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Abstract. We extend to a specific class of systems of nonlinear Schrödinger

equations (NLS) the theory of asymptotic stability of ground states already

proved for the scalar NLS. Here the key point is the choice of an adequate
system of modulation coordinates and the novelty, compared to the scalar NLS,

is the fact that the group of symmetries of the system is non-commutative.

1. Introduction. In this article we will consider the system of coupled nonlinear
Schrödinger equations,

#

iσ3 9u`∆u´ βp|u|2qu “ 0,

up0, xq “ u0pxq P C2, x P R3,
(1.1)

where i is the imaginary unit and the Pauli matrices are given by

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i

i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

. (1.2)

We assume that the function β satisfies the following two hypotheses, which guar-
antee the local well-posedness of (1.1) in H1pR3,C2q:

(H1) βp0q “ 0, β P C8pR,Rq;
(H2) there exists α P p1, 5q such that for every k P N0 there is a fixed Ck with

ˇ

ˇ

ˇ

ˇ

dk

dvk
βpv2q

ˇ

ˇ

ˇ

ˇ

ď Ck|v|
α´k´1 for v P R, |v| ě 1.

We recall that under further hypotheses, there exist ground state solutions of the
scalar NLS

i 9u`∆u´ βp|u|2qu “ 0 , upt, xq|t“0 “ u0pxq P C, x P R3 (1.3)

in H1pR3,Cq which are of the form eiωtφpxq with ω ą 0 and φpxq ą 0. Here we
assume:
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(H3) there is an open interval O Ď p0,8q and a C8-family

O Q ω ÞÑ φω P X
nPN

ΣnpR3,Cq,

with ΣnpR3,Cq defined in (2.1), such that φω is a positive radial solution of

´∆u` ωu` βp|u|2qu “ 0 for x P R3; (1.4)

(H4) we have d
dω }φω}

2
L2 ą 0 for ω P O;

(H5) for L` :“ ´∆` ω ` βpφ2
ωq ` 2β1pφ2

ωqφ
2
ω with the domain H2pR3,Cq, L` has

one negative eigenvalue and kerL` “ SpantBxjφω : j “ 1, 2, 3u.

The above hypotheses guarantee that the ground states are orbitally stable solutions
of the scalar NLS (1.3); see [25, 37]. In [16, 18] it has been proved that, under some
additional hypotheses, the solitary waves are also asymptotically stable, in a sense
that will be clarified later. This paper shows that some solitary waves of (1.1) are
asymptotically stable. To state the result, we denote by K : Cn Ñ Cn the operator
of complex conjugation in Cn and by SUp2q the group

SUp2q “

"„

a b
´Kb Ka



: pa, bq P C2 such that |a|2 ` |b|2 “ 1

*

. (1.5)

We consider the group
G “ R3 ˆ Tˆ SUp2q. (1.6)

There is a natural representation of G on H1pR3,C2q, with ϑ P T acting on u0 like
eiϑu0, x0 P R3 acting like a translation operator, and with an element of SUp2q
acting on u0 by transforming it into pa ` bσ2Kqu0. System (1.1) admits solitary
waves of the form

ψω,vptq “ e
it
´

ω` v
2

4

¯

e
i

2 v¨px´tvqφωpx´ tvq
Ñ
e1,

Ñ
e1:“

„

1
0



. (1.7)

We will show later that, along with mass, which we will denote by Π4, linear mo-
menta, which we will denote by Πi|

3
i“1, and energy, system (1.1) admits three further

invariants related to SUp2q which we will denote by Πi|
7
i“5. By Π we will denote

the vector Πi|
7
i“1. We will see later that acting with G on ψω,v we can generalize

the solitary waves. We will have solitary waves Φp characterized by ΠpΦpq “ p. We
will prove the following theorem.

Theorem 1.1. Assume (H1)–(H5) stated above, (H6)–(H8) stated in Section 7,
and (H9) stated in Sect. 11. Pick ω1 P O. Then there exist ε0 “ ε0pω

1q ą 0 and
C “ Cpω1q ą 0 such that if u solves (1.3) with u|t“0 “ u0 and if

ε :“ inf
gPG

}u0 ´ T pgqψω1, 0p0q}H1pR3,C2q ă ε0, (1.8)

then there exist a solitary wave ψω`,v` , a function g P C1pR`,Gq and an element
h` P H

1pR3,C2q with }h`}H1pR3,C2q ` |ω` ´ ω
1| ` |v`| ď Cε such that

lim
tÑ`8

}uptq ´ T pgptqqψω`,v`ptq ´ e
´iσ3∆th`}H1pR3,C2q “ 0. (1.9)

Remark 1.2. Noncommutative symmetry groups which involve the complex con-
jugation, of the type considered in this article, are interesting in particular in view
of the SUp1, 1q symmetry group which appears in the nonlinear Dirac equation
with scalar-type self-interaction (the Soler model) and in the Dirac–Klein–Gordon
model; see [24, 31]. Such symmetry groups result in the emergence of two-frequency
solitary waves [8, 10] (see also the monograph [9]). As a consequence, the asymp-
totic stability of standard (one-frequency) solitary waves could only make sense if
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one takes into account the convergence of perturbed solutions to both one- and
two-frequency solitary waves, which creates additional difficulties on the way to
treating the asymptotic stability. Let us mention that this difficulty was avoided in
the proof of asymptotic stability in the Soler model in [6, 29, 7, 14] by restricting
the class of perturbations so that the convergence to a bi-frequency solitary wave
was prohibited by symmetry considerations.

Theorem 1.1 is a transposition to a system of the result proved for scalar equa-
tions in [16, 18, 19]; see also [2]. We are not aware of previous similar results for
systems of PDE’s. For the orbital stability of systems of NLS we refer to Grillakis
et al. [25], De Bièvre and Rota Nodari [22]; see also [5] and references therein.

The proof of Theorem 1.1 goes along the lines of the proof for the scalar NLS.
If we look at the analogous classical problem of the asymptotic stability of the
equilibrium 0 for a system 9r “ Ar ` gprq, where gprq “ oprq at r “ 0 and with
a matrix-valued operator A, of key importance is the location of the spectrum
σpAq. Stability requires that if ς P σpAq then Re ς ď 0. Isolated eigenvalues on the
imaginary axis correspond to central directions whose contribution to stability or
instability can be ascertained only analyzing the nonlinear system, and not just the
linearization 9r “ Ar. This classical framework is also used for Theorem 1.1. First of
all, an appropriate expansion of u at the ground states (see Lemma 3.1 below) gives
us the variable r. The analogue of A is given by (2.24). In our case the spectrum
is all contained in the imaginary axis, but the continuous spectrum plays the same
role of the stable spectrum of A, thanks to dispersion and along the lines described
in pp. 36–37 of Strauss’s introduction to nonlinear wave equations [36]. The discrete
spectrum of (2.24) plays the role of central directions. The nonlinear mechanism
acting on the corresponding discrete modes and responsible for the stabilization
indicated in (1.9) has been termed Nonlinear Fermi Golden Rule in [34] and was
explored initially in [12, 35]. A detailed description, by means of some elementary
examples, is in [21, Introduction]; see also [38]. The same mechanisms, described in
[21] and used in [2, 3, 12, 16, 18, 19, 35] and in a number of other papers referenced
therein, are applied here to prove Theorem 1.1. A novel difficulty occurs with the
choice of modulation. Here the the idea is to use the representation (2.19). The rest
of the paper is not very different from [16, 17, 18, 19]. In the course of the proof there
are some difficulties related to the fact that the Lie algebra of G is not commutative,
and correspondingly, the Poisson brackets tΠj ,Πlu are not identically zero like in
the earlier papers. This is solved quite naturally by exploiting conservation laws
and considering the reduced manifold; see [28, Ch. 6]. Thanks to an appropriate
uniformity with respect to the conserved quantities of the coordinate changes, we
obtain the desired result.

2. Notation and preliminaries. We start with some notation. For ς P Cn we
use the Japanese Bracket notation xςy “

a

1` |ς|2.
Given two Banach spaces X and Y, we denote by BpX,Yq the Banach space of

bounded linear transformations from X to Y.
Let m, k, s P R. Given a Banach space E and functions R3 Ñ E, we denote by

ΣmpR3,Eq and Hk,spR3,Eq the Banach spaces with the norms

}u}2Σm :“ }
@

a

´∆` |x|2
Dm
u}2L2pR3,Eq, (2.1)

}f}Hk,spR3,Eq :“ }xxys
@
?
´∆

Dk
f}L2pR3,Eq, (2.2)



1228 ANDREW COMECH AND SCIPIO CUCCAGNA

where we will use mostly E “ C2. We also consider

the space of Schwartz functions SpR3,Eq :“ XmPRΣmpR3,Eq; (2.3)

the space of tempered distributions S 1pR3,Eq :“ YmPRΣmpR3,Eq. (2.4)

We denote by tv the transpose of v P Cn, so that the hermitian conjugate of v P Cn
is given by tpKvq, where K : Cn Ñ Cn is the complex conjugation in Cn. For
u, v P Cn we set |v|2 “ tpKvqv. We denote the hermitian form in L2pR3,C2q by

xu, vy “ Re

ż

R3

tpKupxqq vpxq dx, u, v P L2pR3,C2q, (2.5)

and we consider the symplectic form

ΩpX,Y q :“ xiσ3X,Y y, X, Y P L2pR3,C2q. (2.6)

Definition 2.1. Given a differentiable function F , its Hamiltonian vector field
with respect to a strong symplectic form Ω is the field XF such that ΩpXF , Y q “
dF pY q for any tangent vector Y , with dF the Fréchet derivative. For differentiable
functions F and G, their Poisson bracket is tF,Gu :“ dF pXGq if G is scalar-valued
and F is either scalar-valued or takes values in a Banach space E.

Notice that since X ÞÑ xiσ3X, y defines an isomorphism of L2pR3,C2q, or of
H1pR3,C2q, into itself, our symplectic form (2.6) is strong. For u P H1pR3,C2q we
have the following functionals (the linear momenta and mass) which are conserved
in time by (1.1):

Πapuq “ 2´1x♦au, uy , ♦a :“ ´iσ3Bxa for a “ 1, 2, 3; (2.7)

Π4puq “ 2´1x♦4u, uy , ♦4 :“ 1lp“ identity operatorq; (2.8)

see [25, (2.6) and p. 343] for (2.7). We also consider the following functionals Πj ,
j “ 5, 6, 7:

Πjpuq :“ 2´1x♦ju, uy with ♦j :“

$

&

%

σ3σ2K, j “ 5,
iσ3σ2K, j “ 6,
σ3, j “ 7.

(2.9)

The energy is defined as follows: for Bp0q “ 0 and B1 “ β we write

Epuq :“ EKpuq ` EP puq, (2.10)

EKpuq :“
1

2
x´∆u, uy, EP puq :“ ´

1

2

ż

R3

Bp|u|2q dx.

It is a standard fact which can be proved like for the scalar equation (1.3) (for the
latter, see [13]) that (H1)–(H2) imply local well-posedness of (1.1) in H1pR3,C2q.

We denote by dE the Fréchet derivative of the energy E; see (2.10). We define
∇E by dEX “ x∇E,Xy. Notice that ∇E P C1pH1pR3,C2q, H´1pR3,C2qq, that
∇Epuq “ ´∆u` βp|u|2qu and henceforth that (1.1) can be written as

9u “ ´iσ3∇Epuq “ XEpuq, (2.11)

that is, as a hamiltonian system with hamiltonian E. Notice that ∇Πjpuq “ ♦ju
for j “ 1 ď j ď 7.

By (2.7) and (H4),

pω, vq ÞÑ pΠjpe
σ3

i

2 v¨xφω
Ñ
e1qq

4
j“1,

Ñ
e1“

„

1
0



,
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is a diffeomorphism into an open subset of R` ˆ R3. We introduce

p “ ppω, vq P R7 with pjpω, vq :“

$

’

&

’

%

Πjpe
σ3

i

2 v¨xφω
Ñ
e1q, 1 ď j ď 4;

0, j “ 5, 6;

Πjpe
σ3

i

2 v¨xφω
Ñ
e1q “ p4pω, vq, j “ 7.

(2.12)

Notice that Πjpe
σ3

i

2 v¨xφω
Ñ
e1q “ 0 for j “ 5, 6. We denote by P the subset of R7

defined by

P “ tppω, vq; ω P O, v P R3u. (2.13)

For p “ ppω, vq P P, we set

Φppxq :“ e
i

2 v¨xφωpxq
Ñ
e1 . (2.14)

Obviously Φppω,vq “ ψω,vp0q; see (1.7). We will set Φp1 “ ψω1, 0p0q for the function
in Theorem 1.1. We have ΠjpΦp1

q “ 0 for j “ 1, 2, 3, 5, 6. It is not restrictive to
pick the initial datum such that

Πjpu0q “ 0 for j “ 1, 2, 3, 5, 6. (2.15)

Indeed, by continuity, Πj for j “ 1, 2, 3, 5, 6 take values close to 0 in a neighborhood
of Φp1

. By boosts and Lemma 5.1, one can act on u0 changing it into another nearby
initial datum which satisfies (2.15); we skip the elementary details. We introduce

λppq “ pλ1ppq, . . . , λ7ppqq P R7 defined by λjppq :“

$

’

&

’

%

´vj , 1 ď j ď 3;

´ω ´ v2

4 , j “ 4;

0, 5 ď j ď 7.

(2.16)
They are Lagrange multipliers, and an elementary computation shows that

e´iσ3tλppq¨♦Φp “ ψω,vptq (2.17)

and that Φp is a constrained critical value for the energy satisfying

∇EpΦpq ´
ÿ

j“1,...,7

λjppq♦jΦp “ 0. (2.18)

We consider the representation T : G Ñ BpH1pR3,C2q, H1pR3,C2qq defined by

T pgqu0 :“ eiσ3τ ¨♦pa` bσ2Kqu0 for g “

ˆ

τ,

„

a b
´Kb Ka

˙

, (2.19)

where τ “ pτ1, τ2, τ3, τ4q P R3 ˆ T and τ ¨ ♦ :“
ÿ

j“1,...,4

τj♦j .

An elementary but very important fact to us is the following lemma.

Lemma 2.2. We have the following facts:

(1) The action of G given by (2.19) preserves the symplectic form Ω defined in
(2.6);

(2) The action (2.19) preserves the invariants Πj for 1 ď j ď 4 and E;
(3) The functionals Πj, 1 ď j ď 7, and E are conserved by the flow of (1.1) in

H1pR3,C2q.
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Proof. (1) follows from the commutation riσ3, a` bσ2Ks “ 0. (2) is a consequence
of

|pa` bσ2Kqu|
2 “ Re tpKuqppKaq `Kσ2pKbqqpa` bσ2Kqu

“ p|a|2 ` |b|2q|u|2 ` Re tpKuqppKaqbσ2K `Kσ2aKbqu “ |u|2.

The fact that the functionals Πj , 1 ď j ď 4, and the energy E are preserved by the
flow of (1.1) is standard. To deal with the cases j “ 5, 6, 7, we first recall that the
Lie algebra of SUp2q can be written as sup2q “ Span piσi, 1 ď i ď 3q. We have

d

dt
T pe´itσiq

ˇ

ˇ

t“0
“

$

’

&

’

%

d
dt pcosptq ´ i sinptqσ2Kq|t“0 “ ´iσ2K, i “ 1;
d
dt pcosptq ` sinptqσ2Kq|t“0 “ σ2K, i “ 2;
d
dt e

´it
ˇ

ˇ

t“0
“ ´i, i “ 3.

(2.20)

Like in [25, line 5 p. 313],

d

dt
Π4`ipuq “ x♦4`iu,´iσ3∇Epuqy “ xiσ3♦4`iu,∇Epuqy

“
d

ds

@

T peisσiqu,∇Epuq
D

ˇ

ˇ

ˇ

ˇ

s“0

“
d

ds
EpT peisσiquq

ˇ

ˇ

ˇ

ˇ

s“0

“ 0,

where the first equality holds for sufficiently regular solutions, while the last one
follows from (2). By a density argument and well-posedness of (1.1), we obtain
claim (3).

Lemma 2.3. The following 10 vectors are linearly independent over R:

Bp1
Φp, Bp2

Φp, Bp3
Φp, Bp4

Φp, Bx1
Φp, Bx2

Φp, Bx3
Φp, iσ2KΦp, σ2KΦp, iΦp.

(2.21)

The proof is elementary.
We consider now the “solitary manifold”

M : “

"

eiσ3τ ¨♦pa` bσ2KqΦppxq : τ P R3 ˆ T,
„

a b
´Kb Ka



P SUp2q, p P P
*

.

(2.22)
The vectors in (2.21) are obtained computing the partial derivatives in p0, p, 0q of

the function in C8pDCp0, ε0q ˆ P ˆ Tˆ R3,ΣkpR3,C2qq given by

pb, p, τq ÞÑ eiσ3τ ¨♦spbqΦp, where spbq :“
a

1´ |b|2 ` bσ2K. (2.23)

Then Lemma 2.3 implies that for any k ą 0 there is ε0 ą such that (2.23) is
an embedding and M is a manifold. The R-vector space generated by vectors in
Lemma 2.3 is the tangent space TΦpM.

Consider the linearized operator Hp :“ ´iσ3p∇2EpΦpq´λppq¨♦q. By λpppω, 0qq¨
♦ “ ´ω we have

Hppω,0q

ˆ

u1

u2

˙

“ ´

˜

iL
p1q
ω u1

´iL
p2q
ω u2

¸

, where

Lp1qω u1 “ ´∆u1 ` βpφ
2
ωqu1 ` 2β1pφ2

ωqRepu1q ` ωu1,

Lp2qω u2 “ ´∆u2 ` βpφ
2
ωqu2 ` ωu2.

(2.24)

It is well-known that Hp is R-linear but not C-linear; see [11, 15]. For this reason
we interpret H1pR3,C2q as a vector space over R. Later, in Section 7, we perform
a complexification. Recall the generalized kernel NgpHpq :“ Y8j“1 kerpHpq

j . The
following lemma is very important.
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Lemma 2.4. We have NgpHppω,0qq “ TΦppω,0qM.

Proof. First of all, L
piq
ω for i “ 1, 2 are decoupled, so that it is enough to consider

them separately. We have the following, which is a well-known fact about ground
states (see, for example, [32, Sect.XIII.12]):

kerpiLp2qω q “ NgpiL
p2q
ω q “ Spantiφω, φωu.

