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a b s t r a c t

A predicting model for soft dielectric elastomer generators (DEGs) must consider a realistic model of

the electromechanical behaviour of the elastomer filling, the variable capacitor and of the electrical cir-

cuit connecting all elements of the device. In this paper such an objective is achieved by proposing a

framework for reliable simulations of soft energy harvesters. In particular, a simple electrical circuit is

realised by connecting the capacitor, stretched periodically by a source of mechanical work, in parallel

with a battery through a diode and with an electrical load consuming the energy produced. The electri-

cal model comprises resistances simulating the effect of the electrodes and of the conductivity current in-

variably present through the dielectric film. As these devices undergo a high number of electro-mechanical

loading cycles at large deformation, the time-dependent response of the material must be taken into ac-

count as it strongly affects the generator outcome. To this end, the viscoelastic behaviour of the poly-

mer and the possible change of permittivity with strains are analysed carefully by means of a proposed

coupled electro-viscoelastic constitutive model, calibrated on experimental data available in the literature

for an incompressible polyacrylate elastomer (3M VHB4910). Numerical results showing the importance

of time-dependent behaviour on the evaluation of performance of DEGs for different loading conditions,

namely equi-biaxial and uniaxial, are reported in the final section.

© 2015 Elsevier B.V. All rights reserved.
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. Introduction

In recent years the problem of energy efficiency has become

ore and more relevant and many efforts have been made in order

o develop devices that are able to harvest energy from renewable

esources. Among the various energy harvesting technologies,

ielectric elastomer generators (DEGs), or dielectric elastomer

nergy harvesters, are particularly promising (Anderson et al., 2012;

ntoniadis et al., 2013; Chiba et al., 2011; Kornbluh et al., 2011; McKay

t al., 2011; Vertechy et al., 2013; Vertechy et al., 2014; Kaltseis et al.,

014). A DEG is an electromechanical transducer based on the high

eformations achievable by a filled parallel-plate capacitor subject

o a voltage, constituted of a soft dielectric elastomer film usually

ade up of acrylic or natural rubber embedded between two com-

liant electrodes. By performing an electromechanical cycle in which
∗ Corresponding author.

E-mail address: ralf.denzer@solid.lth.se (R. Denzer).

b

o

t

s

ttp://dx.doi.org/10.1016/j.ijsolstr.2015.06.004

020-7683/© 2015 Elsevier B.V. All rights reserved.
he system is excited by an external mechanical source from a con-

racted to a stretched configuration at different voltages, it is pos-

ible to harvest a net energy surplus. Evaluation of the potential

mount of energy that can be harvested by a DEG in a cycle ranges

etween a few tens to a few hundreds of mJ/g (Bortot et al., 2014;

uang et al., 2013; Kaltseis et al., 2011; Kaltseis et al., 2014; McKay et

l., 2011; Springhetti et al., 2014).

When the generator operates effectively in a natural energy har-

esting field, it will undergo a high number of electromechanical

ycles at frequencies ranging from a few tenths of Hz to a few

z and at quite high stretches. Hence, on the one hand, time-

ependent effects such as viscosity of the elastomer (Ask et al.,

012a,b; Hong, 2011; Wang et al., 2013) may considerably modify

he performance of the generator and for this reason cannot be ne-

lected. On the other hand, the high strains involved in the mem-

rane justify the analysis with electrostriction, i.e. the dependency

f the dielectric permittivity on the mechanical stretch, even though

his phenomenon depends on the analysed material and its mea-

urement may be strongly conditioned by the testing conditions

http://dx.doi.org/10.1016/j.ijsolstr.2015.06.004
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Fig. 1. (a) Dielectric elastomer generator in its reference configuration; (b) scheme of

the equivalent circuit diagram of a soft dielectric elastomer generator.
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Fig. 2. Scheme of the electrical circuit in which the dielectric elastomer generator op-

erates.
(Tagarielli et al., 2012; Wissler and Mazza, 2007; Zhao and Suo, 2008;

McKay et al., 2009; Di Lillo et al., 2012; Cohen and deBotton, 2014).

Some recent papers are devoted to the analysis of the performance

of dielectric elastomer generators and, among these papers, a few

take the presence of dissipative effects into consideration. By neglect-

ing dissipation, in Koh et al. (2009) and Springhetti et al. (2014) the

performance of the generator is analysed and optimised with respect

to the typical failure modes of the dielectric elastomer. In Foo et al.

(2012), Huang et al. (2013) and Vertechy et al. (2013), the analysis

of the performance of a dissipative dielectric elastomer generator is

presented. Whereas in Foo et al. (2012) and Vertechy et al. (2013) the

dielectric membrane and the external circuits are coupled by means

of electromechanical switches, in Huang et al. (2013) the generator

is integrated in an electrical circuit constantly supplied by a battery.

