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ABSTRACT. We extend to a specific class of systems of nonlinear Schréodinger
equations (NLS) the theory of asymptotic stability of ground states already
proved for the scalar NLS. Here the key point is the choice of an adequate
system of modulation coordinates and the novelty, compared to the scalar NLS,
is the fact that the group of symmetries of the system is non-commutative.

1. Introduction. In this article we will consider the system of coupled nonlinear
Schrodinger equations,
i3t + Au — B(|ul?)u = 0,
u(0,7) = ug(z) € C?, reR3,

(1.1)

where 1 is the imaginary unit and the Pauli matrices are given by

N O P () D e A

We assume that the function f satisfies the following two hypotheses, which guar-
antee the local well-posedness of (1.1) in H'(R?, C?):

(H1) 8(0) =0, B C*(R,R);
(H2) there exists a € (1,5) such that for every k € Ny there is a fixed C, with

dF
’dvkﬂ(vz) < Cilo|*F1 for veR, || >1.

We recall that under further hypotheses, there exist ground state solutions of the
scalar NLS
it + Au — B(|ul*)u =0, w(t, x)|t=0 = uo(x) € C, reR3 (1.3)

in HY(R3,C) which are of the form e!“!¢(z) with w > 0 and ¢(x) > 0. Here we
assume:
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(H3) there is an open interval O < (0, 00) and a C*-family
Osw— ¢, n T,(R3C),
neN

with ¥, (R3, C) defined in (2.1), such that ¢, is a positive radial solution of
— Au+wu + B(Ju*)u =0 for z € R?; (1.4)
(H4) we have L |¢,[2, > 0 for w e O;
(H5) for Ly := —A 4w+ B(¢2) + 28 (¢2)p? with the domain H?(R3,C), Ly has
one negative eigenvalue and ker L = Span{d,;¢. : j = 1,2,3}.
The above hypotheses guarantee that the ground states are orbitally stable solutions
of the scalar NLS (1.3); see [25, 37]. In [16, 18] it has been proved that, under some
additional hypotheses, the solitary waves are also asymptotically stable, in a sense
that will be clarified later. This paper shows that some solitary waves of (1.1) are
asymptotically stable. To state the result, we denote by K : C™ — C" the operator
of complex conjugation in C™ and by SU(2) the group

—-Kb Ka
We consider the group

SU(2) = {[ a b ] : (a,b) € C% such that |a|? + [b[* = 1}. (1.5)

G =R’ x T x SU(2). (1.6)
There is a natural representation of G on H'(R? C?), with ¥ € T acting on ug like
ePug, zo € R® acting like a translation operator, and with an element of SU(2)
acting on wg by transforming it into (@ + boa K )ug. System (1.1) admits solitary
waves of the form
R R et (17)
w,v w 1 1- ol .
We will show later that, along with mass, which we will denote by Il4, linear mo-
menta, which we will denote by II; |§’:1, and energy, system (1.1) admits three further
invariants related to SU(2) which we will denote by Hi|z:5. By II we will denote
the vector Hi|i7:1. We will see later that acting with G on v, we can generalize
the solitary waves. We will have solitary waves ®,, characterized by II(®,) = p. We
will prove the following theorem.

Theorem 1.1. Assume (H1)-(H5) stated above, (H6)-(H8) stated in Section 7,
and (HY) stated in Sect. 11. Pick w' € O. Then there exist ¢g = eo(w!) > 0 and
C = C(w') > 0 such that if u solves (1.3) with u|i—o = up and if

€= ;élcf; ”’LLO — T(g)’l/)w170(0) HHl(]R3,(C2) < €9, (18)

then there exist a solitary wave Y+ ,+, a function g € CY(Ry,G) and an element
hy € HY(R?,C?) with |hy| g re c2y + |ws —w!| + [vT] < Ce such that

dim () = TG (1) — e ¥ o ey = 0. (19)

Remark 1.2. Noncommutative symmetry groups which involve the complex con-
jugation, of the type considered in this article, are interesting in particular in view
of the SU(1,1) symmetry group which appears in the nonlinear Dirac equation
with scalar-type self-interaction (the Soler model) and in the Dirac-Klein-Gordon
model; see [24, 31]. Such symmetry groups result in the emergence of two-frequency
solitary waves [8, 10] (see also the monograph [9]). As a consequence, the asymp-
totic stability of standard (one-frequency) solitary waves could only make sense if
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one takes into account the convergence of perturbed solutions to both one- and
two-frequency solitary waves, which creates additional difficulties on the way to
treating the asymptotic stability. Let us mention that this difficulty was avoided in
the proof of asymptotic stability in the Soler model in [6, 29, 7, 14] by restricting
the class of perturbations so that the convergence to a bi-frequency solitary wave
was prohibited by symmetry considerations.

Theorem 1.1 is a transposition to a system of the result proved for scalar equa-
tions in [16, 18, 19]; see also [2]. We are not aware of previous similar results for
systems of PDE’s. For the orbital stability of systems of NLS we refer to Grillakis
et al. [25], De Bievre and Rota Nodari [22]; see also [5] and references therein.

The proof of Theorem 1.1 goes along the lines of the proof for the scalar NLS.
If we look at the analogous classical problem of the asymptotic stability of the
equilibrium 0 for a system 7 = Ar + g(r), where g(r) = o(r) at r = 0 and with
a matrix-valued operator A, of key importance is the location of the spectrum
o(A). Stability requires that if ¢ € 0(A4) then Re¢ < 0. Isolated eigenvalues on the
imaginary axis correspond to central directions whose contribution to stability or
instability can be ascertained only analyzing the nonlinear system, and not just the
linearization 7 = Ar. This classical framework is also used for Theorem 1.1. First of
all, an appropriate expansion of u at the ground states (see Lemma 3.1 below) gives
us the variable r. The analogue of A is given by (2.24). In our case the spectrum
is all contained in the imaginary axis, but the continuous spectrum plays the same
role of the stable spectrum of A, thanks to dispersion and along the lines described
in pp. 36-37 of Strauss’s introduction to nonlinear wave equations [36]. The discrete
spectrum of (2.24) plays the role of central directions. The nonlinear mechanism
acting on the corresponding discrete modes and responsible for the stabilization
indicated in (1.9) has been termed Nonlinear Fermi Golden Rule in [34] and was
explored initially in [12, 35]. A detailed description, by means of some elementary
examples, is in [21, Introduction]; see also [38]. The same mechanisms, described in
[21] and used in [2, 3, 12, 16, 18, 19, 35] and in a number of other papers referenced
therein, are applied here to prove Theorem 1.1. A novel difficulty occurs with the
choice of modulation. Here the the idea is to use the representation (2.19). The rest
of the paper is not very different from [16, 17, 18, 19]. In the course of the proof there
are some difficulties related to the fact that the Lie algebra of G is not commutative,
and correspondingly, the Poisson brackets {II;,II;} are not identically zero like in
the earlier papers. This is solved quite naturally by exploiting conservation laws
and considering the reduced manifold; see [28, Ch. 6]. Thanks to an appropriate
uniformity with respect to the conserved quantities of the coordinate changes, we
obtain the desired result.

2. Notation and preliminaries. We start with some notation. For ¢ € C™ we
use the Japanese Bracket notation {(¢) = 1/1 + [¢|?.

Given two Banach spaces X and Y, we denote by B(X,Y) the Banach space of
bounded linear transformations from X to Y.

Let m, k, s € R. Given a Banach space E and functions R? — E, we denote by
Y (R3 E) and H**(R? E) the Banach spaces with the norms

Jul:,, = 1KV =8+ 1212 )™ ull 32 @s gy (2.1)
s k
HfHHka(R3,]E) = |{x) <V—A> fHLz(R3,IE)a (2.2)
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where we will use mostly E = C2. We also consider
the space of Schwartz functions S(R? ) := NperEm (R?, E); (2.3)
the space of tempered distributions S’ (R3,E) := UperZm (R?, E). (2.4)

We denote by ‘v the transpose of v € C?, so that the hermitian conjugate of v € C*
is given by !(Kwv), where K : C* — C" is the complex conjugation in C". For
u, v e C" we set |v|? = t(Kv)v. We denote the hermitian form in L?(R3, C?) by

{u,v) = Re JRS Y Ku(x))v(z) de, u, v e L?(R3,C?), (2.5)

and we consider the symplectic form
QX,Y):=(o3X,Y),  X,YeL*R3C?. (2.6)

Definition 2.1. Given a differentiable function F, its Hamiltonian vector field
with respect to a strong symplectic form € is the field Xz such that Q(Xp,Y) =
dF(Y) for any tangent vector Y, with dF the Fréchet derivative. For differentiable
functions F' and G, their Poisson bracket is {F, G} := dF(Xg) if G is scalar-valued
and F' is either scalar-valued or takes values in a Banach space E.

Notice that since X ~— (io3X, ) defines an isomorphism of L?(R3,C?), or of
H(R3 C?), into itself, our symplectic form (2.6) is strong. For u e H*(R?, C?) we
have the following functionals (the linear momenta and mass) which are conserved
in time by (1.1):

M, (u) = 27 0uu,u), O := —i030,, fora=1,2,3; (2.7)
Iy (u) = 27 04u,uy, O4:= 1(= identity operator); (2.8)
see [25, (2.6) and p. 343] for (2.7). We also consider the following functionals II;,
) =95,6,7:
o302 K, j=05,

0 (u) := 27O u, u) with O; := { io30.K, j =6, (2.9)
03, j =T.
The energy is defined as follows: for B(0) = 0 and B’ = [ we write
E(u) := Ex(u) + Ep(u), (2.10)
1 1
Ex(u) := =(—Au,u), Ep(u) := —fJ B(|ul?) dz.
2 2 Jus

It is a standard fact which can be proved like for the scalar equation (1.3) (for the
latter, see [13]) that (H1)—(H2) imply local well-posedness of (1.1) in H(R3, C?).

We denote by dE the Fréchet derivative of the energy E; see (2.10). We define
VE by dEX = (VE,X). Notice that VE € C'(H'(R3,C?), H }(R3,C?)), that
VE(u) = —Au + B(Ju|?)u and henceforth that (1.1) can be written as

= —103VE(u) = Xg(u), (2.11)

that is, as a hamiltonian system with hamiltonian E. Notice that VII;(u) = ¢;u
forj=1<j<T.
By (2.7) and (H4),

i — — 1
(w,v) = (L (e3¢, €1))j_1, e;= [O] ;
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is a diffeomorphism into an open subset of R x R3. We introduce

I (727 ¢, €1), L<j<4
p = p(w,v) € R” with p;(w,v) := {0, j=5,6;
Hj(ea:i%v'x(bw E)1) = p4(w,v), .7 =T
(2.12)

Notice that II; (e732v ¢, €1) = 0 for j = 5,6. We denote by P the subset of R”
defined by

P = {p(w,v); we O, ve RY). (2.13)
For p = p(w,v) € P, we set
By (z) 1= €3 (x) €1 . (2.14)

Obviously @, ») = ¥u,(0); see (1.7). We will set @, = 1,1 ((0) for the function
in Theorem 1.1. We have II;(®,,) = 0 for j = 1,2,3,5,6. It is not restrictive to
pick the initial datum such that

I (ug) = 0 for j = 1,2,3,5,6. (2.15)

Indeed, by continuity, 11, for j = 1,2, 3,5, 6 take values close to 0 in a neighborhood
of ®,, . By boosts and Lemma 5.1, one can act on ug changing it into another nearby
initial datum which satisfies (2.15); we skip the elementary details. We introduce

—vj, 1<75<3;
APp) = (Mi(p),..., M(p) € R” defined by Xj(p) = { —~w— %,  j=4
0, 5<j<T.
(2.16)

They are Lagrange multipliers, and an elementary computation shows that
eTiostAR) 0P = qp, (1) (2.17)

and that @, is a constrained critical value for the energy satisfying

VE(®,) = > X(p)0;®, =0. (2.18)
J=1,00,7
We consider the representation T : G — B(H'(R3,C?), H'(R?,C?)) defined by
io3T- a b
T(g)ug := €779 (a + boy K)uy for g = (7', [Kb Ka]) , (2.19)
where 7 = (11,72, 73,74) e R®¥ x T and 7- ¢ := Z 705
G=1,eesd

An elementary but very important fact to us is the following lemma.

Lemma 2.2. We have the following facts:

(1) The action of G given by (2.19) preserves the symplectic form Q defined in
(2.6);

(2) The action (2.19) preserves the invariants II; for 1 < j <4 and E;

(3) The functionals I1;, 1 < j < 7, and E are conserved by the flow of (1.1) in
HY(R3,C?).
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Proof. (1) follows from the commutation [ios, a + boa K| = 0. (2) is a consequence

of
|(a + boo K)u|* = Re'(Ku)((Ka) + Koo(Kb))(a + boy K)u

= (la* + [0]*)|u* + Re*(Ku)((Ka)bos K + KoyaKb)u = |ul?.
The fact that the functionals IT;, 1 < j < 4, and the energy E are preserved by the

flow of (1.1) is standard. To deal with the cases j = 5,6,7, we first recall that the
Lie algebra of SU(2) can be written as su(2) = Span (io;, 1 < i < 3). We have

4 (cos(t) —isin(t)oo K)|,_, = 102K, i=1;

d . dt
pn T(e M) im0 = 3 3 (cos(t) +sin(t)oa K)|,_o = 02K, 1=2; (2.20)
4 e _ =i, i=3.

Like in [25, line 5 p. 313],
d . .
—Mlyyi(u) = {Qariu, =103 VE(u)) = (i0304+iu, VE(u))

dt
= Ly, VE@Y| = LE@E )| =0
= ds e U, u . = ds (& u o = U,

where the first equality holds for sufficiently regular solutions, while the last one
follows from (2). By a density argument and well-posedness of (1.1), we obtain
claim (3). O
Lemma 2.3. The following 10 vectors are linearly independent over R:

Op1Pp, OpyPp, OpsPp, Op,Ppy 02, Pp, 02y Ppy 02, Pp, 102 K Py, 02K, 1P),.

