonian in Eq. (3.31) constitutes a universal implementation of the full
Newtonian interaction, as all the constituents receive the same information about
the mass density at a given point. This Hamiltonian leads to the following con-
tribution to the total dynamics of the system

(d |ψ⟩)fb = −
∫︂

dxdy
{︃
i

ℏ
V(x− y)µ(y) +

1

2
(V ◦ γ−1 ◦ V)(x,y)µ̂(y)

}︃
µ̂(x)dt |ψ⟩ .

(3.32)
We obtain the full stochastic differential equation for the wave function from the
results of Eq. (3.28) and Eq. (3.32). Straightforward calculations lead to

d |ψ⟩ =
(︃
− i

ℏ

∫︂
dxdyV(x− y)µ̂(x)µ(y)dt− 1

2

∫︂
dxdy

(︁
V ◦ γ−1 ◦ V

)︁
(x,y)µ̂(x)µ̂(y)dt

− 1

8ℏ2

∫︂
dxdy (µ̂(x)− ⟨µ̂(x)⟩) (µ̂(y)− ⟨µ̂(y)⟩)dt+

1

2ℏ

∫︂
dx (µ̂(x)− ⟨µ̂(x)⟩) ξµ,t(x)dt

− i

2ℏ

∫︂
dxdyV(x− y)µ̂(x) (µ̂(y)− ⟨µ̂(y)⟩)dt

)︃
|ψ⟩ .

(3.33)
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The above evolution leads to the following master equation

dρ̂
dt

= − i

ℏ

[︂
Ĥ0 + Ĥgrav, ρ̂

]︂
−
∫︂

dxdyD(x,y) [µ̂(x), [µ̂(y), ρ̂]] , (3.34)

where we included the free Hamiltonian Ĥ0. The decoherence kernel D(x,y)
appearing in Eq. (3.34) is defined as

D(x,y) =

[︃
γ

8ℏ2
+

1

2

(︁
V ◦ γ−1 ◦ V

)︁]︃
(x,y). (3.35)

3.3.1 The divergences in the decoherence term

Thus far, we have not specified the correlation kernel γ(x,y) in Eq. (3.35). Under
the assumption of invariance under translations (D(x,y) = D(x − y)), one
can show that any choice of γ leads to divergences in the decoherence term in
Eq. (3.34). In order to proceed, we consider a system constituted of point-like
particles. Therefore, the mass density reads

µ̂(x) =
N∑︂

α=1

mαδ(x− x̂α). (3.36)

In Fourier space, the decoherence term of Eq. (3.34) with the mass density of
Eq. (3.36) is given by∫︂

dxdyD(x,y) [µ̂(x), [µ̂(y), ρ̂]] =
N∑︂

α,β=1

mαmβ

∫︂
dk ˜︁D(k)

(2πℏ)3/2
[︂
e−

i
ℏk·x̂α ,

[︂
e

i
ℏk·x̂β , ρ̂

]︂]︂
,

(3.37)
where ˜︁D(k) is the Fourier transform of the decoherence kernel D(x − y). The
divergences in the decoherence term come from the contributions in the above
sum corresponding to the same particle (α = β). They are proportional to∫︂

dk ˜︁D(k)
(︂
2ρ̂− e−

i
ℏk·x̂α ρ̂e

i
ℏk·x̂α − e

i
ℏk·x̂α ρ̂e−

i
ℏk·x̂α

)︂
. (3.38)

Let us focus on the first term of the above expression. Explicit calculations show
that ∫︂

dk ˜︁D(k) =

∫︂
dk
(︃˜︁γ(k)

8ℏ2
+

ℏG2

π

1

k4˜︁γ(k)
)︃
, (3.39)

where we used the property ˜︁γ(k)˜︃γ−1(k) = (2πℏ)−3. Tilloy and Diósi proceeded
to minimize the decoherence kernel ˜︁D(k) with respect to ˜︁γ(k). The minimum is
achieved for

˜︁γ(k) = G(2πℏ)3/2/(π2k2) ⇒ γ(x,y) = −2ℏV(x− y). (3.40)
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The above correlation kernel leads to the decoherence rate of the Diósi-Penrose
model [43, 44], and in particular to∫︂

dk ˜︁D(k) =
2(2πℏ)1/2G

ℏ

∫︂ ∞

0

dk → ∞, (3.41)

which is divergent and has been regularized by smearing the mass density [48].
Therefore, without a regularization mechanism, such as the one proposed by
Tilloy and Diósi, which we describe in the following subsection, any choice of
γ(x,y) in the decoherence kernel in Eq. (3.35) leads to divergences in the corre-
sponding master equation.

3.3.2 Regularization in the TD formalism

The regularization mechanism for the master equation [cf. Eq. (3.34)] must in-
clude both the correlation kernel γ(x,y) as well as the Newtonian interaction
V(x,y). Indeed, a regularization of the correlation kernel γ(x,y) alone would
result in another correlation which would still lead to divergences, as seen in the
previous subsection. On the other hand, if one regularizes only the Newtonian
potential V(x,y), one may eventually remove the divergences on the contribu-
tion in the decoherence term due to the feedback, but not those due to the mea-
surement. These arguments lead to consider a regularization mechanism which
involves both the correlation kernel γ(x,y) and the Newtonian potential V(x,y).

A possible regularization mechanism consists in smearing the mass density op-
erator [3]. Under this approach, one replaces the mass density µ̂(x) with the
smeared one. The latter is given by

ν̂(r) =

∫︂
dxg(x− r)µ̂(x), (3.42)

where g(x − r) is a smearing function. Explicit substitution of the above expres-
sion in Eq. (3.34) shows that this approach is formally equivalent to the regular-
ization of the Newtonian potential V(x − y) and the correlation kernel γ(x,y)
with the smearing function g(x,y). One implements this approach through the
replacements

γ → g ◦ γ ◦ g, and V → g ◦ V ◦ g, (3.43)

where the smearing function g(x,y) should be chosen to avoid all the divergences
in Eq. (3.34) for any choice of the mass density and the correlation kernel γ(x,y).
The Hamiltonian Ĥgrav becomes

Ĥ
′
grav =

1

2

∫︂
dxdy (g ◦ V ◦ g) (x,y)µ̂(x)µ̂(y), (3.44)

and the decoherence kernel D(x,y) in Eq. (3.35) now reads

D′(x,y) =

[︃
g ◦ γ ◦ g

8ℏ2
+

1

2
g ◦
(︁
V ◦ γ−1 ◦ V

)︁
◦ g
]︃
(x,y). (3.45)
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Therefore, the master equation (3.34) now reads

dρ̂
dt

= − i

ℏ

[︂
Ĥ0 + Ĥ

′
grav

]︂
−
∫︂

dxdyD′(x,y) [µ̂(x), [µ̂(y), ρ̂]] . (3.46)

From now on, we refer to Eq. (3.46) as the master equation of the Tilloy-Diósi
formalism. We remark that the choice γ(x,y) = −2ℏV(x,y), together with the
regularization mechanism described above, completely specifies the TD model.

3.3.3 A model within the TD formalism

In Ref. [51], Kafri, Milburn and Taylor study the dynamical evolution of N par-
ticles of mass m forming a lattice. In order to avoid confusion with the model
described in Section 3.1, we refer to their model as the KTM2 model. The mass
density operator is taken as

µ̂(x) = m
∑︂
α

n̂αδ(x− xα), (3.47)

where n̂α stands for the number density of the α-th lattice site at the position xα.
They considered a smeared Newtonian potential V̂ αβ = χαβn̂αn̂β , where the co-
efficients χαβ are defined as χαβ = −Gm2/ [2 (|xα − xβ|+ a)], with a representing
a length cutoff. By defining an ancillary field that stores a weak measurement
result of the mass mn̂α at a given location, they implemented a measurement and
feedback approach [51]. Therefore, as in the TD model, the KTM2 model imple-
ments the Newtonian interaction between the constituents of the system through
the measurement of the mass density; in this case, through the use of the number
operator. The corresponding master equation of the KTM2 model reads

dρ̂
dt

= − i

ℏ

⎡⎢⎢⎣Ĥ0 +
1

2

N∑︂
α,β=1
β ̸=α

V̂ αβ, ρ̂

⎤⎥⎥⎦− γ

2

N∑︂
α=1

[n̂α, [n̂α, ρ̂]]−
1

2γ

N∑︂
α,β,ϵ=1
β,ϵ ̸=α

χαβχαϵ [n̂β, [n̂ϵ, ρ̂]] ,

(3.48)
where we also included the evolution due to the free Hamiltonian Ĥ0, and the pa-
rameter γ stands for the information rate gained by the measurement. The KTM2
model in Eq. (3.48) can be derived from the TD master equation [cf. Eq. (3.46)].
In order to see this, let us work first with the decoherence terms in both models,
and denote them by L(ρ̂). For the KTM2 model, we have

L(ρ̂) = −
N∑︂

α=1

⎛⎜⎜⎝γ2 +
1

2γ

N∑︂
β=1
β ̸=α

χ2
βα

⎞⎟⎟⎠ [n̂α, [n̂α, ρ̂]]−
1

2γ

N∑︂
α=1

N∑︂
β=1
β ̸=α

N∑︂
ϵ=1

β ̸=α,β

χϵαχϵβ [n̂α, [n̂β, ρ̂]] ,

(3.49)
where we are separating the double commutators terms that involve the same
particle and those that mix different particles. On the other hand, by substi-
tuting the mass density in Eq. (3.47) in the master equation of the TD model
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[cf. Eq. (3.46)], one obtains

L(ρ̂) = −
N∑︂

α=1

m2D′(0) [n̂α, [n̂α, ρ̂]]−
N∑︂

α=1

N∑︂
β=1
β ̸=α

m2D′(xα − xβ) [n̂α, [n̂β, ρ̂]] . (3.50)

From the results of Eq. (3.49) and Eq. (3.50), we can establish the following map
between the KTM2 and the TD models

m2D′(0) =
γ

2
+

1

2γ

N∑︂
β=1
β ̸=α

χ2
βα,

m2D′(xα − xβ) =
1

2γ

N∑︂
ϵ=1

ϵ ̸=α,β

χϵαχϵβ.

(3.51)

Regarding the unitary part of both models, we will denote it by U(ρ̂). For the
KTM2 model, this term is given by

U(ρ̂) = − i

2ℏ

N∑︂
α,β=1
β ̸=α

χαβ [n̂αn̂β, ρ̂] , (3.52)

whereas for the TD model we have

U(ρ̂) = − i

2ℏ
m2

N∑︂
α=1

V ′(0)
[︁
n̂2
α, ρ̂
]︁
− i

2ℏ
m2

N∑︂
α,β=1
β ̸=α

V ′(xα − xβ) [n̂αn̂β, ρ̂] , (3.53)

where V ′ = g ◦ V ◦ g. Comparing the results of Eq. (3.52) and Eq. (3.53), we obtain
the following relation

m2V ′(xα − xβ) = χαβ. (3.54)

The results of Eq. (3.51) and Eq. (3.54) show that the KTM2 model can be under-
stood within the TD formalism. The self-interaction terms that appear in the TD
master equation are removed by construction in the implementation of the KTM2
model as in the definition of the feedback operator in Ref. [51], they are explicitly
excluded.