The following well-known consequence of (H4)–(H5), derived in [37], completes the
proof:

kerpiLp1qω q “ Spantiφω, Bxaφω|
3
a“1u,

NgpL
p1q
ω q “ kerpiLp1qω q

2 “ pi kerLp1qω q ‘ SpantBpje
i

2v¨xφω|
4
j“1u.

System (1.1) is an interesting example for the stability theory in the classical
paper by Grillakis et al. [25] because all the examples of systems of NLS’s in Sect.
9 in [25] for x P R3 and upt, xq P R4 have 4-dimensional centralizers, while for (1.1)
dimension is 6; see the following two remarks.

Remark 2.5. From the identification C2 “ R4 there is a natural inclusion SUp2q Ď
SOp4q. By the identification implicit in (1.5) of a P SUp2q and an element in the
unit sphere ra P S3 Ă R4, the action of a P SUp2q on v P R4 is nothing else but the
product of quaternions, vra. Similarly, by elementary computations, it is possible
to see that pa` bσ2Kqv “ pav (on the r.h.s. multiplication of two quaternions) for
all v P R4 and for an appropriate pa P S3. In the framework of [25] when applied
to (1.1), a key role is played by the centralizer of the group teτ4iσ3 ; τ4 P Ru inside
R3 ˆ SOp4q. Using [39, p. 111], it can be shown that G, acting as in (2.19), is a
connected component of this centralizer.

Remark 2.6. The key hypothesis in [25] is Assumption 3 on p. 314, stating Z “
kerpHppω,0qq for

Z :“
!

Bt rT pet$qΦppω,0q

ˇ

ˇ

ˇ

t“0
: $ P R3 ˆ sop4q commutes in R3 ˆ sop4q with iσ3

)

,

where for $ P R3 we have rT pet$q “ T pet$q and for $ P sop4q we set rT pet$qw “
et$w for any w P R4, with the usual product row column SOp4q ˆ R4 Ñ R4.

Always Z Ď kerpHppω,0qq; see [25, Lemma 2.2]. Lemma 2.4 yields the equality.
Assumption 1, i.e. local well-posedness, is true and Assumption 2, about bound
states, is true under our hypothesis (H3). Other hypotheses needed in [25], such as
that the centralizer, or at least its connected component containing the unit element
in R3ˆSOp4q, acts by symplectomorphisms which leave the energy invariant, follow
from Lemma 2.2. So by [25] the bound states (2.17) are G-orbitally stable.

3. Modulation. The manifold M introduced in (2.22) is a symplectic submanifold
of L2pR3,C2q. This follows from

Ωpiσ2KΦp, σ2KΦpq “ p4 , ΩpBp4
Φp, iΦpq “ 2´1Bp4

xiσ3Φp, iΦpy “ Bp4
p4 “ 1,

ΩpBpaΦp, BxaΦpq “ 2´1BpaxΦp,♦aΦpy “ Bpapa “ 1 for a “ 1, 2, 3,

and from symplectic orthogonality of all other pairs of vectors in (2.21). We obtain
a bilinear form

Ω : SpR3,C2q ˆ S 1pR3,C2q Ñ R.
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Since TΦpM Ď SpR3,C2q, we can define the subspace TKΩ

Φp
M Ď S 1pR3,C2q. Ω also

defines a pairing

Ω : ΣnpR3,C2q ˆ Σ´npR3,C2q Ñ R.
This yields the decomposition

Σ´npR3,C2q “ TΦpM‘ pTKΩ

Φp
MX Σ´npR3,C2qq. (3.1)

We denote by pPp and Pp the projections onto the first and second term of the direct
sum, respectively:

pPp : Σ´npR3,C2q Ñ TΦpM, (3.2)

Pp : Σ´npR3,C2q Ñ TKΩ

Φp
MX Σ´npR3,C2q.

A special case of (3.1) is

L2pR3,C2q “ TΦpM‘ pTKΩ

Φp
MX L2pR3,C2qq. (3.3)

It is easy to see that the map p ÞÑ pPp is in C8pP, BpΣ´npR3,C2q,ΣnpR3,C2qqq

for any n P Z. The following about the spbq in (2.23) is consequence of elementary
computations:

pspbqq´1 “ pspbqq˚ “ sp´bq ; (3.4)

spbqσj “ σjsp´bq for all j “ 1, 2, 3 ;

Kspbq “ s p´Kbq , spbqi “ isp´bq.

Lemma 3.1 (Modulation). Fix n1 P N0 :“ NY t0u and p1 P P. Then there exists
an open neighborhood U´n1

of Φp1 in Σ´n1
pR3,C2q and functions p P C8pU´n1

,Pq,
τ P C8pU´n1

,R3 ˆ Tq and b P C8pU´n1
,Cq such that ppΦp1q “ p1, τpΦp1q “ 0,

bpΦp1q “ 0 and ϑpΦp1q “ 0 so that for any u P U´n1
,

u “ e´iσ3τpuq¨♦spbpuqqpΦppuq `Rpuqq, with Rpuq P TKΩ

Φppuq
MX Σ´n1pR3,C2q.

(3.5)

Proof. The proof is standard. For vιppq, 1 ď ι ď 10 varying among the 10 vectors
in (2.21), set

Fιpu, p, τ, bq :“ Ωpeiσ3τ ¨♦sp´bqu´ Φp,vιppqq.

Next, setting
Ñ

F“ pF1, ..., F10q, we compute

Ñ

F pu, p, τ, bq
ˇ

ˇ

ˇ

u“e´iσ3τ¨♦Φp, b“0
“ 0 and the Jacobian matrix is

B
Ñ

F pu, p, τ, bq

Bpp, τ, bq

ˇ

ˇ

ˇ

ˇ

ˇ

u“e´iσ3τ¨♦Φp, b“0

“ rεijΩpvippq,vjppqqsi,j , 1 ď i, j ď 10, (3.6)

where the numbers εij belong to t1,´1u. Since for each vippq there is exactly one
vjppq such that Ωpvippq,vjppqq ‰ 0, it follows that all the columns in (3.6) are
linearly independent. We can therefore apply the implicit function theorem which
yields the statement.

It can be proved (see [17, Lemma 2.3]) that in a sufficiently small neighborhood
V of p1 in P, for any k ě ´n1, the projection

Pp : TKΩ

Φp1
MX ΣkpR3,C2q ÝÑ TKΩ

Φp
MX ΣkpR3,C2q (3.7)
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is an isomorphism. From Lemma 3.1 we have the parametrization

P ˆ pR3 ˆ Tq ˆDCp0, ε0q ˆ pT
KΩ

Φp1
MXH1pR3,C2qq Ñ H1pR3,C2q (3.8)

with the modulation coordinates

pp, τ, b, rq ÞÑ u “ e´iσ3τ ¨♦spbqpΦp ` Pprq. (3.9)

We choose p0 P P so that

Πjpu0q “ p0
j for j P I “ t1, 2, 3, 4u (3.10)

(that is p0
j “ 0 for j “ 1, 2, 3 and Π4pu0q “ p0

4, i.e. u0 and Φp0 have same charge).
In terms of coordinates (3.9), system (1.1), which we have also written as 9u “

XEpuq, see (2.11), can be expressed in terms of the Poisson brackets as follows (see
[17, Lemma 2.6]):

9p “ tp,Eu , 9τ “ tτ, Eu , 9b “ tb, Eu , 9r “ tr, Eu. (3.11)

By the intrinsic definition of partial derivative on manifolds (see [23, p. 25]) we have
the following vector fields (recall bR “ Repbq and bI “ Impbq):

Bτj “ ´iσ3♦ju for 1 ď j ď 4,

Bpk “ e´iσ3τ ¨♦spbqpBpkΦp ` BpkPprq for 1 ď k ď 4,

BbA “ e´iσ3τ ¨♦BbAspbqpΦp ` Pprq for A “ R, I,

(3.12)

which are obtained by differentiating by the various coordinates the r.h.s. of the
equality in (3.9). By (3.12), we have an elementary and crucial fact that XΠj puq “
iσ3∇Πjpuq “ iσ3♦ju for 1 ď j ď 7 which corresponds to formulae (2.5)–(2.6) in
[25]. In particular, we have

XΠj puq “ Bτj for 1 ď j ď 4,

which immediately implies

tΠj , τku “ ´δjk, tΠj , bAu “ 0, tΠj , pku “ 0, tr,Πju “ 0 for 1 ď j ď 4.

A natural step, which helps to reduce the number of equations in (3.11) and cor-
responds to an application of Noether’s Theorem to Hamiltonian systems, see [28,

Theorem 6.35, p. 402], is to substitute each function pj |
4
j“1 in the coordinate sys-

tem pp, τ, b, rq with the functions Πj |
4
j“1 and move to coordinates pΠj |

4
j“1 , τ, b, rq.

Indeed, as in [17, formula (34)], we have, for %j :“ Πjprq with 1 ď j ď 4,

Πj “ pj ` %j `ΠjppPp ´ Pp1qrq ` xr,♦jpPp ´ Pp1qry, %j :“ Πjprq. (3.13)

This allows one to move from pp, τ, b, rq to pΠj |
4
j“1 , τ, b, rq. Furthermore, BτkΠjpuq ”

0 for k ď 4 implies that the vector fields Bτk |
4
k“1 are the same whether defined us-

ing the coordinates pp, τj |
4
j“1 , b, rq or the coordinates pΠj |

4
j“1 , τj |

4
j“1 , b, rq. Hence,

exploiting the invariance Epeiσ3τ ¨♦uq “ Epuq,

tΠj , Eu “ ´tE,Πju “ ´dEXΠj “ ´dEBτj “ ´BτjE “ 0 for 1 ď j ď 4.

By these identities, (1.1) in the new coordinates pΠj |
4
j“1 , τ, b, rq becomes

9Πj “ 0 for 1 ď j ď 4, 9τ “ tτ, Eu ,

9b “ tb, Eu , 9r “ tr, Eu. (3.14)
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Notice that we have produced a Noetherian reduction of coordinates, because the
equations of b and r are independent from the ones in the first line. We point out
that by Lemma 2.2 we have also

9Πj “ tΠj , Eu “ 0 for 5 ď j ď 7. (3.15)

4. Expansion of the Hamiltonian. We introduce now the following new Hamil-
tonian,

Kpuq :“ Epuq ´ E
`

Φp0

˘

´
ÿ

j“1,...,4

λjppq
`

Πj ´ p
0
j

˘

. (4.1)

For solutions v of (1.1) with initial value v0 satisfying Πjpv0q “ p0
j for 1 ď j ď 4,

we have

tΠj ,Ku “ tΠj , Eu “ 0 for 1 ď j ď 7,

tb,Ku “ tb, Eu , tr,Ku “ tr, Eu , tτj ,Ku “ tτj , Eu ´ λjppq for 1 ď j ď 4.

Indeed, for example, since tΠj ,Πku “ 0 for j ď 7 and any k ď 4 (which follows
from r♦j ,♦ks “ 0 for j ď 7 and any k ď 4, cf. (2.7)–(2.9)), we have by Lemma 2.2:

tΠj ,Kupvq “ tΠj , Eupvq ´
ÿ

j“1,...,4

`

λktΠj ,Πkupvq ` pΠjpvq ´ p
0
j qtΠj , λkupvq

˘

“ tΠj , Eupvq,

where we used Πjpvq “ p0
j . Other Poisson brackets are computed similarly.

By BτjK ” 0 for 1 ď j ď 4, the evolution of the variables pΠjq|
7
j“1 , b, r is

unchanged if we consider the following new Hamiltonian system:

9Πj “ tΠj ,Ku “ 0 for 1 ď j ď 4, 9τ “ tτ,Ku , 9b “ tb,Ku , 9r “ tr,Ku,

(4.2)

where pΠjq|
4
j“1 , τ, b, r is a system of independent coordinates, and where we con-

sider also

9Πj “ tΠj ,Ku “ 0 for 5 ď j ď 7. (4.3)

Key in our discussion is the expansion of Kpuq in terms of the coordinates

p pΠjq|
4
j“1 , rq. We consider the expansion, with the canceled term equal to 0 by

(2.18) and (2.16),

Kpuq “ KpΦp ` Pprq “ KpΦpq `

((((
((((

(((
((((

(((
x∇EpΦpq ´

ÿ

j“1,...,4

λjppq∇ΠjpΦpq, Ppry

`

ż 1

0

p1´ tq
A”

∇2EpΦp ` tPprq ´
ÿ

j“1,...,4

λjppq∇2ΠjpΦp ` tPprq
ı

Ppr, Ppr
E

dt.

The last line equals (cf. [17, (99)])

2´1xp´∆`
ÿ

j“1,...,4

λjppq♦jqPpr, Ppry `
ż 1

0

p1´ tqx∇2EP pΦp ` tPprqPpr, Ppry dt

“ 2´1xp´∆`
ÿ

j“1,...,4

λjppq♦jqPpr, Ppry
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`

ż

R3

dx

ż

r0,1s2

t2

2
pB2
t q
ˇ

ˇ

t“0
BsrBp|sΦp ` tPpr|

2qs dt ds

`
ÿ

j“2,3

ż

R3

dx

ż

r0,1s2

tj

j!
pB
j`1
t q

ˇ

ˇ

t“0
BsrBp|sΦp ` tPpr|

2qs dt ds

`

ż

R3

dx

ż

r0,1s2
dt ds

ż t

0

B5
τBsrBp|sΦp ` τPpr|

2qs
pt´ τq3

3!
dτ ` EP pPprq.

The second term in the second line is 2´1x∇2EP pΦpqPpr, Ppry and so in particular
the second line is

2´1xp´∆`∇2EP pΦpq ´
ÿ

j“1,...,4

λjppq♦jqPpr, Ppry “ 2´1xiσ3HpPpr, Ppry.

By (4.1), we have

KpΦpq “ dppq ´ dpp0q ` pλppq ´ λpp0qq ¨ p0, (4.4)

where

dppq :“ EpΦpq ´ λppq ¨ p. (4.5)

Since Bpjdppq “ ´p ¨ Bpjλppq, we conclude KpΦpq “ Oppp ´ p0q2q. Furthermore,
from (3.13) we have

KpΦpq “ G
´

pΠj ´ p
0
j q|

4
j“1,Πjprq|

4
j“1,

`

Πj

`

pPp ´ Pp1qr
˘

`
@

r,♦jpPp ´ Pp1qr
D˘

ˇ

ˇ

4

j“1

¯

, (4.6)

with G smooth and equal to zero at p0, 0, 0q up to second order. Summing up, we
have the following.

Lemma 4.1. There is an expansion

Kpuq “ KpΦpq ` 2´1ΩpHpPpr, Pprq ` EP pPprq (4.7)

`
ÿ

d“3,4

xBdppq, pPprq
dy `

ż

R3

B5px, p, rpxqqpPprq
5pxq dx, where for any k P N:

‚ KpΦpq satisfies (4.4)–(4.6);
‚ pPprq

dpxq represents d-products of components of Ppr;
‚ Bd P C

8pP,ΣkpR3, BppR4qbd,Rqqq for 3 ď d ď 4;
‚ for ζ P R4, B5 depends smoothly on its variables, so that @ i P N, there is a

constant Ci such that

}∇i
p,ζB5p¨, p, ζq}ΣkpR3,BppR4qb5,Rqq ď Ci. (4.8)

We will perform a normal form argument on the expansion (4.7), eliminating
some terms from the expansion by means of changes of variables. The first step in
a normal forms argument is the diagonalization of the homological equation, see [1,
p. 182], which is discussed in Section 10.
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5. Symbols Ri,j
k,m, Si,jk,m and restrictions of K on submanifolds. We begin

with the following elementary lemma.

Lemma 5.1. Set u “ spbqψ. Then, for bR “ Repbq and bI “ Impbq, we have:

Π5puq “ p1´ 2b2RqΠ5pψq ´ 2bIbRΠ6pψq ´ 2
a

1´ |b|2bRΠ7pψq;

Π6puq “ ´2bIbRΠ5pψq ` p1´ 2b2IqΠ6pψq ´ 2
a

1´ |b|2bIΠ7pψq;

Π7puq “ 2
a

1´ |b|2bRΠ5pψq ` 2
a

1´ |b|2bIΠ6pψq ` p1´ 2|b|2qΠ7pψq.

(5.1)

Proof. We have

2Π5puq “ xσ3σ2Ku, uy “ xsp´bqσ3σ2Kspbqψ,ψy “ xσ3σ2sp´bqs p´KbqKψ,ψy

“ xσ3σ2

”

p1´ |b|2 ` bσ2KpKbqσ2Kq ´
a

1´ |b|2pb` pKbqqσ2K
ı

Kψ,ψy

“ xσ3σ2

”

1´ b2R ´��b
2
I ´ pb

2
R ´��b

2
I ` 2ibRbIq ´ 2

a

1´ |b|2bRσ2K
ı

Kψ,ψy

“ p1´ 2b2Rqxσ3σ2Kψ,ψy ´ 2bRbIxiσ3σ2Kψ,ψy ´ 2
a

1´ |b|2bRxσ3ψ,ψy.

This yields the formula for Π5puq. By a similar computation

2Π6puq “ xiσ3σ2Ku, uy “ xsp´bqiσ3σ2Kspbqψ,ψy “ xiσ3σ2spbqsp´KbqKψ,ψy

“ xiσ3σ2

”

p1´ |b|2 ´ bσ2KpKbqσ2Kq `
a

1´ |b|2pb´ pKbqqσ2K
ı

Kψ,ψy

“ xiσ3σ2

”

1´��b
2
R ´ b

2
I `��b

2
R ´ b

2
I ` 2ibRbI ` 2i

a

1´ |b|2bIσ2K
ı

Kψ,ψy

“ p1´ 2b2Iqxiσ3σ2Kψ,ψy ´ 2bRbIxσ3σ2Kψ,ψy ´ 2
a

1´ |b|2bIxσ3ψ,ψy.

This yields the formula for Π6puq. Finally, the formula for Π7puq is obtained from

2Π7puq “ xσ3u, uy “ xsp´bqσ3spbqψ,ψy “ xσ3spbqspbqψ,ψy

“ xσ3

”

p1´ |b|2 ` bσ2Kbσ2Kq ` 2
a

1´ |b|2bσ2K
ı

ψ,ψy

“ xσ3

”

1´ 2|b|2 ` 2
a

1´ |b|2bRσ2K ` 2i
a

1´ |b|2bIσ2K
ı

ψ,ψy

“ p1´ 2|b|2qxσ3ψ,ψy ` 2
a

1´ |b|2bRxσ3σ2Kψ,ψy ` 2
a

1´ |b|2bIxiσ3σ2Kψ,ψy.