This simple kind of harvesting circuit with constant power supply is

used in several experimental studies and is considered in Pelrine and

Prahlad (2008) and Anderson et al. (2012). Münch et al. (2012) de-

scribe the coupling of a ferroelectric generator and an electric circuit

in order to determine the working points of the device. Sarban et al.

(2012) develop an analysis for a dielectric elastomer actuator based

on the coupling of an electric circuit with a viscoelastic mechanical

model.

The present paper has several objectives. First, we aim at propos-

ing the analysis of a soft energy harvester connected to an elec-

tric circuit where a battery at constant voltage supplies the charge

at low electric potential and electric field to the generator, thus

avoiding the electric breakdown and limiting the leakage dissipa-

tion. Resistance of electrodes and conductivity of the dielectric are

taken into account according to ohmic modelling of the leakage cur-

rent. Secondly, we take into account the pronounced viscoelastic

and electrostrictive behaviour of the material at large strains. The

third objective is the analysis of such a system under typical oper-

ating conditions. In the investigation, inertia effects are disregarded

as the kinetic energy computed along the imposed oscillations is

negligible with respect to the elastic strain energy stored in the

elastomer.

The paper is organised as follows. In Section 2, we will start

presenting the electrical circuit for energy harvesting, in which

the generator operates. This leads us to a set of nonlinear dif-

ferential algebraic equations. Then, in Section 3, we will intro-

duce a large-strain electro-viscoelastic model of the elastomer,

following the approach proposed by Ask et al. (2012a,b). More-

over, we will introduce a model for electrostriction, referring to

that proposed by in Gei et al. (2014). The model will be vali-

dated on the basis of experimental data reported in Tagarielli et

al. (2012) for an acrylate elastomer VHB-4910 produced by 3M. Fi-

nally, in Section 4, we will present and compare the numerical

results obtained for different loading conditions, i.e. equi-biaxial

and uniaxial load, and for different constitutive models, i.e. a hy-

perelastic solid, a viscoelastic and an electrostrictive viscoelastic

material.

2. Dielectric elastomer generator: electric circuit

We consider a soft dielectric generator consisting of a block

of thin soft dielectric elastomer with dimensions L0 × L0 × H0 in

the reference configuration B0. The device is assumed to de-

form homogeneously and is loaded by in-plane external oscillat-

ing forces represented by the nominal stress components S1(t)

and S2(t) as depicted in Fig. 1(a). The two opposite surfaces are

treated so as to act like compliant electrodes inducing, neglecting

fringing effects, a nominal time-dependent electric field E0(t) di-

rected along the coordinate X3. Related to the deformation history

the dimensions of the elastomer vary as a function of the time-

dependent principal stretches λ (t), with i = 1,2,3, to reach, at a
i
ertain time t, the actual dimensions L1 = L0 λ1(t),L2 = L0 λ2(t) and

= H0 λ3(t).

This generator can generally be modelled as a stretch-

ependent variable plane capacitor, the capacitance C of which is

efined as

(t) =∈ A

H
=∈ L2

0

H0

λ1(t)λ2(t)

λ3(t)
, (1)

here ∈ is the dielectric permittivity that can be decomposed as

= ∈r ∈o. Moreover, ∈r represents the relative dielectric constant and

o = 8.854 pF/m characterises the permittivity of vacuum.

In a real device, however, the dielectric material shows a certain

onducting current, also denoted as leakage current, while the elec-

rodes have a non-negligible resistance. Hence, a more realistic elec-

rical model of the generator is a variable capacitor connected in par-

llel to a resistor Ri, representing the electrical resistance of the di-

lectric film, and connected in series to a resistor Rs, representing the

lectrical resistance of electrodes and wires, as shown in Fig. 1(b), see

arban et al. (2012).

Furthermore, the charge Q exchanged by the system is given by

he sum of the time-integral of the leakage current and the product

f capacitance and voltage of the soft variable capacitor,

(t) =
∫ t

0

iRi(τ )dτ + C(t)φC(t). (2)

The generator operates in an electrical circuit achieved by con-

ecting the dielectric elastomer generator in parallel to a battery

hrough a diode and to an electrical load, as illustrated in Fig. 2

The battery supplies the circuit with a difference in the electric

otential φo(t). In the analysis of the circuit, we assume that the
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oltage supplied by the battery is zero at the initial time t = 0 and

hen increases linearly during the semi-period T/2 of the stretch os-

illation up to the value φo, namely

o(t) = t
φo

T/2
for 0 < t < T/2. (3)

hereafter, for t > T/2, the supplied voltage is kept constant, i.e.

o(t) = φo for t > T/2.

he electrical load is represented by the external resistor Rext . The

mpedance of the load has to be sufficiently high so that the charge

s maintained constant during the release of the elastomer and, as

consequence, the voltage on the dielectric elastomer is increased

ith respect to the constant value φo supplied by the battery.