3.4 Comparison between the KTM and TD models

Let us compare the master equation of the TD model [cf. Eq. (3.46)] and that of
the KTM model [cf. Eq. (3.13)]. In order to do this, let us reduce the TD model
to a linearized Newtonian potential regime. We consider the position operator of
each particle to be given as

x̂α = x(0)
α +∆x̂α, (3.55)
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Figure 3.4: Figure adapted from Ref. [59]. In the TD model, one measures the mass
density at each point of space (solid arrows). Each particle receives the same same
information about the mass density of the constituents. A full Newtonian-gravity
is implemented through a feedback interaction (dashed arrows).

where ∆x̂α stands for the quantum displacement from the initial position x
(0)
α .

Working with the Fourier representation of the mass density of the system [cf.
Eq. (3.36)], one can directly substitute the position operator x̂α with the expres-
sion in Eq. (3.55). In the case of small displacements, the TD model in Eq. (3.46)
can be approximated as

dρ̂
dt

=− i

ℏ

[︂
Ĥ0, ρ̂

]︂
+

2iπG

ℏ

N∑︂
α,β=1
β ̸=α

3∑︂
l,j=1

mαmβηαβ2lj [x̂αlx̂βj, ρ̂]

−
N∑︂

α,β=1

3∑︂
l,j=1

mαmβηαβlj [x̂αl, [x̂βj, ρ̂]] ,

(3.56)

where x̂αl is the component in the l direction of ∆x̂α. We show a representation of
the TD model in Fig. (3.4). The terms corresponding to the same particle (α = β)

in Ĥ
′
grav were absorbed in the Hamiltonian Ĥ0. The parameters ηαβlj are defined

as

ηαβlj =

(︃
π3

8ℏ5

)︃1/2

ηαβ0lj + (8πℏ)1/2G2ηαβ4lj, (3.57)

where we set the coefficients ηαβnlj to be given by

ηαβ0lj =

∫︂
dk ˜︁g2(k)˜︁γ(k)klkje− i

ℏk·(x
(0)
α −x

(0)
β ),

ηαβ2lj =

∫︂
dk
k2
˜︁g(k)klkje− i

ℏk·(x
(0)
α −x

(0)
β ),

ηαβ4lj =

∫︂
dk
k4
˜︁g2(k)˜︁γ(k) klkje− i

ℏk·(x
(0)
α −x

(0)
β ),

(3.58)

and we are assuming that both the smearing function g(x,y) and the correlation
kernel γ(x,y) are both given, in order to completely characterize the coefficients
ηαβnlj in the above equation.
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Let us now consider the particular case of the linearized TD model in one dimen-
sion, for a system of two particles. From Eq. (3.56), we get

dρ̂
dt

=− i

ℏ

[︂
Ĥ0 − 2πGm1m2 (η122 + η212) x̂1x̂2, ρ̂

]︂
−

N∑︂
α=1

m2
αηαα [x̂α, [x̂α, ρ̂]]

−m1m2 (η12 [x̂1, [x̂2, ρ̂]] + η21 [x̂2, [x̂1, ρ̂]]) .

(3.59)

The above expression clearly differs from the KTM model in Eq. (3.13). In the
KTM model, the double commutator terms contain only position operators cor-
responding to the same particle. In contrast, in the TD model, Eq. (3.59) mixes
the position operators of different particles, as it is shown in the second line. Al-
though both generalizations of the KTM model reduce to the result in Eq. (3.13)
for two particles, the TD model and the KTM model are fundamentally different
models [59].

Let us notice that one of the key aspects that explains the difference between these
models relies in the definition of the noise in each model. In the KTM model, as
well as its corresponding generalizations, the noises are intrinsically related to
the positions of the particles, and follow them while they move in space. In the
TD model, the particle feels different noises while moving in space, as by con-
struction, there is one noise for each point of space. Moreover, the noise term in
the measurement record in the KTM model [cf. Eq. (3.8)] monitors the fluctua-
tions in the positions of a particle, whereas, in the TD model, the measurement
record [cf. Eq. (3.30)] accounts for the fluctuations of the density in space without
a direct reference to the particle that produces such mass density.

3.5 Full Newtonian gravity through a feedback mech-
anism

It is natural to ask if there are other possible ways to implement a full Newtonian
gravity through a continuous measurement and feedback framework, as in the
TD model. In order to address this issue, let us first consider the choice of the
operator which is measured. For a system of point-like particles, it is morally the
same to measure the position of the particles or the mass density of the system.
However, from the physical point of view, the master equations are different as
they correspond to different measurement schemes. If we measure the position as
in the pairwise KTM model, then the noise is attached to the particle, while if we
measure the mass density as in the TD model, then different noises act for a given
particle, as the noise is defined at each point of space. Furthermore, in the case of
a continuous measurement of the mass density, it is straightforward to apply the
Wiseman-Milburn [1, 6] feedback formalism, as shown in Eq. (3.32). However,
when one measures the position, it is not clear how to implement this prescrip-
tion. Indeed, for a system of point-like particles, the Hamiltonian in Eq. (3.27)
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reduces to

Ĥgrav = −1

2

N∑︂
α,β=1
β ̸=α

Gmαmβ

|x̂α − x̂β|
, (3.60)

once we remove the self-interactions. The application of the continuous measure-
ment and feedback protocol would imply the replacement of the position opera-
tors x̂α with the measurement records rα. In this case, the feedback Hamiltonian
would read

Ĥ fb = −
N∑︂

α,β=1
β ̸=α

Gmαmβ

|x̂α − rβ|
. (3.61)

We notice that the measurement records appear in a nonlinear form which, in par-
ticular, does not allow to implement the Wiseman-Milburn prescription to obtain
the feedback contribution to the dynamics. Thus, there is not a clear procedure
to construct a stochastic equation that leads to a completely positive dynamics
[66]. Then, there is no guarantee that the resulting master equation for the den-
sity operator will be of the Lindblad form. This may result in faster-than-light
signalling, which is an unacceptable feature for any consistent theory. Therefore,
within a Markovian feedback framework, we are led to consider the mass density
measurement in order to implement a full Newtonian interaction.

The second point to address is the protocol to be used. In the TD model, the whole
system is measured and the information about the measurement is used to drive
the dynamics of the system. This is the universal approach described before. In
what follows, we show that a pairwise approach does not lead to a consistent
model. Indeed, let us consider a system of N point-like particles of mass density
µ̂α(x), and corresponding pairwise measurement records

µαβ(x) = ⟨µ̂α(x)⟩+ ℏ
∫︂

dzγ−1
αβ (x, z)ξµ,αβ,t(z), (3.62)

where the noises are defined as

E [ξµ,αβ,t(x)] = 0,

E [ξµ,αβ,t(x)ξµ,α′β′,t′(y)] = δαα′δββ′γαβ(x,y)δ(t− t′).
(3.63)

If we consider the following feedback Hamiltonian

Ĥ fb =
N∑︂

α,β=1
β ̸=α

∫︂
dxdyV(x,y)µ̂β(x)µαβ(y), (3.64)
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we arrive to the master equation

dρ̂
dt

=− i

2ℏ

N∑︂
α,β=1
β ̸=α

∫︂
dxdyV ′(x,y)

[︁
µ̂α(x)µ̂β(y), ρ̂

]︁

−
N∑︂

α,β=1
β ̸=α

∫︂
dxdyD′

αβ(x,y) [µ̂α(x), [µ̂α(y), ρ̂]] ,

(3.65)

with

V ′(x,y) = (g ◦ V ◦ g)(x,y),
D′

αβ(x,y) = (g ◦Dαβ ◦ g) (x,y),
(3.66)

where the decoherence kernel Dαβ(x,y) reads

Dαβ(x,y) =

[︃
γαβ
8ℏ2

+
1

2

(︁
V ◦ γ−1

βα ◦ V
)︁]︃

(x,y). (3.67)

The model in Eq. (3.65) successfully recovers the quantum Hamiltonian dynamics
due to the Newtonian interaction between the constituents of the system, but
also leads to decoherence effects. If we assume that all the correlation kernels
γαβ(x,y) are equal, then we obtain that Dαβ(x,y) = D(x,y) for all α, β. One
can perform a minimization procedure of the decoherence effects, which leads to
γ(x,y) = −2ℏV(x,y), as in the TD model. Let us now consider the interaction
between two systems, constituted by N1 = 1 (with mass m1) and N2 particles,
respectively, and a Gaussian smearing g(z) = (2πσ2)−3/2 exp (−z2/2σ2). Working
in Fourier space, tracing out over the degrees of freedom of the system with N2

particles leads to

TrN2

⎛⎜⎜⎝−
N∑︂

α,β=1
β ̸=α

∫︂
dxdyD′

αβ(x,y) [µ̂α(x), [µ̂α(y), ρ̂]]

⎞⎟⎟⎠
=

N∑︂
β=2

2Gm2
1

4π2ℏ2

∫︂
dk
k2
e−

σ2

ℏ2 k
2
(︂
e

i
ℏk·x̂1 ρ̂1e

− i
ℏk·x̂1 − ρ̂1

)︂
,

(3.68)

where we are setting ρ̂1 =
∫︁

dx2 · · ·dxN ⟨x2| ⊗ · · · ⊗ ⟨xN | ρ̂ |xN⟩⊗ · · · ⊗ |x2⟩. For a
delocalized state such that the second term in Eq. (3.68) is dominant over the first
one, the coherence decays with a rate Γ given by

Γ =
N∑︂

β=2

2Gm2
1

4π2ℏ2

∫︂
dk
k2
e−

σ2

ℏ2 k
2

=
N2Gm

2
1√

πℏσ
. (3.69)

The above result indicates that the rate depends on the second system through its
number of constituents [59]. This result is unphysical, since one can consider the
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second system to be the whole Universe, and therefore, the above result would
yield a vastly large decoherence rate. Therefore, unless one introduces major
changes in the construction of the model, the pairwise approach is inconsistent.
Let us notice that for the TD model, this inconsistency does not arise, as under
the same approximations one finds that the coherence rate is given by

ΓTD =
Gm2

1√
πℏσ

, (3.70)

and therefore, depends only on the single particle of massm1 and not on the other
system. These results indicate that, under the most natural constructions which
implement gravity through a continuous measurement and Markovian feedback
framework, the only physically consistent one is the Tilloy-Diósi model.
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Chapter 4

Inflation and Cosmological
Perturbations Theory

In this chapter we briefly review the basic aspects of inflation and the theory of
cosmological perturbations, focusing on the scalar sector. The discussion mainly
follows Refs. [67–69] Throughout the rest of this thesis, we work in reduced
Planck units (ℏ = 1, c = 1).

4.1 Inflation: Basic Concepts

Let us recall that the Cosmological Principle on which standard Cosmology is
constructed states that, at each epoch, the Universe is homogeneous and isotropic
[70]. This principle is valid for scales larger than 100 Mpc. In the case of smaller
scales, one has well developed models describing the inhomogeneous structure
[68].