We introduce the following spaces:

Ξk :“ tpΠ4, %, rq P R` ˆ R7 ˆ pTKΩMp1 X Σkqu for k P Z, (5.2)

where % is an auxiliary variable which we will use to represent Πprq. We now
introduce two classes of symbols which will be important in the sequel.

Definition 5.2. For A Ă Rd an open set, k P N0, A Ă Ξ´k an open neighborhood

of pp1
4, 0, 0q, we say that F P CmpA ˆ A,Rq is Ri,j

k,m if there exists C ą 0 and an

open neighborhood A1 Ă A of pp1
4, 0, 0q in Ξ´k such that

|F pa,Π4, %, rq| ď C}r}jΣ´kp}r}Σ´k ` |%| ` |Π4 ´ p
1
4|q

i in I ˆA1. (5.3)

We will write also F “ Ri,j
n,m or F “ Ri,j

k,mpa,Π4, %, rq. We say F “ Ri,j
k,8 if F “ Ri,j

k,l

for all l ě m. We say F “ Ri,j
8,m if for all l ě k the above F is the restriction of an

F P CmpAˆAl,Rq with Al an open neighborhood of p0, 0q in R7ˆpTKΩMp1XΣ´lq

and F “ Ri,j
l,m. If F “ Ri,j

8,m for any m, we set F “ Ri,j
8,8.
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Remark 5.3. Above, we can have d “ 0 (that is, A is missing). We will also use
the following cases: d “ 1 with a time parameter; A an open neighborhood of the
origin of Rˆ sup2q. The last case is used only in Appendix A.

Definition 5.4. T P CmpAˆA,ΣkpR3,C2qq, with AˆA like above, is Si,jk,m, and

we write as above T “ Si,jk,m or T “ Si,jk,mpa,Π4, %, rq, if there exists C ą 0 and a

smaller open neighborhood A1 of p0, 0q such that

}T pa,Π4, %, rq}Σk ď C}r}jΣ´kp}r}Σ´k ` |%| ` |Π4 ´ p
1
4|q

i in I ˆA1. (5.4)

We use notation T “ Si,jk,8, T “ Si,j8,m and T “ Si,j8,8 as above.

Lemma 5.5. On the manifold Πj “ p0
j for 1 ď j ď 4 there exist functions R1,2

8,8

such that
pj “ p0

j ´Πjprq `R1,2
8,8pp

0
4,Πjprq |

4
j“1 , rq. (5.5)

Proof. The conclusion follows by the implicit function theorem applied to (3.13).

Inside the space parametrized by pΠj |
4
j“1 , τ, b, rq, we consider

M6
1pp

0q defined by Πj |
6
j“1 “ p0

j

ˇ

ˇ

6

j“1
. (5.6)

Notice that the intersection of M6
1pp

0q with a small neighborhood of teiϑΦp1 :
ϑ P Ru is a manifold. Indeed, on the soliton manifold M the differential forms

dpj |
4
j“1 , dbR, dbI are linearly independent. At the points of M formula (3.13)

implies dpj “ dΠj for 1 ď j ď 4 while the first two lines of (5.1) imply dΠ5 “

´2p4dbR and dΠ5 “ ´2p4dbI . Hence, since Πj P C
8pH1pR3,C2q,Rq, it follows

that dΠj |
6
j“1 are linearly independent in a neighborhood of teiϑΦp1 : ϑ P Ru. Then

since M6
1pp

0q is defined by Πj “ p0
j for j ď 6 we obtain our claim on M6

1pp
0q for any

p0 sufficiently close to p1.
M6

1pp
0q is invariant by the system (4.2). The following shows that, when we

factor M6
1pp

0q by the action of R3 ˆT, the corresponding manifold is parametrized
by r P TKΩMp1 XH1pR3,C2q.

Lemma 5.6. There exist functions R1,2
8,8pp

0
4,Πprq, rq and functions R2,0

8,8pp
0
4,Πprqq

dependent only on pp0
4,Πprqq such that on M6

1pp
0q

bR “ p2p
0
4q
´1Π5prq `R2,0

8,8pp
0
4,Πprqq `R1,2

8,8pp
0
4,Πprq, rq ,

bI “ p2p
0
4q
´1Π6prq `R2,0

8,8pp
0
4,Πprqq `R1,2

8,8pp
0
4,Πprq, rq.

(5.7)

Proof (sketch). Since Π5 “ Π6 “ 0 by the first two equations in (5.1), by ΠjpΦp `
Pprq “ ΠjpPprq for j “ 5, 6 and by Π7pΦp ` Pprq “ p4 `Π7pPprq we have

2
a

1´ |b|2bRpp4 `Π7pPprqq “ p1´ 2b2RqΠ5pPprq ´ 2bIbRΠ6pPprq,

2
a

1´ |b|2bIpp4 `Π7pPprqq “ ´2bIbRΠ5pPprq ` p1´ 2b2IqΠ6pPprq.
(5.8)

We consider the following change of coordinates, which defines xR and xI :

2p0
4bR “ Π5prq ` xR and 2p0

4bI “ Π6prq ` xI . (5.9)

Substitute in the l.h.s. of (5.8) both (5.9) and (5.5), and write ΠjpPprq “ Πjprq `

R1,2
8,8pp

0
4,Πprq, rq everywhere in (5.8). Then from the first equation in (5.8) we get

p1`Opb2qq
“

1´Π4prq{p
0
4 `Π7prq{p

0
4 `R1,2

8,8pp
0
4,Πprq, rq

‰

pΠ5prq ` xRq

“ Π5prq `Opb
2Πprqq `R1,2

8,8pp
0
4,Πprq, rqq.
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So, after an obvious cancellation, we have

p1`Opb2qq
“

1´Π4prq{p
0
4 `Π7prq{p

0
4 `R1,2

8,8pp
0
4,Πprq, rq

‰

xR

“ R2,0
8,8pΠprqq `O

`

b2Πprq
˘

`R1,2
8,8pp

0,Πprq, rqq.

which in turn implies, for A “ R,

xA “ R2,0
8,8pp

0
4,Πprqq `Opb

2Πprqq `R1,2
8,8pp

0
4,Πprq, rqq

where the big O is smooth. Since a similar equality holds also for A “ I, substituting
again b by means of (5.9) and applying the implicit function theorem, we obtain

xA “ R2,0
8,8pp

0
4,Πprqq `R1,2

8,8pp
0
4,Πprq, rqq for A “ R, I.

Lemma 5.7. In M6
1pp

0q we have

Π7 “ p0
4 `Π7prq `R2,0

8,8pp
0,Πprqq `R1,2

8,8pp
0,Πprq, rq. (5.10)

Proof. By the third identity in (5.1) and by the definition of Pp, we have

Π7 “ 2
a

1´ |b|2bRΠ5pPprq ` 2
a

1´ |b|2bIΠ6pPprq ` p1´ 2|b|2qpp4 `Π7pPprqq.

Using Lemmata 5.5 and 5.6, we obtain (5.10).

6. Expressing Ω in coordinates. Normal forms arguments are crucial in the
proof of Theorem 1.1. It is important to settle on a coordinate system where the
homological equations look manageable. While the symplectic form Ω has a very
simple definition (2.6) in terms of the hermitian structure of L2pR3,C2q, it has

a rather complicated representation in terms of the coordinates pΠj |
4
j“1 , τ, b, rq.

Eventually we will settle on a coordinate system where the symplectic form is equal
to the form Ω0 to be introduced in Section 7. In this section we consider some
preliminary material.

We consider rΓ :“ 2´1xiσ3u, ¨ y. Using the definition of the exterior differentiation

it is elementary to show that drΓ “ Ω. We consider now the function

ψpuq :“ 2´1xiσ3e
´iσ3τ ¨♦spbqΦp, uy

and set Γ :“ rΓ´ dψ ` d
ř

j“1,...,4 Πjτj . Obviously dΓ “ Ω. We have the following.

Lemma 6.1. We have

Γ “
ÿ

j“1,...,4

τjdΠj ` 2´1ΩpPpr, drq `
ÿ

j“1,...,4

2´1Ωpr, PpBpjPprqdpj ` ς, (6.1)

where ς :“

˜

Π5
bRbI

a

1´ |b|2
´Π6

1´ b2I
a

1´ |b|2
´Π7bI

¸

dbR

`

˜

Π5
1´ b2R

a

1´ |b|2
´Π6

bRbI
a

1´ |b|2
`Π7bR

¸

dbI .

Proof. The proof is elementary. The identity operator is du, which can be expanded
as

du “ ´
ÿ

j“1,...,4

iσ3♦judτj `
ÿ

j“1,...,4

e´iσ3τ ¨♦spbqBpj pΦp ` Pprqdpj

`
ÿ

A“,R,I

e´iσ3τ ¨♦BbAspbqpΦp ` PprqdbA ` e
´iσ3τ ¨♦spbqPpdr.



ON ASYMPTOTIC STABILITY OF GROUND STATES 1239

Then, inserting this into rΓ and after some elementary simplification which uses also
(3.4), we obtain

rΓ “ 2´1xiσ3u, duy “ ´
ÿ

j“1,...,4

Πjdτj

`
ÿ

A“,R,I

2´1xiσ3spbqpΦp ` Pprq, BbAspbqpΦp ` PprqydbA (6.2)

`
ÿ

j“1,...,4

2´1xiσ3pΦp ` Pprq, Bpj pΦp ` Pprqydpj ` 2´1xiσ3pΦp ` Pprq, Ppdry.

We have:

second line of (6.2) (6.3)

“
ÿ

j“1,...,4

2´1xiσ3Ppr, BpjPprydpj ` 2´1xiσ3Ppr, Ppdry ` d2´1xiσ3Φp, Ppry,

where we used what follows:

xiσ3Ppr, BpjΦpy “ 0 from the definition of Pp;

xiσ3Φp, BpjΦpy “ xie
i

2 v¨xφω, Bpje
i

2 v¨xφωy “ 0 from formula (2.14).

Hence, by the definition of Γ and ψpuq, we obtain:

Γ “
ÿ

j“1,...,4

τjdΠj `
ÿ

j“1,...,4

2´1xiσ3Ppr, BpjPprydpj ` 2´1xiσ3r, Ppdry (6.4)

´ 2´1
ÿ

A“R,I

xiσ3BbAspbqpΦp ` Pprq, spbqpΦp ` Pprqy dbA.

For A “ R, by the definition of spbq the bracket in the last line equals

xiσ3

´

´bR
a

1´ |b|2
` σ2K

¯

p
a

1´ |b|2 ´ bσ2Kqu, uy

“ xiσ3

«

´bR ` b`
´

a

1´ |b|2 `
bRb

a

1´ |b|2

¯

σ2K

ff

u, uy

“ xiσ3

«

´ibI `
1´ b2I

a

1´ |b|2
σ2K `

bRbI
a

1´ |b|2
iσ2K

ff

u, uy

“ bIΠ7 `
1´ b2I

a

1´ |b|2
Π6 ´

bRbI
a

1´ |b|2
Π5.

For A “ I, the bracket in the last line of (6.4) equals

xiσ3

´

´bI
a

1´ |b|2
` iσ2K

¯

p
a

1´ |b|2 ´ bσ2Kqu, uy

“ xiσ3

«

´bI ` ib`
´

i

a

1´ |b|2 `
bIb

a

1´ |b|2

¯

σ2K

ff

u, uy

“ xiσ3

«

ibR `
1´ b2R

a

1´ |b|2
iσ2K `

bRbI
a

1´ |b|2
σ2K

ff

u, uy

“ ´bRΠ7 ´
1´ b2R

a

1´ |b|2
Π5 `

bRbI
a

1´ |b|2
Π6.

This completes the proof of Lemma 6.1.
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Lemma 6.2. Consider the immersion i : M6
1pp

0q ãÑ H1pR3,C2q and the pullback
i˚Γ, which by an abuse of notation we will still denote by Γ. We have:

Γ “ i˚Γ “ 2´1Ωpr, drq ` xR0,2
8,8pp

0
4,Πprq, rq ¨ ♦r ` S1,1

8,8pp
0
4,Πprq, rq, dry `Π7$,

(6.5)

where

$ “pbR dbI ´ bI dbRq “
1

4pp0
4q

2
pΠ5prqdΠ6prq ´Π6prqdΠ5prqq

`R2,0
8,8pp

0
4,ΠprqqdΠprq `

@

S2,1
8,8pp

0
4,Πprq, rq, dr

D

. (6.6)

Proof. The starting point is formula (6.1) for Γ. Obviously for the restrictions we
have dΠk|M6

1pp
0q “ 0 for 1 ď k ď 6. So that the first summation in the r.h.s. of

(6.1) contributes 0.
Next, notice that for 1 ď j ď 4 from (5.5) we obtain

dpj “ ´
@

♦jr ` S1,1
8,8, dr

D

`
ÿ

kď4

R0,2
8,8dpk,

which, solved in terms of the dpj ’s, gives

dpj “ ´
ÿ

kď4

A

pδjk `R0,2
8,8q♦kr ` S1,1

8,8, dr
E

. (6.7)

Substituting dpj from (6.7) into (6.1) and using and Ppr “ r`S1,1
8,8pp

0,Πprq, rq on
M6

1pp
0q, we obtain terms like the second in the r.h.s. of (6.5).

Finally, by Π5 “ Π6 “ 0, we obtain ς “ Π7$. To get the r.h.s. in (6.6), we use
the following formulae:

dbR “ p2p
0
4q
´1xσ3σ2Kr, dry `R1,0

8,8pp
0
4,ΠprqqdΠprq ` xS1,1

8,8, dry,

dbI “ p2p
0
4q
´1xiσ3σ2Kr, dry `R1,0

8,8pp
0
4,ΠprqqdΠprq ` xS1,1

8,8, dry,
(6.8)

where R1,0
8,8pp

0
4,ΠprqqdΠprq stands for

ř

j“1,...,7 R
1,0
8,8pp

0
4,ΠprqqdΠjprq with differ-

ent real-valued functions from the class R1,0
8,8pp

0
4,Πprqq. Formulae (6.8) are obtained

by differentiating in (5.7).
Substituting Π7 by (5.10) in (6.5) and using (2.7)–(2.9), we obtain

Γ “ 2´1Ωpr, drq ` xS1,1
8,8pp

0
4,Πprq, rq, dry

` p4p0
4q
´1pΠ5prqdΠ6prq ´Π6prqdΠ5prqq (6.9)

`
`

R2,0
8,8pp

0
4,Πprqq `R0,2

8,8pp
0
4,Πprq, rq

˘

dΠprq.

7. Spectral coordinates associated to Hp1 . By assumption, p1 “ ppω1, 0q. Re-

call that the operator Hp1 defined in L2pR3,C2q is not C-linear (because of L
p1q
ω1 ),

but rather R-linear. To make it C-linear, we consider the complexification

L2pR3,C2q bR C.

To avoid the confusion between C in the left factor and C on the right, we will use
ı to denote the imaginary unit in the latter space; that is, given u P L2pR3,C2q, we
will have ubpa`ıbq P L2pR3,C2qbRC. Notice that the domain of Hp1 in L2pR3,C2q

is H2pR3,C2q; we extend it to L2pR3,C2q bR C with the domain H2pR3,C2q bR C
by setting Hp1pv b zq “ pHp1vq b z.
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We extend the bilinear form x , y in (2.5) to a C-bilinear form on L2pR3,C2qbRC
by

xub z, v b ζy “ zζxu, vy, u, v P L2pR3,C2q, z, ζ P C.
We also extend Ω onto L2pR3,C2q bR C, setting ΩpX,Y q “ xiσ3X,Y y. Then the
decomposition (3.3) extends into

L2pR3,C4q bR C “ pTKΩ

Φp1
MbR Cq ‘ pTΦp1MXH1pR3,C2qq bR C. (7.1)

Note that the extension of Hp1 onto L2pR3,C2qbRC is such that its action preserves
the decomposition (7.1). The complex conjugation on L2pR3,C2q bR C is defined
by v b z :“ v b z.

Notice that if ıHp1ξl “ elξl with el ą 0, then by complex conjugation we obtain

ıHp1ξl “ ´elξl.
By Weyl’s theorem, σesspıHp1q “ p´8,´ω1s Y rω1,8q. We assume spectral

stability, i.e. σesspıHp1q Ă R. We assume that the set of eigenvalues satisfies
σppıHp1q Ă p´ω1, ω1q, that ˘ω1 are not resonances, and the following:

(H6) For any e P σppıHp1qzt0u, algebraic and geometric multiplicities coincide and
are finite.

(H7) There is a number N P N and positive numbers 0 ă e1 ă e2 ă . . . ă eN ă ω1

such that σppHp1q consists exactly of the numbers ˘ıe` and 0. Furthermore,
the points ˘ıω1 are not resonances ( that is, if Hp1Θ “ ˘ıω1Θ for one of the
two signs, and if xxyΘ P L8, then Θ “ 0).

Denote d` :“ dim kerpHp1 ´ ıe`q and let

n :“
ÿ

`“1,...,N

d`.

(H8) Define
N :“ sup

`
inftn P N : ne` P σesspıHp1qu ´ 1. (7.2)

If e`1 ă ... ă e`i are distinct and µ P Zi satisfies |µ| :“
ři
j“1 µj ď 4N` 4, we

assume that

µ1e`1 ` ¨ ¨ ¨ ` µke`i “ 0 ðñ µ “ 0.

It is easy to prove the symmetry of σppıHp1q Ă R around 0. We have

kerpıHp1 ¯ elq
˘

Ă SpR3,C2q bR C

and using Ω we consider the set Xc Ă S 1pR3,C2q bR C defined by

Xc :“
”´

TMΦp1 bR C
¯

‘˘ ‘
N
l“1

`

kerpıHp1 ¯ elq
˘˘

ıKΩ

. (7.3)

It is possible to prove the following decomposition:

pTKΩ

Φp1
MX L2pR3,C2qq bR C (7.4)

“
`

‘˘ ‘
N
l“1 kerpıHp1 ¯ elq

˘

‘
`

Xc X
`

L2pR3,C2q bR C
˘˘

.

The decomposition in (7.4) is Hp1-invariant.