(2.21)
The proof is elementary. 0
We consider now the “solitary manifold”
1037 a b
M= {e 370 (g + boyK)®,(z) : 7R3 x T, [Kb Ka] eSU(2), pe ’P} .
(2.22)

The vectors in (2.21) are obtained computing the partial derivatives in (0, p,0) of
the function in C*(D¢(0,£0) x P x T x R?, %3 (R3,C?)) given by

(b, p, 7) — €177 C5(b)D,, where 5(b) := /1 — b2 + b0 K. (2.23)
Then Lemma 2.3 implies that for any & > 0 there is g > such that (2.23) is
an embedding and M is a manifold. The R-vector space generated by vectors in
Lemma 2.3 is the tangent space Ty, M.
Consider the linearized operator H, := —ios(VZE(®,)—A(p)-0). By A(p(w,0))-
) = —w we have

- a(l)
Uy 1857wy
Hp(w,0) (u2) = - (_m&g)z@) ,  where

£y = —Auy + B(¢2)ur + 28"(¢2) Re(uy) + wuy,
2&2)112 —Aug + B((bi)uz + wug.

It is well-known that H,, is R-linear but not C-linear; see [11, 15]. For this reason
we interpret H'(R?,C?) as a vector space over R. Later, in Section 7, we perform
a complexification. Recall the generalized kernel Ny(H,) := U7, ker(H,)?. The
following lemma is very important.

(2.24)
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Lemma 2.4. We have Ny(Hp(w,0)) = Ta,, M-

Proof. First of all, Sff) for ¢ = 1,2 are decoupled, so that it is enough to consider
them separately. We have the following, which is a well-known fact about ground
states (see, for example, [32, Sect.XIII.12]):

ker(i£?)) = N, (i1£2) = Span{i¢y, ¢}

The following well-known consequence of (H4)—(H5), derived in [37], completes the
proof:

ker(12())) = Span{iu, Ox, dula_r )
N,(£) = ker(i£M)? = (iker £) @ Span{(?pje%““”@u §=1}.
O
System (1.1) is an interesting example for the stability theory in the classical
paper by Grillakis et al. [25] because all the examples of systems of NLS’s in Sect.

9 in [25] for € R3 and u(t,x) € R* have 4-dimensional centralizers, while for (1.1)
dimension is 6; see the following two remarks.

Remark 2.5. From the identification C?> = R* there is a natural inclusion SU(2) <
SO(4). By the identification implicit in (1.5) of a € SU(2) and an element in the
unit sphere & € S* = R*, the action of a € SU(2) on v € R* is nothing else but the
product of quaternions, va. Similarly, by elementary computations, it is possible
to see that (a + boa K)v = av (on the r.h.s. multiplication of two quaternions) for
all v e R* and for an appropriate a € S®. In the framework of [25] when applied
to (1.1), a key role is played by the centralizer of the group {e™73; 7, € R} inside
R? x SO(4). Using [39, p.111], it can be shown that G, acting as in (2.19), is a
connected component of this centralizer.

Remark 2.6. The key hypothesis in [25] is Assumption 3 on p. 314, stating Z =
ker(?—[p(w,o)) for

7 = {6t T(")B (09 L, TE R? x s0(4) commutes in R? x so(4) with 1'103} ,

where for @ € R? we have T(¢'®) = T(¢!®) and for @ € so0(4) we set T'(e®)w =
e!®w for any w € R*, with the usual product row column SO(4) x R* — R%.

Always Z < ker(Hp(w,0)); see [25, Lemma 2.2]. Lemma 2.4 yields the equality.
Assumption 1, i.e. local well-posedness, is true and Assumption 2, about bound
states, is true under our hypothesis (H3). Other hypotheses needed in [25], such as
that the centralizer, or at least its connected component containing the unit element
in R? x SO(4), acts by symplectomorphisms which leave the energy invariant, follow
from Lemma 2.2. So by [25] the bound states (2.17) are G-orbitally stable.

3. Modulation. The manifold M introduced in (2.22) is a symplectic submanifold
of L?(R3,C?). This follows from

Q(ﬁo—QKq)Z” UQK(I)I’) = D4, Q(a;mq)pa Hq)p) = 27lap4<].10—3q)pa 11(I);D> = aP4p4 =1,
Q(0p, Pp, O, Pp) = 2_1apa<q)pv<>aq>p> = 0p,Pa =1 fora=1,2,3,

and from symplectic orthogonality of all other pairs of vectors in (2.21). We obtain
a bilinear form

Q: S(R3 C?) x S'(R3,C?) — R.
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Since Ty, M = S(R?,C?), we can define the subspace T£‘2’M c §'(R3,C?). Q also
defines a pairing
Q: 2,(R?C%) x¥_,(R3C?) - R.
This yields the decomposition
S n(R%,C%) = To, M@ (T4 ° M n £_,(R?, C?)). (3.1)

We denote by ﬁp and P, the projections onto the first and second term of the direct
sum, respectively:

Nav i)

D (R, C?) - Tp, M, (3.2)
S n(R%,C%) — T M S, (R%,C?).
A special case of (3.1) is

L*(R?,C?) = To, M ® (T2 M n L*(R?,C?)). (3.3)

It is easy to see that the map p — P, is in C%(P, B(X_,(R3,C2), %, (R3,C2)))
for any n € Z. The following about the s(b) in (2.23) is consequence of elementary
computations:

(s(0)) ™" = (s(0)* = 5(-b) ; (3.4)
s5(b)o; = 0;8(—b) forall j =1,2,3;
Ks(b) =s(—Kb), s(b)i=1s(—b).

Lemma 3.1 (Modulation). Fiz ny € Ny := N U {0} and p* € P. Then there exists
an open neighborhood U_,,, of ®,1 in X_, (R C?) and functions p € C*(U_n,,P),
7€ CPU_p,,R® x T) and b € C*(U_,,,C) such that p(®,1) = p', 7(P,n) = 0,
b(®p1) =0 and (1) = 0 so that for any ueU_p,,

u = e 705 (b(w)) (Dy(u) + R(w)), with R(u) € T;;;u)M NY_,, (R3,C?).
(3.5)

Proof. The proof is standard. For v,(p), 1 < ¢ < 10 varying among the 10 vectors
in (2.21), set
F,(u,p,7,b) := QT Os(=b)u — &, v, (p))-

Next, setting F= (F}, ..., F1p), we compute

F (u,p,7,b) , = 0 and the Jacobian matrix is
u=e~19370%, b=0

6E(u,p,7,b)

7 b) = [5ijQ(vi(p),Vj(p))]i’j, 1<14,j5 <10, (3.6)

u=e~17370d, b=0

where the numbers ¢;; belong to {1, —1}. Since for each v;(p) there is exactly one
v,;(p) such that Q(v;(p),v,(p)) # 0, it follows that all the columns in (3.6) are
linearly independent. We can therefore apply the implicit function theorem which
yields the statement. O

It can be proved (see [17, Lemma 2.3]) that in a sufficiently small neighborhood
V of p! in P, for any k > —n1, the projection

Py Ty M S4(R?, C?) — T2 M n 54 (R?, C?) (3.7)
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is an isomorphism. From Lemma 3.1 we have the parametrization
P x (R? x T) x Dc(0,9) x (T3 M n H'(R®,C?)) - H'(R?,C?) (3.8)

with the modulation coordinates

(p,7,b,1) = u = e 1T O5(b)(D, + Ppr). (3.9)
We choose p° € P so that
IT; (ug) = pj for j e I ={1,2,3,4} (3.10)

(that is p§ = 0 for j = 1,2,3 and T4(ug) = pf, i.e. ug and @0 have same charge).

In terms of coordinates (3.9), system (1.1), which we have also written as @ =
XE(u), see (2.11), can be expressed in terms of the Poisson brackets as follows (see
[17, Lemma 2.6]):

p={p.B}, 7={rE}, b={bE}, i={rE} (3.11)
By the intrinsic definition of partial derivative on manifolds (see [23, p. 25]) we have
the following vector fields (recall bg = Re(b) and by = Im(b)):
0r; = =030 u for 1 < j <4,
Opp = €177 05(D)(0,, @) + 0, Ppr) for 1 < k <4, (3.12)
Oy, = e 193700, s(b)(®, + Pyr) for A=R,I,
which are obtained by differentiating by the various coordinates the r.h.s. of the
equality in (3.9). By (3.12), we have an elementary and crucial fact that Xy, (u) =

iosVIIL;(u) = 1030 u for 1 < j < 7 which corresponds to formulae (2.5)—(2.6) in
[25]. In particular, we have
X, (u) = 0, for1<j<4,
which immediately implies
{Hj,Tk} = —0jk, {Hj,bA} =0, {Hj,pk} =0, {T‘,Hj} =0 for1 <j <4
A natural step, which helps to reduce the number of equations in (3.11) and cor-
responds to an application of Noether’s Theorem to Hamiltonian systems, see [28,
Theorem 6.35, p.402], is to substitute each function pj|j:1 in the coordinate sys-

tem (p,7,b,r) with the functions Hj|j:1 and move to coordinates (Hj|?:1 , T, 0,7).
Indeed, as in [17, formula (34)], we have, for p; := IT;(r) with 1 < j <4,
I, = p;j + 0j + IL;((Pp — Pp)r) + (r, 0 (Pp — Pp)r), oj := (7). (3.13)

This allows one to move from (p, 7, b, ) to (Hj|? 7,b, 7). Furthermore, 0, II;(u) =

=1
0 for k < 4 implies that the vector fields 0, |i:1 are the same whether defined us-
4

ing the coordinates (p, Tj|j.=1 ,b,7) or the coordinates (Hj|j. Tjlj=1,b,7). Hence,

exploiting the invariance E(el?3™%u) = E(u),

(I, B} = —{E,1l;} = —~dEXn, = —dEd,, = —0,,E=0 for1<j<4.

=1

By these identities, (1.1) in the new coordinates (Hj|j:1 ,T,b, 1) becomes

I; =0 for 1<j<4, 7=/{rE},
b ). i rE). (3.14)
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Notice that we have produced a Noetherian reduction of coordinates, because the
equations of b and r are independent from the ones in the first line. We point out
that by Lemma 2.2 we have also

I = {I;, B} =0 for5<j <T. (3.15)

4. Expansion of the Hamiltonian. We introduce now the following new Hamil-
tonian,

K(u):= E(u) = E (®p) = >, Xi(p) (II; = p9). (41)
G=1,msd
For solutions v of (1.1) with initial value v satisfying IT;(vo) = pJ for 1 < j < 4,
we have
{Hj,K}={Hj,E}=0 f0r1<]<7,
{b, K} = {b,E}, {r,K} ={r,E}, {r;, K} ={r;,E} — Xj(p) for1<j<4

Indeed, for example, since {II;,II;} = 0 for j < 7 and any k < 4 (which follows
from [O;,Ox] =0 for j < 7 and any k < 4, cf. (2.7)-(2.9)), we have by Lemma 2.2:

{T;, K}(v) = {I;, B} () = >} (AT, T} (v) + (T () — p{TL;, Ae}(v)

LBy,

where we used IL;(v) = pg). Other Poisson brackets are computed similarly.
By 0-,K = 0 for 1 < j < 4, the evolution of the variables (Hj)|;:1 ,byr s
unchanged if we consider the following new Hamiltonian system:

I; = {l;, K} =0 for 1 <j<4, 7={nK}, b={bK}, r={rK},
(4.2)
where (Hj)|4 7, b, r is a system of independent coordinates, and where we con-

=1
sider also
I; = {TI;,, K} =0 for5<j<7. (4.3)

Key in our discussion is the expansion of K(u) in terms of the coordinates

((Hj)\?:l ,7). We consider the expansion, with the canceled term equal to 0 by

(2.18) and (2.16),

K(u) = K(®, + P,r) = K(®,

+J1(1—t)<[v2 B(@, +thr) = Y N(p)VAT (@, + tRyr) | Py, Pyr ) d.

0 j=1,...,4

The last line equals (cf. [17, (99)])

7 H(=A+ DT A QJPrPr>+J(1—t)<V2Ep(¢ + tPyr)Pyr, Pyr)dt
j=1,...,4
=27 (A + Z X;()0;) Pyr, Pyr)
j=1,....4
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2
L@dxfo“ (@), go B, + tPyr[?)] dtds
]

J dx‘[ 63+1 )|, 0s[B(|s®, +tP,r|*)]dtds

3
+J d:rf dtdsj 350,[B(|s®, + P,r|?)] ¢ 'T) dr + Ep(P,r).
R3 0 1]2 0 3

The second term in the second line is 27 (V2 Ep(®,)P,r, P,r) and so in particular
the second line is

“H(~A+ V*Ep(® Z 2j(p)O;)Pyr, Pyry = 27 WiasH, Pyr, Pyr).

By (4.1), we have

K(®p) = d(p) — d(p°) + (AMp) = A®")) - ", (4.4)

where
d(p) := E(®p) — Alp) - p- (4.5)
Since &,,d(p) = —p - 0, A(p), we conclude K(@,) = O((p — p°)?). Furthermore,

from (3.13) we have

K(@y) = (I = )41, T ()1,
(Hj ((Pp - Ppl)r) + <73 0 (Pp — Ppl)r>) |j:1)’ (4.6)

with & smooth and equal to zero at (0,0,0) up to second order. Summing up, we
have the following.

Lemma 4.1. There is an expansion
K(u) = K(®,) + 27'Q(H,Pyr, P,r) + Ep(Ppr) (4.7)

+ Z {Ba(p), (P,r)% —l—f Bs(x,p,r(x))(Pyr)°(z) dx, where for any k € N:
d=3.4

K(®,) satisfies (4.4)—(4.6);

(Ppr)d(x) represents d-products of components of Ppr;

Bge C*(P, Sk (R3, B(R*)®4 R))) for 3 <d<4;

for ¢ € R, Bs depends smoothly on its variables, so that ¥V i € N, there is a
constant C; such that

IV}, Bs (0, C) sy (r2, B(R)®5 7)) < Ci. (4.8)

O

We will perform a normal form argument on the expansion (4.7), eliminating

some terms from the expansion by means of changes of variables. The first step in

a normal forms argument is the diagonalization of the homological equation, see [1,
p. 182], which is discussed in Section 10.
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5. Symbols szm, Szjm and restrictions of K on submanifolds. We begin
with the following elementary lemma.
Lemma 5.1. Set u = s(b)sp. Then, for by = Re(b) and by = Im(b), we have:
M5 (u) = (1 = 2b%)15 (1) — 2b1bRI6 (1) — 24/1 — [b[2bRIT7 (1));
I (u) = —2b7bRI15 (1) + (1 — 2b7)1s()) — 24/1 — [b[20 117 (4)); (5.1)
1 — [b2bRTT5 (1) + 24/1 — [b]2bs () + (1 — 2[b|*)TT7 ().
Proof. We have
2H5(u) = (o302 Ku, u) = (s(—b)oso2 Ks(b)y), v) = (o3025(—b)s (—Kb) K1, ¢p)
— (7302 | (1= b]* + boo K (Kb)o2 K) — /1= b2(b + (Kb))o2 K | Kb, )
= (o309 [1 — 0% — P — (V% — P + 2ibgby) — 2/1 — |b|2bR02K] K, )
= (1 = 2b%){o302 K, ) — 2bRbs{iosoa K1, 1) — 24/1 — [b]2bplost), ¥).
This yields the formula for ITs(«). By a similar computation
21 (u) = (GozoaKu,uy = {(s(—b)io3o.Ks(b)), 1) = {ic3028(b)s(—Kb) K, ¢
— (io302 [ (1= [b? — b K (KD)oo K) + /1= b2(b — (Kb))oo K | Ko, 1)
— (10309 [1 — B — B3+ DK — b3 + 2ibgrbr + 2in/1 — |b|2b102K] K, 0)
= (1 = 207)(io302 K¢, ) — 2brbr{o302 K1, 1) — 24/1 — [b|2br {031, ).
This yields the formula for IIg(u). Finally, the formula for II;(u) is obtained from
27 (u) = {ozu, uy = {s(—b)o3s(b)y, 1) = {o35(b)s(b)y, ¥)
— (o3 [ (1= bl + boa Kbo K) + 24/1 = [bPbors K | 0,0

= (o3 [1 —20b|2 + 2/1 — |bPbroo K + 2i/1 — |b|2b102K] TN

= (1= 2[b]*){o3t), ) + 24/1 = [b]?bR{0302 Kb, 1)) + 24/1 — [b2bs(io302 K1), ).