The metric encoding the geometry resulting from the Cosmological Principle,
when expressed in comoving coordinates, is the Robertson-Walker metric [70].
This metric corresponds to the unperturbed Universe. The time coordinate t is
chosen so that spacetime slices of fixed t are homogeneous and isotropic [69].
Let us consider the time-ordered sequence of three-dimensional space-like hy-
persurfaces which are the natural choice for surfaces of constant time and are
homogeneous and isotropic. The concept of homogeneity implies that at every
point of any given hypersurface the physical conditions are the same. In addi-
tion, the isotropy requirement implies that the physical conditions are identical
in all directions when viewed from a given point on the hypersurface [68]. These
two assumptions lead to the construction of the Robertson-Walker line element
ds2, which, in terms of the system (x, θ, ϕ) of spatial coordinates, is described by

ds2 = −dt2 + a2(t)

[︃
dx2

1−Kx2
+ x2

(︁
dθ2 + sin2 θdϕ2

)︁]︃
, (4.1)

where a(t) is the dimensionless scale factor, and K is the curvature constant [71].
In inflationary cosmology the value K = 0, which corresponds to a flat (Eu-
clidean) space, is favoured by observations [68]. In this case, we can use comov-
ing Cartesian coordinates (x, y, z) and set the line element as

ds2 = −dt2 + a2(t)
(︁
dx2 + dy2 + dz2

)︁
. (4.2)
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In terms of conformal time η, which is defined through the relation

dt = adη, (4.3)

the Robertson-Walker metric is given by

ds2 = a2(η)
[︁
−dη2 + dx2 + dy2 + dz2

]︁
. (4.4)

The standard Friedmann-Lemaître-Robertson Walker cosmology is a very suc-
cessful model which describes the evolution and the composition of the Universe.
However, it faces some problematic aspects which can be explained by the cosmic
inflation theory. Let us recall these problems [69]:

i) Flatness problem: The density parameter Ω is defined as

Ω− 1 =
K

a2H2
, (4.5)

where H is the Hubble parameter. At the present time, Ω is very close to unity,
which implies an even closer value to 1 in the past. The present Universe requires
the condition |Ω(tnuc)− 1| ≤ 10−16 to hold, where tnuc is the time at nucleosynthe-
sis. Such finely initial condition seems extremely unlikely.

This problem is also known as the initial velocities problem, as it can be equiv-
alently be rephrased by saying that for a given energy density distribution, the
initial Hubble velocities must be adjusted to an accuracy of 10−56 in order to allow
the negative gravitational energy of the matter to be compensated by a positive
kinetic energy (due to Hubble expansion) [68]. The importance of the initial con-
ditions is that if this fine-tuning is not present, almost all initial conditions lead to
basically two scenarios. In the first of them, the outcome is a closed universe with
an almost immediate recollapse. In the other scenario, one is led to an open uni-
verse in which the density parameter Ω becomes smaller than what is compatible
with observations.

ii) Horizon problem: The comoving distance that the radiation travels after decou-
pling is considerably larger than the comoving distance over which causal inter-
actions can occur before the cosmic microwave background (CMB) is released.
Furthermore, the Universe must be homogeneous on scales much larger than the
horizon size at the time of nucleosynthesis [72]. In general, it is not clear how to
explain that the observable Universe is so nearly homogeneous at early times.

Concretely, at the initial Planckian time, the size of the Universe exceeded the
causality scale by 28 orders of magnitude. The energy density ϵ was distributed
with a fractional variation not greater than δϵ/ϵ ∼ 10−4 within 1084 causally dis-
connected regions. No causal physical process (i.e., those in which signals do not
propagate faster than light) can explain such distribution. For this reason, this
problem is also called the homogeneity problem [68]. The Big Bang model did not
offer a satisfactory explanation of the observed near homogeneity in the temper-
ature seen in different regions of the sky.
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Inflation provided an explanation to these problems of the FLRW model. It is
defined as an initial era during which the expansion rate ȧ is accelerating [69].
Therefore, inflation requires

ä > 0. (4.6)

The above condition can be expressed as requiring that d
dt

(︁
1
Ha

)︁
< 0, which can

be interpreted in a more straightforward way, as it indicates that the comoving
Hubble length is decreasing with time.

Inflation solves both the flatness and the horizon problems. For the former, infla-
tion allows to stretch any initial curvature of space to virtual flatness. For reason-
able values of the density parameter Ω, inflation guarantees that it will evolve to
unity to very high precision. Therefore, the flatness problem is solved by infla-
tion, as long as the observable Universe starts well inside the horizon (aH ≪ H0).
For the latter, inflation allows causal contact between two points further apart
than the apparent horizon length [70].

The simplest scenario to implement cosmic inflation is through the consideration
of a scalar field, which is denominated inflaton [68]. From the energy-momentum
tensor of a classical field with potential V (φ)

Tα
β = φ,αφ,β −

(︃
1

2
φ,γφ,γ − V (φ)

)︃
δαβ , (4.7)

we obtain the energy density

ε =
1

2
φ̇2 + V (φ), (4.8)

and pressure

p =
1

2
φ̇2 − V (φ), (4.9)

where the dot indicates a derivate with respect to cosmic time t. In order to suc-
cessfully implement inflation, one requires to keep φ̇2 small compared to V (φ)
during a sufficiently long time interval, which must last at least 75 e-folds (i.e. 75
Hubble times). Under this condition, we have that p ≈ −ε.

The inflaton, being a homogeneous classical scalar field, obeys the following
equation of motion [68]

φ̈+ 3Hφ̇+
∂V

∂φ
= 0, (4.10)

which can be obtained from requiring that Tα
β;α = 0. The above equation, as well

the Friedmann equation

H2 =
8πG

3

(︃
1

2
φ̇2 + V (φ)

)︃
, (4.11)

both describe the evolution of the inflaton. Notice that in the above equation, we
have already assumed a flat universe K = 0.
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In the case of a massive scalar field (V (φ) = 1
2
m2φ2), the above equation coincides

with the equation for a harmonic oscillator with a friction term which is propor-
tional to the Hubble parameter H . For the cases in which the friction is large, the
acceleration can be neglected, enforcing the so-called slow-roll regime.

For a generic potential V , one has that H ∝
√
V and, in the particular case of

large values of the potential, the friction term can also lead to a slow-roll stage
[68]. Moreover, during inflation the slow-roll is practically always satisfied [69].
We can assume that inflation is almost-exponential, which leads to consider

|Ḣ|
H2

≪ 1. (4.12)

From Eq. (4.12) and Eq. (4.11), we get the following condition

3Hφ̇+
∂V

∂φ
≃ 0, (4.13)

which is equivalent to neglecting the acceleration term in Eq. (4.10), i.e. setting
the inequality |φ̈| ≪ 3H|φ̇|. This is the condition required for slow-roll, and it
indicates that φ̇ does not change appreciably in one Hubble time [69]. Taking the
time derivative of Eq. (4.13), we obtain

φ̈ ≃ −Ḣ
H
φ̇− φ̇

3H

∂2V

∂φ2
. (4.14)

This condition, along with Eq. (4.12) and Eq. (4.13), constitute the slow-roll ap-
proximation [69], which in turn implies the so-called flatness conditions:

ϵf(φ) ≪ 1 where ϵf ≡
MPl2

2

(︃
1

V

∂V

∂φ

)︃2

,

|ηf(φ)| ≪ 1 where ηf ≃M2
Pl
1

V

∂2V

∂φ2
,

(4.15)

where MPl = (8πG)−1/2 is the reduced Planck mass. The importance of the flat-
ness conditions relies on two facts. The first one is that inflation will not take place
if these conditions are violated and that they are necessary for almost-exponential
inflation. And the second one is that, for any reasonable initial value of φ̇, the flat-
ness conditions are sufficient for having a slow-roll inflation [69].

4.2 Cosmological perturbations

A more realistic representation of the Universe includes the presence of pertur-
bations. If we denote by g(0)µν the Robertson-Walker metric described in Eq. (4.1),
which constitutes the background, then the full metric can be written as

gµν = g(0)µν + δgµν . (4.16)
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We will limit ourselves to consider only scalar perturbations, which in general,
may lead to growing inhomogeneities that in turn have effects on the dynami-
cal evolution of matter. For a spatially flat universe, scalar quantities may enter
into δgij by taking ordinary partial derivatives of a scalar function. This is pos-
sible as, in the flat universe, the ordinary partial derivatives coincide with the
covariant ones. In what follows, using the notation in Ref. [67], the (background)
three-dimensional covariant derivative of a function f with respect to some coor-
dinate i will be denoted as f|i. The most general form of the line element for the
background and scalar perturbations is given by

ds2 = a2(η)
{︁
(1 + 2ϕ)dη2 − 2B|idxidη −

[︁
(1− 2ψ)γij + 2E|ij

]︁
dxidxj

}︁
, (4.17)

where ϕ, ψ,B and E are four scalar quantities, which depend both on the spatial
and time coordinates, and γij is the spatial background metric tensor. These four
functions allow to construct gauge-invariant quantities. The simplest of them
were introduced by Bardeen [73] and span the two-dimensional space of gauge-
invariant variables. They read

Φ = ϕ+
1

a
[(B − E ′)a]

′
,

Ψ = ψ +
a′

a
(B − E ′),

(4.18)

where the prime indicates a derivative with respect to conformal time η. In gen-
eral, the freedom of gauge choice allows to impose two conditions on the four
functions ϕ, ψ,B and E.

For a metric with small perturbations, the Einstein tensor Gµ
ν can be written in

the form
Gµ

ν = (0)Gµ
ν + δGµ

ν , (4.19)

and similarly for the energy-momentum tensor T µ
ν . For small perturbations lin-

earized around the background metric, the equations of motion read

δGµ
ν =

1

M2
Pl
δT µ

ν . (4.20)

Although both sides of the perturbed Einstein equations are not separately invari-
ant under gauge transformations, one can construct gauge-invariant variables for
both tensors through the gauge-invariant variables Φ and Ψ in Eq. (4.18).

For the case of a scalar field minimally coupled to gravity, the action reads

S =

∫︂
d4x

√
−g
[︃
1

2
φ;αφ;α − V (φ)

]︃
. (4.21)

If one considers a homogeneous and isotropic universe with scalar perturbations
as in Eq. (4.17), then the field φ(η,x) can be decomposed as

φ(η,x) = φ0(η) + δφ(η,x). (4.22)
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In this case, the gauge-invariant perturbations of the energy-momentum tensor
can be written in terms of the Bardeen variable Φ [cf. Eq. (4.18)] and the gauge-
invariant perturbation of the scalar field

δφ(gi) = δφ+ φ′
0(B − E ′). (4.23)

In what follows, we will work under the assumption K = 0 [cf. Eq. (4.1)].