Consider now the coordinate r P TKΩ

p1 MXL2pR3,C2q from the coordinate system

(3.8); it corresponds to the second summand in (7.1). Then, considered as an
element from L2pR3,C2q bR C, it can be decomposed into

rpxq “
ÿ

l“1,...,n

zlξlpxq `
ÿ

l“1,...,n

zlξlpxq ` fpxq, f P Xc with f “ f , (7.5)
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with ξl eigenfunctions of Hp1 corresponding to ıel. We claim that it is possible to
choose them so that

xiσ3ξi, ξly “ xiσ3ξi, fy “ 0 for all i, l and for all f P Xc,

xiσ3ξi, ξly “ ´ıδil for all i, l.
(7.6)

To see the second line, observe that on one hand for Θ P pTKΩ

Φp1
M bR Cqzt0u we

have xiσ3Hp1Θ,Θy ą 0. Indeed, for Θ “ pΘ1,Θ2q we have

xiσ3Hp1Θ,Θy “ xiσ3Hp1Θ,Θy “ xL
p1q
ω1 Θ1,Θ

˚
1 y ` xL

p2q
ω1 Θ2,Θ2y

with xΘ2, φω1y “ 0, which implies xL
p2q
ω1 Θ2,Θ2y ą c0}Θ2}

2
L2 and with xΘ1, Baφω1y “

xΘ1, xaφω1y “ xΘ1, iφω1y “ 0 which implies xL
p1q
ω1 Θ1,Θ1y ą c0}Θ1}

2
L2 , for a fixed

c0 ą 0. On the other hand,

0 ă xiσ3Hp1ξi, ξiy “ ıeixiσ3ξi, ξiy.

It is then possible to choose ξi so that (7.6) is true. Notice that (7.6) means that
the nonzero eigenvalues have positive Krein signature. This proves the second line
of (7.6). The proof of the first line is elementary.

By (7.5) and (7.6), we have

2´1xiσ3Hp1r, ry “
ÿ

l“1,...,n

el|zl|
2 ` 2´1xiσ3Hp1f, fy “: H2. (7.7)

In terms of pz, fq, the Fréchet derivative dr can be expressed as

dr “
ÿ

l“1,...,n

pdzl ξl ` dzl ξlq ` df, (7.8)

and by (7.6) we have

2´1xiσ3r, dry “ 2´1ı
ÿ

l“1,...,n

pzl dzl ´ zl dzlq ` 2´1xiσ3f, dfy. (7.9)

Notice now that, in terms of (7.5) and (7.8),

dΠjprq “ x♦jpzξ ` z ξ ` fq, ξ dz ` ξ dz ` dfy

“
ÿ

l“1,...,n

pR0,1
8,8 dzl `R0,1

8,8 dzlq ` x♦jf ` S0,1
8,8, dfy.

Hence, we obtain from (6.9):

Γ “ Γ0 `
ÿ

l“1,...,n

pR1,1
8,8 dzl `R1,1

8,8 dzlq ` x
ÿ

jď7

R0,2
8,8♦jf ` S1,1

8,8, dfy, where

Γ0 :“ 2´1ı
ÿ

l“1,...,n

pzldzl ´ zldzlq ` 2´1xiσ3f, dfy `
ÿ

jď7

R1,0
8,8pp

0,Πpfqqx♦jf, dfy.

(7.10)
Then

Ω0 :“ dΓ0 “´ ı
ÿ

l“1,...,n

dzl ^ dzl ` xiσ3df, dfy (7.11)

`
ÿ

j,k

R0,0
8,8pp

0,Πpfqqx♦kf, dfy ^ x♦jf, dfy,
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and, schematically, using Bρ S1,1
8,8

ˇ

ˇ

ˇ

pp0
4,ρ,z,fq“pp

0
4,Πpfq,z,fq

“ S0,1
8,8 and defining

p∇fF pΠpfq, fq :“ ∇fF ´ BΠpfqF ¨∇fΠpfq, (7.12)

we have

Ω´ Ω0 “R1,0
8,8 dz ^ dz ` xp∇fS

1,1
8,8df, dfy

` dz ^ x
ÿ

jď7

R0,1
8,8♦jf ` S1,0

8,8, dfy ` dΠpfq ^ xS0,1
8,8, dfy.

(7.13)

We will transform Ω into Ω0 by means of the Darboux Theorem, performed in a non-
abstract way, to make sure that the coordinate transformation is as in Lemma 8.1.

8. Flows. The following lemma is a consequence of Lemma A.1 in Appendix A:

Lemma 8.1. For n, M, M0, s, s
1, k, l P N0 with 1 ď l ď M , for Π4 a parameter

and for rε0 ą 0, consider
#

9zptq “ R0,M0

n,M pt,Π4,Πpfq, z, fq

9fptq “ iσ3

ř

jď7 R
0,M0`1
n,M pt,Π4,Πpfq, z, fq♦jf ` Si,M0

n,M pt,Π4,Πpfq, z, fq,

(8.1)
with the coefficients defined for |t| ă 5, |Πpfq| ă rε0, |z| ă rε0, }r}Σ´n ă rε and

|Π4 ´ p
1
4| ď rε0.

Let k P ZX r0, n´ pl ` 1qs and set, for s2 ě 1 and ε ą 0,

Us
2

ε,k :“tpz, fq P Cn ˆ pXc X Σs2q : |z| ` }f}Σ´k ` |Πpfq| ď εu. (8.2)

Let a0 P A. Then, for ε ą 0 small enough, (8.1) defines a flow pzt, f tq “ Ftpz, fq
with

zt “ R0,M0

n´l´1,lp˚q , where ˚ “ pt,Π4,Πpfq, z, fq , (8.3)

f t “ eiσ3
ř4
j“1 R0,M0`1

n´l´1,lp˚q♦jT pe
ř3
i“1 R0,M0`1

n´l´1,lp˚qiσiq

´

f ` Si,M0

n´l´1,lp˚q

¯

,

where for
n´ l ´ 1 ě s1 ě s` l ě l and k P ZX r0, n´ l ´ 1s (8.4)

and for ε1 ą ε2 ą 0 sufficiently small we have

Ft P C
lpp´4, 4q ˆ Us

1

ε2,k,U
s
ε1,kq. (8.5)

In (8.5) the Cl-regularity comes at the cost of a loss of l derivatives in the space
Σs2 , which is accounted for by s1 ě s` l.

In Proposition 10.3 we will need the following elementary technical lemmata.

Lemma 8.2. Consider two systems for ` “ 1, 2:
#

9zptq “ Bp`qpt,Π4,Πpfq, z, fq

9fptq “ iσ3

ř

jď7 A
p`q
j pt,Π4,Πpfq, z, fq♦jf `Dp`qpt,Π4,Πpfq, z, fq,

(8.6)

with the hypotheses of Lemma 8.1 satisfied, and suppose that

Bp1qpt,Π4,Πpfq, z, fq ´ Bp2qpt,Π4,Πpfq, z, fq “ R0,M0`1
n,M pt,Π4,Πpfq, z, fq

Dp1qpt,Π4,Πpfq, z, fq ´Dp2qpt,Π4,Πpfq, z, fq “ S0,M0`1
n,M pt,Π4,Πpfq, z, fq.

(8.7)

Let pz, fq ÞÑ pzt
p`q, f

t
p`qq with ` “ 1, 2 be the two flows. Then for s, s1 as in Lemma 8.1,

|z1
p1q ´ z

1
p2q| ` }f

1
p1q ´ f

1
p2q}Σ´s1 ď C

`

|z| ` }f}Σ´s
˘M0`1

. (8.8)
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For the proof, see Lemma A.2.

Lemma 8.3. Under the hypotheses and notation of Lemma 8.2, we have:

Πjpf
1
p1qq ´Πjpf

1
p2qq “ R0,M0`2

n´l´3,l

`

Π4,Πpfq, z, f
˘

for j “ 1, 2, 3, 4. (8.9)

Proof (sketch). For ` “ 1, 2 and j “ 1, 2, 3, 4 we have

Πjpf
1
p`qq “ Πjpf ` Sp`qq “ Πjpfq ` xf,♦jS

p`qy `ΠjpS
p`qq, (8.10)

where the r.h.s.’s are equal to the terms of (8.3) for t “ 1 for each of the two flows,

Sp`q “ Si,M0

n´l´1,l

`

Π4,Πpfq, z, f
˘

, ` “ 1, 2.

Hence ΠjpS
p`qq “ Ri,2M0

n´l´2,l, and this term can be absorbed into the r.h.s. of (8.9).

Next, observe that Sp`q is the integral
ş1

0
Dp`qdt of the terms Dp`q of Lemma 8.2.

Formula (8.7) implies

Sp1q ´ Sp2q “ S0,M0`1
n´l´2,l

`

Π4,Πpfq, z, f
˘

,

as can be seen by elementary computations, and this in turn implies

@

r,♦j
`

Sp1q ´ Sp2q
˘D

“ R0,M0`2
n´l´3,l

`

Π4,Πpfq, z, f
˘

.

We consider f P Xc X ΣN0
for N0 a large number. We can pick N0 ą 2N ` 2

where N is defined in (7.2). Notice that (3.14) preserves this space. We have the
following, which is proved as in [17], and which we discuss in Appendix B.

Lemma 8.4. Consider F “ F1 ˝ ¨ ¨ ¨ ˝ FL with Fj “ Fjt“1 transformations as in
Lemma 8.1 on the manifold M6

1pp
0q. Suppose that for any Fj the M0 in Lemma 8.1

equals mj, where 1 “ m1 ď ... ď mL with the constant i in Lemma 8.1 (ii) equal
to 1 when mj “ 1. Fix M,k with n1 " k ě N0 (n1 picked in Lemma 3.1). Then
there is a n “ npL,M, kq such that if the assumptions of Lemma 8.1 apply to each
of operators Fj for pM,nq, there exist ψpp4, %q P C

8 with ψppp4, %q “ Op|%|2q and a
small ε ą 0 such that in Usε,k for s ě n´ pM ` 1q we have the expansion

K ˝ F “ ψpp0
4,Πpfqq `H2 `R, (8.11)

and with what follows.

(1) We have

H2 “
ÿ

|µ`ν|“2 , e¨pµ´νq“0

gµνpp
0
4,Πpfqqz

µzν ` 2´1xiσ3Hp1f, fy. (8.12)

(2) Denote % “ Πpfq. There is the expansion R “
ř

j“´1,...,3 Rj `R1,2
k,mpp

0
4, %, fq,

R´1 “
ÿ

|µ`ν|“2 , e¨pµ´νq‰0

gµνpp
0
4, %qz

µzν `
ÿ

|µ`ν|“1

zµzνxiσ3Gµνpp
0
4, %q, fy;

|R1,2
k,mpΠ4, %, fq| ď C}f}2Σ´kp}f}Σ´k ` |%| ` |Π4 ´ p

1
4| ` |z|q;
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for N as in (H8),

R0 “
ÿ

|µ`ν|“3,...,2N`2

zµzνgµνpp
0
4, %q;

R1 “ ı
ÿ

|µ`ν|“2,...,2N`1

zµzνxiσ3Gµνpp
0
4, %q, fy;

R2 “
ÿ

|µ`ν|“2N`3

zµzνgµνpp
0
4, %, z, fq ´

ÿ

|µ`ν|“2N`2

zµzνxiσ3Gµνpp
0
4, %, z, fq, fy;

R3 “
ÿ

d“2,3,4

xBdpp
0
4, %, z, fq, f

dy `

ż

R3

B5px, p
0
4, %, z, f, fpxqqf

5pxq dx` EP pfq,

with B2pp
1, 0, 0, 0q “ 0. (8.13)

Above, fdpxq schematically represents d-products of components of f .
(3) For δj P Nm0 the vectors defined in terms of the Kronecker symbols by δj :“

pδ1j , ..., δmjq,

gµν “ R1,0
k,m for |µ` ν| “ 2 for pµ, νq ‰ pδj , δjq, 1 ď j ď m;

gδjδj “ ej `R1,0
k,m, 1 ď j ď m; Gµν “ S1,0

k,m for |µ` ν| “ 1;
(8.14)

gµν and Gµν satisfy symmetries analogous to (10.3).

(4) All the other gµν are R0,0
k,m and all the other Gµν are S0,0

k,m.

(5) Bdpp
0, %, z, fq P CmpU´k,ΣkpR3, BppR4qbd,Rqqq for 2 ď d ď 4 with U´k Ă

R8 ˆ Cn ˆ pXc X Σ´kq an open neighborhood of pp1
4, %, z, fq “ p0, 0, 0, 0q.

(6) Let ζ P C2. Then for B5p¨, %, z, f, ζq we have, for fixed constants Cl (the
derivatives are not in the holomorphic sense),

for |l| ď m, }∇l
p0,%,z,f,ζB5pp

0
4, %, z, f, ζq}ΣkpR3,BppC2qb5,Rq ď Cl. (8.15)

For the proof, see Appendix B.

9. Darboux theorem. Recall that we have introduced a model symplectic form
Ω0 in M6

1pp
0q by formula (7.11). Now we transform Ω into Ω0 by means of the Dar-

boux Theorem, performed in a non-abstract way, to make sure that the coordinate
transformation is as in Lemma 8.1.

Lemma 9.1. For n1 the constant in Lemma 3.1 and ε2 ą 0 consider the set

U2 “
 

pz, fq P Cn ˆ pXc XH
1q : }f}Σ´n1

ď ε2, |Πpfq| ď ε2, |z| ď ε2

(

.

Then for ε2 ą 0 small enough there exists a unique vector field Yt in U2 such that
iYtpΩ0 ` tpΩ´ Ω0qq “ Γ0 ´ Γ for |t| ă 5 with components, where Π4 “ p0

4,

pYtqzj “ R1,1
n1,8pΠ4,Πpfq, z, fq ,

pYtqf “ iσ3R0,2
n,8pΠ4,Πpfq, z, fq ¨ ♦f ` S1,1

n1,8pΠ4,Πpfq, z, fq.

Proof. The proof is essentially the same as that of [17, Lemma 3.4]. The first step
is to consider a field Z such that iZΩ0 “ Γ0 ´ Γ. We claim that

pZqz “ R1,1
8,8pΠ4,Πpfq, z, fq ,

pZqf “ iσ3R0,2
8,8pΠ4,Πpfq, z, fq ¨ ♦f ` S1,1

8,8pΠ4,Πpfq, z, fq.
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Schematically, the equation for Z is of the form

pZqz dz ` x
“

iσ3pZqf `R0,0
8,8x♦f, pZqf y

‰

♦f, dfy

“ R1,1
8,8 dz ` xiσ3R0,2

8,8 ¨ ♦f ` S1,1
8,8, dfy.

This immediately yields pZqz “ R1,1
8,8. The equation for pZqf is of the form

pZqf `R0,0
8,8x♦f, pZqf yiσ3♦f “ iσ3R0,2

8,8 ¨ ♦f ` S1,1
8,8, (9.1)

with a solution in the form pZqf “
8
ÿ

i“0

pZq
piq
f , with pZq

p0q
f “ iσ3R0,2

8,8 ¨ ♦f ` S1,1
8,8

and

pZq
pi`1q
f “ R0,0

8,8x♦f, pZq
piq
f yiσ3♦f “ pR0,0

8,8q
i`1x♦f, iσ3♦fy

ix♦f, pZqp0qf yiσ3♦f,

where by direct computation x♦jf, iσ3♦kfy is a bounded bilinear form in Xc X

L2pR3,C4q for all j, k. This implies that the series defining pZqf is convergent and
that pZqf is as in (9.1).

The next step is to define an operator K by iXpΩ´Ω0q “ iKXΩ0. We claim that

pKXqz “ R1,0
8,8pXqz ` xR0,2

8,8♦f ` S1,0
8,8, pXqf y

pKXqf “ iσ3xS
0,1
8,8, pXqf y♦f ` Bf S1,1

8,8

ˇ

ˇ

pρ,z,fq“pΠpfq,z,fq
pXqf

` pXqzR0,1
8,8♦f ` pXqzS

1,0
8,8 ` x♦f, pXqf yS

0,1
8,8.

(9.2)

From (7.11)–(7.13) we have schematically

ıpKXqzdz `
@ “

iσ3pKXqf `R0,0
8,8x♦f, pKXqf y♦f

‰

, df
D

“
`

R1,0
8,8pXqz ` xR0,1

8,8♦f ` S1,0
8,8, pXqf y

˘

dz `
A”

Bf S1,1
8,8

ˇ

ˇ

pρ,z,fq“pΠpfq,z,fq
pXqf

` pXqzpR0,1
8,8♦f ` S1,0

8,8q ` xS
0,1
8,8, pXqf y♦f ` x♦f, pXqf yS

0,1
8,8

ı

, df
E

which yields immediately the first equation in (9.2). We have pKXqf “
8
ÿ

i“0

pKpiqXqf

with

iσ3pKp0qXqf “ Bf S1,1
8,8

ˇ

ˇ

pρ,z,fq“pΠpfq,z,fq
pXqf ` pXqzpR0,1

8,8♦f ` S1,0
8,8q

`xS0,1
8,8, pXqf y♦f ` x♦f, pXqf yS

0,1
8,8

and

pKpi`1qXqf “ R0,0
8,8x♦f, pKpiqXqf yiσ3♦f

“ pR0,0
8,8q

i`1x♦f, iσ3♦fy
ix♦f, pKp0qXqf yiσ3♦f.

Then the series defining pKXqf converges and we get in particular the second equa-
tion in (9.2). Now the equation defining Yt is equivalent to p1` tKqYt “ Z. So we
have

pYtqz ` tR1,0
8,8pYtqz ` txR0,2

8,8♦f ` S1,0
8,8, pYtqf y “ R1,1

8,8

pYtqf ` itσ3xS
0,1
8,8, pYtqf y♦f ` tBf S1,1

8,8

ˇ

ˇ

pρ,z,fq“pΠpfq,z,fq
pYtqf

` tpYtqzpR0,2
8,8♦f ` S1,0

8,8q ` tx♦f, pYtqf yS0,1
8,8 “ iσ3R0,2

8,8 ¨ ♦f ` S1,1
8,8.

Solving this we get the desired formulae for pYtqzj and pYtqf .
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We can apply Lemma 8.1 to the flow Ft : pz, fq ÞÑ pzt, f tq generated by Yt. In
terms of the decomposition (7.5) of r formula (8.3) becomes, for n “ n1,

zt “ z `R1,1
n1´l´1,lpt,Π4,Πpfq, z, fq, (9.3)

f t “ ei
ř4
j“1 σ3R0,2

n1´l´1,lpt,Π4,Πpfq,z,fq♦jT
`

e
ř3
a“1 R0,2

n1´l´1,lpt,Π4,Πpfq,z,fqiσa
˘

ˆ
`

f ` S1,1
n1´l´1,lpt,Π4,Πpfq, z, fq

˘

.