O
We introduce the following spaces:

Ek = {(4, 0,7) e Ry x RT x (T2 M1 0 5y)} for k€ Z, (5.2)

where ¢ is an auxiliary variable which we will use to represent II(r). We now
introduce two classes of symbols which will be important in the sequel.

Definition 5.2. For A c R% an open set, k € No, A < E_j an open neighborhood
of (p},0,0), we say that F € C"™(A x A,R) is R}, if there exists C' > 0 and an

open neighborhood A’ = A of (p},0,0) in Z_; such that
|F(a, 11y, 0,7) < Cllrls (72 + lof + [Ty = i) in T x A. (5.3)

We will write also F' = R5, or F' = Ry? (a,114, 0,7). Wesay F = Ry if F = R}
forall l = m. We say F = ’Réojm if for all [ > k the above F' is the restriction of an
F e C™(Ax A;,R) with A; an open neighborhood of (0,0) in R” x (T2 M, n3_;)

and F =RY [ If F = Ré’o{m for any m, we set F' = RZOJOO

l,m-*
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Remark 5.3. Above, we can have d = 0 (that is, A is missing). We will also use
the following cases: d = 1 with a time parameter; A an open neighborhood of the
origin of R x su(2). The last case is used only in Appendix A.

Definition 5.4. T € C™(A x A, ¥;(R?,C?)), with A x A like above, is Sk ', and

we write as above T = Swm or T = SZ’] ) (a,114, p,r), if there exists C' > 0 and a

smaller open neighborhood A’ of (0,0) such that
IT(a, 0, 0,7) 5, < Clrl% (175, + lol + [Tla — pi])" in T x A" (5.4)
We use notation T' = SZ’%O, T = Ség;m and T = Sf;ojoo as above.
Lemma 5.5. On the manifold 11; = p for 1 < j < 4 there exist functions RY?
such that
= )~ L) + RE2, (. 1L, (r) [y 7) (55)
Ppj =Dj G\r 0,00\Par Hj\T) 15=15T)- .

Proof. The conclusion follows by the implicit function theorem applied to (3.13). O
Inside the space parametrized by (II; |J 1,7, b,7), we consider
MS(p®) defined by II; \j L= pJ\J L (5.6)
Notice that the intersection of M$(p®) with a small neighborhood of {e!?®,: :
Y € R} is a manifold. Indeed, on the soliton manifold M the differential forms
dpj\;1 1 dbg, dby are linearly independent. At the points of M formula (3.13)
implies dp; = dII; for 1 < j < 4 while the first two lines of (5.1) imply dIl; =
—2psdbr and ng, = —2p4db1 Hence, since II; € C*(H(R3,C?),R), it follows
that dII; |§s:1 are linearly independent in a neighborhood of {€!?®,: : 9 € R}. Then
since M$(p°) is defined by I1; = p? for j < 6 we obtain our claim on M$(p®) for any
p sufficiently close to p!.
M8 (p®) is invariant by the system (4.2). The following shows that, when we

factor M$(p°) by the action of R? x T, the corresponding manifold is parametrized
by r e Tte M, n HY(R3,C?).

Lemma 5.6. There exist functions Réo’?oo (3, 1(r), r) and functions ROO Oo(p4, II(r))
dependent only on (p3,T1(r)) such that on MS$(p°)

br = (2p3) 7 I5(r) + RE, (1, T1(r)) + Ri%, (03, 1L(r), )
br = (2p3) "6 (r) + R%% (p1, 11(r)) + R (04, 1L(r), 7).

Proof (sketch) Since II5 = IIg = 0 by the first two equations in (5.1), by II;(®, +
P,r) =1I1;(P,r) for j = 5,6 and by II7(®, + P,r) = pa + II7(P,r) we have

1= [b]2br(ps + 7 (Ppr)) = (1 — 20%)I5(Pyr) — 2b1brIls(Pyr),
1 — [b]2b7(ps + U7 (Pyr)) = —2b7br15(Pyr) + (1 — 2b7)g(P,r).
We consider the following change of coordinates, which defines xr and x;:
2pibr = II5(r) + 2i and 2pib; = Ig(r) + z;. (5.9)
Substitute in the Lh.s. of (5.8) both (5.9) and (5.5), and write II;(P,r) = IL;(r) +
R&Qw (p$, II(r), r) everywhere in (5.8). Then from the first equation in (5.8) we get
(1+06%) [1 = Ia(r)/p} + L7 (r)/p§ + R (03, T(r), )] (s (r) + wR)
= 15(r) + O(V’II(r)) + R (p, TL(r), 7).

(5.7)
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So, after an obvious cancellation, we have
(1+0(*) [1 = a(r)/pi + 7 (r)/p] + RYZ%, (01, 11(r), 1) | 2
= Ri;?oo(l_[(r)) +0 (bZH(r)) + Rg?oo(po, II(r),r)).
which in turn implies, for A = R,
za = Ry (p1, (1) + OVIL(r)) + R (01, 1(r), 7))

where the big O is smooth. Since a similar equality holds also for A = I, substituting
again b by means of (5.9) and applying the implicit function theorem, we obtain

TA = Ri;?w(pg,ﬂ(r)) + Réc’?oo(pg,ﬂ(r)w)) for A=R,I.

Lemma 5.7. In M$(p") we have
M7 = pi + Iz (r) + RE0, (0°, 11(r)) + REZ, (07, TI(r), 7). (5.10)
Proof. By the third identity in (5.1) and by the definition of P,, we have
7 = 24/1 — |b]2brII5(Pyr) + 24/1 — |b]2b;T16(Pyr) + (1 — 2|b)%) (pa + M7 (Pyr)).
Using Lemmata 5.5 and 5.6, we obtain (5.10). O

6. Expressing {2 in coordinates. Normal forms arguments are crucial in the
proof of Theorem 1.1. It is important to settle on a coordinate system where the
homological equations look manageable. While the symplectic form 2 has a very
simple definition (2.6) in terms of the hermitian structure of L?(R? C?), it has
a rather complicated representation in terms of the coordinates (Hj|j=1 , Ty b, 7).
Eventually we will settle on a coordinate system where the symplectic form is equal
to the form Qg to be introduced in Section 7. In this section we consider some
preliminary material.

We consider I := 27 iogu, - ). Using the definition of the exterior differentiation
it is elementary to show that dl' = Q. We consider now the function

Y(u) =27 Wioze 177 05(b) D, u)
and set T :=T' — dy + de:l,mA IT;7;. Obviously dI' = Q. We have the following.
Lemma 6.1. We have

= > 7dl;+27'QPrdr)+ >, 27'Q(r, Pydy, Por)dp; +5,  (6.1)
j=1,...,4 j=1,...,4

_(x brb; 1, 1—0?
1—[b? 1 —[bf?
1— b2 brbr

+ (11 R__ 11 + ;b5 | db;.

Proof. The proof is elementary. The identity operator is du, which can be expanded
as

— H7b1> dbr

du=— > dosOudr; + Y. e 77 %(b)d, (D, + Ppr)dp;
j=1,...,4 j=1,...,4
+ e 195700y 5(b)(®, + Pyr)dba + e 957 05(b) Pydr-.
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Then, inserting this into I" and after some elementary simplification which uses also
(3.4), we obtain
~ 1
I =2""Qozu,duy = — Z II,dr;

+ >0 2708 (D) (D) + Pyr), 0, 5(b)(®p + Pyr))dba (6.2)
A=,R,1

+ Z “Wios(®p + Ppr), 0p, (®p + Pyr)ydp; + 27 Kios(®, + Pyr), Pypdr).

We have:
second line of (6.2) (6.3)

= Y. 27XiosPyr, 0y, Pyrydp; + 27 o3 Pyr, Ppdr) + d27 (ios®y, Ppr),

where we used what follows:
(i3 Ppr, Op, ®),) = 0 from the definition of Pp;
(io3Pp, Op, ®p) = <]‘16%”'I¢w, 8pje%”"'”¢w> = 0 from formula (2.14).
Hence, by the definition of I' and ¢ (u), we obtain:
D= > mdl;+ Y. 27%0sP,r,é, Pyrydp; + 27 iosr, Pydr)  (6.4)

Jj=1,...,4 j=1,....4
=271 ) (i030,,,5(0) (D, + Ppr), 5(0)(®p, + Ppr))dba.
A=R,I

For A = R, by the definition of 5(b) the bracket in the last line equals

(ios (W+02K) (\/1 =102 — boa K )u, u)

- brb
=<ﬁa—3l—b3+b+( 1—10%2 + i

V1o

1—b2 brbr
= (iog | —ib; + L_o0K + oo K | u,u
<5l TR - [p2 /
1— b2
—4 6771)1%5[ II5
V1-—[bP? 1— b

For A = I, the bracket in the last line of (6.4) equals

(ios (W +]102K> (V1 = B2 — boo K Ju, u)

= (io3 [—b[ +1b + (ﬁ 1-— |b|2 +

>02K1 u, Uy

= b;1l; +

brb
W)02K1 u, U>

= <flO'3 Ile + ——

brbr
K+ ———o2 K |u,u
«/1—\b|2 12 - 1 ’
brbr

I T
\/ Ibl2 1—[bf?

This completes the proof of Lemma 6.1. O

= —bgll7 —
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Lemma 6.2. Consider the immersion i : M$(pY) — H(R3,C?) and the pullback
i*T", which by an abuse of notation we will still denote by I". We have:

D = i*T = 27100 dr) + (RY2, (o T1(r), ) - Or + SLL, (60, 1L(r), 7). dr) + Ty,

(6.5)
where
= —(bpdbs — by dbr) — 4(plg)z(H5(r)ozn6(r) — g (r)dITs (1))
+ R0 (0, T (r))dIL(r) + (SZ, (93, 11(r), 7), dr). (6.6)

Proof. The starting point is formula (6.1) for I'. Obviously for the restrictions we
have de|M?(p0) =0 for 1 < k < 6. So that the first summation in the r.h.s. of

(6.1) contributes 0.
Next, notice that for 1 < j < 4 from (5.5) we obtain

dp; = —(Ojr + 8L, dr) + > RE dpr.
k<4
which, solved in terms of the dp;’s, gives

== Z <(6jk + R&,zoc)omﬂ + Séoloov > (6.7)

k<4

Substituting dp; from (6.7) into (6.1) and using and P,r = r 4+ S&', (p°, I(r), 7) on
M8 (p®), we obtain terms like the second in the r.h.s. of (6.5).

Finally, by II5 = IIg = 0, we obtain ¢ = II;w. To get the r.h.s. in (6.6), we use
the following formulae:

dbp = (2134) 1<030—2KT dr) + Roo oo(p47 (r))dIL(r) + <Soo 009 dr),
dbr = (2p9) Yoz K, dr) + ROO O (Y, TI(r))dII(r) + <SOO o, dr),

where Réé?oo(pg, II(r))dIl(r) stands for >;;_, ROO 0 (Y, T(r r))dIL;(r) with differ-

ent real-valued functions from the class Réé?oo (pg,I(r)). Formulae (6.8) are obtained
by differentiating in (5.7). O
Substituting IT; by (5.10) in (6.5) and using (2.7)—(2.9), we obtain
=27 1Q(T dr) + <SU‘ Oo(p47H(r)a T)7dT>
+ (4p) ™ (5 (r)dITg (r) — g (r)dIT5(r)) (6.9)
+ (R (05, TI(r)) + R0 (5, T1(r), 7)) dII(r).

(6.8)

7. Spectral coordinates associated to H,:. By assumption, p! = p(w',0). Re-

call that the operator H,: defined in L*(R*,C?) is not C-linear (because of Qsl)),
but rather R-linear. To make it C-linear, we consider the complexification

L*(R3 C*)®g C.

To avoid the confusion between C in the left factor and C on the right, we will use
2 to denote the imaginary unit in the latter space; that is, given u € L?(R?, C?), we
will have u®(a+1b) € L?(R3,C?)®r C. Notice that the domain of H,: in L*(R?, C?)
is H?(R3,C?); we extend it to L?(R?,C?) ®g C with the domain H?(R3, C?) ®g C
by setting H,1 (v® z) = (Hpv) ® 2.
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We extend the bilinear form (, ) in (2.5) to a C-bilinear form on L?(R3, C?)®g C
by
w®zv®¢) = 2({u,v),  u,veLl*R’C?), z(eC.
We also extend Q onto L?(R3,C?) ®g C, setting Q(X,Y) = (io3X,Y). Then the
decomposition (3.3) extends into

L2(R3 CYH @ C = (quﬁ/\/l ®r C) ® (To , M n H'(R?,C*)) @z C. (7.1)

Note that the extension of H,1 onto L?(R?, C?)®gC is such that its action preserves
the decomposition (7.1). The complex conjugation on L?(R3,C?) ®g C is defined
by v®z:=v®Z.

Notice that if 1H,1& = €;§; with e; > 0, then by complex conjugation we obtain
Hp & = —ef).

By Weyl’s theorem, oes(2H,1) = (—00, —w'] U [w!,0). We assume spectral
stability, i.e. 0ess(2Mp1) < R. We assume that the set of eigenvalues satisfies
op(tH,1) < (—w',w'), that +w’ are not resonances, and the following:

(H6) For any e € op,(2H,1)\{0}, algebraic and geometric multiplicities coincide and
are finite.