If we now consider a theory with total action

S = −M
2
Pl

2

∫︂
d4x

√
−gR +

∫︂
d4x

√
−g
(︃
1

2
φ,αφ

,α − V (φ)

)︃
, (4.24)

the corresponding background equations read

H2 =
1

3M2
Pl

(︃
1

2
φ′
0
2
+ V (φ0)a

2

)︃
, (4.25)

2H′ +H2 =
1

M2
Pl

(︃
−1

2
φ′
0
2
+ V (φ0)a

2

)︃
, (4.26)

where H is the Hubble parameter in conformal time. From the results of Eq. (4.25)
and Eq. (4.26), one can derive the following relation

H2 −H′ =
1

2M2
Pl
φ′
0
2
. (4.27)

Let us now define the first Hubble flow parameter

ϵ = 1− H′

H2
. (4.28)

From Eq. (4.27), ϵ can be recast in the following form

ϵ =
φ′
0
2

2M2
PlH2

. (4.29)

Let us introduce the gauge-invariant potential

v = a

[︃
δφ+

(︃
φ′
0

H

)︃
ψ

]︃
= a

[︃
δφ(gi) +

φ′
0

H
Ψ

]︃
, (4.30)

where the gauge-invariant scalar field variation δφ(gi) is given in Eq. (4.23). The
gauge invariant quantity in Eq. (4.30) is called Mukhanov-Sasaki variable [67, 74].
In terms of this quantity, the expansion of the action in Eq. (4.24) up to the second
order in the perturbations reads

δS =
1

2

∫︂
d4x

(︃
v′

2 − v,iv,i +
z′′

z
v2
)︃
. (4.31)
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In the above expression, we defined

z = aMPl

√
2ϵ/cs =

aφ′
0

H
, (4.32)

where cs is the speed of sound (cs = 1 during inflation and cs = 1/
√
3 during the

radiation-dominated era). We remark that the first equality in the above equation
is a general expression, valid at any stage of the evolution of the Universe, and
the last equality is valid in the inflationary stage. The action in Eq. (4.31) is a
particular case of the more general expression

δS =

∫︂
Ld4x =

1

2

∫︂
√
γd4x

(︃
v′2 − c2sγ

ijv,iv,j +
z′′

z
v2
)︃
, (4.33)

where γik is the metric on the background hypersurfaces of constant conformal
time η, γ the corresponding determinant, and we assume that the parameter
c2s is time-independent. Moreover, for the case of a flat universe, we have that
γik = δik, and therefore

√
γ = 1. In order to quantize the action in Eq. (4.33), one

needs to define the momentum π canonically conjugate to v, which is given by
∂L/∂v′. From the expression for the Lagrangian in Eq. (4.33), one obtains

π(η,x) = v′(η,x). (4.34)

From Eq. (4.34) and Eq. (4.30), in the case of a flat universe, the Hamiltonian reads

H =
1

2

∫︂
dx

√
γ

(︃
π2 + c2sδ

ijv,iv,j −
z′′

z
v2
)︃
. (4.35)

In order to quantize the Mukhanov-Sasaki variable v and the conjugate momen-
tum π, one requires the associated operators v̂ and π̂ to satisfy the following equal
time commutation relations

[v̂(η,x), v̂(η,x′)] = 0,

[π̂(η,x), π̂(η,x′)] = 0,

[v̂(η,x), π̂(η,x′)] = iδ(x− x′).

(4.36)

From the variation of the action Eq. (4.33) with respect to the variable v, one gets
the field equation for the operator v̂, which reads

v̂′′ − c2s∇2v̂ − z′′

z
v̂ = 0. (4.37)

It is convenient to work with the Fourier mode decomposition of the operator v̂,
namely:

v̂(η,x) =
1√
2

∫︂
dk

(2π)3/2

[︂
v∗k(η)e

ik·xâk + vk(η)e
−ik·xâ†k

]︂
, (4.38)



Chapter 4. Inflation and Cosmological Perturbations Theory 43

where the creation (â†k) and annihilation operators (âk) obey the following bosonic
commutation relations

[âk, âk′ ] = 0,[︂
â†k, â

†
k′

]︂
= 0,[︂

âk, â
†
k′

]︂
= δ(k − k′′).

(4.39)

Here, we defined the mode functions vk(η), which satisfy the relation

v
′′

k(η) + ω2
k(η)vk(η) = 0, where ω2

k(η) ≡ c2sk
2 − z′′

z
, (4.40)

and we see the explicit time dependence in the frequency ωk(η). The commuta-
tion relations defined for the canonical variable v̂ and its conjugate momentum
π̂ in Eq. (4.36) are consistent with the commutation relations for the creation and
annihilation operators in Eq. (4.39) as long as the modes vk(η) obey the condition

v′k(η)v
∗
k(η)− vk(η)v

∗
k
′(η) = 2i. (4.41)

To fully characterize the mode solution vk(η), one needs to set initial conditions
for the mode as well as for its derivative, for the initial time η = η0. In addition,
it is necessary to define the vacuum state |0⟩, which is the quantum state that
satisfies

âk |0⟩ = 0, ∀k. (4.42)

During inflation one has c2s = 1. Moreover, if we consider a constant Hubble
parameter Hinf, the scale factor reads

a(η) = − 1

ηHinf
, (4.43)

and therefore the solution to Eq. (4.40) with the initial condition

vk(η) =
1√
2k
e−ikη, (4.44)

is given by

vk(η) =
1√
2k
e−ikη

(︃
1− i

kη

)︃
. (4.45)

We are interested in calculating the curvature perturbation R̂ [75], which is re-
lated to the variable v̂ as

R̂ = − v̂
z
, (4.46)

in the comoving gauge. The comoving curvature perturbation R̂ represents the
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gravitational potential on constant -φ surfaces. The corresponding power spec-
trum PR̂(k) is related to the expectation value of the operator R̂

2
as

⟨0| R̂
2
(η,x) |0⟩ = ⟨0| v̂

2(x, η)

z2
|0⟩ =

∫︂
d ln k PR̂(k), (4.47)

where k = |k|. These results will allow us to calculate the modifications to the
power spectrum of R̂ due to the inclusion of dynamical collapse models.
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Chapter 5

Dynamical Collapse Models

Dynamical collapse models are phenomenological models which propose the ad-
dition of nonlinear and stochastic terms to the standard Schrödinger evolution, in
order to account for the collapse of the wave function of the system without im-
posing it through a postulate. In this chapter, we briefly review the basic concepts
which define this alternative theory to Quantum Mechanics. We also discuss their
connection with Quantum Measurement Theory and, in particular, with Quan-
tum continuous measurements. This discussion follows mainly from Ref. [76].

5.1 An alternative to Quantum Mechanics

Quantum Mechanics is undoubtedly one of the most successful theories in Physics,
as it has been able to explain a wide spectrum of phenomena, and is not yet dis-
proved by experimental evidence. However, at the level of its foundations, there
are issues for which the standard Copenhagen interpretation does not provide
full and incontrovertible explanations. Among these issues, one has the lack of a
mass scale that divides microscopic from macroscopic objects [76]. This is impor-
tant because the superposition principle holds for microscopic objects, but there
are no observed superpositions in different position states of macroscopic sys-
tems. Although at the pragmatical level, one can implement without problems
the postulates of Quantum Mechanics and compare the predictions of the the-
ory with the experimental evidence, at a theoretical level the separation between
micro and macro is artificial and ill-defined.

Moreover, the Copenhagen interpretation postulates that the evolution of a sys-
tem takes place in two different forms, depending if it is being measured or not
[76, 77]. During a measurement, the evolution is nondeterministic and prob-
abilistic. At any other time, the evolution is deterministic, and it follows the
Schrödinger equation. This framework does not solve the so-called quantum
measurement problem [78].

The above issues have given rise to either alternative interpretations of standard
Quantum Mechanics, or to the proposal of alternative theories [79–81]. In par-
ticular, we will focus on the works in Refs. [4, 82, 83], which have pointed out
that there must be a universal dynamics to which both Quantum and Classical
Mechanics are approximations in appropriate limits. They proposed that this
universal dynamics should be stochastic and nonlinear. On one hand, the non-
linearity allows the breakdown of superpositions during a measurement. On the
other hand, the stochasticity of the dynamics indicates that the outcomes of the
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measurement occur randomly. It is necessary in order to avoid faster-than-light
communication due to the presence of the nonlinear terms. Both of these charac-
teristics should be negligible for microscopic systems, in order to reproduce the
experimentally observed superposition in quantum systems, and to preserve the
deterministic Schrödinger evolution [76].

The acknowledgement of the need to introduce a nonlinear equation to describe
the quantum evolution of a system [84], instead of the standard Schrödinger
equation, led to the Quantum Mechanics with Spontaneous Localization (QMSL)
model. This model, which is also referred to as Ghirardi-Rimini-Weber (GRW)
model, constructs a dynamical reduction model based on two main lines [82].
The first one is to guarantee the definite position in space to macroscopic objects,
through the choice of a preferred basis in which the reduction takes place. The
other one is the existence of an amplification mechanism that appears when go-
ing from a microscopic to a macroscopic level. This mechanism allows to recover
the classical-like behaviour of macroscopic objects, as the wave function of an
object collapses with a rate which is proportional to the size of the system [76].
The GRW model relies on two assumptions, which are applied to a system of
N distinguishable particles. The first one is that each of these particles experi-
ences a sudden spontaneous localization process. The second one is that between
successive spontaneous processes, the system evolves following the Schrödinger
equation.

In the context of dynamical collapse models one should also refer to the Diósi-
Penrose model [43, 44], which proposes a different dynamics, derived from grav-
itational considerations, in place of that described by the Schrödinger equation.
Moreover, to explain the lack of universal macroscopic quantum fluctuations, the
Quantum Mechanics with Universal Density Localization (QMUDL) model was
proposed. The latter is based on density localization processes whose strength
is proportional to the gravitational constant [4, 49] . This construction resembles
the localization processes implemented in the Quantum Mechanics with Univer-
sal Position Localization (QMUPL) proposal, which in turn presents slight differ-
ences with respect to the GRW model [49].

The ideas of the GRW model were retaken and refined in the Continuous Spon-
taneous Localization (CSL) model [4, 83]. In this proposal, one implements the
collapse towards one of the spatially localized eigenstates of the particle number
density operator of a quantum system, through the assumption of the existence
of a randomly fluctuating field that couples with the particle number density op-
erator. In its mass proportional version, this model is defined at the level of the
wave function through the following stochastic differential equation [76]

d |ψ⟩ =
[︃
− i

ℏ
Ĥdt+

√
γ

m0

∫︂
dx
[︂
M̂(x)−

⟨︂
M̂(x)

⟩︂]︂
dWt(x)

− γ

2m2
0

∫︂
dx
[︂
M̂(x)−

⟨︂
M̂(x)

⟩︂]︂2
dt
]︃
|ψ⟩ ,

(5.1)

where Ĥ is the standard quantum Hamiltonian of the system and the parameter
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γ is a coupling constant that encodes the strength of the collapse process. In ad-
dition, Wt(x) denotes an ensemble of independent Wiener processes, one defined
at each space point x. They are characterized through the correlation

E[ξt(x)ξt′(y)] = δ(x− y)δ(t− t′), (5.2)

where ξ(t,x) = dWt(x)/dt is the associated white-noise field, and E[·] denotes the
stochastic average, as before. Finally, the operator M̂(x) in Eq. (5.1) is a smeared
mass density operator

M̂(x) =
∑︂
j

mjN̂ j(x), N̂ j(x) =
1

(
√
2πrc)3

∫︂
dye−(y−x)2/2r2c â†j(y)âj(y), (5.3)

where â†j(y) and âj(y) are the creation and annihilation operators of a particle of
type j in the space point y, and rc is a second phenomenological parameter of
the model. The collapse operators are the density number operators â†j(y)âj(y).
This leads to the suppression of superpositions containing different number of
particles in different points of space.

An equivalent form of writing the stochastic differential equation for the wave
function of the CSL model is the following

d |ψ⟩ =
[︃
− i

ℏ
Ĥdt+

√
γ

m0

∫︂
dx
[︂
M̂(x)−

⟨︂
M̂(x)

⟩︂]︂
dW t(x)

− γ

2m2
0

∫︂
dxdy

[︂
M̂(x)−

⟨︂
M̂(x)

⟩︂]︂
G(x− y)

[︂
M̂(y)−

⟨︂
M̂(y)

⟩︂]︂
dt
]︃
|ψ⟩ ,

(5.4)

where now the mass density operator M̂(x) is not smeared. Namely, it has the
form

M̂(x) =
∑︂
j

mjN̂ j(x) =
∑︂
j

mj â
†
j(x)âj(x), (5.5)

and
G(x) =

1

(4πr2c )
3/2
e−x2/4r2c . (5.6)

The noises W t(x) are now correlated as

E[ξt(x)ξt′(y)] = G(x− y)δ(t− t′). (5.7)

The importance of this equivalent form of expressing the stochastic differential
equation of the CSL model is that one can provide a physical interpretation to the
noise assumed in the model. Namely, it can be interpreted as a classical random
field filling space, which is Gaussian correlated in space.