Classically the Darboux Theorem follows by iYtΩt “ Γ0 ´ Γ, where Ωt :“ Ω0 `

tpΩ´ Ω0q, and by

BtpF
˚
t Ωtq “ F˚t pLYtΩt ` BtΩtq “ F˚t pdiYtΩ

1
t ` dpΓ´ Γ0qq “ 0 (9.4)

with LX the Lie derivative, whose definition is not needed here. Since this Ft is
not a differentiable flow on any given manifold, (9.4) is formal. Still, [17, Sect. 3.3
and Sect. 7] (i.e. a regularization and a limit argument for Ft) yield the following,
which we state without proof:

Lemma 9.2. Consider (8.1) defined by the field X t and indexes and notation of
Lemma 8.1 (in particular M0 “ 1 and i “ 1; n and M can be arbitrary as long
as we fix n1 large enough). Consider l, s1, s, and k as in (8.4). Then for F1 P

ClpUs1

ε2,k
,Us

ε1,k
q derived from (9.3), we have F˚1 Ω “ Ω0.

We now turn to the analysis of the hamiltonian vector fields in the new coor-
dinate system. For a function F let us decompose XF according to the spectral
decomposition (7.5): for pXF qf P Xc,

XF “
ÿ

j“1,...,n

pXF qzjξjpxq `
ÿ

j“1,...,n

pXF qzjξ
˚
j pxq ` pXF qf . (9.5)

By (7.11) and by iXF Ω0 “ dF we have, schematically (recall also that here and
below Π4 “ p0

4),

´ ıpXF qzldzl ` pXF qzl dzl `
@“

iσ3pXF qf `R0,0
8,8pΠ4,Πpfqqx♦f, pXF qf y♦f

‰

, df
D

“ BzlFdzl ` BzlFdzl ` x∇fF, dfy.

and so, schematically,

pXF qzl “ ıBzlF , pXF qzl “ ´ıBzlF

pXF qf `R0,0
8,8pΠ4,Πpfqqx♦f, pXF qf yPciσ3♦f “ ´iσ3∇fF.

We set

XF “ X
p0q
F `X

p1q
F with (9.6)

pX
p0q
F qzl “ ıBzlF , pX

p0q
F qzl “ ´ıBzlF , pX

p0q
F qf “ ´iσ3∇fF , (9.7)

and where the remainder is of the form pX
p1q
F qzl “ pX

p1q
F qzl “ 0,

pX
p1q
F qf “ R0,0

8,8pΠ4,Πpfqqx♦f, iσ3∇fF yPciσ3♦f. (9.8)

Indeed, pX
p1q
F qf has to satisfy an equation of the form

pX
p1q
F qf `R0,0

8,8pΠ4,Πpfqqx♦f, pXF q
p1q
f yPciσ3♦f

“ R0,0
8,8pΠ4,Πpfqqx♦f, iσ3∇fF yPciσ3♦f.
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This can be solved like in the proof of Lemma 9.1 by writing pXF q
p1q
f “

8
ÿ

i“0

Xi with

X0 “ R0,0
8,8pΠ4,Πpfqqx♦f, iσ3∇fF yPciσ3♦f and

Xi`1 “ R0,0
8,8pΠ4,Πpfqqx♦f,XiyPciσ3♦f

“ pR0,0
8,8q

i`1x♦f, iσ3♦fy
ix♦f, iσ3∇fF yPciσ3♦f

which yields (9.8). For two functions F and G we have the Poisson brackets

tF,Gu :“ dF pXGq “ BzlF pXGqzl ` BzlF pXGqzl ` x∇fF, pXGqf y

“ tF,Gup0q ` tF,Gup1q,
(9.9)

where tF,Gupiq :“ dF pX
piq
G q and where

tF,Gup0q “ ıpBzlFBzlG´ BzlFBzlGq ´ x∇fF, iσ3∇fGy (9.10)

and, schematically,

tF,Gup1q “ R0,0
8,8pΠ4,Πpfqqx∇fF,♦fyx♦f, iσ3∇fGy. (9.11)

Compared to [17], where the Poisson bracket equals (9.10), here we have an addi-
tional term contributed by (9.11), which however is of higher order and harmless,
as we will see later.

10. Birkhoff normal forms. We will reduce now to [17, Sect. 6]. We set, for the
ej ’s in (H6), see Section 7,

e :“ pe1, ..., enq.

In the sequel, Π4 “ p0
4.

Definition 10.1. A function Zp%, z, fq is in normal form if Z “ Z0`Z1, where Z0

and Z1 are finite sums of the following type:

Z1 “
ÿ

e¨pν´µqPσesspHp1 q

zµzνxiσ3Gµνpp
0
4, %q, fy (10.1)

with Gµνpx, p4, %q P C
mpU,ΣkpR3,C4qq for fixed k,m P N and U Ď R8 an open

neighborhood of pp0
4, 0q,

Z0 “
ÿ

e¨pµ´νq“0

gµνpp
0
4, %qz

µzν , (10.2)

with gµνpp4, %q P C
mpU,Cq. We assume furthermore the symmetries gµν “ gνµ and

Gµν “ Gνµ.

Lemma 10.2. For i P t0, 1u fixed and n, M P N sufficiently large and for m ďM´1
let

χ “
ÿ

|µ`ν|“M0`1

cµνpp
0
4,Πpfqqz

µzν ` ı
ÿ

|µ`ν|“M0

zµzνxiσ3Cµνpp
0
4,Πpfqq, fy,

with cµνpp
0, %q “ Ri,0

n,M pp
0, %q and Cµνpp

0, %q “ Si,0n,M pp
0, %q and with

cµν “ cνµ, Cµν “ ´Cνµ (10.3)

(so that χ is real-valued for f “ f). Then we have what follows:
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(1) For φt the flow of Xχ, see Lemma 8.1, and pzt, f tq “ pz, fq ˝ φt,

zt “z `R0,M0

n´m´1,m´1pt,Π4,Πpfq, z, fq;

f t “eiσ3
ř4
j“1 R0,M0`1

n´m´1,m´1pt,Π4,Πpfq,z,fq♦jT
`

e
ř3
i“1 R0,M0`1

n´m´1,m´1pt,Π4,Πpfq,z,fqiσi
˘

(10.4)

ˆ
`

f ` S0,M0

n´m´1,m´1pt,Π4,Πpfq, z, fq
˘

.

(2) For n ´ m ´ 1 ě s1 ě s ` m ´ 1 ě m ´ 1 and k P Z X r0, n ´ m ´ 1s and

for ε1 ą ε2 ą 0 sufficiently small, φ :“ φ1 P Cm´1pUs1ε2,k,U
s
ε1,k
q satisfies

φ˚Ω0 “ Ω0.

Proof. This result is a simple corollary of Lemma 8.1. For the proof that φ˚Ω0 “ Ω0,
which is obvious in the standard setups, see the comments in [17, Lemma 5.3].

Then we have the following result on Birkhoff normal forms.

Proposition 10.3. For any integer 2 ď ` ď 2N ` 2 there are transformations
Fp`q “ F1 ˝ φ2 ˝ ... ˝ φ`, with F1 the transformation in (9.3) and with the φj’s like
in Lemma 10.2, such that the conclusions of Lemma 8.4 hold; that is, such that we
have the following expansion, with Π4 “ p0

4:

Hp`q :“ K ˝ Fp`q “ ψpp0
4,Πpfqq `H2 `R1,2

k,mpΠ4,Πpfq, fq `
ÿ

j“´1,...,3

R
p`q
j ,

with H 12 defined in (8.12) and with the following additional properties:

(i) R
p`q
´1 “ 0;

(ii) all the nonzero terms in R
p`q
0 with |µ ` ν| ď ` are in normal form, that is

e ¨ pµ´ νq “ 0;

(iii) all the nonzero terms in R
p`q
1 with |µ` ν| ď `´ 1 are in normal form, that is

e ¨ pµ´ νq P σesspHp0q.

Proof. The proof of the analogue of Proposition 10.3 in [17] involves the simpler
symplectic form

Ω
p0q
0 :“ ´ı

ÿ

l“1,...,n

dzl ^ dzl ` xiσ3df, dfy.

In (8.11), we replace Πpfq with %; then h “ Hp`qpp0, %, z, fq is C2N`2 near p0, 0, 0q
in p%, z, fq P R7ˆCˆpXcXΣkq and the statement of Proposition 10.3 is about the
fact that some of the following derivatives vanish:

gµνpp
0, %q “

1

µ!ν!
Bµz B

ν
zh

ˇ

ˇ

p%,z,fq“p%,0,0q
, |µ` ν| ď 2N` 2, (10.5)

iσ3Gµνpp
0, %q “

1

µ!ν!
Bµz B

ν
z∇fh

ˇ

ˇ

p%,z,fq“p%,0,0q
, |µ` ν| ď 2N` 1. (10.6)

The proof is iterative and consists in assuming the statement correct for a given `
and proving it for ` ` 1, by picking an unknown χ as in (10.2) such that Hp`q ˝ φ
satisfies the conclusions for `` 1, where φ “ φ1, for φt the flow for the Hamiltonian
vector field of χ.

Now, let us pick χ provided by [17, Theorem 6.4] when we use the symplectic

form Ω
p0q
0 . We will show that this same χ works here.
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Let φp0q be the t “ 1 flow generated by X
p0q
χ . Notice that φp0q is a symplecto-

morphism for Ω
p0q
0 . Set

pHp`q “ ψpp0,Πpfqq `H2 `
ÿ

j“´1,0,1

R
p`q
j . (10.7)

Noticing that here ψpp0,Πpfqq contributes 0 because it is ψpp0, %q with % an auxiliary
independent variable,

Bµz B
ν
zH

p`q
ˇ

ˇ

p%,z,fq“p%,0,0q
“ Bµz B

ν
z
pHp`q

ˇ

ˇ

p%,z,fq“p%,0,0q
, 2 ď |µ` ν| ď 2N` 2,

Bµz B
ν
z∇fH

p`q
ˇ

ˇ

p%,z,fq“p%,0,0q
“ Bµz B

ν
z∇f

pHp`q
ˇ

ˇ

p%,z,fq“p%,0,0q
, 1 ď |µ` ν| ď 2N` 1

(10.8)

since all the other terms of Hp`q not contained in pHp`q are higher order in some of
the variables, for example order 2 or higher in f . As we pointed out, ψpp0,Πpfqq
contributes nothing to (10.8). The same is true of the term 1

2xiσ3Hp1f, fy inside
H 12, see (8.12) (however, the pullbacks of these terms are significant in the formulae
below). So the only contributors of (10.7) to (10.8) are very regular functions
in p%, z, fq, where % “ Πpfq is as before treated as auxiliary variable and f P
pXc X Σ´kq. This yields the useful result that while the l.h.s.’s in (10.8) require f
quite regular, for example f P Σk for a sufficiently large k, the r.h.s.’s are defined for

f P Σ´k for a large preassigned k. This is because the only term in pHp`qpp0, %, z, fq
that, to make sense, requires some regularity in f , that is the 1

2xiσ3Hp1f, fy hidden
inside H 12 (see (8.12)) does not contribute to (10.8).

Furthermore, by Lemma 10.2, we have

Bµz B
ν
zH

p`q ˝ φp0q
ˇ

ˇ

p%,z,fq“p%,0,0q
“ Bµz B

ν
z
pHp`q ˝ φp0q

ˇ

ˇ

p%,z,fq“p%,0,0q
,

2 ď |µ` ν| ď 2N` 1,

Bµz B
ν
z∇fH

p`q ˝ φp0q
ˇ

ˇ

p%,z,fq“p%,0,0q
“ Bνz∇f

pHp`q ˝ φp0q
ˇ

ˇ

p%,z,fq“p%,0,0q
,

1 ď |µ` ν| ď 2N

(10.9)

since the pull-backs of the terms of Hp`q not contained in pHp`q have zero derivatives
because they are higher order either in z or in f , as can be seen considering that
φp0q acts like (10.4) for M0 “ `. Since φ too has this structure, (10.9) is true also
with φp0q replaced by φ. Set now

pHp`q ˝ φ “ ψpp0, %q ` F with F :“ pHp`q ˝ φ´ ψpp0, %q. (10.10)

We have dF
ˇ

ˇ

p%,z,fq“p%,0,0q
“ 0, since by Lemma 8.4 we see that F is at least quadratic

in pz, fq. Lemma 8.2 is telling us that φ´1 ˝φp0q is the identity up to a zero of order
`` 1 at pz, fq “ p0, 0q in Cn ˆ pXc X Σ´kq. Then by an elementary application of
the chain rule

Bµz B
ν
zF

ˇ

ˇ

p%,z,fq“p%,0,0q
“ Bµz B

ν
zF ˝ φ

´1 ˝ φp0q
ˇ

ˇ

p%,z,fq“p%,0,0q
, 2 ď |µ` ν| ď `` 1,

Bµz B
ν
z∇fF

ˇ

ˇ

p%,z,fq“p%,0,0q
“ Bνz∇fF ˝ φ

´1 ˝ φp0q
ˇ

ˇ

p%,z,fq“p%,0,0q
, 1 ď |µ` ν| ď `.

On the other hand, by Lemma 8.3 we have that ψpp0, %q and ψpp0, %q ˝ φ´1 ˝ φp0q

differ by a zero of order `` 2 in p%, 0, 0q. Summing up, we conclude:

Bµz B
ν
z
pHp`q ˝ φ

ˇ

ˇ

p%,z,fq“p%,0,0q
“ Bµz B

ν
z
pHp`q ˝ φp0q

ˇ

ˇ

p%,z,fq“p%,0,0q
, 2 ď |µ` ν| ď `` 1,

Bµz B
ν
z∇f

pHp`q ˝ φ
ˇ

ˇ

p%,z,fq“p%,0,0q
“ Bνz∇f

pHp`q ˝ φp0q
ˇ

ˇ

p%,z,fq“p%,0,0q
, 1 ď |µ` ν| ď `.
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Hence we have shown that [17, Theorem 6.4] implies Proposition 10.3.

11. Formulation of the system. We consider the Hamiltonian H :“ Hp2N`1q

and the reduced system

9z “ tz,Hu , 9f “ tf,Hu. (11.1)

Recall that

H “ ψpp0
4,Πpfqq `H2 ` Z0 ` Z1 `R, (11.2)

H 12 like (8.12), Z0 like (10.2), Z1 like (10.1), R “
ř

j“2,3 Rj `R1,2
k,mpΠ4,Πpfq, fq.

We recall that, in the context of Strichartz estimates, a pair pp, qq is called
admissible if

2{p` 3{q “ 3{2, 2 ď q ď 6, p ě 2. (11.3)

Theorem 11.1. For the constants 0 ă ε ă ε0 of Theorem 1.1, there is a fixed
C ą 0 such that

}f}Lpt pR`,W
1,q
x q

ď Cε for all admissible pairs pp, qq, (11.4)

}zµ}L2
t pR`q ď Cε for all multi-indexes µ with e ¨ µ ą ω1, (11.5)

}z}W 1,8
t pR`q ď Cε. (11.6)

Furthermore, we have limtÑ`8 zptq “ 0.

By standard arguments that we skip, such as a simpler version of [19, Sect. 7],
Theorem 11.1 is a consequence of the following continuity argument.

Proposition 11.2. For the constants 0 ă ε ă ε0 of Theorem 1.1, there exists a
constant κ ą 0 such that for any C0 ą κ there is ε0 ą 0 such that if the inequalities
(11.4)–(11.6) hold for I “ r0, T s for some T ą 0 and for C “ C0, then in fact the
inequalities (11.4)–(11.6) hold for I “ r0, T s for C “ C0{2.

We now discuss the proof of Proposition 11.2, which is similar to the proof for the

scalar NLS; see for example [19] or [18]. We have, see (9.6), 9f “ pX
p0q
H qf ` pX

p1q
H qf .

In [18], the equation was 9f “ pX
p0q
H qf . Given multi-indexes Θ1,Θ P Nm0 we write

Θ1 ă Θ if Θ1 ‰ Θ and Θ1l ď Θl, 1 ď l ď m. We now introduce

M0 “
 

µ P Nn
0 : |e ¨ µ| ą ω1 , |µ| ď 2N` 2, |e ¨ µ1| ă ω1 if µ1 ă µ

(

, (11.7)

M “
 

pµ, νq P N2n
0 : |e ¨ pµ´ νq| ą ω1 , |µ` ν| ď 2N` 2 and

|e ¨ pµ1 ´ ν1q| ă ω1 if pµ1, ν1q ă pµ, νq
(

.
(11.8)

Notice that

if pµ, νq P M we have either µ “ 0 and ν P M0, or ν “ 0 and µ P M0. (11.9)

In [19, 18] it is shown that for G0
µν :“ Gµνpp

0, 0q we have

pX
p0q
H qf “ Hp1f `

ÿ

j“1,...,7

pBΠjpfqHqPciσ3♦jf ´
ÿ

pµ,νqPM

zµzνG0
µν `R1 `R2,

(11.10)
Pc the projection on Xc in (7.4), and there is a constant CpC0q independent of ε
such that

}R1}L1
t pr0,T s,H

1q ` }R2}
L2
t pr0,T s,W

1, 6
5 q
ď CpC0qε

2. (11.11)
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We sketch briefly this point. With p∇f defined in (7.12), we define

R2 “
ÿ

pµ,νqPM

zµzν
`

G0
µν ´Gµν

˘

´ iσ3
p∇fR2 ´ iσ3B2f,

where the last term is defined schematically from p∇f

@

B2, f
2
D

„
@

p∇fB2, f
2
D

`B2f.
Then the desired estimate on R2 in (11.11) is elementary. For example,

}B2f}
L2pr0,T s,W 1, 6

5 q
ď }B2}L8pr0,T s,L3{2q}f}L2pr0,T s,W 1,6q À ε}f}L2pr0,T s,W 1,6q À ε2

by (8.13) and (11.4) in r0, T s. R1 is formed by the other terms and it is standard
to show that it satisfies the bound (11.11). For example, for 2 ď d ď 4,
›

›

@

p∇fBd, f
d
D
›

›

L1
tH

1
x
ď
›

› sup
}g}H´1“1

@

p∇fBdg, f
d
D
›

›

L1
t

ď

›

›

›

›

›

sup
}g}H´1“1

}p∇fBdg}Σk}f
d}
L

6{d
x

›

›

›

›

›

L1
t

À }f}2L2
tL

6
x
}f}d´2

L8t H
1
x
À εd

and for d “ 3, 4, for pd´ 1, qdq admissible,

}Bdf
d´1}L1

tH
1
x
À }f}L8t H1

x
}f}d´1

Ld´1
t L

qd
x
À εd´1. (11.12)

The d “ 5 term can be treated similarly, but has an additional part when the f
derivative is applied to the ζ variable in (8.15). But the resulting term is like (11.12)
for d “ 6. Finally, }∇EP pfq}L1

tH
1
x
À ε2 by hypotheses (H1)–(H2). Having discussed

(11.11), by (9.8) we get

X
p1q
H “ R0,0

8,8pΠpfqq
“

x♦f,Hp1fy ` pBΠpfqHqx♦f, iσ3♦fy ` x♦f,R1 `R2y

´
ÿ

pµ,νqPM

zµzν x♦f,G0
µνy

‰

Pciσ3♦f.
(11.13)

Then, for v obtained summing contributions from (11.13) and the
ř

j“1,...,7 in

(11.10), we obtain

9f ´
`

Hp1f ` Pciσ3v ¨ ♦f
˘

“ ´
ÿ

pµ,νqPM

zµzνG0
µν `R1 `R2. (11.14)

It is easy to see from (11.4)–(11.6) and (11.11) that

}v}L1pr0,T s,R7q`L8pr0,T s,R7q ď CpC0qε. (11.15)

Strichartz and smoothing estimates on f are a consequence of well-known estimates
for the group etHp1Pc which resemble those valid for eit∆; see [16] for references.