(H7) There is a number 91 € N and positive numbers 0 < e; < ey < ... < ey < w!
such that o, (H,1) consists exactly of the numbers +2e, and 0. Furthermore,
the points 2w’ are not resonances ( that is, if H,1© = +ww"O for one of the
two signs, and if (z)© € L®, then © = 0).

Denote dy := dimker(H,: — 1e,) and let

n:= 2 dz.
=1

(H8) Define
N := Sl;p inf{n e N: ney € oess(1Hp1)} — 1. (7.2)
If ey, < ... < ey, are distinct and p € Z? satisfies |u| := 22:1 pi < AN+ 4, we
assume that
piep, +---+pure,, =0 = pu=0.
It is easy to prove the symmetry of o, (2H,1) < R around 0. We have
ker(vH,1 F e;)) = S(R*,C*) @& C
and using Q) we consider the set X, = &'(R?,C?) ®g C defined by

Lo
Xo = [(T/\/Lppl ®r C) @+ @Y, (ker(tHp T el)))] . (7.3)
It is possible to prove the following decomposition:
(T3 M n L*(R?,C?) ®& C (7.4)

= (@i N, ker(eH,n F el)) o) (XC o) (LQ(R?’,(CQ) Qr (C)) )
The decomposition in (7.4) is H,1-invariant.
Consider now the coordinate r € le“/\/l N L?(R3,C?) from the coordinate system

(3.8); it corresponds to the second summand in (7.1). Then, considered as an
element from L?(R3, C?) ®g C, it can be decomposed into

r(z) = Y ab@)+ Y. ZmE(x)+ flx), feXewith f=f,  (7.5)

l=1,...,n 1=1,...,n
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with & eigenfunctions of H,1 corresponding to 2e;. We claim that it is possible to
choose them so that

(1038, &) = (103, fy =0 for all 4,1 and for all f e X,

_ 7.6
<ﬁ03§i,§l> = —zéil for all i, l. ( )

To see the second line, observe that on one hand for © € (T;Ql./\/l ®r C)\{0} we
. P
have (io3H,;1©,0) > 0. Indeed, for © = (01, O3) we have

(io3H,1 ©,0) = (iosH,n0,0) = (£)0,,0%) + (£20,,8,)

with (O3, ¢1) = 0, which implies (€705, 05) > ¢ ©2]2, and with (O, dghr) =
(O1,40,1) = (O1,id,1) = 0 which implies <££}11)@1,@1> > ¢[©1]32, for a fixed
co > 0. On the other hand,

0< <ﬁ03,Hp1§ivgi> = zei<ﬁ03§i,gi>.

It is then possible to choose &; so that (7.6) is true. Notice that (7.6) means that
the nonzero eigenvalues have positive Krein signature. This proves the second line
of (7.6). The proof of the first line is elementary.

By (7.5) and (7.6), we have

2 Yo Hpr,ry = . ellal? + 27 GosHp f, f) =t Ha. (7.7)

l=1,...,n

In terms of (z, f), the Fréchet derivative dr can be expressed as

dr= Y (dz& +dz§) + df, (7.8)
l=1,....,n
and by (7.6) we have
2~ YNigsr, dry =271 Z (Zydz — 21 dZ)) + 27 YKo f, df). (7.9)
l=1,...,n

Notice now that, in terms of (7.5) and (7.8),
dIlj(r) = 0;( +Z £+ f), £dz +Edz + df)
= 2 ('Rgc’}oo dz + R&}oo dzl) + <<>Jf + S&}oov df>
l=1,...,n
Hence, we obtain from (6.9):

D=To+ > (Ryl,du+RE,dz)+ () RZ,0,f + Skl df), where

I=1,....,n J<7

Lo:=2"" > (fda — 2dz) + 27 Gosf,dfy + > RE0, (0% 11(£))(0; £, df)-
I=1,...,n <7
’ (7.10)
Then

Qo :=dlg = —1 Z dz A dz; + Gosdf, df) (7.11)

l=1,....,n

+ D IROS, (00 TI(A)) Ok S dfy A (05 f, df,

Jik
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and, schematically, using ¢ Syt =8%', and defining
P W =g )T

VF((f), f) = Vi F = duep F - VAI(S), (7.12)
we have
Q- Qo =RL%, dz A dz +(V;SLL df, df
s A (Y RYLL05f + 8L dfy + dUI(f) A (8%l dpy. (18
J<7
We will transform € into €2y by means of the Darboux Theorem, performed in a non-
abstract way, to make sure that the coordinate transformation is as in Lemma 8.1.

8. Flows. The following lemma is a consequence of Lemma A.1 in Appendix A:

Lemma 8.1. Forn, M, My, s, s', k, 1 € Ng with 1 <1 < M, for Il a parameter
and for £y > 0, consider

{ At) = Ry (6T, TI(f), 2, f)
f(t) = ﬁO'3 2j<7 RSL’,AA{I(H_l(taH% H(f)v 2 f)<>]f + Saj\]@g (t7H47H(f)7 2, f):
(8.1)
with the coefficients defined for |t| < 5, |II(f)] < €0, |2] < &0, |r|s_, < & and
T, — pi| < &.
Let ke Z n[0,n — (I 4+ 1)] and set, for s" =1 and € > 0,
Uy ={(5 ) € C* x (Xe 0 Bur) = [l + e, + (A < ). (8:2)

Let ag € A. Then, for € > 0 small enough, (8.1) defines a flow (2%, %) = Fi(z, f)
with

2= RUMC L (+) , where x = (¢, 114, TI(f), 2, f) | (8.3)
ft= REED I R:,'ﬂgi,lz(*)oj’f(e " R:’ivz[,g;lz(*)ﬁ”i) (f + 82%1171(*)) ,
where for
n—l—-1>2s>2s+1=2landkeZn[0,n—1—1] (8.4)
and for e1 > g9 > 0 sufficiently small we have
§e e CU((—4.4) X U, U2, ). (8.5)
O

In (8.5) the Cl-regularity comes at the cost of a loss of | derivatives in the space
Y4, which is accounted for by s’ > s + .
In Proposition 10.3 we will need the following elementary technical lemmata.

Lemma 8.2. Consider two systems for { =1,2:

{ A(t) = BO(t I, 11(f), 2, f) 56)
F(t) =03 3o A (T, TI(F), 2, £)0;f + DO (L, TI(f), 2, f), '
with the hypotheses of Lemma 8.1 satisfied, and suppose that

B(l) (ta H47 H(f)a 2 f) - 8(2) (t’ H47 H(f)a Z, f) = R?z,,l\[\/[/[[)-i_l(t’ H4a H(f)7 2, f) (8 7)

D(l) (taH47 H(f)7 Z, f) - D(g) (tu H4>H(f)a Z, f) = S?L),]]v\g0+l(t7n4vn(f)7z7 f)
Let (z, f) — (z&), f&)) with £ = 1,2 be the two flows. Then fors,s’ asin Lemma 8.1,

Mp+1

|Z(11) - 2(12)| + Hf(11) - f(lz) Is_, <C(lz[ + [ fls_.) (8.8)
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For the proof, see Lemma A.2.
Lemma 8.3. Under the hypotheses and notation of Lemma 8.2, we have:
I, (fly) = W(flyy) = RyDVEI (T TI(f), 2, f) forj=1,2,3, 4. (8.9)
Proof (sketch). For £ = 1,2 and j = 1, 2, 3, 4 we have
I(flp) = T0;(f +8') =T (f) + (£, 0;8) + T1;(8'), (8.10)
where the r.h.s.’s are equal to the terms of (8.3) for ¢t = 1 for each of the two flows,
SO =i | (g, I(f), 2. f), £=1,2

Hence I1,;(S®) = Rfi%z’l, and this term can be absorbed into the r.h.s. of (8.9).

Next, observe that S(*) is the integral S(l) DO dt of the terms D of Lemma 8.2.
Formula (8.7) implies

st -8 = sp 0t (T, (), 2, )
as can be seen by elementary computations, and this in turn implies
(r,05(8% = 8@)) = Ry (W (), 2, f)- -

We consider f € X, n X, for Ny a large number. We can pick Ng > 2N + 2
where N is defined in (7.2). Notice that (3.14) preserves this space. We have the
following, which is proved as in [17], and which we discuss in Appendix B.

Lemma 8.4. Consider § = §Lo---oFL with 37 = S{zl transformations as in
Lemma 8.1 on the manifold M§(p°). Suppose that for any §7 the My in Lemma 8.1
equals mj, where 1 = mq < ... < mp with the constant i in Lemma 8.1 (i) equal
to 1 when m; = 1. Fiz M,k with ny » k > Ng (ny picked in Lemma 5.1). Then
there is a n = n(L, M, k) such that if the assumptions of Lemma 8.1 apply to each
of operators F for (M,n), there exist 1)(ps, 0) € C% with ¥((ps, 0) = O(|o|?) and a
small € > 0 such that in U, for s =n — (M + 1) we have the expansion

KoF =1(p3,II(f)) + H» + R, (8.11)
and with what follows.
(1) We have
Hy = > 9 (D3, TL(f))22" + 27 Koz Hy f, f). (8.12)

lutv]=2, e-(u—v)=0

(2) Denote o =1I(f). There is the expansion R = Zj=71’.'.’3 R, —i—R,lc’ﬂQn(p?L, 0 f),

R, = > g0} 02'2 + Y, 703G (P, 0), 13
|p+v|=2, e (u—r)s0 |ptv]=1

IRy (a0, 1) < CIFIE (If -, + lol + 1Ty — ph| + |2]);
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for N as in (HS),

_ =V 0 .
RO - Z Zuz glLV(p47Q)a
[p+v|=3,....2N+2

Ry =1 Z Zﬂzy<ﬁ0’3GuV (pga Q)a f>a
lptv|=2,..., 2N+1

R2 = Z Zﬂzyguu(p27g>z7f) - Z ZMEV<].10'3G,U,V(p9L7Q7z7f)7f>;
|p+v|=2N+3 |p+v|=2N+2
_ 0 d 0 5
RS* Z <Bd(p4vgvz,f)7f >+J3B5(xap4agazvaf($))f (.’E)dl’-i—Ep(f),
d=2,3,4 R
with By(p',0,0,0) = 0. (8.13)

Above, f(x) schematically represents d-products of components of f.
(3) For 6; € Ni* the vectors defined in terms of the Kronecker symbols by d; :=
(61j7 (X33} 6771])7

g = RyS, for ln+vl =2 for (nv)#(8;,6;), 1<j<m;

1,0
k,m>

(8.14)

g5, =€ +RYS, 1<j<my G =S80 for|u+v =1

g and G, satisfy symmetries analogous to (10.3).

(4) All the other g, are Rz(fn and all the other G, are Sy"°

k,m*
(5) Ba(p®, 0,2, f) € C"(U_, T1(R3, B(RH)®4 R))) for 2 < d < 4 with U_y, <
R8 x C™ x (X. N X_x) an open neighborhood of (pi, o, z, f) = (0,0,0,0).
(6) Let ( € C2. Then for Bs(-, 0,2, f,() we have, for fized constants C; (the
derivatives are not in the holomorphic sense),
fOT |l| sm, Hvéo,gz,f,CBS(pgv 0, %, fv C)||Zk(R3,B((C2)®5,]R) < (. (815)

For the proof, see Appendix B.

9. Darboux theorem. Recall that we have introduced a model symplectic form
Qo in M§(p®) by formula (7.11). Now we transform € into ¢ by means of the Dar-
boux Theorem, performed in a non-abstract way, to make sure that the coordinate
transformation is as in Lemma 8.1.

Lemma 9.1. For nq the constant in Lemma 3.1 and €5 > 0 consider the set
Uy ={(z, /) eC* x (XcnH"):  |fls_,, <e2 [H(f)<ea, |2 <o}

Then for eo > 0 small enough there exists a unique vector field Y in Uy such that
iye(Qo +t(Q — Q) =To — T for [t| <5 with components, where T4 = py,

(yt)zj = R}z’ll,oo(H% H(f)7 2, f) ,
(yt>f = ﬁU3R9L7,200(H4’H(f)7 2y f) -Of + Srll’ll,oo(H4,H(f)7 2, f)

Proof. The proof is essentially the same as that of [17, Lemma 3.4]. The first step
is to consider a field Z such that iz =I'g — I'. We claim that

(Z)Z = Rtlxé,loo(H% H(f)a Z, f) )
(Z)f = ﬁU3Rgé?oo<H47H(f)?Z’ f) . <>f + Stl;é,loo(H4a H(f)’ 2, f)
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Schematically, the equation for Z is of the form

(2)=dz +{[i03(2) s + RO, (Z) ) O df)
= Rioloo dz + <11037€ -Of + SOO s df ).

This immediately yields (Z), = ROO’,OO. The equation for (Z) is of the form

(2) 5+ REL(OF, (Z2) ros0f = 105RG%, - O + Siles (9.1)
0

with a solution in the form ( Z Z , with ( )500) = 1'1037285?@ -Of + S}xfoo
i=0

and
(2)§D = RY (O F,(2) o0 f = (RY)THOF, 1050 £ (O f, (2) ) Dias0 f,

where by direct computation ({;f,1030rf) is a bounded bilinear form in X. n
L*(R3,C*) for all j, k. This implies that the series defining (Z); is convergent and
that (Z); is as in (9.1).

The next step is to define an operator K by ix (2 —Qg) = ixx Q. We claim that

(KX). = R (X)z + (REZL0F + S50, (X))
(KX)s = i3(S% ()OS + 0 SYl . _ipmyy Xs (92)
+(X)RELLOF + (X):81°, + (OF. (X)1)S%,
From (7.11)-(7.13) we have schematically
1(KX).dz + ([io3(KX) g + RYLLOf, (KX) )0 ], df )
= (RY%(X). + (RYL0f + 8%, (X)) dz + (| o Sésoo|<,,zf) NG o)

 (X)2(RELLOF + S0 + (%L, (X) )0 + (O f, (X) )85 L, |, df )

which yields immediately the first equation in (9.2). We have (KX); = Y (K X);

s

=0

with
flCTg(IC( )X)f = af ao|(p’z H=1(f),2,f) (X) (X)Z(R&}ooof + Sclxst,)oo)
+<Soo 00> ( )f><>f + <<>f7 (X)f>SgS}oo
and
(KODX) ;= RYO(OF, (KD X) piosO f
= (R,) MO L,i050£) (O f, (KO X) p)iosO f.