To see the connection between the CSL model as described in Eq. (5.1) and Quan-
tum Measurement Theory, let us consider once again the stochastic differential
equation that describes the continuous measurement of a quantum observable,
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namely Eq. (1.29), and set

â(x) = M̂(x), δat(x) =
2ℏ√γ
m0

ξt(x) ⇒ γ(x,y) =
4ℏ2γ
m2

0

δ(x− y). (5.8)

In this way, we arrive at the stochastic differential equation of the CSL model
[cf. Eq. (5.1)]. This shows that formally, the CSL model is indistinguishable from
a Quantum continuous measurement of the smeared mass density operator de-
fined in Eq. (5.3), and therefore, we can use the concepts of Quantum Measure-
ment Theory in order to describe the properties of the CSL model. The relation be-
tween spontaneous collapse models and continuous measurements was already
pointed out in Ref [85]. From Eq. (1.33), we have that the CSL master equation
reads

dρ̂
dt

= − γ

2m2
0

∫︂
dx
[︂
M̂(x),

[︂
M̂(x), ρ̂

]︂]︂
. (5.9)

For completeness, let us notice that the alternative stochastic differential equation
of the CSL model [cf. Eq. (5.4)] can be obtained from Eq. (1.29) by setting

â(x) = M̂(x), δat(x) =
2ℏ√γ
m0

ξt(x) ⇒ γ(x,y) =
4ℏ2γ
m2

0

G(x− y), (5.10)

which makes manifest the fact that in the equivalent form the correlation is rede-
fined as a Gaussian one, and therefore the mass density operator M̂(x) is just the
standard one.

Let us finally notice the following property about the expectation values of oper-
ators. For an arbitrary operator Ô, the expectation value Ō = E

[︂
⟨ψ| Ô |ψ⟩

]︂
can

be calculated in terms of the density operator ρ̂ as Ō = Tr
[︂
Ôρ̂
]︂
. This allows

to use any unravelling that yields the same master equation of the CSL model in
order to calculate the expectation values of the observables. In particular, let us
consider the following unravelling, which is equivalent to that in Eq. (5.4):

d |ψ⟩ =
[︃
− i

ℏ
Ĥdt− i

√
γ

m0

∫︂
dxM̂(x)dW t(x)

− γ

2m2
0

∫︂
dxdyG(y − x)M̂(x)M̂(y)dt

]︃
|ψ⟩ .

(5.11)

Thus far, the stochastic differential equations for the wave function have been ex-
pressed in the Itô formalism. Let us now consider the corresponding Stratonovich
form of the unravelling in Eq. (5.11). We have

d |ψ⟩
dt

= − i

ℏ

[︃
Ĥ +

ℏ√γ
m0

∫︂
dxM̂(x)ξt(x)

]︃
|ψ⟩ . (5.12)

From the above equation we can interpret the CSL model to be a modification
of the standard Schrödinger evolution by the addition of the following stochastic
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Hamiltonian

ĤCSL =
ℏ√γ
m0

∫︂
dxM̂(x)ξt(x). (5.13)

The use of ĤCSL in order to calculate the expectation value of a quantum opera-
tor Ō is known as the noise trick [86], and will prove to be a key element in the
implementation of dynamical collapse models in a Cosmological scenario that is
presented in Chapter 6.

5.2 Dynamical Collapse models and Cosmology

One of the open problems of dynamical collapse models is to derive a consistent
generalization that is valid within a relativistic scenario [87–92]. However, differ-
ent implementations of dynamical collapse models (or of the need of describing
a collapse of the wavefunction), and in particular of the CSL model, have been
proposed within a cosmological context [93–114]. The choice to work with the
CSL model follows from its robustness and the fact that it is regarded as the most
advanced collapse model [76]. We recall that the Cosmological Principle leads
to consider the existence of a privileged frame, namely the frame comoving with
the cosmic fluid, in which the Robertson-Walker metric is defined. This indicates
that, within a cosmological context, there is a natural notion of time [115]. More-
over, let us recall that one of the main motivations which led in the first place
to the construction of dynamical collapse models was to find solutions to the
quantum measurement problem [78]. In this regard, it is argued that, in a cos-
mological context, this issue becomes more manifest and, in addition, concepts
such as “observers" and “detectors" do not have precise definitions within a pri-
mordial Universe [112]. The fact that dynamical collapse models do not depend
on the existence of an observer in order to describe the dynamical evolution of a
system constitutes an appealing feature for considering them within a cosmologi-
cal context, where the origin of the noise which is assumed in the model might be
explained [116]. In addition, collapse models are falsifiable models, and therefore
the theoretical predictions can be verified with observations.

As mentioned before, the CSL model leaves two parameters to be determined,
namely λ and rc. Among the constraints of these parameters, some have consid-
ered Cosmology related phenomena to compare the theoretical predictions due
to the CSL model with observations. These works obtained bounds from a con-
sideration of the heating of the intergalactic medium [94, 95]. In addition, the
importance of the collapse of the state vector has been acknowledged in works
implementing the construction of chronogenesis and cosmogenesis models [102].
Moreover, collapse models have been considered as a candidate to implement
an effective cosmological constant [117]. Here, one exploits the fact that the nar-
rowing of the wavefunction amounts to violations of energy conservation [76].
However, most of the work in this area is related to possible effects of collapse
models during inflation and the emergence of the cosmic structure in the Uni-
verse. Regarding the latter, several works remark the necessity of a collapse
mechanism to provide a satisfactory explanation of the origin of the observed
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structure [93, 98, 99, 103, 104]. As for the former, the work is focused on the study
of the modifications to the spectra of primordial perturbations, either at a scalar
or at a tensorial level [105–107, 109, 111, 112].

Despite the research that has already been developed, several doubts have arisen
about how to implement dynamical collapse models within a cosmological con-
text. The origin of these problems lies, as mentioned before, in the lack of a consis-
tent and universal generalization of dynamical collapse models, and in particular
of the CSL model. Concretely, the choice of what should be the proper collapse
operator that generalizes the non-relativistic collapse models is unclear [113, 114].
We took into account these problems when proposing an implementation of col-
lapse model within an inflationary context, as described in the following chapter.
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Chapter 6

Dynamical Collapse Models effects
on the Evolution of the Comoving
Curvature Perturbation

In this chapter we present a framework to account for the effects of dynamical
collapse models on the power spectrum of the comoving curvature perturbation
R̂. We apply such a framework to the inflationary stage of the evolution of the
Universe, as well as to the radiation-dominated era. The results in this section
follow from Ref. [118].

6.1 An interaction picture approach

Following previous works which discuss the effects of the CSL model on the
power spectrum of the comoving curvature perturbation R̂ during inflation [112–
114], we tackle the same problem. In order to do so, let us consider that the total
Hamiltonian describing the system is given by

Ĥ total = Ĥ + ĤDC, (6.1)

where Ĥ is the Hamiltonian of the scalar perturbations in standard Cosmology,
i.e. in absence of dynamical collapse model effects; while the Hamiltonian ĤDC

encodes the contribution to dynamical collapse models to the evolution of the
perturbations.

Let us denote with Û and ÛDC the evolution operators due to the Hamiltonians
Ĥ and ĤDC, respectively. The evolution operators are explicitly given by

Û = T
{︃
exp

[︃
−i
∫︂ η

η0

dη′Ĥ(η′)

]︃}︃
, (6.2)

ÛDC = T
{︃
exp

[︃
−i
∫︂ η

η0

dη′ĤDC(η
′)

]︃}︃
, (6.3)

where η0 is some initial (conformal) time.
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In general, the interaction picture form of an arbitrary operator Ô
I
(η) and state

|ψI(η)⟩ is respectively given by [119]

Ô
I
(η) = Û

−1
(η, η0)ÔÛ(η, η0), (6.4)

|ψI(η)⟩ = ÛDC(η, η0) |ψ(η0)⟩ . (6.5)

Thus far, we have not specified the form of the Hamiltonian ĤDC. Following the
noise trick, described in the previous chapter, we consider in analogy to Eq. (5.13),
that ĤDC in the Schrödinger picture is defined as

ĤDC =

√
γ

m0

∫︂
dxξη(x)ĤDC(η,x). (6.6)

In the above equation, the Hamiltonian density ĤDC is a non-stochastic operator.
Furthermore, the noise ξη(x) in Eq. (6.6) is characterized through the following
properties

E [ξη(x)] = 0,

E [ξη(x)ξη′(y)] =
δ(η − η′)

a(η)

1

(4πr2c )
3/2
e−a2(η)(x−y)2/(4r2c ).

(6.7)

The correlation in Eq. (6.7) is defined in such a way that when performing the
change of coordinates to cosmic time t and physical coordinates xp, the correla-
tion coincides with that of the standard CSL model. From Eq. (6.6) and Eq. (6.4),
we have that in the interaction picture

Ĥ
I

DC(η) =

√
γ

m0

∫︂
dxξη(x)Ĥ

I

DC(η,x). (6.8)

For an arbitrary operator Ô, let us consider the expansion of the expectation value
⟨ψ| Ô |ψ⟩ = ⟨ψI(η)| Ô

I
(η) |ψI(η)⟩. We have

⟨ψ| Ô |ψ⟩ ≈ ⟨ψ(η0)| Ô
I
(η) |ψ(η0)⟩ − i

∫︂ η

η0

dη′ ⟨ψ(η0)|
[︂
Ô

I
(η), Ĥ

I

DC(η
′)
]︂
|ψ(η0)⟩

−
∫︂ η

η0

∫︂ η′

η0

dη′dη′′ ⟨ψ(η0)|
[︂
Ĥ

I

DC(η
′′),
[︂
Ĥ

I

DC(η
′), Ô

I
(η)
]︂]︂

|ψ(η0)⟩ .
(6.9)
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Taking the stochastic average over all the realizations, and using the expression
for the Hamiltonian in Eq. (6.8), we find that

Ō = E
[︂
⟨ψ| Ô |ψ⟩

]︂
≈ E

[︂
⟨ψ(η0)| Ô

I
|ψ(η0)⟩

]︂
−
i
√
γ

m0

∫︂ η

η0

dη′dx′E[ξη(x′)] ⟨ψ(η0)|
[︂
Ô

I
(η), Ĥ

I

DC(η
′,x′)

]︂
|ψ(η0)⟩

− γ

m2
0

∫︂ η

η0

∫︂ η′

η0

dη′dη′′dx′dx′′E [ξη′′(x
′′)ξη′(x

′)]

× ⟨ψ(η0)|
[︂
ĤDC(η

′′,x′′),
[︂
ĤDC(η

′,x′), Ô
I
(η)
]︂]︂

|ψ(η0)⟩ ,

(6.10)

By applying the expressions in Eq. (6.7) and integrating over one of the conformal
times, we obtain

Ō = ⟨0| Ô
I
(η) |0⟩

− λ

2m2
0

∫︂ η

η0

dη′

a(η′)
dx′dx′′e

−a2(η′)(x′′−x′)2

4r2c ⟨0|
[︂
Ĥ

I

DC(η
′,x′′),

[︂
Ĥ

I

DC(η
′,x′), Ô

I
(η)
]︂]︂

|0⟩ ,

(6.11)

where the collapse rate λ is defined as λ ≡ γ/(4πr2c )
3/2, and we considered that

the initial state of the system is the vacuum state |0⟩.