To deal with the term Pciσ3v¨♦f , where the operator Pciσ3v¨♦ does not commute

with Hp1 we adopt an idea by Beceanu [4]. We consider the system 9f “ iσ3v ¨ ♦f ,
writing it in the form

9f “ Aptqf `Bptqf , Aptq :“
ÿ

j“1,...,4

iσ3vjptq♦j and Bptq :“
ÿ

j“5,6,7

iσ3vjptq♦j .

(11.16)
Since Aptq and Bptq commute and the terms of the sum defining Aptq commute, if
we denote by W pt, sq the fundamental solution of the system (11.16), that is,

BtW pt, sq “ pAptq `BptqqW pt, sq with W ps, sq “ I, (11.17)

and by WApt, sq “ e
şt
s
Apt1q dt1 (resp. WBpt, sq) the fundamental solution of 9f “ Aptqf

(resp. 9f “ Bptqf), then we have W pt, sq “WApt, sqWBpt, sq.
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Lemma 11.3. Let M ą 5{2 and α P r0, 1{2q. Then there exists a constant C ą 0
dependent only on M such that for all s ă t in r0, T s

}xxy´M pW pt, sq ´ 1q eiσ3p∆´ω
1
qpt´sqxxy´M }BpL2,L2q

ď Cψαpt´ sq}v}
α
L1prs,tsq`L8prs,tsq (11.18)

with ψαptq “ xty
´ 3

2`α for t ě 1 and ψαptq “ t´α for t P p0, 1q.

Proof. We have

W pt, sq ´ 1 “ rpWApt, sq ´ 1qWBpt, sqs ` rWBpt, sq ´ 1s . (11.19)

In the first term in the r.h.s. WBpt, sq commutes with the other operators and is
an isometry in L2:

}xxy´MWApt, sq ´ 1qWBpt, sqe
iσ3p∆´ω

1
qpt´sqxxy´M }BpL2,L2q

“ }xxy´MWApt, sq ´ 1qeiσ3p∆´ω
1
qpt´sqxxy´M }BpL2,L2q.

Then the desired estimate of this is that of [19, Lemma 9.4]. We next consider the
second term in the r.h.s. of (11.19). By the commutation properties of WBpt, sq we
are reduced to bound

}xxy´Meiσ3p∆´ω
1
qpt´sqxxy´M }BpL2,L2q

ˆ
ż t

s

}Bpt1qWBpt
1, sqdt1}BpL2,L2q

˙α

.

The first factor is bounded by c0xt´sy
´ 3

2 , the second by |t´s|α}B}αL8pps,tq,BpL2,L2qq
,

where the last factor is bounded by }v}αL8pps,tq,R7q
.

Proposition 11.4. Let F ptq satisfy PcF ptq “ F ptq Consider the equation

9u´Hp1u´ Pciσ3v ¨ ♦u “ F. (11.20)

Then there exist fixed σ ą 3{2, and an ε0 ą 0 such that if ε P p0, ε0q then we have

}u}Lppr0,T s,W 1,qq ď Cp}Pcup0q}H1 ` }F }L2pr0,T s,H1,σq`L1pr0,T s,H1qq , (11.21)

for any admissible pair pp, qq.

Before the proof, we observe that Proposition 11.4 implies the following.

Corollary 11.5. Under the hypotheses of Theorem 11.1 there exist two constants
c0 and ε0 ą 0 such that if ε P p0, ε0q then

}f}Lpt pr0,T s,W
1,q
x q

ď c0ε` c0
ÿ

pµ,νqPM

}zµ`ν}L2p0,T q, for any admissible pair pp, qq.

(11.22)

For the elementary proof of this corollary, see for instance [19, Lemma 8.1].
Proof of Proposition 11.4. We follow [4]. Denote u0 “ Pcup0q. We set Pd :“ 1´Pc,
fix δ ą 0 and consider

9Z ´Hp1PcZ ´ Pciσ3v ¨ ♦PcZ “ F ´ δPdZ , Zp0q “ u0. (11.23)

Notice that, see (2.24),

Hp1 “ iσ3p´∆` ω1q ` V with V P SpR3, BpC2,C2qq; (11.24)

we then rewrite (11.23) as

9Z ´ iσ3p∆´ ω1qZ ´ iσ3v ¨ ♦Z “ F ` V1V2Z ´ rPdpvqZ with Zp0q “ u0,
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rPdpvq :“ Pdiσ3v ¨♦` iσ3v ¨♦Pd and V1V2 “ V ´Hp1Pd´ δPd with V2pxq a smooth
exponentially decaying and invertible matrix, and with the multiplication operator
V1 : Hk,s1 Ñ Hk,s bounded for all k, s and s1. We have:

Zptq “W pt, 0qeiσ3p´∆`ω1
qtZp0q (11.25)

`

ż t

0

eiσ3p´∆`ω1
qpt´t1qW pt, t1q

”

F pt1q ` V1V2Zpt
1q ´ rPdpvpt

1qqZpt1q
ı

dt1.

For arbitrarily fixed pairs pK,Sq and pK 1, S1q there exists a constant C such that
we have

} rPdpvqV
´1
2 }BpH´K1,´S1 ,HK,Sq ď Cε.

By picking ε small enough, we can assume that the related operator norm is small.
We have

}Z}LptW q,1XL2
tH

k,´τ0 ď C}Zp0q}H1 ` C}F }L1
tH

1`L2
tH

1,τ0

` }V1 ´ rPdpvpt
1qqV ´1

2 }L8t pBpH1,H1,τ0 qq}V2Zptq}L2
tH

1 .

For rT0fptq “ V2

şt

0
eiσ3p´∆`ω1

qpt´t1qW pt, t1qV1fpt
1qdt1, by (11.25), we obtain:

pI ´ rT0qV2Zptq “ V2W pt, 0qe
iσ3p´∆`ω1

qtZp0q

´ V2

ż t

0

eiσ3p´∆`ω1
qpt´t1qW pt, t1q

”

F pt1q ´ rPdpvpt
1qqZpt1q

ı

dt1.

We then obtain the desired result if we can show that

}pI ´ rT0q
´1}L2pr0,T q,H1pR3qqý ă C1, (11.26)

for εC1 smaller than a fixed number. Thanks to Lemma 11.3 it is enough to prove

(11.26) with rT0 replaced by

T0fptq “ V2

ż t

0

eiσ3p´∆`ω1
qpt´t1qV1fpt

1qdt1.

Set

T1fptq “ V2

ż t

0

ep´Hp1Pc`δPdqpt
1
´tqV1fpt

1q dt1.

By [15] we have }T1}L2pr0,T q,H1pR3qqý ă C2 for a fixed C2. By elementary arguments,
see [27],

pI ´ T0qpI ` T1q “ pI ` T1qpI ´ T0q “ I.

This yields (11.26) with rT0 replaced by T0 and with C1 “ 1` C2.
Now we turn to the equations 9zl “ ıBzlH. We will prove the following.

Proposition 11.6. There exists a fixed c0 ą 0 and a constant ε0 ą 0 which depends
on C0 such that

ÿ

l

|zlptq|
2 `

ÿ

pµ,νqPM

}zµ`ν}2L2p0,tq ď c0p1` C0qε
2, @t P r0, T s, @ε P p0, ε0q.

(11.27)

Proposition 11.6 allows to conclude the proof of Proposition 11.2. The proof of
Proposition 11.6 follows a series of standard steps, and is basically the same as the
analogous proof in [16], or in [3].

The first step in the proof of Proposition 11.2 consists in splitting f as follows:

g “ f ` Y , Y :“ ´ı
ÿ

pµ,νqPM

zµzνR`ıHp1
pe ¨ pν ´ µqqG0

µν , (11.28)
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where R`ıHp1
is extension from above of the resolvent and makes sense because

the theory of Jensen and Kato [26] holds also for these operators; see for example
Perelman [30, Appendix 4].

The part of f that acts effectively on the variables z will be shown to be Y , while
g is small, thanks to the following lemma.

Lemma 11.7. For fixed s ą 1 there exist a fixed c such that if ε0 is sufficiently
small we have }g}L2pp0,T q,H0,´spR3,C4q ď cε.

Proof. In the same way as the proof of Proposition 11.4 (which we wrote explicitly)
is similar to analogous proofs valid for the scalar NLS (1.3), the proof of Lemma 11.7
is analogous to the proof of [19, Lemma 8.5] contained in [19, Sect. 10] and is skipped
here. The only difference between [19] and the present situation is notational, in
the sense that inside (11.20) one has iσ3v ¨♦u “ iσ3

ř

jď7 vj♦ju, as opposed to [19,

(10.1)], where the corresponding terms are iσ3

ř4
j“1 vj♦ju. But this does not make

any difference in the proof because what matters is simply that each ♦j commutes
with ´∆` ω1, which was used to get (11.25).

Now we examine the equations on z. We have

´ ı 9zj “ Bzj pH2 ` Z0 ` Z1 `Rq.

When we substitute (11.28) and we set R`µν :“ R`ıHp1
pe ¨ pν ´ µqq we obtain

´ ı 9zl ´ BzlH2 “ BzlZ0 ` ı
ÿ

pα,βq,pµ,νqPM

νl
zµ`αzν`β

zl
xR`αβG

0
αβ , iσ3Gµνy

`
ÿ

pµ,νqPM

νl
zµzν

zl
xg, iσ3Gµνy ` BzlR.

(11.29)

Using (11.9), we rewrite this as

´ ı 9zj ´ BzjH2 “ BzjZ0 `
ÿ

pµ,νqPM

νj
zµzν

zj
xg, iσ3Gµνy ` Ej (11.30)

` ı
ÿ

β,νPM0

νj
zν`β

zj
xR`0βG

0
0β , iσ3G

0
0νy (11.31)

` ı
ÿ

α,νPM0

νj
zαzν

zj
xR`α0G

0
α0, iσ3G

0
0νy. (11.32)

Here the elements in (11.31) can be eliminated through a new change of variables
that we will see momentarily and Ej is a remainder term defined by

Ej :“
ÿ

pµ,νqPM

νj
zµzν

zj
xg, iσ3Gµνy ` BzjR´ (11.31)´ (11.32). (11.33)

Set ζl “ zl ` Flpz, zq with

Flpz, zq “
ÿ

β,νPM0

ıνlz
ν`β

e ¨ pβ ` νqzl
xR`0βG

0
0β , iσ3G

0
0νy

´
ÿ

α,νPM0
e¨α‰e¨ν

ıνlz
αzν

e ¨ pα´ νqzl
xR`α0G

0
α0, iσ3G

0
0νy.
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This change of variables is such that, setting F “ pF1, ..., Fnq, we get

Ljpz, fq|f“0 : “
ÿ

l“1,...,n

pBzlFjpz, zqBzlH2pz, 0q ´ BzlFjpz, zqBzlH2pz, 0qq

“ BzlH2pF pz, zq, 0q ` (11.31)` (11.32).

Furthermore, by ν P M0, which implies ν ¨ e ą ω1, we have |ν| ą 1. Then, by
(11.5)–(11.6),

}ζ ´ z}L2p0,T q ď Cε
ÿ

αPM0

}zα}L2p0,T q ď CpC0qε
2, }ζ ´ z}L8p0,T q ď CpC0qε

3.

(11.34)
In the new ζ variables, (11.30) takes the form

´ ı 9ζj “ BζjH2pζ, fq ` BζjZ0pζ, fq `Dj ` ı
ÿ

α,νPM0
e¨α“e¨ν

νj
ζαζ

ν

ζj
xR`α0G

0
α0, iσ3G

0
0νy,

(11.35)
with for Al “r.h.s. of (11.29),

Dj “ Ej ` Ljpz, 0q ´ Ljpz, fq `
ÿ

l“1,...,n

`

BzlFjpz, zqAl ´ BzlFjpz, zqAl
˘

. (11.36)

From these equations by
ř

l el
`

ζlBζlpH2 ` Z0q ´ ζjBζlpH2 ` Z0q
˘

“ 0 we get

Bt

ÿ

l“1,...,n

el|ζl|
2

“ 2
ÿ

l“1,...,n

elIm
`

Dlζl
˘

` 2
ÿ

α,νPM0
e¨α“e¨ν

e ¨ ν Re
´

ζαζ
ν
xR`α0G

0
α0, iσ3G

0
0νy

¯

.
(11.37)

Lemma 11.8. Assume inequalities (11.4)–(11.6). Then for a fixed constant c0 we
have

ÿ

j“1,...,n

}Im
`

Djζj
˘

}L1r0,T s ď p1` C0qc0ε
2. (11.38)

Proof (sketch). For a detailed proof we refer to [3, Appendix B]: here we give a
sketch. First of all, we consider the contribution of Ej . This, in turn, is a sum of
various terms. For the terms originating from R3, cf. Lemma 8.4, we have

›

›

@

BzjBdpp
0
4,Πpfq, z, fq, f

d
D

ζj
›

›

L1
t
ď }f}d

LdtL
pd
x
}ζ}L8t À εd`1,

with pd, pdq admissible, and for d “ 2, 3, 4, 5. For the following term, we claim

}BzjR2ζj}L1
t
À ε3. (11.39)

From Lemma 8.4 we know that R2 is basically a sum of degree 2N` 3 monomials
in pz, z, fq, which are at most degree 1 in f . Let us take a term which is degree 0 in
f . Then its Bzj derivative is in absolute value bounded above by a term |zµ`ν | with

|µ| ` |ν| ě 2N` 2. So we can write it as |zα`β`γ | with |α| ě N` 1, |β| ě N` 1.
But then α ¨ e ą ω1 β ¨ e ą ω1. Then

}zα`β`γζj}L1
t
ď }zα}L2

t
}zβ}L2

t
}ζj}L8t À ε3.

Terms of degree 1 in f can be treated similarly, yielding (11.39). We claim also
›

›

›
νj
zµ`αzν`β

zj
ζj

›

›

›

L1
t

À ε3 for |pµ´ νq ¨ e| ą ω1 and pµ, νq R M. (11.40)
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In this case we can write zµzν “ zµ
1

zν
1

zγzδ with pµ1, ν1q P M and |γ| ` |δ| ą 0.
Then we consider

νj
zµ`αzν`β

zj
ζj “ νjz

µ1`αzν
1
`βzγzδ ` νj

zµ
1
`αzν

1
`β

zj
pζj ´ zjq.

By (11.5) and (11.6),

}zµ
1
`αzν

1
`βzγzδ}L1

t
À }zµ

1

zν
1

}L2
t
}zαzβ}L2

t
}z}

|γ|`|δ|
L8t

À ε3,

and by (11.34)

}νj
zµ`αzν`β

zj
pζj ´ zjq}L1

t
À }zαzβ}L2

t
}z ´ ζ}L2

t
À ε3.

This yields (11.40). By similar arguments, one can prove

}νj
zµzν

zj
xg, iσ3Gµνy ζj}L1

t
À ε3 for |pµ´ νq ¨ e| ą ω1 and pµ, νq R M.

We next consider the following, see [3, Lemma B.1],

}BjpZ0pζ, fq ´ Z0pz, fqqζj}L1
t
À ε3. (11.41)

Is enough to consider zα z
β

zj
ζj ´ ζ

α ζ
β

ζj
ζj with e ¨α “ e ¨β and βj ą 0. By the Taylor

expansion these are

ÿ

k

Bk

ˆ

zαzβ

zj

˙

pζk ´ zkqζj `
ÿ

k

Bk

ˆ

zαzβ

zj

˙

pζk ´ zkqζj ` ζjOp|z ´ ζ|
2q.

The remainder term is the easiest, the other two terms similar. Substituting the

definition of ζ, a typical term in the first summation is zα`AzB`β

|zk|2
, with α ¨ e ą ω1,

β ¨ e ą ω1, A ¨ e ą ω1 and B ¨ e ą ω1. and with αk ‰ 0 ‰ Bk. By (H8), e ¨α “ e ¨ β
implies that there is at least one index β` ‰ 0 such that e` “ ek. Then, by the fact
that monomials zαzβ in Z0 are such that |α| “ |β| ě 2,

›

›

›

›

zαzβzAzB

|zk|2

›

›

›

›

L1
t

ď
›

›zA
›

›

L2
t

›

›

›

›

zBz`
zk

›

›

›

›

L2
t

›

›

›

›

zαzβ

z`zk

›

›

›

›

L8t

À C2
2ε
|α|`|β| ď C2

2ε
4. (11.42)

Other contributions from (11) can be treated similarly, yielding (11.41).
The main contribution to the l.h.s. of (11.38) is originated from the following

terms:
›

›

›
νj
zµzν

zj
xg, iσ3Gµνyζj

›

›

›

L1
t

ď c1C0ε
2 for pµ, νq P M (11.43)

with c1 a fixed constant. Indeed the term to bound equals

νjz
µzνxg, iσ3Gµνy ` νj

zµzν

zj
xg, iσ3Gµνypζj ´ zjq.

By Lemma 11.7, the first term has L1
t norm bounded by

}Gµν}L8t H0,s}zµzν}L2
t
}g}L2

tH
0,´s ď }Gµν}L8t H0,sC0εcε ď c1C0ε

2

for a fixed c1. The second term has L1
t norm bounded by the following, which yields

(11.43),
›

›

›
νj
zµzν

zj

›

›

›

L8t

}Gµν}L8t H0,s}g}L2
tH

0,´s}ζ ´ z}L2
t
À ε4.
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We estimated the contribution to the l.h.s. of (11.38) of Ej . There are further terms
in (11.36) to estimate. We claim

}pLjpz, 0q ´ Ljpz, fqqζj}L8t À ε4. (11.44)

A typical contribution to the l.h.s. is

pgpΠpfqq ´ gpΠp0qq
νjz

ν`β

zj
pzj ` pζj ´ zjqq with α, ν P M0,

with g P C1pR7,Cq. We can bound its L1
t norm using

}f}2L8H1}zν}L2}zβ}L2 À ε4

and using the argument that leads to (11.42). For the discussion of the bound for
the contribution originating from the

ř

l“1,...,n term in (11.36), which is also higher

order; see [3].