Then the series defining (KX) converges and we get in particular the second equa-
tion in (9.2). Now the equation defining V! is equivalent to (1 +tK)Y* = Z. So we
have

(V): + R (V') + KRELL O + Sodlios (V) 1) = Ridieo
(y )f + 11to’3<Soc o0 (yt f><>f + t0y Séoloo| (0,2, f) (I1(f),2,f) (yt)
+ V)= (REZOF + 8500) + KOS, (V) 185 = 105RG, - OF + 83
Solving this we get the desired formulae for (V*)., and (V). O
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We can apply Lemma 8.1 to the flow §; : (2, f) — (2%, f*) generated by Y!. In
terms of the decomposition (7.5) of r formula (8.3) becomes, for n = ny,

2=+ Ry (T TI(f), 2, f), (9.3)

Ft = i asRi,'f_,_l,,(t,m,n(f),z,f)ojT(e 3:1R?;f_,,_l,L(t,m,H(f),z,f)ﬁaa)

X (f + S:{llflfl,l(t’ H4a H(f)a 2, f))

Classically the Darboux Theorem follows by iy:€Q; = I'g — I', where Q; := Qg +
t(2 — Qp), and by

Ot (FFU) = T (LyeQ + 01%) = F (diy:Q + d(T —Ty)) =0 (9.4)

with Lx the Lie derivative, whose definition is not needed here. Since this §; is
not a differentiable flow on any given manifold, (9.4) is formal. Still, [17, Sect. 3.3
and Sect. 7] (i.e. a regularization and a limit argument for §;) yield the following,
which we state without proof:

Lemma 9.2. Consider (8.1) defined by the field Xt and indexes and notation of
Lemma 8.1 (in particular Mo = 1 and i = 1; n and M can be arbitrary as long
as we fix ny large enough). Consider l, s', s, and k as in (8.4). Then for §i €
C’I(Z/IS;’,C, 2 &) derived from (9.3), we have F3Q = Q. O

€

We now turn to the analysis of the hamiltonian vector fields in the new coor-
dinate system. For a function F' let us decompose X according to the spectral
decomposition (7.5): for (Xr)s € X,

Xp= ) (Xp)y&@)+ D) (Xp)s& (@) + (Xr)s. (9.5)

j=1,...,n j=1,....,n

By (7.11) and by ix.Qy = dF we have, schematically (recall also that here and
below 1, = pY),

—o(Xp)dz + (Xp)z, dz + ([io3(Xp) f + RY (T, ()OS, (Xp) OS] df)
— 0, Fdz + 05, Fdz, + (V,F, df).

and so, schematically,
(XFp)y =105, F, (Xp)z = —10,F
(Xp)g + RY, (M, I(f)Of, (Xp) gy PiosOf = i3V F.
We set
Xp =X+ x with (9.6)
(X)), =15 F, (XV)z = 1, F,  (XWV); = —io3ViF, (9.7
and where the remainder is of the form (XI(;l))Zl = (Xl(ml))gl =0,
(Xp)g = RGO (M, T(F))(O . 105V s F) PiiosO f. (9.8)

Indeed, (Xl(vl)) ¢ has to satisfy an equation of the form

(X3 + R, (I, TH(N)NO S, (Xp) ) Peios O f
= R (Ma, TI(f))(O f, 103V s F) Poioz O f.
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[e¢]
This can be solved like in the proof of Lemma 9.1 by writing (Xp)gpl) = Z X, with
i=0

Xo = RY, (4, TI(f)){O f, 103V s F)Peio3Q f and
Xip1 = R30I, T(F))(Of, Xi)Peias O f
= (R%) O f.1030£) (0 f, 105V ) Peios O f
which yields (9.8). For two functions F' and G we have the Poisson brackets
{F,G} :=dF(Xqg) = 0,,F(Xa), + 05, F(Xa)z +(VsF,(Xa)s)

(9.9)

={F, G} +{F,G}),

where {F,G}; := dF(Xg)) and where
{F, G}(o) = z(aleézlG - 6ELF831 G) - <VfF, ﬁO’giG> (9.10)

and, schematically,
{F.Ghay = R (W, L)XV 1 F, OF X0 105V 1 G). (9-11)

Compared to [17], where the Poisson bracket equals (9.10), here we have an addi-
tional term contributed by (9.11), which however is of higher order and harmless,
as we will see later.

10. Birkhoff normal forms. We will reduce now to [17, Sect. 6]. We set, for the
e;’s in (H6), see Section 7,

e:= (eq,...,en).
In the sequel, I, = pg.

Definition 10.1. A function Z(p, z, f) is in normal form if Z = Zy + Z;, where Z,
and Z; are finite sums of the following type:

Z) = > 212 (103G (S, 0), [ (10.1)
e'(V_H)eo'ess(le)
with G, (2, ps, 0) € C™(U, Tk (R3?,C*)) for fixed k,m € N and U < R® an open
neighborhood of (pJ,0),
Zy = Z 9 (93, 0)2"Z", (10.2)
e (u—v)=0
with g, (pa, 0) € C™ (U, C). We assume furthermore the symmetries g, = g,,, and

Gu =Gy

Lemma 10.2. Fori € {0,1} fixzed and n, M € N sufficiently large and form < M—1
let

X= D, cw@LI))HE 4+ Y 22 esCl (P TI(S)), 1),

|p+v|=Mo+1 |p+v|=My
with ¢, (pY, 0) = RZ?M(pO, 0) and Cy,(p%, 0) = SZ{?M(pO, 0) and with
Cuv = Cup, C=—Cyy (10.3)
(so that x is real-valued for f = f). Then we have what follows:
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(1) For ¢' the flow of Xy, see Lemma 8.1, and (2%, f*) = (2, f) o ¢',

?’Lﬂ/[noz—l,m—l(u H47 H(f)a 2, f)a

0,Mg+1 RO Mo+1

ft —eios 2;1R”,,,,L,l,,,t,l(t,H47H(f),z,f)<>jT(e . ,,L,,,,Lfl,mfl<t7H47H(f>vZ»f>ﬂf’i) (10.4)
X (f+ S(r)LMnOL 1,m— 1(t,H4,H(f),Z,f)).

(2) Forn—m—-12s2s+m—-12m —landkEZm[On—m—l]and
for 1 > eo > 0 sufficiently small, ¢ = ¢' € C™H({UZ, k,u;hk) satisfies
¢*Qo = Qp.

=2+ R

Proof. This result is a simple corollary of Lemma 8.1. For the proof that ¢*Qy = Qy,
which is obvious in the standard setups, see the comments in [17, Lemma 5.3]. O
Then we have the following result on Birkhoff normal forms.

Proposition 10.3. For any integer 2 < £ < 2N + 2 there are transformations
FO = F10¢y0...0 ¢y, with §; the transformation in (9.3) and with the ¢;’s like
in Lemma 10.2, such that the conclusions of Lemma 8./ hold; that is, such that we
have the following expansion, with Iy = p3:

HO = K o3 = ¢(p}, 1L(f)) + Ha + Ry2, (W, (), ) + Z R“)

Jj=—1,.

with HY defined in (8.12) and with the following additional properties:

(i) R} =
(ii) all the nonzero terms in R((f) with |p + v| < £ are in normal form, that is
e (u—v)=0;

(iii) all the nonzero terms in Rgé) with |p +v| < £—1 are in normal form, that is
e (—v) € Tess(Hpo).

Proof. The proof of the analogue of Proposition 10.3 in [17] involves the simpler
symplectic form

OF) = =1 Y dz A dz + Gosdf, df).

In (8.11), we replace TI(f) with o; then h = H®) (p®, g, 2, f) is C?N+2 near (0,0,0)
in (0,2, f) € R” x C x (X, n¥}) and the statement of Proposition 10.3 is about the
fact that some of the following derivatives vanish:

1
0 h
guu(p ,0) = Wagaz |(g,z )=(0,0,0)° lu+v| < 2N +2, (10.5)
103Gl (1, 0) = ﬁaf;ag b, ooy IHHVI<2N+L (10.6)

The proof is iterative and consists in assuming the statement correct for a given ¢
and proving it for ¢ + 1, by picking an unknown x as in (10.2) such that H® o ¢
satisfies the conclusions for £+ 1, where ¢ = ¢, for ¢! the flow for the Hamiltonian
vector field of x.

Now, let us pick x provided by [17, Theorem 6.4] when we use the symplectic

form Q(()O). We will show that this same y works here.



1250 ANDREW COMECH AND SCIPIO CUCCAGNA

Let ¢© be the t = 1 flow generated by X>(<O). Notice that ¢ is a symplecto-
morphism for Q . Set

HO =9 1(f) + Hy+ Y, R (10.7)
j=-1,0,1

Noticing that here (p°, II( f)) contributes 0 because it is 1 (p?, o) with g an auxiliary
independent variable,

v rr(£)
HEHY| o 000)

v Y4
LV HO| L o0

= ororHO| <|p+v| <2N+2

(0,2,)=(0,0,0)

v 70
= 04y H )|(g,z,f)=(g,o,o)’ Slp+vls

<2N +1

(10.8)
since all the other terms of H® not contained in H® are higher order in some of
the variables, for example order 2 or higher in f. As we pointed out, 1 (p°, II(f))
contributes nothing to (10.8). The same is true of the term 1(io3H, f, ) inside
HY, see (8.12) (however, the pullbacks of these terms are significant in the formulae
below). So the only contributors of (10.7) to (10.8) are very regular functions
n (0,2, f), where o = II(f) is as before treated as auxiliary variable and f €
(Xe N X_k). This yields the useful result that while the Lh.s.’s in (10.8) require f
quite regular, for example f € Y for a sufficiently large k, the r.h.s.’s are defined for
f € X_y for a large preassigned k. This is because the only term in H® ®°, 0,2, f)
that, to make sense, requires some regularity in f, that is the %<1'103'Hp1 f, f> hidden
inside HY (see (8.12)) does not contribute to (10.8).

Furthermore, by Lemma 10.2, we have

v 4 0 _ 0
6563H( Yo ¢( )‘(@,z,f):(&O,O) o 8’;01H © ¢( )’(g,z,f)=(g,070)’
2< |p+v] <2N +1,
(10.9)

oxVHO o =V, HY o 9 (g =(20.0)

I1<|p+v|<2N

©)
8 =000

since the pull-backs of the terms of H® not contained in H® have zero derivatives
because they are higher order either in z or in f, as can be seen considering that
) acts like (10.4) for My = £. Since ¢ too has this structure, (10.9) is true also
with ¢(®) replaced by ¢. Set now

H® o ¢ =p(p°, 0) + F with F := HO o ¢ — 1(p°, o). (10.10)
WehavedF‘ (0:2,F)=(2,0,0)

in (z, f). Lemma 8.2 is telling us that ¢! o #( is the identity up to a zero of order
£+ 1at (2,f) =(0,0) in C™ x (X, nX_g). Then by an elementary application of
the chain rule

a#av | (0,2,f)=(0,0,0)
oL, F|,

= 0, since by Lemma 8.4 we see that F'is at least quadratic

= MOYF o ¢~ 1o¢0>|wf) (2.0,0)° 2< [ju+v|<l+1,

_ 1, 400
(02f)=(0:00) = GzVF 09 00 |(@7z7f)=(970,0)’ I<|p+vi<t

On the other hand, by Lemma 8.3 we have that ¢ (p°, 0) and 9 (p°, 0) 0 ¢~ 0 ¢(©
differ by a zero of order £ + 2 in (p,0,0). Summing up, we conclude:

orovHO o ¢\(g — oL HO 0 g0
LoV H o g

2<jp+v|<l+1,

=(0,0,0) (0,2,f)=(0,0,0)’

_ v (e 0
(0:2,F)=(0,0,0) — (93VfH( o (b( )|(@7z’f)=(@’0,0)’ I<|p+vl<t
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Hence we have shown that [17, Theorem 6.4] implies Proposition 10.3. O

11. Formulation of the system. We consider the Hamiltonian H := H@N+1
and the reduced system

={zH}, f={fH}. (1L.1)
Recall that
H = ¢, 1(f)) + Ha + Zo + Z1 + R, (11.2)
Hj like (8.12), Zp like (10.2), Z; like (10.1), R = 33, _5 3 R + Rllc’jn(ﬂél,ﬂ(f)’ 7).

We recall that, in the context of Strichartz estimates, a pair (p,q) is called
admissible if

2/p+3/qg=3/2, 2<q<6, p=2. (11.3)

Theorem 11.1. For the constants 0 < € < ¢y of Theorem 1.1, there is a fized
C > 0 such that

£l e @, w2y < Ce for all admissible pairs (p,q), (11.4)
|2 L2, ) < Ce for all multi-indexes p with e - > wi, (11.5)
|2l @,y < Ce. (11.6)

Furthermore, we have lim;_, 1 z(t) = 0.

By standard arguments that we skip, such as a simpler version of [19, Sect. 7],
Theorem 11.1 is a consequence of the following continuity argument.

Proposition 11.2. For the constants 0 < € < €y of Theorem 1.1, there exists a
constant k > 0 such that for any Cy > K there is €9 > 0 such that if the inequalities
(11.4)~(11.6) hold for I = [0,T] for some T > 0 and for C = Cy, then in fact the
inequalities (11.4)—(11.6) hold for I = [0,T] for C = Cy/2.

We now discuss the proof of Proposition 11.2, which is similar to the proof for the
scalar NLS; see for example [19] or [18]. We have, see (9.6), f = (X}?))f + (Xg))f.