In what follows, we are interested in calculating the expectation of the operator

Ô
I
(η) = R̂

2
=
v̂2(η,x)

z2
=

c2sv̂
2(η,x)

2ϵM2
Pla

2(η)
, (6.12)

where we recall that R̂ is the comoving curvature perturbation, described in
terms of the Mukhanov-Sasaki variable v̂(η,x) [cf. Eq. (4.46)]. We are thus consid-
ering the same problem as previous works in the literature [105–107, 109, 111, 112,
115], namely, to calculate the corrections to the power spectrum of the comoving
curvature perturbation due to the incorporation of collapse models.

6.2 The choice of collapse operator

As seen in Chapter 4, in linear perturbation theory, the dynamical evolution of
R̂ is usually computed within a Fourier space description. Indeed, linear per-
turbation theory allows a description in which the Fourier modes evolve inde-
pendently. This particular feature of the evolution of the comoving curvature
perturbation has been kept in previous works which incorporate dynamical col-
lapse models within a cosmological scenario. These works consider a system of
independent stochastic differential equations, one for each Fourier mode. This
is possible under appropriate choices of the collapse operator. For example, in
Ref. [111], the collapse operator is chosen to be the Mukhanov-Sasaki variable
itself. From Eq. (4.38), we see that this operator does not mix different Fourier
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modes because it is linear in the creation and annihilation operators. Similarly, in
Ref. [112], the collapse operator is chosen to be a smeared density contrast µ̂(x),
which is subsequently linearized with respect to v̂ and its conjugate momentum
p̂. In cosmic time t, µ̂(x) is given by

µ̂(x) = 3MPlH
2

(︃
a

rc

)︃3 ∫︂
dy

δρ̂

ρ̄
(x+ y)e

− |y|2a2

2r2c , (6.13)

where δρ̂ is the density fluctuation and ρ̄ is the homogeneous component of the
energy density. Both this choice, as well as the one in Ref. [111], are such that, in
Fourier space, the collapse operator Ĉ(k) is of the form

Ĉ(k) = αkv̂(η,k)(η) + βkp̂(η,k), (6.14)

where αk and βk are suitable functions of k. Therefore, these choices of col-
lapse operator are linear with respect to the Mukhanov-Sasaki variable v̂(η,k)
and its conjugate momentum p̂(η,k) in Fourier space. This allows to write down
a stochastic evolution for the wave function that is independent for each Fourier
mode.

In order to motivate our choice of collapse operator, let us consider once again the
standard CSL model. In this case, the collapse operator [cf. Eq. (5.5)] is quadratic
in the creation and annihilation operators. Therefore, when working in Fourier
space, this operator couples different Fourier modes, as shown in Ref. [120]. Thus,
if already at a standard level the collapse operator mixes different Fourier modes,
one expects that this property also holds when considering its extension within
a cosmological setting. We notice that the collapse operator choices of previous
works do not mix different Fourier modes comes only as a consequence of choos-
ing a linearized version of the operators.

These considerations lead us to choose the collapse operator ĤDC(η,x) in Eq. (6.6)
to the Hamiltonian density of the rescaled variable v̂(η,x) of the standard infla-
tionary cosmological scenario. This operator encodes the energy of the system,
which is a suitable generalization within a cosmological context of the mass den-
sity in the standard CSL model, which is non-relativistic. Moreover, as we will
see below, this operator is quadratic in the creation and annihilation operators,
in analogy to the mass density in the standard CSL model. As we will see, this
particular choice does not allow an independent Fourier-mode description of the
dynamical evolution of the comoving curvature perturbation R̂. We also notice
that, from the definition of the unitary operator Û in Eq. (6.2), we have that the
interaction picture operators Ô

I
in our framework, coincide with the Heisenberg

picture operators Ô
H

in the standard cosmological scenario. This will allow a
straightforward identification of the explicit form of the collapse operator.
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6.3 Dynamical collapse effects during inflation

From the expression for the Hamiltonian density in Eq. (4.35), the collapse oper-
ator during the inflationary stage of the Universe evolution reads

Ĥ
I

DC(η,x) =
1

2

(︄(︃
∂v̂(η,x)

∂η

)︃2

+ (∇v̂(η,x))2 − 2

η2
v̂2(η,x)

)︄
. (6.15)

We notice that in the above equation, we are approximating the metric to cor-
respond to that of a de Sitter universe [69]. From the definition of the rescaled
variable v̂(η,x) in Eq. (4.38), we have that

Ĥ
I

DC(η,x) =
1

2

1

(2π)3

∫︂
dqdpei(p+q)·x

(︂
f2(η,p, q)âpâq + g2(η,p, q)âpâ

†
−q

+ g∗2(η,p, q)â
†
−pâq + f ∗

2 (η,p, q)â
†
−p̂a

†
−q

)︂
.

(6.16)

In the above equations, the functions f2(η,p, q) and g2(η,p, q) are defined

f2(η,p, q) = j(η,p, q)−
[︃
(p · q) + 2

η2

]︃
f(η,p, q),

g2(η,p, q) = l(η,p, q)−
[︃
(p · q) + 2

η2

]︃
g(η,p, q).

(6.17)

Here, we set the functions f(η,p, q) and g(η,p, q) to be

f(η,p, q) = vp(η)vq(η),

g(η,p, q) = vp(η)v
∗
q(η),

(6.18)

and, in terms of v′p(η), we define the functions j(η,p, q) and l(η,p, q) as

j(η,p, q) = v′p(η)v
′
q(η),

l(η,p, q) = v′p(η)v
′∗
q (η).

(6.19)

By substituting the collapse operator defined in Eq. (6.15) in the expression for the
expectation value of an arbitrary operator Ô in Eq. (6.11), we have that in general,

Ō = ⟨0| Ô
I
(η) |0⟩

− λ

2m2
0

∫︂ η

η0

dη′

a(η′)
dx′dx′′e

−a2(η′)(x′′−x′)2

4r2c ⟨0|
[︂
Ĥ

I

DC(η
′,x′′),

[︂
Ĥ

I

DC(η
′,x′), Ô

I
(η)
]︂]︂

|0⟩

=
⟨︂
Ô

I
⟩︂
+∆

⟨︂
Ô

I
⟩︂
,

(6.20)
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where
⟨︂
Ô

I
⟩︂
= ⟨0| Ô

I
(η) |0⟩ . From Eq. (6.20), and in the case of Ô

I
(η) = R̂

2
, the

first term in Eq. (6.20) yields the standard power spectrum of the comoving curva-
ture perturbation, and the second term yields the correction due to the dynamical
collapse model. Therefore, we have

∆
⟨︂
R̂

2
⟩︂
=− λ

2m2
0

∫︂ η

η0

dη′

a(η′)
dx′dx′′e

−a2(η′)(x′′−x′)2

4r2c ⟨0|
[︂
Ĥ

I

DC(η
′,x′′),

[︂
Ĥ

I

DC(η
′,x′), R̂

2
]︂]︂
|0⟩ .

(6.21)
By taking into consideration the explicit form of Ĥ

I

DC(η,x) in Eq. (6.16), we can
simply compute the commutators. Thus, we obtain

∆
⟨︂
R̂

2
⟩︂
= − λr3c

8ϵinfM2
Plm

2
0a

2(η)π9/2

∫︂ η

η0

dη′

a4(η′)

∫︂
dqdpe−

r2c
a2(η′)

(q+p)2

×Re [f2(η
′, q,p) (g2(η

′,−q,−p)f ∗(η, q,−q)− f ∗
2 (η

′,−q,−p)g(η, q,−q))] .

(6.22)

In order to simplify the above result, we can make use of the properties of the
functions defined in Eq. (6.17) and Eq. (6.18). The exponential term in the above
integrand, coming from the Gaussian correlation of the noise, is invariant under
the interchange of integration variables p and q. Thus, we can rewrite the above
equation in the following form

∆
⟨︂
R̂

2
⟩︂
= − λr3c

8ϵinfM2
Plm

2
0a

2(η)π9/2

∫︂ η

η0

dη′

a4(η′)
dqdpe−

r2c
a2(η′)

(q+p)2F(η′,p, q), (6.23)

where

F(η′,p, q) = Re (f2(η
′,p, q)g2(η

′, q,p)f ∗(η, q, q)− f2(η
′,p, q)f ∗

2 (η
′, q,p)g(η,p,p)) .

(6.24)
During the inflationary stage, and in the perfect de Sitter limit [69], the mode vk(η)
is given by Eq. (4.45). Therefore, the substitution of the corresponding expression
in Eq. (6.24) yields

F(η′,p, q) =

Re

[︄
1

8η′8p3q4

(︃
1 +

i

ηeq

)︃2

e−2iq(η′−ηe)
[︂(︂(︂

−η′2p2 + iη′p+ 1
)︂

×
(︂
η′

2
q2 − iη′q − 1

)︂
− (η′p− i)(η′q − i)

(︂
η′

2
(p · q) + 2

)︂)︂
(︂(︂
η′

2
p2 + iη′p− 1

)︂(︂
η′

2
q2 − iη′q − 1

)︂
− (η′p+ i)(η′q − i)

(︂
η′

2
(p · q) + 2

)︂)︂]︂
− 1

η′8p4q3

(︃
1− i

ηep

)︃(︃
1 +

i

ηep

)︃[︂(︂(︂
−η′2p2 + iη′p+ 1

)︂
×
(︂
η′

2
q2 − iη′q − 1

)︂
− (η′p− i)(η′q − i)

(︂
η′

2
(p · q) + 2

)︂)︂
(︂
−
(︂
η′

2
p2 + iη′p− 1

)︂(︂
η′

2
q2 + iη′q − 1

)︂
− (η′p+ i)(η′q + i)

(︂
η′

2
(p · q) + 2

)︂)︂]︂]︂
.
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During the inflationary stage, the scale factor a is inversely proportional to the
conformal time. Namely, we have that a(η) ≈ − 1

Hinfη
. Therefore, the exponen-

tial appearing in Eq. (6.23) becomes exp (−r2cH2
infη

′2(p+ q)2). We assume that
the parameter rc of the model is such that it is safe to assume that the con-
dition rcHinf ≫ 1 holds. For illustrative purposes, if we take the GRW value
of rc ∼ 1027M−1

Pl , and one has Hinf ∼ 10−5MPl, then the condition rcH ≫ 1
holds. This condition allows to suppress all the contributions in the integrand
of Eq. (6.23) for which the condition qη′ ≪ 1 is violated. Notice that the latter
condition is satisfied for the modes of cosmological interest at the end of infla-
tion. Therefore, we can, in a first approximation, expand F(η′,p, q) in powers of
qη′. To leading order, we obtain

F(η′,p, q) =
1

8p3q4η′8

(︃
−2q4η4e

9
+

16q4ηeη
′3

9
− 4p3qη′6

η2e
− 32q4η′6

9η2e

)︃
. (6.25)

From this result, and by taking into account the condition ηe < η′, we retain only
the last two terms in the right-hand side of the above equation. From this, we
obtain the leading-order contribution

∆
⟨︂
R̂

2
⟩︂
≈ 17

36

λH3
inf

π2ϵinfM2
Plm

2
0

∫︂ ηe

η0

d ln η d ln k. (6.26)

Therefore, comparing this result with the expression in Eq. (4.47), we find that the
leading order correction to the power spectrum PR̂ of the curvature perturbation
reads

∆PR̂ ≈ 17

36

λH3
inf

π2ϵinfM2
Plm

2
0

ln

(︃
ηe
η0

)︃
. (6.27)

The above results depend only on the collapse rate λ and not on rc. However, in
general, we expect the correction to depend on both of the phenomenological pa-
rameters of the model, λ and rc. The above expression can be used to set bounds
on these parameters. Once again, let us consider the typical value of λ in the
GRW model, λ = 10−16 s−1 [76, 82]. In this case, we find that the correction ∆PR̂
to the power spectrum of R̂ is of order O[10−34]. This is 24 orders of magnitude
lower than the power spectrum, which is of order O[10−10]. This result indicates
that, for proper choices of the phenomenological parameter of the dynamical col-
lapse model defined through Eq. (6.6), the corrections to the power spectrum of
R̂ predicted by incorporating the dynamical collapse model are negligible with
respect to the standard cosmological scenario.