The second term in the r.h.s. of (11.37) equals, using G0
µν “ G0

νµ,

2
ÿ

κPK

κRe

C

R`ıHp1
p´κq

ÿ

αPM0 , e¨α“κ

ζαG0
α0, iσ3

ÿ

νPM0 , e¨ν“κ

ζ
ν
G0

0ν

G

“ π´1
ÿ

κPK

κRe
A

R`ıHp1
p´κqG, iσ3G

E

for G :“
?

2π
ÿ

αPM0 , e¨α“κ

ζαG0
α0,

(11.45)

where K “ tk P R : D ν P M0 s.t. κ “ e ¨ νu. Notice that κ P Kñ κ ą ω1.
As in [16, Lemma 10.5], there exist Lα0 P W

k,ppR3,C4q for all k P R and p ě 1
such that the r.h.s. of (11.45) is equal to

ÿ

κPK

κΛpκ, ζq for Λpκ, ζq “
1

π
Re

A

R`ıiσ3p´∆`ω1q
p´κqLpζq, iσ3L

E

and Lpζq :“
?

2π
ÿ

αPM0
e¨α“κ

ζαL0
α0.

We claim that each term in the above summation is non-negative. Observe that
Λpκ, ζq “ Λ1pκ, ζq ` Λ2pκ, ζq, Lpζq “ tpL1pζq,L2pζqq, with

Λipκ, ζq “ π´1p´1qi`1 Re
A

R`
ıip´1qi`1p´∆`ω1q

p´κqLi, iLi

E

.

Introduce now

U “
1
?

2

ˆ

1 1
ı ´ı

˙

such that U´1
iU “ ´ıσ3,

with σ3 the Pauli matrix (1.2). Taking the complex conjugation, U
´1

iU “ ıσ3.
Then, using tU “ U´1, we have, for U´1Li “

tpLi1,Li2q:

πΛipκ, ζq “ p´1qi`1 Re
A

U´1R`
ıip´1qi`1p´∆`ω1q

p´κqUU´1Li, U
´1

iUU
´1

Li

E

“ p´1qi`1 Re
A

R`
p´1qi`1σ3p´∆`ω1q

p´κqU´1Li, ıσ3U
´1

Li

E

“ p´1qi`1 Re
A

R`
p´1qi`1p´∆`ω1q

p´κqLi1, ıLi1

E

´ p´1qi Re
A

R`
p´1qip´∆`ω1q

p´κqLi2, ıLi2

E

.

Using the Sokhotski–Plemelj formula, we have:

Λ1pκ, ζq “
@

ıδp∆´ ω1 ` κqL12, ıL12

D

“ ´
@

δp∆´ ω1 ` κqL12,L12

D

ď 0;
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Λ2pκ, ζq “
@

ıδp∆´ ω1 ` κqL21, ıL21

D

“ ´
@

δp∆´ ω1 ` κqL21,L21

D

ď 0.

The Fermi Golden Rule consists of two parts. The first part consists in showing
that Λpκ, ζq are negative quadratic forms for the vector pζαqαPM0 s.t. α¨ω1“κ. This
was proved here. The second part is that the Λpκ, ζq are strictly negative quadratic
forms. This is expected to be generically true (as a similar statement was expected
to be true in [12, 35]). We do not know how to prove this. For a proof on a different
problem, see [2, Proposition 2.2]. For specific systems the strict negative condition
ought to be checked numerically. Here we assume it as an hypothesis:

(H9) (Fermi Golden Rule) the l.h.s. of (11.46), proved above to be negative, is
strictly negative, that is for some fixed constants and for any vector ζ P Cn

we have
ÿ

PK

κΛpκ, ζq « ´
ÿ

αPM0

|ζα|2. (11.46)

By (H9) we have

2
ÿ

l“1,...,n

el Im
`

Dlζl
˘

Á Bt

ÿ

l“1,...,n

el|ζl|
2 `

ÿ

αPM0

|ζα|2. (11.47)

Then, for t P r0, T s and assuming Lemma 11.8, we have
ÿ

l“1,...,n

el|ζlptq|
2 `

ÿ

αPM0

}ζα}2L2p0,tq À ε2 ` C0ε
2.

By (11.34) this implies |z|2L8p0,tq`
ř

αPM0
}zα}2L2p0,tq À ε2`C0ε

2 and yields Propo-

sition 11.6.
In the course of the proof we have shown that }zα}2L2p0,tq À C2

0ε
2 and (1.8)

together imply }zα}2L2p0,tq À C0ε
2. This means that we can take C0 « 1. With

Corollary 11.5 this completes the proof of Proposition 11.2.

12. Proof of Theorem 1.1.

Lemma 12.1. There is f` P H
1pR3,C4q such that fptq from (11.4) satisfies

lim
tÑ`8

}fptq ´W pt, 0qeiσ3p´∆`ω1
qtf`}H1 “ 0, (12.1)

where W pt, sq is the fundamental solution from (11.17).

Proof. Starting from (11.10) and using (11.24), we obtain the following analogue of
(11.25):

fptq “W pt, 0qeiσ3p´∆`ω1
qtfp0q`

ż t

0

eiσ3p´∆`ω1
qpt´t1qW pt, t1q

”

V fpt1q ´
ÿ

pµ,νqPM

zµpt1qzνpt1qG0
µν `R1pt

1q `R2pt
1q

ı

dt1.

This implies W p0, tqeiσ3p∆´ω
0
qtfptq ÝÑ

tÑ`8
f` in H1pR3,C4q, by standard arguments

(cf. [19, Sect. 11]).
Completion of the proof of Theorem 10.3. Recall that expressing u in terms of

the coordinates in (3.8) we have

uptq “ e´iσ3
ř4
j“1 τ

1
jptq♦j

`

a

1´ |b1ptq|2 ` b1ptqσ2K
˘`

Φp1ptq ` Pp1ptqr
1ptq

˘

, (12.2)
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where we denote by pp1, τ 1, b1, r1q the initial coordinates. Using the invariance
Πpuptqq “ Πpu0q we can express pp1, b1q in terms of r1 obtaining the following:

p1jptq “ Πjpu0q ´Πjpr
1ptqq `R1,2

8,8

`

p0
4,Πpr

1ptqq, r1ptq
˘

for j “ 1, 2, 3, 4;

b1Rptq “ p2p
0
4q
´1Π5pr

1ptqq `R2,0
8,8

`

p0
4,Πpr

1ptqq
˘

`R1,2
8,8

`

p0
4,Πpr

1ptqq, r1ptq
˘

;

b1Iptq “ p2p
0
4q
´1Π6pr

1ptqq `R2,0
8,8

`

p0
4,Πpr

1ptqq
˘

`R1,2
8,8

`

p0
4,Πpr

1ptqq, r1ptq
˘

.

(12.3)

Furthermore, we can express r1 in terms of the pz, fq of the last coordinate system
for ` “ 2N` 1 in Proposition 10.3:

r1ptq “ ei
ř4
j“1 σ3R0,2

k,mpp
0
4,Πpfptqq,zptq,fptqq♦jT

`

e
ř3
i“1 R0,2

k,mpp
0
4,Πpfq,z,fqiσi

˘

ˆ

´

fptq ` S0,1
k,m

`

p0
4,Πpfptqq, zptq, fptq

˘

¯

. (12.4)

While the changes of coordinates in Lemma 9.2 and in the normal forms in Section 10
involve loss of regularity of f , in order to be differentiable so that the pullback of the
symplectic forms makes sense, nonetheless these maps are also continuous changes
of coordinates inside in H1pR3,C2q; see Lemma 8.1 for l “ 0. Notice that (1.1)
leaves ΣkpR3,C2q invariant for any k P N and that, similarly, the system leaves
Cn ˆ pXc X ΣkpR3,C2qq invariant.

By the well-posedness of (1.1) in H1pR3,C2q and of (11.1) in CnˆXc, a contin-
uous change of coordinates (12.2)–(12.4) maps solutions of (11.1) in Cn ˆXc into
solutions in H1pR3,C2q of (1.1), capturing the solutions of (1.1) in the statement
of Theorem 10.3. See also [20, Sect. 8].

By Lemma 12.1 it is easy to conclude that R0,2
k,m ÝÑ

tÑ`8
0 in R7 and S0,1

k,m ÝÑ
tÑ`8

0

in ΣkpR3,C4q for the terms in (12.4), and that R1,2
k,m ÝÑ

tÑ`8
0 for the terms in (12.3).

Then for 1 ď j ď 4 we have

lim
tÑ`8

Πjpr
1ptqq “ lim

tÑ`8
Πjpfptqq “ lim

tÑ`8
Πj

`

W pt, 0qeiσ3p´∆`ω1
qtf`

˘

“ Πjpf`q

since Πj

`

W pt, 0qeiσ3p´∆`ω1
qtf`

˘

“ Πjpf`q. Hence, since p is characterized by the
first four variables (cf. (2.12)), this defines p` in (1.9).

We consider a function g P C1pR`,Gq such that

e´iσ3
ř4
j“1 τ

1
jptq♦j

`

a

1´ |b1ptq|2 ` b1ptqσ2K
˘

“ T pgptqq.

By (12.4) we have

T pgptqqPp1ptqr
1ptq “ T pgptqqeiσ3

ř4
j“1 R0,2

k,m♦jT pe
ř3
i“1 R0,2

k,miσiqf ` oΣkp1q, (12.5)

where oΣkp1q Ñ
tÑ`8

0 in ΣkpR3,C2q. We claim the following, with the proof in

Appendix A.

Claim 12.2.

T pgptqqeiσ3
ř4
j“1 R0,2

k,m♦jT pe
ř3
i“1 R0,2

k,miσiq “ ĂW p0, tq (12.6)

with ĂW pt, sq the fundamental solution, in the sense of (11.17), of a system of the
form

9u “ iσ3rv ¨ ♦u, where rv ¨ ♦ “
ÿ

j“1,...,7

iσ3rvjptq♦j . (12.7)
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Substituting (3.9) and (12.4) into (1.1), for a G1 P C
0pH1pR3,C2q, L1pR3,C4qq

we get
9f “ ´iσ3∆f ` iσ3rv ¨ ♦f `G1puq, (12.8)

while from (11.14) we have for a G2 P C
0pH1pR3,C2q, L1pR3,C4qq

9f “ ´iσ3∆f ` iσ3ω
1f ` iσ3v ¨ ♦f `G2puq. (12.9)

The fact that G1, G2 P C
0pH1pR3,C2q, L1pR3,C4qq is rather simple. For example,

G2puq is given by the sum of the r.h.s. of (11.14) with a linear term Vω1f where
Vω1 P SpR3,MpC4qq is the matrix-valued function in (11.24). It is elementary to
show that u ÞÑ f is in C0pH1pR3,C2q, L2pR3,C4qq.

The rest of G2puq comes from the r.h.s. of (11.14), obtained applying p∇f to
the terms R|3j“1 in the expansion (8.11). It is elementary that this, too, is in

C0pH1pR3,C2q, L1pR3,C4qq.
By comparing the equation for f with G1 and the equation for f with G2, it

follows that we necessarily have rv ¨ ♦ “ ω1 ` v ¨ ♦; see [18, Lemma 13.8]. Hence,
returning to (12.5), we have

T pgptqqPp1ptqr
1ptq “ ĂW p0, tqW pt, 0qeiσ3ω

1te´iσ3∆tf` ` oH1p1q,

for W pt, 0q defined by (11.17) and where

BtpĂW p0, tqW pt, 0qe
iσ3ω

1tq “ ĂW p0, tqiσ3

`

pv ´ rvq ¨ ♦` ω1
˘

W pt, 0q “ 0.

We conclude that there exists g0 P G such that for h` “ T pg0qf` one has

T pgptqqPp1ptqr
1ptq “ e´iσ3∆th` ` oH1p1q.

This completes the proof of (1.9).
Finally, we emphasize that the proof is predicated on the values Πjpu0q “ p0

j

for j ď 6, with the coordinate changes and the manifold M6
1pp

0q dependent on p0.

However, since the symbols Ri,j
k,m and Si,jk,m appearing in the coordinate changes

depend continuously on p0, the estimates are uniform in p0, as long as this is close
enough to p1. This completes the proof of Theorem 1.1.

Appendix A. Proofs of Lemma 8.1, Lemma 8.2 and Claim 12.2. Lemma 8.1
is obtained expressing r in terms of pz, fq from the following lemma, where we omit
the dependence on the constant parameter Π4.

Lemma A.1. For n,M,M0, s, s
1, k, l P N0 with 1 ď l ď M such that (8.4) is

satisfied, for a P A a parameter, with A an open subset in Rd, and for rε0 ą 0,
consider

9rptq “ iσ3

ÿ

jď7

R0,M0`1
n,M pt, a,Πprq, rq♦jr ` Si,M0

n,M pt, a,Πprq, rq. (A.1)

Let k P ZX r0, n´ pl ` 1qs and set for s2 ě 1 and ε ą 0

Us
2

ε,k :“tr P TKΩ

Φp1
MX Σs2 : }r}Σ´k ` |Πprq| ď εu. (A.2)

Let a0 P A. Then, for ε ą 0 small enough, (A.1) defines a flow Ft

Ftprq “ eiσ3

ř4
j“1 R0,M0`1

n´l´1,lpt,a,Πprq,rq♦jˆ

T pe
ř3
i“1 R0,M0`1

n´l´1,lpt,a,Πprq,rqiσiq

´

r ` Si,M0

n´l´1,lpt, a,Πprq, rq
¯

,
(A.3)
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where for and for ε1 ą ε2 ą 0 sufficiently small we have

Ft P C
lpp´4, 4q ˆDRdpa0, ε2q ˆ Us

1

ε2,k,U
s
ε1,kq. (A.4)

Proof (sketch). While the statement is the same of [17, Lemma 3.8] and [2, Lemma
3], we have to deal with operators ♦j for j “ 5, 6, 7 which do not commute.

For ξ P sup2q and q P R4 we consider S :“ e´iσ3
ř4
j“1 qj♦jT pe´ξqr, for T the

representation in (2.19). It is elementary that for some Fj P C
8 we have

Πjprq “ ΠjpSq for j “ 1, 2, 3, 4,

Πjprq “ ΠjpSq ` Fjpξ,ΠkpSq|
7
k“5q for j “ 5, 6, 7,

(A.5)

where Fjp0, ˚q ” 0 ” Fjp˚, 0q for any ˚ and where for j “ 5, 6, 7 the above equality
is obtained proceeding like in Lemma 5.1. Then expressing the coefficients of (A.3)
in terms of the new variables, we have new coefficients

Dpt, a, ξ, %, Sq :“ e´iσ3
ř4
j“1 qj♦jT pe´ξqSi,M0

n,M p˚q, where

˚ :“
´

t, a, %l|
4
l“1, %l|

7
l“5 ` Flpξ, %k|

7
k“5q|

7
l“5, e

iσ3
ř4
j“1 qj♦jT peξqS

¯

,

Ajpt, a, ξ, %, Sq :“ R0,M0`1
n,M p˚q .

Notice that for 0 ď ` ďM we have

Dpt, a, ξ, %, Sq “ Si,M0

n´`,`pt, a, ξ, %, Sq and Ajpt, a, ξ, %, Sq “ R0,M0`1
n´`,` pt, a, ξ, %, Sq.

Then consider the following system which we explain below:

9S “ Dpt, a, ξ, %, Sq;

9qj “ Ajpt, a, ξ, %, Sq for j “ 1, 2, 3, 4, with qjp0q “ 0;

8
ÿ

k“1

1

k!
padpξqq

k´1 9ξ “
3
ÿ

i“1

Ajpt, a, ξ, %, Sqiσi with ξp0q “ 0; (A.6)

9%j “ xS,♦jDpt, a, ξ, %, Sqy `Aj ,

Aj “

#

0, j “ 1, 2, 3, 4;

´BξFjpξ, %k|
7
k“5q

9ξ ´
ř7
l“5 B%lFjpξ, %k|k“5,6,7q 9%l, j “ 5, 6, 7.

We explain now the above equations. The second and third line are defined in order
to simplify the equation for S. Indeed, when we substitute S in the equation of r
we get

Btpe
iσ3

ř4
j“1 qj♦jT peξqSq “

“ eiσ3
ř4
j“1 qj♦jT peξq

´

iσ3

4
ÿ

j“1

9qj♦jS ` T pe
´ξqBtpT pe

ξqqS ` 9S
¯

“ eiσ3
ř4
j“1 qj♦j

´

T peξqiσ3

4
ÿ

j“1

Aj♦jS ` iσ3

7
ÿ

j“5

Aj♦jT pe
ξqS

¯

`D.

By the choice made in the second line of (A.6) the summations over j “ 1, 2, 3, 4
cancel out. We will show that the summations over j “ 5, 6, 7 also cancel out. By
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the Baker–Campbell–Hausdorff formula, see [33, p. 15], we have

Bte
ξ “

˜

8
ÿ

k“1

1

k!
padpξqq

k´1 9ξ

¸

eξ, where adpξq : sup2q Ñ sup2q, ϑ ÞÑ rξ, ϑs.

(A.7)
So, for 1lC2 the unit element in SUp2q, we have

BtpT pe
ξqq “ dT p 1lC2q

˜

8
ÿ

k“1

1

k!
padpξqq

k´1 9ξ

¸

T peξq. (A.8)

On the other hand, by (2.9) and (2.20) we have
ÿ

j“5,6,7

Ajiσ3♦jT pe
ξq “

ÿ

i“1,2,3

Ai`4dT p 1lC2qpiσiqT pe
ξq.

So the third equation in (A.6) yields the cancellation of these terms. Hence we
conclude that the first equation in (A.6) is true.

We also derive equations for %j by differentiating BtΠjpSq and by substituting
ΠjpSq with %j .