In [18], the equation was f = (Xg,)))f. Given multi-indexes ©’, 0 € NJ* we write
© <0if © #0 and O] <O, 1 <! <m. We now introduce

Mo={peNy: [e-pl>w", |pgf<2N+2, |e-p|<w'ifpy’ <p}, (11.7)

M={(p,v)eNg": le-(u—v)|>w', |p+v|<2N+2 and

11.8
e (W =) <wif (W) < (n,v)}. (1)

Notice that
if (11,) € M we have either y = 0 and v € My, or v = 0 and g€ My.  (11.9)

In [19, 18] it is shown that for GY,, := G ., (p°,0) we have

(X}(r?))f = lef + Z (6H_7(f)H)Pcﬁ03<>jf — 2 ZHEVGEW + R; + Ry,
j=1,...,7 (p,v)eEM
(11.10)
P. the projection on X, in (7.4), and there is a constant C'(Cy) independent of e
such that

IRy L1 o, 1), mry + HR2HL3([O,T],W1,g) < C(Co)e®. (11.11)
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We sketch briefly this point. With v ¢ defined in (7.12), we define
Ry= Y 2% (GY, — Gu) —i03V iRy — 03By f,
(,v)eM

where the last term is defined schematically from @f<B2, f2> ~ <@fB2, f2> +Bsf.
Then the desired estimate on Ry in (11.11) is elementary. For example,

I 2f\|L2( orLwhE) S I1Ball e jo.77,82) | fl L2 o, w10y < €l Fllezorywey < €

by (8.13) and (11.4) in [0,T]. Ry is formed by the other terms and it is standard
to show that it satisfies the bound (11.11). For example, for 2 < d < 4,

[<ViBa F g <[ sup (VBag. f ez
¢ |9‘H 1=1
<| sup  [ViBagls | flpem| < U 17eps 1750 < €
”9‘le1:1 ’ L%
and for d = 3,4, for (d — 1, q4) admissible,
|Baf* i < HfHLooHleHLd tpaa S €L (11.12)

The d = 5 term can be treated similarly, but has an additional part when the f
derivative is applied to the ¢ variable in (8.15). But the resulting term is like (11.12)
for d = 6. Finally, [VEp(f)llLim: < €2 by hypotheses (H1)-(H2). Having discussed
(11.11), by (9.8) we get '

Xig) = RO (W) [COF Hyn £ + (P HYO 5050 F) + O f B + Ro)

— Y 0L GO PiiosOf. (11.13)
(p,v)eEM
Then, for v obtained summing contributions from (11.13) and the >}, , in
(11.10), we obtain
f=(Hp f+ Peiogv-0f) =— > 22"GY, + Ry + Ra. (11.14)
(p,v)eEM
It is easy to see from (11.4)—(11.6) and (11.11) that
V]2 (fo,71,87)+ 2 ([0,77,r7) < C(Co)e. (11.15)

Strichartz and smoothing estimates on f are a consequence of well-known estimates
for the group e*»' P, which resemble those valid for !*2; see [16] for references.

To deal with the term P.io3v-{ f, where the operator Pcnadv ¢ does not commute
with #H,1 we adopt an idea by Beceanu [4]. We consider the system f =1io3v-Qf,
writing it in the form

F=AMf+BOf, Alt):= ). iosv;(t)0; and B(t):= Y| iosv,(£)0;.
j=1,...,4 7j=5,6,7
(11.16)
Since A(t) and B(t) commute and the terms of the sum defining A(t) commute, if
we denote by W (t, s) the fundamental solution of the system (11.16), that is,

oW (t,s) = (A(t) + B(t))W (¢, s) with W (s, s) = I, (11.17)

and by Wa(t, s) = ele AW A (resp. Wi(t, s)) the fundamental solution of f = A(t) f
(resp. f = B(t)f), then we have W(t,s) = Wa(t, s)Wg(t, s).
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Lemma 11.3. Let M > 5/2 and o € [0,1/2). Then there exists a constant C > 0
dependent only on M such that for all s <t in [0,T]

[y ™ (W (1, 5) — 1) el A<Dy | o po)
< Calt = )V T s,y +2o (1s.01) (11.18)
with Yo (t) = <t>7%+a fort =1 and Yo (t) =t~ fort € (0,1).
Proof. We have
W(t,s) —1=[Wa(t,s) — 1)Wg(t,s)] + [Wg(t,s) —1]. (11.19)

In the first term in the r.h.s. Wg(t,s) commutes with the other operators and is
an isometry in L?:

[y MWa(t, s) — )Wg(t, 5)e? 7A@y =M | s 1o
= ey MWa(t, 5) — 1)el7> ANy =M | g o o,

Then the desired estimate of this is that of [19, Lemma 9.4]. We next consider the
second term in the r.h.s. of (11.19). By the commutation properties of Wg(t, s) we
are reduced to bound

t 1
[y Metos A== ()™M | g a2y (f |B(t/)WB(t/a3)dt/|B(L2,L2)> :

The first factor is bounded by co(t—s)~2, the second by |t—8|aHBH%OO((s,t),B(L2,L2))7
where the last factor is bounded by [ V|7 (s 4 pr)-
Proposition 11.4. Let F(t) satisfy P.F(t) = F(t) Consider the equation
U —Hpu— Peiogv - Qu = F. (11.20)

Then there exist fixred o > 3/2, and an €y > 0 such that if € € (0, €y) then we have

|l Lo,y wray < C([Pew(0) [y + || 20,77, 510y + L1 ([0,77, 1)) » (11.21)
for any admissible pair (p, q).

Before the proof, we observe that Proposition 11.4 implies the following.

Corollary 11.5. Under the hypotheses of Theorem 11.1 there exist two constants
co and €y > 0 such that if € € (0,¢€q) then

”fHLf([O,T],WZI’q) < cpe + ¢ Z |12# 20,1y, for any admissible pair (p,q).
(n,v)eM
(11.22)

For the elementary proof of this corollary, see for instance [19, Lemma 8.1].
Proof of Proposition 11.4. We follow [4]. Denote ug = P.u(0). We set P; :=1—P,,
fix § > 0 and consider

Z —HpPoZ — Piogv-OP.Z = F —6PyZ, Z(0) = uo. (11.23)
Notice that, see (2.24),
Hpr = io3(—A +w') + V with V e S(R?, B(C?,C?)); (11.24)

we then rewrite (11.23) as

Z —ios(A —w)Z —iogv-OZ = F + V\VaZ — Py(v)Z with Z(0) = uo,
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Py(v) := Pyiogv- 0 +iogv-OPy and ViVa = V — Hp1 Py — 6Py with Va(z) a smooth
exponentially decaying and invertible matrix, and with the multiplication operator
Vi« H& — H%* bounded for all k, s and s’. We have:

Z(t) = W (t,0)el7s A+t 7(() (11.25)
+ f t gios(- A+ = (1 41 [F(t’) T VIVRZ(t) — ﬁd(v(t’))Z(t’)] dt'.
0

For arbitrarily fixed pairs (K, S) and (K’,S’) there exists a constant C' such that
we have N
HPd(V)‘/Q_lHB(H*K’,*S”HK,S) < Ce.

By picking € small enough, we can assume that the related operator norm is small.
We have

12 Lrwarnrzme—0 < ClZ(0)|ar + ClF|prm s p26.70

+ Vi = Pa(v(E)Vy e e mrmoy VaZ (@) | L2 -
For Ty f(t) = Va §, elos A+ (£ )V, f(t')dt!, by (11.25), we obtain:

(I — Ty)VaZ(t) = VaW (£, 0)el7(~ 2+t 7(0)
t

o V'QJ eﬁg3(_A+WI)(t_t/)W(t,t/) [F(t/) _ Pd(V(t/))Z(t/)] dr'.
0

We then obtain the desired result if we can show that

11 = To) 220y, @oyyo < Chs (11.26)
for eCy smalleNr than a fixed number. Thanks to Lemma 11.3 it is enough to prove
(11.26) with Ty replaced by

t

Tof(t) = VQJ (ios (= At (=) £t
0

Set
t

Tlf(ﬁ) _ VQJ 6(7’;‘-[?1PC+6Pd)(t'7t)V1f(t/) dt
0
By [15] we have | T 2(j0,7), 51 (r3))o < Ca for a fixed Cy. By elementary arguments,
see [27],
(I—To)(I+T1) = (I+T1)(I—T0) =1.

This yields (11.26) with To replaced by T and with C7; = 1 + Cs. O
Now we turn to the equations z; = 10z, H. We will prove the following.

Proposition 11.6. There exists a fixed cg > 0 and a constant €9 > 0 which depends
on Cy such that

Mla®P+ > 12520 < co(l+Co)e®, Ve [0,T], Vee (0,¢).
l (p,v)eEM
(11.27)

Proposition 11.6 allows to conclude the proof of Proposition 11.2. The proof of
Proposition 11.6 follows a series of standard steps, and is basically the same as the
analogous proof in [16], or in [3].

The first step in the proof of Proposition 11.2 consists in splitting f as follows:

g=f+Y, Yi=—= ) 2Ry, (e (v - )G, (11.28)
(p,v)eEM
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where R;Z{ . is extension from above of the resolvent and makes sense because
P

the theory of Jensen and Kato [26] holds also for these operators; see for example
Perelman [30, Appendix 4].

The part of f that acts effectively on the variables z will be shown to be Y, while
g is small, thanks to the following lemma.

Lemma 11.7. For fixed s > 1 there exist a fixed ¢ such that if €q is sufficiently
small we have ||g| 20,1, 0.~ (r3,c4) < Ce.

Proof. In the same way as the proof of Proposition 11.4 (which we wrote explicitly)
is similar to analogous proofs valid for the scalar NLS (1.3), the proof of Lemma 11.7
is analogous to the proof of [19, Lemma 8.5] contained in [19, Sect. 10] and is skipped
here. The only difference between [19] and the present situation is notational, in
the sense that inside (11.20) one has io3v-Qu = i03 3, , v;0;u, as opposed to [19,
(10.1)], where the corresponding terms are iog Z?zl v;Oju. But this does not make
any difference in the proof because what matters is simply that each ¢; commutes
with —A + w!, which was used to get (11.25). O
Now we examine the equations on z. We have

—ZZ.:]‘ = az.(Hg + Zo+ 21 +R)

When we substitute (11.28) and we set R, := Rj?—t, (e (v —p)) we obtain

pv

shtazr+p

— 4 = 0z Hy = 05,20 +1 Z VZT<RQBG04§= HUSGMV>
(e0.), ()M : (11.20)
n=v .
+ Z VzZ; 103G L) + 0z, R.
(wem
Using (11.9), we rewrite this as
. 2HzZv .
— ’LZ]' - anHQ = &Zj ZO + Z V377<g, 110'3Gl“)> —+ 5] (11.30)
(p,v)EM Zj
Z VJ - <R0,6G06a io3Go,) (11.31)
B,veMg
T 2 t0Ga0,103Gg,). (11.32)
a,vEMo

Here the elements in (11.31) can be eliminated through a new change of variables
that we will see momentarily and &; is a remainder term defined by

Zhzv .
gj = 2 Vj?<97103G;w> + (‘)%]R - (1131) - (1132) (11.33)
(p,v)eM J
Set ¢ =z + Fl(Z,E) with

v+8
_ wz¥
Fi(z%) = ), 7<ROBGOB,103GOU>
e, € (BHV)Z

wz%zZ"
Z m@%o@m HUSGOV>
a,veM
e-aFe-v
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This change of variables is such that, setting F' = (F1, ..., Fy), we get

£z flls=oi = Y, (0zF(2,2)0: Ha(2,0) — 0:, F(2,2) 05, Ha(2,0))
I=1,...n
0z, Hy(F(2,%),0) + (11.31) + (11.32).

Furthermore, by v € My, which implies v - e > w!,

(11.5)—(11.6),

HC - ZHLZ(O,T) < Ce Z HZO[HLZ(O,T) < 0(00)627 ||§ — ZHL@(O”]") < 0(00)63
aeMg

we have |v| > 1. Then, by

(11.34)
In the new ¢ variables, (11.30) takes the form

0(

—1(j = 0 Ha(C, /) + 2 Zo(C, f) +Dj+0 3, vjo= c <R;oGao,ng8y>,

oz' VGM() J
(11.35)
with for 4; =r.h.s. of (11.29)
Dj = 5]' + £](2570) + Z (9ZZF zZ, Z Al - agle(Z,E)Zl) . (1136)
=1

I8

From these equations by >, (clazl (Hg + Zo) — (i0¢,(Ha + Zg)) = 0 we get

Ot Z el G?

l=1,....n

Z lIm DZCl + 2 Z e Z/Re (CQC <RIOG0¢O7HU3G8U>)'

=1,. a,veMg
ea=ev

(11.37)

Lemma 11.8. Assume inequalities (11.4)—(11.6). Then for a fized constant cy we
have

DT m (D5E;) Izrory < (1 + Co)eoe®. (11.38)
j=1,....,n

Proof (sketch). For a detailed proof we refer to [3, Appendix B]: here we give a
sketch. First of all, we consider the contribution of £;. This, in turn, is a sum of
various terms. For the terms originating from Rg, cf. Lemma 8.4, we have

<05, Ba®,0(), 2 ), FG s < 110y o€ < €47,
with (d, pg) admissible, and for d = 2,3,4,5. For the following term, we claim
||anR2<j HL} < . (11.39)

From Lemma 8.4 we know that Ry is basically a sum of degree 2N + 3 monomials
in (z,%, f), which are at most degree 1 in f. Let us take a term which is degree 0 in
f. Then its 0z, derivative is in absolute value bounded above by a term [2#*"| with
lu| + [v| = 2N + 2. So we can write it as |z*t+7Y| with |o| > N + 1, |3] = N + 1.
But then o -e > w! 8-e > w'. Then

1222470 < 1202 12° N2 ¢ o < €
Terms of degree 1 in f can be treated similarly, yielding (11.39). We claim also
ohtaz v+

HV] Cj S e for |(u—v)-e| >w' and (u,v) ¢ M. (11.40)
Zj
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In this case we can write z#z" = z#'7” 27%° with (1/,1/) € M and |y| + |6] > 0.
Then we consider

Z’UJLOLEU_‘_B* ’ ’ z“,+afu/+ﬁ -
v (= v TP T (( - 7))
Zj Zj
By (11.5) and (11.6),

, e _ o _ +|6
|29 402 P2y < 277 |12 ]2%2° | 2 HzHlfng h<e,

and by (11.34)

Z/Hrazl”rﬁ _ _ a=p 3
by @ = 2y $ 122 izl —Clzz <

This yields (11.40). By similar arguments, one can prove
g )
[vi—=—9,103Gu) ¢y < € for [(p—v) - el > w' and (p,v) ¢ M,
J

We next consider the following, see [3, Lemma B.1],
10;(Z0(C. f) = Zo(z, )G Ir < €. (11.41)

Is enough to consider z® g—ﬁzj -~ %—ﬁzj with e-a =e-§ and 3; > 0. By the Taylor
i i

expansion these are
2078

220 (=

k Zj

The remainder term is the easiest, the other two terms similar. Substituting the
at+A-B+p

ER
B-e>w! A-e>w! and B-e > w'. and with ay # 0 # By. By (H8),e-a =e- 3
implies that there is at least one index Sy # 0 such that e, = ex. Then, by the fact

2078

) =206+ 57 () @20 + GO0 )

definition of ¢, a typical term in the first summation is £ , with o - e > wl,

that monomials 2®Z” in Z; are such that |a| = |3| > 2,
a=B ,A5B B a=f
% < |2 2 a2 < C2lHBl < 0264 (11.42)
|2k | L P2k lpe | 2ok llpe