6.4 Dynamical collapse effects during the radiation
dominated era

In standard Cosmology, the power spectrum of the comoving curvature pertur-
bation is frozen after the inflationary stage for the modes of cosmological interest
[68, 69]. There is no need to study the evolution of the modes during the radiation
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dominated era that follows inflation. However, if we now incorporate the action
of dynamical collapse models into the description of the evolution of the modes,
this may no longer hold [112]. As a first approximation, we do not consider the
reheating period after inflation and study the effects of dynamical collapse mod-
els during the radiation dominated era.

From Eq. (4.40), during the radiation dominated era, the modes vk(η) satisfy

v′′k(η) +
1

3
k2vk(η) = 0. (6.28)

In order to determine the general solution of the above equation, one matches the
curvature perturbation and its derivative at η = ηe, i.e. at the end of inflation, with
those corresponding to the inflationary stage [112]. A straightforward calculation
yields

vk(η) =

√
3

2η2e
√
ϵinfk5/2

e−ikηe
{︂[︂

(1 +
√
3)(kηe)

2 −
√
3− i(1 +

√
3)kηe

]︂
e
−ik η−ηe√

3

+
[︂
(1−

√
3)(kηe)

2 +
√
3− i(1−

√
3)kηe

]︂
e
ik η−ηe√

3

}︂
.

(6.29)

From the expression for the Hamiltonian density in Eq. (4.35), and taking into
consideration that, during the radiation dominated era, the scale factor a reads

a(η) =
1

Hinfη2e
(η − 2ηe), (6.30)

we find that at this stage of the evolution of the Universe, the Hamiltonian density
is given by

Ĥ
I

DC(η,x) =
1

2

(︃
∂2v̂(η,x)

∂η2
+

1

3
(∇v̂(η,x))2

)︃
. (6.31)

Now, if we substitute the Fourier decomposition of the rescaled variable v̂(η,x) of
Eq. (4.38) in the above equation, we obtain that the Hamiltonian density Ĥ

I

DC(η,x)
has the same structure as in Eq. (6.16), where now the functions f2(η, q,p) and
g2(η, q,p) read

f2(η, q,p) = j(η, q,p)− 1

3
(q · p)f(η, q,p),

g2(η, q,p) = l(η, q,p)− 1

3
(q · p)g(η, q,p),

(6.32)

and all the functions in the above equations are given as in Eq. (6.18) and Eq. (6.19),
where vk(η) is that in Eq. (6.29). During the radiation dominated era, the (squared)
comoving curvature perturbation operator reads

R̂
2
(η,x) =

v̂2(η,x)

12M2
Pla

2(η)
, (6.33)
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where the scale factor a(η) is given in Eq. (6.30).

Let us denote the conformal time at the end of the radiation dominated era by
ηr. Then, we have that the correction to the power spectrum of the comoving
curvature perturbation R̂ during the radiation dominated era reads

∆
⟨︂
R̂

2
⟩︂
=− λ

2m2
0

∫︂ ηr

ηe

dη′

a(η′)

∫︂
dx′dx′′e

−a2(η′)(x′′−x′)2

4r2c

⟨0|
[︂
Ĥ

I

DC(η
′,x′′),

[︂
Ĥ

I

DC(η
′,x′), R̂

2
(η)
]︂]︂

|0⟩ .
(6.34)

By merging the latter with Eq. (6.31) and Eq. (6.33), we we obtain

∆
⟨︂
R̂

2
⟩︂
= − λr3c

48M2
Plm

2
0a

2(ηr)π9/2

∫︂ ηr

ηe

dη′

a4(η′)
dqdpe−

r2c
a2(η′)

(q+p)2F(η′,p, q). (6.35)

Here, the function F(η′,p, q) has the same structure as in Eq. (6.24). By imposing
the forms of Eq. (6.32) and Eq. (6.18), we obtain the following expression

F(η′,p, q) = − 1

8p5q5ϵ3η4e
9e

− 2i(p(η′−ηe)+q(η′+ηr−2ηe))√
3

×
(︃
4e

2i(p+q)(η′−ηe)√
3 (p · q)

(︂
−2qηe

(︂
q3η3e − 2qηe +

√
3i
)︂
− 3
)︂
p5

+4e
2i(p(η′−ηe)+q(η′+2ηr−3ηe))√

3 (p · q)
(︂
2qηe

(︂
−q3η3e + 2qηe +

√
3i
)︂
− 3
)︂
p5

+2e
2i(p+2q)(η′−ηe)√

3 q3
(︁
p2q2 − (p · q)2

)︁ (︁
4p4η4e − 2p2η2e + 3

)︁
+2e

2i(pη′+2qηr−(p+2q)ηe)√
3 q3

(︁
p2q2 − (p · q)2

)︁ (︁
4p4η4e − 2p2η2e + 3

)︁
+4e

2i(p(η′−ηe)+q(η′+ηr−2ηe))√
3

(︁
4p4q3(pq + p · q)2η4e − 2p2q2

(︁
2(p · q)p3 + q3p2 + q(p · q)2

)︁
η2e

+3
(︁
2(p · q)p5 + q5p2 + q3(p · q)2

)︁)︁
+e

4i(pη′+qηr−(p+q)ηe)√
3 q3(−pq + p · q)2

(︂
2pηe

(︂
p3η3e − 2pηe −

√
3i
)︂
+ 3
)︂

+e
4i(p+q)(η′−ηe)√

3 q3(pq + p · q)2
(︂
2pηe

(︂
p3η3e − 2pηe −

√
3i
)︂
+ 3
)︂

+2e
2i(2pη′+qη′+qηr−2(p+q)ηe)√

3 q3
(︁
p2q2 − (p · q)2

)︁ (︂
2pηe

(︂
p3η3e − 2pηe −

√
3i
)︂
+ 3
)︂

+e
4iq(η′−ηe)√

3 q3(−pq + p · q)2
(︂
2pηe

(︂
p3η3e − 2pηe +

√
3i
)︂
+ 3
)︂

+e
4iq(ηr−ηe)√

3 q3(pq + p · q)2
(︂
2pηe

(︂
p3η3e − 2pηe +

√
3i
)︂
+ 3
)︂

+2e
2iq(η′+ηr−2ηe)√

3 q3
(︁
p2q2 − (p · q)2

)︁ (︂
2pηe

(︂
p3η3e − 2pηe +

√
3i
)︂
+ 3
)︂)︃

.

(6.36)

Now, the scales of cosmological interest, which satisfy the condition qη′ ≪ 1 dur-
ing inflation, already crossed the horizon by the end of that stage, and remain
outside the horizon until they re-enter. This may happen during the radiation
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dominated era or at a later time. Moreover, from Eq. (6.30), we have that the ra-
tio between the scale factor at the end of the radiation dominated era and that
at the end of inflation is given by a(ηr)/a(ηe) = 3 × 1026 [121]. Thus, the scale
factor is an increasing function of time, and the contributions to the integrand be-
come suppressed as the time increases in magnitude. Therefore, the leading order
contributions will come from times close to the end of inflation, as the condition
|ηe| ≪ |ηr| is satisfied. Thus, as a first approximation, we proceed F(η′,p, q) in
powers of qη′, similarly as done for the inflationary stage. In this case, the leading
order contribution reads

F(η′,p, q) ≈ − 54

p3ϵ3infη
4
e

. (6.37)

Substituting this result in Eq. (6.35), we have that the leading order term in the
correction to the expectation value of the operator R̂

2
reads

∆⟨R̂
2
⟩ ≈ 9λH3

infη
2
e

2M2
Plϵ

3
inf(ηr − 2ηe)2π2m2

0

∫︂ ηr

ηe

d ln(η′ − 2ηe)

∫︂
d ln q. (6.38)

Thus, the leading order term in the correction to the power spectrum PR̂ of the
comoving curvature perturbation is given by

∆PR̂ ≈ 9λH3
infη

2
e

2M2
Plϵ

3
inf(ηr − 2ηe)2π2m2

0

ln

(︃
2ηe − 2ηr

ηe

)︃
. (6.39)

As in the case of the leading order correction during the inflationary stage [cf.
Eq. (6.27)], we see that the expression for the correction ∆PR̂ during the radiation
dominated era depends only on the collapse rate parameter λ and not on rc. Nev-
ertheless, taking into consideration the full expression for F(η′,p, q) in Eq. (6.36),
one expects that the correction will depend on both phenomenological parame-
ters of the model. Let us take once again the value for λ of the GRW model. For
this case, the correction ∆PR̂ is of order O[10−81]. From this result, we see that the
correction to the power spectrum of the comoving curvature perturbation R̂ is
negligible with respect to the predicted spectrum in the standard scenario. They
differ by 71 orders of magnitude. Moreover, when we compare the corrections
at each stage of the evolution of the Universe, we see that the correction during
the radiation dominated era [cf. Eq. (6.39)] is negligible with respect to that due
to inflation [cf. Eq. (6.27)], as it is 47 orders of magnitude lower. This indicates
that in a first approximation, one can restrict the study of the effects of dynamical
collapse models to the inflationary stage only. Moreover, both results validate the
expansion of the operator ÛDC when evaluating the expectation value of R̂

2
.
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Chapter 7

Conclusions

In this thesis, we saw how Quantum continuous measurements can be success-
fully implemented within Gravity and Cosmology in a wide variety of contexts.
As a first step, we reviewed the basic formalism necessary to describe the stochas-
tic differential equation resulting from the Quantum continuous measurement of
a given observable, as well as the corresponding master equation for the den-
sity operator. We also described the assumptions made in the Wiseman-Milburn
feedback protocol, which leads to a Markovian evolution of the system under
study.

In the first part of the thesis, we discussed about the problems which arise when
trying to merge Quantum Mechanics and General Relativity. Although it is gen-
erally expected that a final theory of quantum gravity will involve a quantization
of gravity through an appropriate procedure, in this work we devoted particular
attention to explore the possibility of alternative scenarios to the quantization of
gravity.

In this line of thought, we described in detail how Quantum continuous mea-
surements have been used to implement the Newtonian gravitational interaction
through a Markovian feedback mechanism, by analysing the properties of the
Kafri-Taylor-Milburn (KTM) and the Tilloy-Diósi (TD) models. Regarding the
KTM model, we explored the viability of a pair of generalizations of the model,
and showed that one of them is theoretically discarded as it yields inconsistent
results when considering composite systems as effective single particles. As for
the TD formalism, we reviewed in detail the reasons which motivated the in-
troduction of an appropriate regularization mechanism of the master equation.
Moreover, we provided a concrete example of the robustness of the TD formal-
ism, by studying the KTM2 model and showing that a map can be established
between the two models.