The diode prevents the charge from flowing from the generator

o the battery during the release phase. Its current iD(t) is modelled

ccording to the classical Shockley diode equation

D(t) = Is

[
exp

(
φD(t)

n vT

)
− 1

]
, (4)

here Is is its saturation current, vT the thermal voltage, n the ideality

actor with 1 < n < 2, and φD(t) the diode voltage. The thermal volt-

ge depends on the Boltzmann constant K, the temperature T and on

he elementary charge qe = 1.60217653 × 10−19 C, as vT = KT /qe.

In the case where the components of a circuit are connected in

eries, the total voltage is equal to the sum of the voltage on each

f the components. By applying Kirchhoff’s voltage law to the circuit

ne obtains

o(t) = φD(t) + φRs(t) + φC(t), (5)

o(t) = φD(t) + φRext (t), (6)

here φC(t) is the voltage on the generator and the parallel resistor

i, while φRext (t) is the voltage on the electric load, here represented

y the external resistor with impedance Rext . Combining (5) and (6)

esults in the voltage relation for a parallel connection,

o(t) − φD(t) = φRs(t) + φC(t) = φRext (t).

ecalling that series-connected circuit elements carry the same cur-

ent while parallel-connected circuit elements share the same volt-

ge, so that the overall current is the sum of the currents on each el-

ment, we can describe the circuit by using Kirchhoff’s current law

D(t) = ibattery(t) = iDEG(t) + iload(t). (7)

Experiments on acrylic elastomers (Di Lillo et al., 2012) have

hown that the response of resistors Ri and Rs is ohmic if the electric

eld in the material will not exceed a threshold value in the range

etween 20 and 40 MV/m, beyond which the resistance will decrease

xponentially. In our simulations we take the voltage φo supplied by

he battery at constant regime as 1 kV and therefore the intensity

f the electric field in the generator remains bounded to 20 MV/m.

s a consequence, we assume Ohm’s laws iDEG(t) = φRs(t)/Rs and

Ri(t) = φC(t)/Ri to complete the formulation. Therefore, Eq. (7) to-

ether with (5) and (6) constitute a non-linear differential algebraic

ystem of four equations

φo(t) − φD(t) = φRs(t) + φC(t),

φRs(t) + φC(t) = φRext (t),

Is

[
exp

(
φD(t)

n vT

)
− 1

]
= φRs(t)

Rs
+ φRext (t)

Rext
,

φRs(t)

Rs
= C(λ(t)) φ̇C(t) + Ċ(λ(t)) φC(t) + φC(t)

Ri

,

(8)

here the voltages φD(t),φRs(t),φC(t) and φRext (t) are the four un-

nowns. The non-linear system (8) can be solved numerically, e.g. by
sing a DAE solver. Schuster and Unbehauen (2006) presents the

ecourse to differential algebraic equation solvers in the analysis

f nonlinear electric networks. Regarding the values of resistances

n the circuit, on one hand, a review of the literature (Haus et

l., 2013; Matysek et al., 2011; Karsten et al., 2011) has led us to

et Ri = 100 G� and Rs = 70 k� as a reasonable choice. On the

ther, as we aim at comparing the behaviour of the generator for

ifferent end users, we select a quite large range for Rext , namely

ext ∈ [0.001,1000] G�.

For the description of the characteristic parameters of the diode,

e refer to the commercial type designated as NTE517 produced by

TE Electronics Inc. In agreement with NTE Electronics Inc, we es-

imate that the saturation current Is is � 0.1 μA and that the ther-

al voltage vT is � 25 mV at room temperature. In the computations,

e will assume a unitary value n = 1 for the ideality factor of the

iode.

From an electro-mechanical point of view, the soft dielectric gen-

rator consists of an incompressible electroactive polymer (EAP) to be

odelled by employing the large-strain electro-viscoelasticity frame-

ork introduced by Ask et al. (2012a,b), which is briefly summarised

n the following sections. The main hypotheses lie in the assumption

hat the electric fields are static whereas the mechanical response,

hough quasi-static, is rate-dependent.