Solving the last equation in (A.6) in terms of 9%j |
7
j“5 and replacing in the last

equation 9ξ by means of the third equation, we obtain, for 1 ď ` ďM ,

9S “ Si,M0

n´`,`pt, a, ξ, %, Sq;

9qj “ R0,M0`1
n´`,` pt, a, ξ, %, Sq for j “ 1, 2, 3, 4, with qjp0q “ 0;

9ξ “ R0,M0`1
n´`,` pt, a, ξ, %, Sq with ξp0q “ 0;

9%j “ R0,M0`1
n´`´1,`pt, a, ξ, %, Sq for j “ 1, ..., 7.

(A.9)

Taking as initial conditions pr, 0, 0,Πprqq, by elementary arguments, see [17, Lemma
3.8], we get from (A.9) a flow

Sptq “ r `

ż t

0

Si,M0

n´`´1,`pt
1, a,Πprq, rqdt1 “ r ` Si,M0

n´`´1,`pt, a,Πprq, rq;

qjptq “

ż t

0

R0,M0`1
n´`´1,`pt

1, a,Πprq, rqdt1 “ R0,M0`1
n´`´1,`pt, a,Πprq, rq for j “ 1, 2, 3, 4;

ξptq “
3
ÿ

i“1

ż t

0

R0,M0`1
n´`´1,`pt

1, a,Πprq, rqdt1iσi “
3
ÿ

i“1

R0,M0`1
n´`´1,`pt, a,Πprq, rqiσi;

ΠjpSptqq “ Πjprq `

ż t

0

R0,M0`1
n´`´1,`pt

1, a,Πprq, rqdt1

“ Πjprq `R0,M0`1
n´`´1,`pt, a,Πprq, rq for j “ 1, ..., 7.

(A.10)
In view of (A.5), we get also

Πjprptqq “ Πjprq `R0,M0`1
n´`´1,`pt, a,Πprq, rq for j “ 1, ..., 7. (A.11)

This ends the proof of the parts of Lemma 8.1 which differ from [17, Lemma 3.8].
The proof of Lemma 8.2 follows from the following result.

Lemma A.2. Consider two systems for ` “ 1, 2:

9rptq “ iσ3

ÿ

j“1,...,7

Ap`qj pt,Πprq, rq♦jr `Dp`qpt,Πprq, rq,
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with the hypotheses of Lemma A.1 satisfied, and suppose that

Dp1qpt,Πprq, rq ´Dp2qpt,Πprq, rq “ S0,M0`1
n,M pt,Πprq, rq.

Let r ÞÑ rt
p`q with ` “ 1, 2 be the flow for each of the two systems. Then, for s, s1

as in Lemma A.1,
}r1
p1q ´ r

1
p2q}Σ´s1 ď C}r}M0`1

Σ´s
.

Proof. The proof is elementary. We consider
ÿ

`“1,2

p´q`
d

dt
rtp`q “

ÿ

`“1,2

p´q`iσ3R0,M0`1
n,M pt,Πprtp`qq, r

t
p`qq ¨ ♦r

t
p`q

`
ÿ

`“1,2

p´q`Dp`qpt,Πprtp2qq, r
t
p2qq

loooooooooooooooooomoooooooooooooooooon

S
0,M0`1

n,M pt,Πprt
p2q
q,rt
p2q
q

`
ÿ

`“1,2

p´q`Dp1qpt,Πprtp`qq, r
t
p`qq.

Then for xt` :“ pΠprt
p`qq, r

t
p`qq

}rtp2q ´ r
t
p1q}Σ´s1

ď
ÿ

`

ż t

0

}rt
1

p`q}
M0`2
Σ´s

dt1 `

ż t

0

}rt
1

p2q}
M0`1
Σ´s

dt1

`

ż t

0

ż 1

0

}BΠprqDp1qpt1,xt
1

1 ` τpx
t1

2 ´ xt
1

1 qq}Σ´s |Πpr
t1

p2qq ´Πprt
1

p1qq| dt
1

`

ż t

0

ż 1

0

}BrDp1qpt1,xt
1

1 ` τpx
t1

2 ´ xt
1

1 qq}Σ´sÑΣ´s}r
t1

p2q ´ r
t1

p1q}Σ´s dt
1.

Since there is a fixed C ą 0 such that

}rp`qpt
1q}Σ´s ď C}r}Σ´s from (8.3),

|Πprt
1

p2qq ´Πprt
1

p1qq| ď C}r}M0`1
Σ´s

from the previous one and (8.3),

}BrDp1qpt,Π, %, rq}Σ´sÑΣ´s ď C}r}M0´1
Σ´s

,

}B%Dp1qpt,Π, %, rq}Σ´s ď C}r}M0

Σ´s
,

where the last inequalities follow from (5.4), for some fixed constant C ą 0 we
obtain

}rtp2q ´ r
t
p1q}Σ´s1 ď C

ˆ

t}r}M0`1
Σ´s

` }r}M0´1
Σ´s

ż t

0

}rt
1

p2q ´ r
t1

p1q}Σ´s dt

˙

,

for t P r0, 1s, which by Gronwall’s inequality yields (8.8).

Proof of Claim 12.2. Let g “ R4 ˆ sup2q be the Lie algebra of G. We can assume

that the inverse of the l.h.s. of (12.6) is equal to eiσ3
ř4
j“1 Xjptq♦jT peξptqq with X P

C1pR`,R4q and ξ P C1pR`, sup2qq. Then, for uptq :“ eiσ3

ř4
j“1 Xjptq♦jT peξptqqu0, by

(A.8) we have

9uptq “ iσ3

4
ÿ

j“1

9Xjptq♦juptq ` dT p 1lC2q

˜

8
ÿ

k“1

1

k!
padpξptqqq

k´1 9ξptq

¸

uptq.

We set rvjptq “ 9Xjptq for j ď 4 and, exploiting that iσi|
3
i“1 is a basis of sup2q, we

define rvjptq|
7
j“5 by

3
ÿ

l“1

rvl`3ptqiσl “
8
ÿ

k“1

1

k!
padpξptqqq

k´1 9ξptq.
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Then we conclude that (12.7) it true for this choice of uptq and of rvjptq|
7
j“1. Then

uptq “ ĂW pt, 0qu0 and ĂW p0, tq “ ĂW´1pt, 0q is such that equality (12.6) is true. This
yields Claim 12.2.

Appendix B. Proof of Lemma 8.4. The proof can be obtained from the follow-
ing lemma, expressing r in terms of pz, fq and omitting again the dependence of the
symbols on Π4, which has constant value.

Lemma B.1. Consider F “ F1 ˝ ¨ ¨ ¨ ˝ FL with Fj “ Fjt“1 transformations as in
Lemma A.1 on the manifold M6

1pp
0q. Suppose that for any Fj the M0 in Lemma A.1

equals mj, where 1 “ m1 ď ... ď mL with the constant i in Lemma 8.1 (ii) equal
to 1 when mj “ 1. Fix M,k with n1 " k ě N0 (n1 picked in Lemma 3.1). Then
there is a n “ npL,M, kq such that if the assumptions of Lemma 8.1 apply to each
of operators Fj for pM,nq, there exist ψp%q P C8 with ψp%q “ Op|%|2q and a small
ε ą 0 such that in Usε,k for s ě n´ pM ` 1q we have the expansion

K ˝ F “ ψpΠprqq ` 2´1ΩpHpPpr, Pprq `R1,2
k,M ` EP pPprq `R2, (B.1)

R2 :“
ÿ

d“2,3,4

xBdpΠprq, rq, pPprq
dy `

ż

R3

B5px,Πprq, r, rpxqqpPprq
5pxq dx,

with:

‚ B2p0, 0q “ 0;
‚ Bdp%, rq P CM pU´k,ΣkpR3, BppR4qbd,Rqqq, 2 ď d ď 4, with U´k Ă R7 ˆ

pTKΩ

Φp1
MX Σ´kq an open neighborhood of p0, 0q;

‚ for ζ P R4 p%, rq P U´k,

}∇i
r,%,ζB5p%, r, ζq}ΣkpR3,BppR4qb5,Rq ď Ci, i ďM.

Proof. The proof is in [17], but we sketch it. First of all, by (A.4) we have, for
k ď n´ LpM ` 1q,

Un´pM`1q
εL`1,k

FL
ÝÑ Un´2pM`1q

εL,k
...

F2

ÝÑ Un´LpM`1q
ε2,k

F1

ÝÑ Un´pL`1qpM`1q
ε1,k

Ă Uk`3
ε1,k

Ă UN0

ε1,k
,

(B.2)
where each map is CM if we pick n1 ě n “ npL,M, kq :“ k ` 3 ` pL ` 1qpM ` 1q

and then we get F P CM pUn´pM`1q
εL`1,k

,Uk`3
ε1,k

q.

By (A.3), the r-th component of F is of the form

Fp%, rq “ eiσ3
ř4
j“1 R1,1

k`3,M p%,rq♦jT pe
ř3
i“1 R1,1

k`3,M p%,rqiσiqpr ` S1,1
k`3,M p%, rqq. (B.3)

Then by r♦j ,♦ks “ 0 for all k if j ď 4 we have

Πjprq|
4
j“1 ˝ F “ Πjpr ` S1,1

k`3,MΠprq, rqq|4j“1 “ Πprq|4j“1 `R1,2
k`2,M pΠprq, rq.

From (3.13) we have

p ˝ F “ p`R1,2
k`2,M and so Φp ˝ F “ Φp ` S1,2

k`2,M .

Then we have

Epu ˝ Fq “ E
´

e´iσ3
ř4
j“1 τj♦j p

a

1´ |b|2 ` bσ2KqpΦp ` Pprq ˝ F
¯

“ EppΦp ` Pprq ˝ Fq “ EpΦp ` S1,2
k`2,M ` Pppe

iσ3R1,1
k`2,M ¨♦pr ` S1,1

k`2,M qq

“ EpΦp ` Ppr ` S1,2
k`2,M ` PpS

1,1
k`2,M q,
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where we use the commutation (for the proof, see [17, Lemma 4.1])

rPp, e
iσ3

ř4
j“1 R1,1

k`3,M♦jT pe
ř3
i“1 R1,1

k`3,M qiσisr

“ reiσ3
ř4
j“1 R1,1

k`3,M♦jT pe
ř3
i“1 R1,1

k`3,M qiσi , pPpsr “ S1,2
k`2,M .

We get similarly for 1 ď j ď 4

Πjpu ˝ Fq|
4
j“1 “ ΠjpΦp ` Ppr ` S1,2

k`2,M ` PpS
1,1
k`2,M q|

4
j“1

“ ΠjpΦp ` Pprq|
4
j“1 `R1,2

k,m.

Then

KpFpuqq “ EpΦp ` Ppr ` S1,2
k`2,M ` PpS

1,1
k`2,M q ´ E

`

Φp0

˘

´
ÿ

jď4

pλjppq `R1,2
k`2,mq

´

ΠjpΦp ` Pprq `R1,2
k,m ´Πj

`

Φp0

˘

¯

.
(B.4)

Like in [17, Lemma 4.3], we set

Ψ “ Φp ` S1,2
k`2,M ` PpS

1,1
k`2,M ;

we need to analyze EpΨ` Pprq which we break into (cf. (2.10))

EpΨ` Pprq “ EP pΨ` Pprq ` EKpΨ` Pprq.

It is also shown in [17, Lemma 4.3] that

EP pΨ` Pprq “ EP pΨq ` EP pPprq

` terms that can be incorporated into R2

`
ÿ

j“0,1

ż

R3

dx

ż

r0,1s2

tj

j!
pB
j`1
t q

ˇ

ˇ

t“0
BsrBp|sΨ` tPpr|

2qs dt ds.

(B.5)

The second line of (B.5) equals
ż

R3

dx

ż

r0,1s2
dt ds

ÿ

j“0,1

tj

j!
pB
j`1
t q

ˇ

ˇ

t“0
Bs

!

Bp|sΦp ` tPpr|
2q`

`

ż 1

0

dτ Bτ rBp|spΦp ` τpS
1,2
k`2,M ` PpS

1,1
k`2,M q ` tPpr|

2qs

)

.

(B.6)

The contribution from the last line of (B.6) can be incorporated into R2
`R1,2

k,m.

Notice that from the j “ 0 term in the first line of (B.6) we get

2

ż

R3

dx

ż 1

0

dsBsrB
1p|sΦp|

2qsΦp ¨ Pprs “ 2

ż

R3

dxB1p|Φp|
2qΦp ¨ Ppr

“ x∇EP pΦpq, Ppry. (B.7)

The j “ 1 term in the first line of (B.6) is 2´1x∇2EP pΦpqPpr, Ppry; thus,

EP pΨ` Pprq “ EP pΨq ` EP pPprq (B.8)

` x∇EP pΦpq, Ppry ` 2´1x∇2EP pΦpqPpr, Ppry `R2
`R1,2

k,m.

Then,

EKpΨ` Pprq (B.9)

“ EKpΨq ´ x∆Φp, Ppry `
@

´∆
`

S1,2
k`2,M ` PpS

1,1
k`2,M

˘

, Ppr
D

loooooooooooooooooooooomoooooooooooooooooooooon

R1,2
k,m

`EKpPprq.
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Using (2.10), (2.6), (2.18) and the fact that iσ3λppq ¨ ♦Φp P TΦpM, see (2.21), we
have

x´∆Φp `∇EP pΦpq, Ppry “ x∇EpΦpq, Ppry “ ´Ωpiσ3∇EpΦpq, Pprq
“ ´Ωpiσ3λppq ¨ ♦Φp, Pprq “ 0.

Adding (B.8) and (B.9) and using the cancellation of the sum of the second term
in the right-hand side of (B.9) with the term (B.7) which follows from the above
relation, we arrive at

EpΨ` Pprq “ EpΨq ` EpPprq ` 2´1x∇2EP pΦpqPpr, Ppry `R2
`R1,2

k,m, (B.10)

where we used (2.10). From (2.18),

EpΨq “ EpΦpq `

0
hkkkkkkkkkkkkikkkkkkkkkkkkj

x∇EpΦpq, PpS1,1
k`2,M y`

R1,2
k`2,M

hkkkkkkkkkkkikkkkkkkkkkkj

x∇EpΦpq,S1,2
k`2,M y`R

1,2
k,M

“ EpΦpq `R1,2
k,M ,

(B.11)

where the R1,2
k,M in the right-hand side is absorbed into R1,2

k,M in (B.1).
We have

´λppq ¨ΠpΦp ` Pprq “ ´λppq ¨ΠpΦpq ´ λppq ¨ΠpPprq ´ xλppq ¨ ♦Φp, Ppry

“ ´λppq ¨ΠpΦpq ´ λppq ¨ΠpPprq,
(B.12)

where we used xλppq ¨ ♦Φp, Ppry “ Ωp´iσ3λppq ¨ ♦Φp, Pprq “ 0.
Substituting (B.10) (where we apply (B.11)) and (B.12) into (B.4), we have:

KpFpuqq “ EpΦpq ` EpPprq ` 2´1x∇2EP pΦpqPpr, Ppry ´ EpΦp0q

´ λppq ¨ΠpΦpq ´ λppq ¨ΠpPprq ` λppq ¨ΠpΦp0q `R2
`R1,2

k,m.

By (4.5), dppq “ EpΦpq ´ λppq ¨ΠpΦpq. Then we have

EpΦpq ´ EpΦp0q ´ λppq ¨ pΠpΦpq ´ΠpΦp0qq “ dppq ´ dpp0q ´ pλpp0q ´ λppqq ¨ p0

“ KpΦpq “ OppΠjprq|
4
j“1q

2q `R2,2
8,8, (B.13)

where OppΠjprq|
4
j“1q

2q is ψpΠjprqq in (B.1) and R2,2
8,8 is absorbed inside R1,2

k,M .
Thus,

KpFpuqq “ ψpΠprqq`EpPprq`2´1x∇2EP pΦpqPpr, Ppry´λppq¨ΠpPprq`R2
`R1,2

k,m.

Breaking EpPprq “ EP pPprq ` EKpPprq and using the relation

2´1x∇2EP pΦpqPpr, Ppry ` EKpPprq ´ λppq ¨ΠpPprq

“ 2´1xp∇2EpΦpq ´ λppq ¨ ♦qPpr, Ppry “ 2´1ΩpHpPpr, Pprq,

we arrive at the conclusion of the lemma.
The following is an elementary consequence of Lemma B.1 and is proved in [17,

Lemma 4.4].

Lemma B.2. Under the hypotheses and notation of Lemma 8.4, for R1 like R2,
for ψ P C8pR4,Rq with ψp%q “ Op|%|2q, we have

K ˝ F “ ψpΠjprq|j“1,...,4q ` 2´1ΩpHp1r, rq `R1,2
k,m ` EP prq `R1, (B.14)

R1 :“
ÿ

d“2,3,4

xBdpΠprq, rq, r
dy `

ż

R3

B5px,Πprq, r, rpxqqrq
5pxq dx,

the Bd for 2 ď d ď 5 with similar properties of the functions in Lemma 4.1.
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Proof. The proof, for whose details we refer to [17], is obtained by writing

Ppr “ r ` pPp ´ Pp1qr “ r ` S1,1
8,8

and substituting Ppr “ r ` S1,1
8,8 inside (B.1). That from EP pPprq `R2 in (B.1)

we obtain a term which is contained in R1,2
k,m `EP prq `R1 in (B.14) is elementary

and is discussed in [17]. We have

1

2
ΩpHpPpr, Pprq “

1

2
x´∆Ppr, Ppry ´ λppq ¨ΠpPprq `

1

2
x∇2EP pΦpqPpr, Ppry.

(B.15)
Then

x´∆Ppr, Ppry “ x´∆r, ry `R1,2
k,m, ΠpPprq “ Πprq `R1,2

k,m,

x∇2EP pΦpqPpr, Ppry “ x∇2EP pΦp1qr, ry `R1,2
k,m `

@

p∇2EP pΦpq ´∇2EP pΦp1qqr, r
D

,

λppq “ λpp1q `R1,0
8,8pΠjprq|

4
j“1q `R1,2

k,m,

where for the last line we considered (3.13) which implies

p “ Π´Πprq `R1,2
8,8

and where R1,0
8,8pΠprqq is smooth in the argument and is Op|Πprq|q.

Then we conclude that the right hand side of (B.15) is

2´1ΩpHp1r,rq
hkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkj

2´1
@

p´∆´ λpp1q ¨ ♦`∇2EP pΦp1qqr, r
D

`R2,0
8,8pΠjprq|

4
j“1q `R1,2

k,m

` 2´1
@

p∇2EP pΦpq ´∇2EP pΦp1qqr, r
D

,

(B.16)

where the last term can be absorbed in the d “ 2 term of R1 by (3.13). Setting

ψp%q “ ψp%q `R2,0
8,8p%q with the R2,0

8,8 in (B.16), we get the desired result.
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