We compared the KTM and the TD models in the appropriate limit and showed
that they are fundamentally different models, although both of them implement
Newtonian gravity. Moreover, by considering the main characteristics that define
each of the two models, we explored if, in addition to the TD model, there are
other possibilities of implementing a full Newtonian interaction within a Marko-
vian feedback context. We argued that the measurement of the positions of the
particles is not viable, and showed that a pairwise measurement of the mass den-
sities yields unphysical coherence rates when considering the interaction between
composite systems. Other possible implementations of Newtonian gravity would
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seem to require more complicated feedback mechanisms than the prescription of
Wiseman and Milburn.

In the second part of this thesis, we reviewed the basic notions of inflation, start-
ing with the historical motivations that led to the construction of this theory,
namely, some problems in standard FLRW cosmology. We also described the
basic aspects of the theory of scalar cosmological perturbations, devoting partic-
ular attention to the definition of the comoving curvature perturbation, and the
corresponding power spectrum.

In addition, we briefly described the fundamental aspects of dynamical collapse
models, which were introduced as an alternative theory to Quantum mechanics
which explains the collapse of the wave function without the need of introducing
a postulate. We described how one of the most robust dynamical collapse modes,
the Continuous Spontaneous Localization (CSL) model, yields the same master
equation as the one resulting from the Quantum continuous measurement of a
Gaussian-smeared mass density.

In this work, we determined possible corrections due to dynamical collapse mod-
els to the power spectrum of the comoving curvature perturbation. Although
there is not a fully consistent generalization of the CSL model within a relativistic
context, we chose a well-motivated form of the collapse operator that could lead
to a CSL generalization to the relativistic regime. We proposed an interaction pic-
ture framework in order to account for the effects of dynamical collapse models
on the comoving curvature perturbation and we determined the leading order
corrections to the associated power spectrum. For standard values of the collapse
model parameters, we found out that the corrections are negligible with respect
to the magnitude of the standard Cosmology values. Our results represent a step
forward in the incorporation of dynamical collapse models within a cosmological
context.
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[78] Časlav Brukner, Quantum [Un]Speakables II. Half a Century of Bell’s Theo-
rem (Springer International Publishing, 2017) Chap. On the Quantum Mea-
surement Problem, pp. 95–117.

[79] D. Bohm, Phys. Rev. 85, 166 (1952).

[80] D. Bohm, Phys. Rev. 85, 180 (1952).

[81] H. E. III, Rev. Mod. Phys. 29, 454 (1957).

[82] G. C. Ghirardi, A. Rimini, and T. Weber, Phys. Rev. D 34, 470 (1986).

[83] P. Pearle, Phys. Rev. A 39, 2277 (1989).

[84] P. Pearle, Phys. Rev. D 13, 857 (1976).

[85] L. Diósi, Collapse of the Wave Function. Models, Ontology, Origin, and
Implications (Cambridge University Press, 2018) Chap. How to teach and
think about spontaneous wave function collapse theories: not like before,
pp. 3–11.

[86] S. L. Adler and A. Bassi, J. Phys. A 40, 15083 (2007).

[87] A. Bassi and G. Ghirardi, Phys. Rep. 379, 257 (2003).

[88] R. Tumulka, J. Stat. Phys. 125, 821 (2006).

[89] P. Pearle, Phys. Rev. D 91, 105012 (2015).

[90] D. Bedingham and P. Pearle, arXiv 1906.11510 (2019).

[91] C. Jones, T. Guaita, and A. Bassi, arXiv 1907.02370 (2020).

[92] R. Tumulka, arXiv 2002.00482 (2020).

[93] A. Perez, H. Sahlmann, and D. Sudarsky, Class. Quantum Grav. 23, 2317
(2006).

[94] S. L. Adler, J. Phys. A: Math. Theor. 40, 2935 (2007).

[95] S. L. Adler, J. Phys. A: Math. Theor. 40, 13501 (2007).

https://doi.org/https://doi.org/10.1017/CBO9781139175180
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1103/RevModPhys.85.471
https://doi.org/10.1103/PhysRev.85.166
https://doi.org/10.1103/PhysRev.85.180
https://doi.org/10.1103/RevModPhys.29.454
https://doi.org/10.1103/PhysRevD.34.470
https://doi.org/10.1103/PhysRevA.39.2277
https://doi.org/10.1103/PhysRevD.13.857
https://doi.org/10.1088/1751-8113/40/50/012
https://doi.org/https://doi.org/10.1016/S0370-1573(03)00103-0
https://doi.org/https://doi.org/10.1007/s10955-006-9227-3
https://doi.org/10.1103/PhysRevD.91.105012
https://doi.org/https://doi.org/10.1088/0264-9381/23/7/008
https://doi.org/https://doi.org/10.1088/0264-9381/23/7/008
https://doi.org/https://doi.org/10.1088/1751-8113/40/12/S03
https://doi.org/https://doi.org/10.1088/1751-8121/40/44/C01


BIBLIOGRAPHY 67

[96] S. L. Adler and A. Bassi, Science 325, 275 (2009).

[97] K. Lochan, S. Das, and A. Bassi, Phys. Rev. D 86, 065016 (2012).

[98] S. J. Landau, C. G. Scóccola, and D. Sudarsky, Phys. Rev. D 85, 123001 (2012).

[99] A. Diez-Tejedor and D. Sudarsky, J. Cosmol. Astropart. Phys. 2012, 045
(2012).

[100] P. Cañate, P. Pearle, and D. Sudarsky, Phys. Rev. D 87, 104024 (2013).

[101] S. Landau, G. León, and D. Sudarsky, Phys. Rev. D 88, 023526 (2013).

[102] P. Pearle, Found. Phys. 43, 747 (2013).

[103] S. Das, K. Lochan, S. Sahu, and T. P. Singh, Phys. Rev. D 88, 085020 (2013).

[104] S. Das, K. Lochan, S. Sahu, and T. P. Singh, Phys. Rev. D 89, 109902 (2014).

[105] S. Das, S. Sahu, S. Banerjee, and T. P. Singh, Phys. Rev. D 90, 043503 (2014).

[106] G. León, S. J. Landau, and M. P. Piccirilli, Eur. Phys. J. C 75, 393 (2015).

[107] M. Mariani, G. R. Bengochea, and G. León, Phys. Lett. B 752, 344 (2016).

[108] G. León and G. R. Bengochea, Eur. Phys. J. C 76, 29 (2016).

[109] S. Banerjee, S. Das, K. S. Kumar, and T. P. Singh, Phys. Rev. D 95, 103518
(2017).

[110] M. P. Piccirilli, G. León, S. J. Landau, M. Benetti, and D. Sudarsky, Int. J.
Mod. Phys. D 28, 1950041 (2019).

[111] G. León and M. P. Piccirilli, Phys. Rev. D 102, 043515 (2020).

[112] J. Martin and V. Vennin, Phys. Rev. Lett. 124, 080402 (2020).

[113] G. R. Bengochea, G. León, P. Pearle, and D. Sudarsky, arXiv 2006.05313
(2020).

[114] G. R. Bengochea, G. León, P. Pearle, and D. Sudarsky, Eur. Phys. J. C 80,
1021 (2020).

[115] J. Martin and V. Vennin, Do Wave Functions Jump? Perspectives of
the Work of GianCarlo Ghirardi (Springer International Publishing, 2021)
Chap. Collapse Models and Cosmology, pp. 269–290.

[116] A. Bassi, D.-A. Decker, and L. Ferialdi, EPL 92, 50006 (2010).

[117] T. Josset, A. Perez, and D. Sudarsky, Phys. Rev. Lett. 118, 021102 (2017).

[118] A. Gundhi, J. L. Gaona-Reyes, M. Carlesso, and A. Bassi, (In preparation).

[119] M. A. Schlosshauer, Decoherence and the Quantum-To-Classical Transition
(Springer-Verlag Berlin Heidelberg, 2007).

[120] S. L. Adler, A. Bassi, M. Carlesso, and A. Vinante, Phys. Rev. D 99, 103001
(2019).

https://doi.org/https://doi.org/10.1126/science.1176858
https://doi.org/10.1103/PhysRevD.86.065016
https://doi.org/10.1103/PhysRevD.85.123001
https://doi.org/https://doi.org/10.1088/1475-7516/2012/07/045
https://doi.org/https://doi.org/10.1088/1475-7516/2012/07/045
https://doi.org/10.1103/PhysRevD.87.104024
https://doi.org/10.1103/PhysRevD.88.023526
https://doi.org/https://doi.org/10.1007/s10701-013-9714-8
https://doi.org/10.1103/PhysRevD.88.085020
https://doi.org/10.1103/PhysRevD.89.109902
https://doi.org/10.1103/PhysRevD.90.043503
https://doi.org/https://doi.org/10.1140/epjc/s10052-015-3571-x
https://doi.org/https://doi.org/10.1016/j.physletb.2015.11.069
https://doi.org/https://doi.org/10.1140/epjc/s10052-015-3860-4
https://doi.org/10.1103/PhysRevD.95.103518
https://doi.org/10.1103/PhysRevD.95.103518
https://doi.org/https://doi.org/10.1142/S021827181950041X
https://doi.org/https://doi.org/10.1142/S021827181950041X
https://doi.org/10.1103/PhysRevD.102.043515
https://doi.org/10.1103/PhysRevLett.124.080402
https://doi.org/https://doi.org/10.1140/epjc/s10052-020-08599-z
https://doi.org/https://doi.org/10.1140/epjc/s10052-020-08599-z
https://doi.org/https://doi.org/10.1209/0295-5075/92/50006
https://doi.org/10.1103/PhysRevLett.118.021102
https://doi.org/10.1007/978-3-540-35775-9
https://doi.org/10.1103/PhysRevD.99.103001
https://doi.org/10.1103/PhysRevD.99.103001


BIBLIOGRAPHY 68

[121] Y. Zhang, W. Zhao, T. Y. Xia, X. Z. Er, and H. X. Miao, Int. J. Mod. Phys. D
17, 1105 (2008).

https://doi.org/https://doi.org/10.1142/S0218271808012735
https://doi.org/https://doi.org/10.1142/S0218271808012735

	Introduction
	Quantum continuous measurements and feedback
	Gaussian quantum continuous measurements
	Quantum feedback

	Is Gravity necessarily Quantum?
	The efforts to merge Quantum Mechanics and Gravity
	A semiclassical approach
	Hybrid classical and quantum dynamics
	Diósi-Penrose model


	Gravity through a continuous measurement and feedback mechanism
	The Kafri-Taylor-Milburn Model
	Generalizations of the KTM model
	Pairwise KTM model
	Universal KTM model

	TD model
	The divergences in the decoherence term
	Regularization in the TD formalism
	A model within the TD formalism

	Comparison between the KTM and TD models
	Full Newtonian gravity through a feedback mechanism

	Inflation and Cosmological Perturbations Theory
	Inflation: Basic Concepts
	Cosmological perturbations

	Dynamical Collapse Models
	An alternative to Quantum Mechanics
	Dynamical Collapse models and Cosmology

	Dynamical Collapse Models effects on the Evolution of the Comoving Curvature Perturbation
	An interaction picture approach
	The choice of collapse operator
	Dynamical collapse effects during inflation
	Dynamical collapse effects during the radiation dominated era

	Conclusions
	Bibliography