Other contributions from (11) can be treated similarly, yielding (11.41).
The main contribution to the l.h.s. of (11.38) is originated from the following
terms:

nzv _
Hz/j@@,ﬁagwaj HLl < c1Coé? for (p,v) e M (11.43)
Zj h
with ¢; a fixed constant. Indeed the term to bound equals
Y 2z, - _
v 2tz {g,105G 1) + Vj?@, 103G (¢ — Zj)-
J

By Lemma 11.7, the first term has L} norm bounded by

|G|z 0.2 227 | 12| 9] 2 10—« < |G| e mro.s Coece < e1Co€?

for a fixed ¢;. The second term has L} norm bounded by the following, which yields
(11.43),
ZHzZY

s W s

9lrzmo—<¢ = 2lz2 < €.
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We estimated the contribution to the Lh.s. of (11.38) of £;. There are further terms
n (11.36) to estimate. We claim

1(€(2,0) = £(z, M)l < € (11.44)
A typical contribution to the Lh.s. is

(9(I1(f)) — 9(T1(0))

v+06
VjZ

——(z; + (¢; — %)) with a,v € My,
Zj

with g € C1(R7,C). We can bound its L; norm using
102" N2 )27 o2 < €

and using the argument that leads to (11.42). For the discussion of the bound for
the contribution originating from the »},_; . termin (11.36), which is also higher
order; see [3]. O

The second term in the r.h.s. of (11.37) equals, using G9, = G,

2> kRe R:FHPI(—&) > C“Gop.ios ), CUG8u>

KER aeMy, e-a=k veMy, ev=kr

(11.45)
-1 Z Kk Re <R1H 1 n)G,ﬁ03§> for G := /21 Z ¢*GY,,
KER aeMy, e-a=k

where 8 = {ke R:3 v e My s.t. Kk =e-v}. Notice that K € 8 = k > w?.
As in [16, Lemma 10.5], there exist L,o € WHP(R3 C*) for all ke R and p > 1
such that the r.h.s. of (11.45) is equal to

N kA(k, Q) for Ak, ) = —Re<RmS( Aoty (=5 L(C),ﬁa3f>

KER
and L(¢) := vV2r Y| (“LY,.
OLEM()

We claim that each term in the above summation is non-negative. Observe that

A(k,¢) = A1 (k, Q) + Aa(, ¢), L(¢) = “(L1(¢), La(()), with
Ai(r,¢) = 1 (=1)"* Re <Ru( 1it1(— A+w1) —k)Ly,iL; >
Introduce now

1 /1 1 1.
U = \—@ <z —z) such that U™ iU = —03,

with o3 the Pauli matrix (1.2). Taking the complex conjugation, U T = 203.
Then, using ‘U = U~!, we have, for U='L; = !(L;1, Li2):
whi(k, ¢) = (—1)”1Re<U*1R;’;(_1)i+l( prory(~RUUTL, U400 'L, >
i+1
= (_1) - Re<RZr,1)i+1

03(*A+w1)(_K)U7 Li, 203U Li>

= (—1)’i+1 Re <Rzr—1)i+1(—A+w1) (—H)L“, ’Lfil
_ (—]_)'L Re <R?——1)i(—A+w1)(_H)Li2’ ’Lfﬁ
Using the Sokhotski—Plemelj formula, we have:
Al Ii C <7,5 A w + H)L12,2L12> = 7<5 A w + /’13)ng,le>
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As(k,Q) = <1,6(A —wl+ K)L21,1f21> = —<(5(A —w! + H)Lgl,f21> <0.

The Fermi Golden Rule consists of two parts. The first part consists in showing
that A(k,() are negative quadratic forms for the vector ((*)aem, s.t. a-wi=r- This
was proved here. The second part is that the A(k, {) are strictly negative quadratic
forms. This is expected to be generically true (as a similar statement was expected
to be true in [12, 35]). We do not know how to prove this. For a proof on a different
problem, see [2, Proposition 2.2]. For specific systems the strict negative condition
ought to be checked numerically. Here we assume it as an hypothesis:

(H9) (Fermi Golden Rule) the Lh.s. of (11.46), proved above to be negative, is
strictly negative, that is for some fixed constants and for any vector { € C*

we have
MkA(r Q) ~— D¢ (11.46)

eER aeMg
By (H9) we have
2 Z e Im (Di(;) 2 0 Z el|Gl® + Z ISl (11.47)
I=1,....,n l=1,...,n aeMg

Then, for ¢t € [0,7] and assuming Lemma 11.8, we have
Y ela®P + Y 16 Ge < € + Coc®.
I=1,...,n aeMg

By (11.34) this implies |z|2Lgo(0 ) + 2 aeM, “ZQ“%,Q(O IS €2 + Cye? and yields Propo-
sition 11.6. O
In the course of the proof we have shown that |z® Hi%o,t) < C26% and (1.8)

together imply HzaH%Z(O H S Coe?. This means that we can take Cy ~ 1. With
Corollary 11.5 this completes the proof of Proposition 11.2. O

12. Proof of Theorem 1.1.
Lemma 12.1. There is f, € H'(R?,C*) such that f(t) from (11.4) satisfies

. ios(—Atw!)t
Jdim [£(t) = W (E 0)e? AT = 0, (12.1)
where W (t, s) is the fundamental solution from (11.17).

Proof. Starting from (11.10) and using (11.24), we obtain the following analogue of
(11.25):

() = W(t,0)eios (A<Dt £(0) 4+

¢
J elos(-A+w )(t’t/)W(t,t’)[V fE)y= > MG, + Ri(t) + RQ(t’)] dt'.
0 (p,v)eM
This implies W (0, t)eios(A=«")t £(¢) i f+ in HY(R3,C*), by standard arguments
(cf. [19, Sect. 11]). O
Completion of the proof of Theorem 10.5. Recall that expressing u in terms of
the coordinates in (3.8) we have

u(t) = 79 X O (YT TR + ¥ ()9 K) () + Py (1)), (12.2)
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where we denote by (p/,7/,',r’) the initial coordinates. Using the invariance
II(u(t)) = H(up) we can express (p/,b') in terms of 7’ obtaining the following;:

p;(t) = I;(uo) — T (1" (1)) + R, (P, L (1)), 77 (1)) for j = 1,2,3,4;
bp(t) = (209) M5 (r'(8)) + RE%% (05, 110 (1)) + R, (P4, 110 (1), (1)) (12.3)
bp(t) = (2p3) ™ e (r' (1)) + R0, (P2, TL (1)) + R (03, TL( (1)), 77 (1))

Furthermore, we can express ' in terms of the (z, f) of the last coordinate system
for £ = 2N + 1 in Proposition 10.3:

P () = € Timr o9 PLI (10)2(0. 1105 p (Xiey RS, (RIS 2 Do

x (£6) + P (LTI (0), 2(0), (1)) . (12.4)

While the changes of coordinates in Lemma 9.2 and in the normal forms in Section 10
involve loss of regularity of f, in order to be differentiable so that the pullback of the
symplectic forms makes sense, nonetheless these maps are also continuous changes
of coordinates inside in H!(R?, C?); see Lemma 8.1 for [ = 0. Notice that (1.1)
leaves Y, (R3,C?) invariant for any k € N and that, similarly, the system leaves
C™ x (X. N Xx(R3,C?)) invariant.

By the well-posedness of (1.1) in H'(R3,C?) and of (11.1) in C™ x X,, a contin-
uous change of coordinates (12.2)—(12.4) maps solutions of (11.1) in C* x X, into
solutions in H!(R3,C?) of (1.1), capturing the solutions of (1.1) in the statement
of Theorem 10.3. See also [20, Sect. 8].

By Lemma 12.1 it is easy to conclude that R%fn P 0in R” and S¥' — 0
’ —+00

ksmoy oo

in X4 (R3,C*) for the terms in (12.4), and that R,lgfn v 0 for the terms in (12.3).
My o

Then for 1 < j < 4 we have

lim T0;(7/ (1)) = lim TL(f(£) = lim T (W(t,0)els A+t p ) — T1(f)

t—+00 t——+00 t—+00

since II; (W(t,O)eﬁ"S(_A“““’l)th = II;(f+). Hence, since p is characterized by the
first four variables (cf. (2.12)), this defines p, in (1.9).
We consider a function g € C1(Ry, G) such that

et X0 (VISP + ¥ (1)02K) = T(a(1)).
By (12.4) we have
T(g()) Py (£) = Tg(t))et Sm Fim O (X Rimd) f oy, (1), (125)
where 02k<1)t—>_)+a30 in ¥;(R3 C?). We claim the following, with the proof in
Appendix A.
Claim 12.2.
T(g(t))elo® Zimt RO (eXiar Riimio) = (0, ¢) (12.6)

with W(t, s) the fundamental solution, in the sense of (11.17), of a system of the
form
u = 103V - Qu, where v-0 = Z 103V (t)0;. (12.7)
G=T,m7
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Substituting (3.9) and (12.4) into (1.1), for a G; € CO(H*(R?,C?), L'(R3,C*))
we get

f=—iosAf +i0sv - Of + Gy (u), (12.8)
while from (11.14) we have for a Gy € C°(H(R3,C?), L*(R3,C*))
f=—iosAf +iosw' f +iozv-Of + Galu). (12.9)

The fact that G, Go € CO(H'(R?,C?), L'(R3,C*)) is rather simple. For example,
Go(u) is given by the sum of the r.h.s. of (11.14) with a linear term V1 f where
V1 € S(R3, M(C*)) is the matrix-valued function in (11.24). It is elementary to
show that u +— f is in CO(H'(R3,C?), L*(R3,C*%)).

The rest of Ga(u) comes from the r.h.s. of (11.14), obtained applying @f to
the terms R|?:1 in the expansion (8.11). It is elementary that this, too, is in
CO(H' (R?,C?), L} (R?, CY)).

By comparing the equation for f with G; and the equation for f with G, it
follows that we necessarily have v - { = w! + v - {; see [18, Lemma 13.8]. Hence,
returning to (12.5), we have

T(g()) Py oy (1) = W(O0, )W (1,002 e 758 £y 4 0413 (1),
for W (t,0) defined by (11.17) and where
0, (W (0, )W (£,0)€173% ) = W (0, t)ios (v — ¥) - O + w') W(t,0) = 0.
We conclude that there exists go € G such that for hy = T(go)f+ one has
T(g(t))Pp/(t)T/(t) = e_ﬁo-sAtth + (0] 28! (1)

This completes the proof of (1.9).

Finally, we emphasize that the proof is predicated on the values II;(uy) = p?
for j < 6, with the coordinate changes and the manifold M¢(p°) dependent on p°.
However, since the symbols R}’ ~and S}’ = appearing in the coordinate changes

depend continuously on p°, the estimates are uniform in p°, as long as this is close
enough to p'. This completes the proof of Theorem 1.1. O

Appendix A. Proofs of Lemma 8.1, Lemma 8.2 and Claim 12.2. Lemma 8.1
is obtained expressing r in terms of (z, f) from the following lemma, where we omit
the dependence on the constant parameter I1,.

Lemma A.1. For n, M, My,s,s’ k,l € Ng with 1 < 1 < M such that (8.4) is
satisfied, for a € A a parameter, with A an open subset in RY, and for &y > 0,
consider

H(t) =ios Y. Ryt 0, T(r), ) 05r + SLAP (¢ 0, TI(r), 7). (A1)
J<7
Let ke Zn[0,n— (I +1)] and set for s" =1 ande >0
Uy ={r e T MaSe « [rls., +[T(r)] <e}. (A.2)

Let ag € A. Then, for e > 0 small enough, (A.1) defines a flow F:
3i(r) = €78 i RO (A TI(r), )0 o

3 0,Mg+1

T(E i=1 Rn—lfl,L(t’a’H(T)’T)ﬁai) (T + SZ%O_I,l&v a, H(T)’ T)) ’
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where for and for e1 > €2 > 0 sufficiently small we have

§i € CY(~4,4) x Dga(ag, e2) x US, 1 U, 1) (A.4)

€1,

Proof (sketch). While the statement is the same of [17, Lemma 3.8] and [2, Lemma
3], we have to deal with operators ¢; for j = 5,6,7 which do not commute.

For ¢ € su(2) and ¢ € R* we consider S := ¢~ 17 ZjﬂqiofT(e_f)r, for T the
representation in (2.19). It is elementary that for some F; € C® we have

Hj(?“) = Hj(S) for 7 =1,2,3,4, (A )
5
IT; (r) = IL;(S) + F;(&,11,(S)|f—5) for j =5,6,7,

where F;(0, ) = 0 = Fj;(*,0) for any * and where for j = 5,6, 7 the above equality
is obtained proceeding like in Lemma 5.1. Then expressing the coefficients of (A.3)
in terms of the new variables, we have new coefficients

D(t,a,€,0,9) := emio3 Xj qj<>jT(e_g)SiL’f‘f/})(>|<)7 where
i (t’av alizys oilizs + Fi(€, orlis)lis, €17 X qujT(eg)S> ;
UAj(t,a,€ 0,9) :=RypPH ().
Notice that for 0 < £ < M we have
D(t,a,€,0,8) =Sy, (t.a,&,0,8) and Aj(t,a,&,0,5) = RYYP, (ta,€, 0, 9).
Then consider the following system which we explain below:

S =2(ta.& 0,5);
q; = 2A;(t,a,§,0,5) for j =1,2,3,4, with ¢;(0) = 0;

51 IR .
i (ad(€)* € = D Aj(t,a,€, 0, S)io; with £(0) = 0; (A.6)
k=1 """ =1
Qj = <S; <>j©(t7aa§7 0, S>> + Aj,
A._ O’ ]:1’27374a
’ —0cFy (&, onl]_s)€ — 3_s 00 (€, 0klres,6.7)01, J =5,6,7.

We explain now the above equations. The second and third line are defined in order
to simplify the equation for S. Indeed, when we substitute S in the equation of r
we get

0,(e'73 Zi-1 90 T(5)S) =

4
— e Xia 01 (ef) 10y Y 5055 + T(e™)aT())S + 9)

Jj=1

4 7
= 17325140 (T(ef)ﬁag D1 A0S +ios ) AjojT(ef)S) +D.
j=1 j=5

By the choice made in the second line of (A.6) the summations over j = 1,2, 3,4
cancel out. We will show that the summations over j = 5,6, 7 also cancel out. By
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the Baker—Campbell-Hausdorff formula, see [33, p. 15], we have

e = (Z : <ad<f>>’”é> e, where ad(¢) : su(2) — su(2), ¥~ [£,9].

=k
(A7)
So, for Iz the unit element in SU(2), we have
e¢]
&Y) — 1 k=1 ¢ I3
0(T(e*)) = dT'(Tgz) ( 71 (ad(©) f) T(e*). (A.8)
k=1""
On the other hand, by (2.9) and (2.20) we have
D1 Ajios0;T(ef) = AiyadT( Ng2)(io;)T(€5).
j=5,6,7 i=1,2,3

So the third equation in (A.6) yields the cancellation of these terms. Hence we
conclude that the first equation in (A.6) is true.

We also derive equations for g; by differentiating 9,I1,;(S) and by substituting

Solving the last equation in (A.6) in terms of gj\]7~:5 and replacing in the last

equation 5 by means of the third equation, we obtain, for 1 < ¢ < M,
S = S:;%O,é(t, a, 5, 0, S)7

q; = Rg’%‘?l(t,a,f, 0,5) for j =1,2,3,4, with ¢;(0) = 0;

5 = R%%?Z‘l(t’ayg’ o, S) with 6(0) = O7
0j = Rg%o—ﬁ,le(taa@, 0,9) forj=1,..7.

(A.9)

Taking as initial conditions (r,0,0,II(r)), by elementary arguments, see [17, Lemma
3.8], we get from (A.9) a flow

t . .
S(t) =r+ L Sy a TI(r), r)dt =+ 8P (¢ a, TI(r), 7);

t
4;(t) = f RNt (), )t = Ry (4 a,TH(r), v) for j = 1,2,3,4;
0

3 t 3
§(t) = Zj ROMOAL (0, TI(r), P)dt iy = ) RYMEE (0, TI(r), r)ios;
=1 0

=1
t
I (S(t)) = T, (r) + f ROMAL (41 0, TI(r), r)dt
=1I0;(r) + RYMH (6 a, 1), 7) for j =1,...,7.

(A.10)
In view of (A.5), we get also

IL(r(t) = I (r) + RyM2 (¢t a, TI(r), r) for j = 1,...,7. (A.11)

This ends the proof of the parts of Lemma 8.1 which differ from [17, Lemma 3.8]. O
The proof of Lemma 8.2 follows from the following result.

Lemma A.2. Consider two systems for { =1,2:

() =ios Y. A TI(r), )0 + DOt TI(r), ),
j=1,...,7
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with the hypotheses of Lemma A.1 satisfied, and suppose that
DU (¢, T(r),r) = DO (&, T1(r),r) = Sy 30 (¢, T(r), 7).

Let r — r‘&) with £ = 1,2 be the flow for each of the two systems. Then, for s, s'

as in Lemma A.1,
M
Ity =gy ls_, < Clrls

Proof. The proof is elementary. We consider

d .
O ()l = 3 ()i Ry I ), rlyy) - Oy

0=1,2 0=1,2

+ D (D) DOE () ) + D) (=) DI (T, i)
0=1,2 0=1,2

0,Mg+1 ,
Sl (®I(ry))irsy)

Then for x} := (H(T&)), r&))
¢
Irte) =il < ZL el dt’ +J [ty | Mo+
14

t el
|| 1o DO g )l
0 Jo

/

H(T€2)) - H(rf1))| ar'

¢ el

’ f J [0, DI, x} +7(xh — x5
0 Jo

Since there is a fixed C' > 0 such that

Iry@)ls_, < Clrls_, from (8.3),

|H(rf,2)) - H(rf;))| < C’HTHZE\/[OH from the previous one and (8.3),

10, DV (¢, 1L, 0,7) |5, < Cllrl5°

HaQD(l)(t7 II, o, 7‘) Hzfs < CHTHE,S )

where the last inequalities follow from (5.4), for some fixed constant C > 0 we
obtain

T’EQ) - T€1)||E_S dt,.

t
M, Mo— 4 4
Ity — iy ls_, < C (t|r||z°j1 #1127 [ ey =l dt) 7

for t € [0, 1], which by Gronwall’s inequality yields (8.8). O
Proof of Claim 12.2. Let g = R* x su(2) be the Lie algebra of G. We can assume
that the inverse of the Lh.s. of (12.6) is equal to ¢’ Xjm1 X5 (105 T(ef®) with X e
CY(Ry,R*) and € € C* (R, su(2)). Then, for u(t) := €' Tjaa Xt )07 (e£0 g, by
(A.8) we have

a(t) = hog Y, X;(H)0;u(t) + dT(Tc2) (Z ’“‘%(t)) u(t).

We set ¥;(t) = X;(t) for j < 4 and, exploiting that ic;|?_, is a basis of su(2), we
define ¥ (t)[7_; by

).

K"‘H

3 e
2, Vis(Bion = 2,
=1

k=1
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Then we conclude that (12.7) it true for this choice of u(t) and of \ij(t)|j7-=1. Then

u(t) = W(t,O)uo and W(O,t) = W‘l(t,O) is such that equality (12.6) is true. This
yields Claim 12.2. O

Appendix B. Proof of Lemma 8.4. The proof can be obtained from the follow-
ing lemma, expressing r in terms of (z, f) and omitting again the dependence of the
symbols on Il,, which has constant value.

Lemma B.1. Consider § = §' o--- oL with § = §_, transformations as in
Lemma A.1 on the manifold M$(p°). Suppose that for any 7 the My in Lemma A.1
equals mj, where 1 = my < ... < mp with the constant i in Lemma 8.1 (i) equal
to 1 when m; = 1. Fix M,k with ny » k = Ng (n1 picked in Lemma 3.1). Then
there is a n = n(L, M, k) such that if the assumptions of Lemma 8.1 apply to each
of operators F' for (M,n), there exist 1(0) € C® with (o) = O(|o|?) and a small
€ > 0 such that in UZ ;. for s =n — (M + 1) we have the expansion

Kog:%( (1) + 27 Q(Hp Pyr, Pyr) + Ry + Ep(Ppr) + R, (B.1)
Z <Bd (P T)d>+f3B5($U,H(T),T,T(x))(PpT)5(x) dl’,
d=2,3,4 R
with:
e B5(0,0) = 0;
o Balo,r) € CMU_y, Z1(R? B(RHY®LR))), 2 < d < 4, with U_, < R7 x

(qu:lM N X_k) an open neighborhood of (0,0);
. for (R (1) €Uy,

N

IV, 0.¢Bs(0,7,¢) |z, 2, (@15 ») < Ciy i < M.

Proof. The proof is in [17], but we sketch it. First of all, by (A.4) we have, for
k<n—L(M+1),
EH(IA,//[CH) i uEnL’i(MJrl) B S u:% L(M+1) ﬁ) uen;k(L+1)(M+1) Uff;f - Mgok’
(B.2)
where each map is CM if we pick ny = n = n(L, M, k) :=k+ 3+ (L + 1)(M + 1)
and then we get § € CM (U —(M+1) Z/{k+3)

EL+1, k

By (A.3), the r-th component of § is of the form
§lo,r) = e B Rita @i Rt 0oy Sy (0.7). (B3)
Then by [¢;, Ox] = 0 for all k if j < 4 we have
Hj(r)‘?:l oF =1IL(r + SllciS,MH(r)ar)) ?:1 = I(r )|4 1+ Rk+2 A (TL(r), 7).
From (3.13) we have
pogF =p+R,1€f27M and so ¢, 0§ = &, + S,lcflM.

Then we have

Euog) = E(e*fufs Z3-173%5 (\/T — b2 + boo K) (@, + Pyr) o g)

— E((®, + Byr) 0 §) = B(®, + 3,y + B eeaa 0 8L, )

= E(®p + Bpr + Sllgf-Q,M + PpsllfiQ,M)a
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where we use the commutation (for the proof, see [17, Lemma 4.1])
[P,, el7 3ot Riks i T(eZi= Ri’is,M)ﬁw]T
= [e270 Bim Rebon O (eXim Retondioe Plr = 12, .
We get similarly for 1 < j <4
I (uo 3)|§=1 =I0;(®, + Ppr + Sllcsz + PpsllciZ,M) ?:1
=TL(Qp + Ppr)lfoy + Ry
Then
K(§(u)) = E(®p + Ppr + Sllng,M + PpsllciQ,]W) —E (D)
= D) + Ry (@ + Pr) + Ry, =15 (20 ).
j<4

Like in [17, Lemma 4.3], we set

(B.4)

U =>a,+ SlleﬁQ,M + PpsllciQ,M;
we need to analyze E(U + P,r) which we break into (cf. (2.10))
E(U+ Pyr)=Ep(Y + Pyr) + Ex (¥ + P,r).
It is also shown in [17, Lemma 4.3] that
Ep(¥ + Pyr) = Ep(9) + Ep(P,r)

+ terms that can be incorporated into R”

. (B.5)

.

+ ) f da;f 7(8i+1)|t:065[3(|s\11+thr\2)]dtds.
j=0,1 JR? [0,1]2 J:

The second line of (B.5) equals

.
f dxf dtds Y, = (@")|,_y0 { B(|s®, + tPyr|*)+
®oRE s (B.6)

1
+ L dr 0-[B(|s(®, + T(Sllc’sz + Ppsllciil-Q,M) +tPyr[*)] }

The contribution from the last line of (B.6) can be incorporated into R” + Rifn
Notice that from the j = 0 term in the first line of (B.6) we get

1
zf dxf dso,[B'(1s®,2)s0, - Pyr] = 2 deB(®,2)8, - Pyr
R3 0

R3
= (VEp(D,), Ppr). (B.7)
The j = 1 term in the first line of (B.6) is 27'(V2Ep(®,)P,r, P,r); thus,
Ep(¥ + Pyr) = Ep(¥) + Ep(P,r) (B.8)
+(VEp(®y), Pyry + 27 (V2 Ep(Q) Pyr, Pyry + R + R
Then,
Ex (U + P,r) (B.9)

= Ex (V) — (AD,, Pyry + { — A(s}cﬁz,M + Pps};jQ’M),Pp@ +Eg(Pyr).

RI,Z

k,m
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Using (2.10), (2.6), (2.18) and the fact that io3A(p) - 0P, € Ty, M, see (2.21), we
have
(=A®, + VEp(®p), Ppyr) = (VE(®,), Py,r) = —Q(10sVE(®,), Ppr)
= —Q(io3A(p) - 0P,, Ppr) = 0.
Adding (B.8) and (B.9) and using the cancellation of the sum of the second term

in the right-hand side of (B.9) with the term (B.7) which follows from the above
relation, we arrive at

E(U + Pyr) = E(V) + E(Ppr) + 27 (V?Ep(®,)P,r, Pr) + R” + R, . (B.10)
where we used (2.10). From (2.18),
0 Rllcf2 M
E(0) = E(®,) + (VE(®,), B,S; o 1) + (VE(®,), 8.7, ) +Ry ] (B.11)
= B(@y) + Ry},
where the R,lﬁw in the right-hand side is absorbed into R,lﬂ?w in (B.1).
We have
—A(p) - T(®p + Pyr) = =A(p) - TH(®p) — Alp) - TH(Fpr) — A(p) - 0Py, Bpr) (B.12)

= =A(p) - I(®,) — A(p) - LL(Pyr),

where we used (A(p) - 0Py, Ppr) = Q(—1o3A(p) - OPp, Ppr) = 0.
Substituting (B.10) (where we apply (B.11)) and (B.12) into (B.4), we have:

K(§(u)) = E(®p) + E(Ppr) + 2_1<v2EP((I)p)PpTa Pyry — E(®p0)
= A(@) (@) = Ap) - TI(Ppr) + Ap) - TH(@p0) + R + Ry
By (4.5), d(p) = E(®,) — A(p) - II(®,). Then we have
B(®p) — E(®y0) — A(p) - (I(®y) = I(Dyo)) = d(p) — d(p°) — (Ap") = Alp)) - "
= K(®,) = O((IL;(r)[j-1)*) + R%%. (B.13)

H
where O((II;(r)|5-,)?) is (IT;(r)) in (B.1) and R%%, is absorbed inside R}ﬁw
Thus,

K(§(w) = »(11(r)) + B(Pyr) +27 (V2 Ep(®,) Pyr, Pyr) = A(p) - TI(Pyr) + R+ Ry 2
Breaking E(P,r) = Ep(P,r) + Ex(P,r) and using the relation
27 YNV2Ep(®,)Pyr, Pyr) + Ex (Pyr) — X(p) - T(Ppr)
=271(V2E(®) — A(p) - O)Ppr, Pyr) = 27 QU(H,p Pyr, Pyr),

we arrive at the conclusion of the lemma. O
The following is an elementary consequence of Lemma B.1 and is proved in [17,
Lemma 4.4].

Lemma B.2. Under the hypotheses and notation of Lemma 8./, for R like R,
for 1 € C®(R* R) with (o) = O(|o|?), we have

KoF = ¢(I(r)|j=1..4) + 27 QU Hpr,r) + Ry2 + Ep(r) + R, (B.14)
R = Z <Bd(H(r),r),rd>+f B5(3:,H(T),r,r(x))r)5(x) dzx,
d=2,3,4 R3

the By for 2 < d < 5 with similar properties of the functions in Lemma 4.1.
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Proof. The proof, for whose details we refer to [17], is obtained by writing
Pyr =71+ (P, — Pu)r=r+8Skl,
and substituting P,r = r + S})oloo inside (B 1). That from Ep(P,r) + R” in (B.1)

we obtain a term which is contained in R © 4+ Ep(r)+ R in (B.14) is elementary
and is discussed in [17]. We have

1 1 1
Q(H,Pyr, Pyr) = §<—APpr, Pyry — Xp) - II(P,r) + §<V2Ep(<l>p)Ppr, P,r).
(B.15)
Then
(=AP,r, Pyry = {— Arr>+ka, H(Ppr) = ()JFka,
(VEp(®p) Pyr, Byry = (V°Ep (O )r, ) + Ry + {(VPEp (D) — V2Ep(®p0))r,7),

AMp) = ApY) + R0 (W (1)]5=1) + Ry,
where for the last line we considered (3.13) which implies
p=1-1(r) + Rio’?oo

and where R’ (II(r)) is smooth in the argument and is O(|TI(r)]).
Then we conclude that the right hand side of (B.15) is

2’19(7-[1)17”,7")
27(- PO+ V2EP( )rm) + R, (0 (r)32y) + Rys,  (B.16)
+271(( VQEP D,) — VEp(®p))r, r>

where the last term can be absorbed in the d = 2 term of R’ by (3.13). Setting
(o) = ¢Y(0) + Rgé?oo(g) with the ’ROO « in (B.16), we get the desired result. O
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