. Large strain electro-viscoelasticity

.1. Kinematics and governing equations

For the motion of the material body considered, we assume that

(X ,t) is a sufficiently smooth mapping transforming the position

ector X of a material particle in the reference configuration B0 to

ts spatial position x = ϕ(X ,t) in the actual configuration Bt at time t.

ence, the deformation gradient tensor is given by F = Gradϕ, where

he gradient is taken with respect to the reference configuration B0.

he local volume ratio is the Jacobian of the deformation gradient

ensor J = detF with J = 1 for incompressible materials. The right

auchy–Green tensor is defined by C = F T · F and we formally intro-

uce the stretches λ1,λ2,λ3, already used in Section 2, as the square

oots of the eigenvalues of C such that J = λ1 λ2 λ3 = 1.

The quantities of interest to define the electrostatic state of a di-

lectric are the electric field E, the electric displacements D and the

olarisation P in Bt , linked by the relation

= ∈o E + P.

Electromagnetic interactions are governed by Maxwell’s equa-

ions. We assume throughout the paper that i) the hypotheses of elec-

rostatics hold true and that ii) free currents and free charges are ab-

ent. Therefore, Maxwell’s equations in local form with respect to the

ctual configuration Bt reduce to

url E = 0, div D = 0, (9)

r with respect to the reference configuration B0 to

url E0 = 0, Div D0 = 0, (10)

here the following nominal fields

0 = F T · E, D0 = JF−1 · D, (11)

re naturally introduced.

The notation used in Eq. (10) is such that the uppercase let-

ers indicate operators acting on B0, e.g. Grad, Div, Curl, whereas

owercase letters refer to operators defined in the configuration

t , e.g. grad, div, curl. Eq. (10) 1 implies that the electric field is

onservative, i.e.
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E0(X ) = −Gradφ(X ), (12)

where φ(X ) is the electrostatic potential. At a discontinuity surface,

including the boundary ∂B0, the electric field and the electric dis-

placement must fulfil the jump conditions

[[E0]] × N0 = 0, [[D0]] · N0 = 0, (13)

where [[ f ]] = f a − f b is the jump operator and where N0 denotes the

outward referential unit normal vector, pointing from a towards b.

The local form of the balance of linear momentum in Bt for the

quasi static case corresponds to

divσ + f e + ρ f = 0, (14)

where ρ is the current mass density of the body, f is the mechanical

body force and f e is the electric body force per unit of volume. The in-

ertia term is neglected as we will show that it is not substantial in the

performance analysis of prestretched elastomer generators. For the

problem at hand the electric body force can be specified as follows

f e = grad E · P.

Moreover, the Cauchy stress tensor σ is generally non-symmetric,

whereas the total stress tensor

τ = σ + E ⊗ D − 1

2
∈0[E · E]I,

as introduced in e.g. Dorfmann and Ogden (2005), Hutter et al.

(2006), Maugin (1988) and McMeeking and Landis (2005), turns out

to be symmetric. The second-order identity tensor is denoted by I. In

this way, it is possible to rewrite the balance of linear momentum as

div τ + ρ f = 0.

The total Piola-type stress tensor S is defined as S = Jτ · F−T , so

that the local referential form of the balance of linear momentum can

be written as

Div S + ρ0 f = 0,

where ρ0 = Jρ is the referential mass density. In view of the in-

verse motion problem of electro-elasticity, respectively electro-

viscoelasticity, the reader is referred to Ask et al. (2013) and Denzer

and Menzel (2014) and references cited therein.

3.2. Viscoelasticity at finite deformation

The DEs are elastomers with rubber-like properties. Hence, it is

relevant to extend the electro-elastic framework in order to include

viscoelastic effects and to thereby model the rate-dependence me-

chanical behaviour of the material. We assume that the viscosity is

related to mechanical contributions only, i.e. the deformation gradi-

ent and additional internal variables which represent the viscous part

of the behaviour. This means that, even though the material deforms

in response of an applied electric voltage, the viscosity is related to

the induced deformation only, and not directly to the electrical quan-

tities. In the present work, we will refer to the viscoelastic model pro-

posed by Ask et al. (2012a,b), and to the one by Gei and collaborators

(Bertoldi and Gei, 2011; Gei et al., 2014) for the electromechanical be-

haviour.

A common approach to model viscoelasticity, see e.g. Lubliner

(1985), Reese and Govindjee (1998) and Kleuter et al. (2007), in the

finite-strain framework is based on the introduction of a multiplica-

tive split of the deformation gradient into elastic and viscous contri-

butions

F = F eα · F vα , (15)
 w
here subscript α indicates the possibility of multiple viscosity el-

ments. The multiplicative decomposition (15) can be considered

s a three-dimensional generalisation of the splitting occurring in a

ne-dimensional Maxwell rheological element, where a spring and a

ashpot are connected in series. In a generalised Maxwell rheologi-

al model, an arbitrary number of Maxwell elements is connected in

arallel. For later reference, it is convenient to introduce a Cauchy–

reen-type deformation tensor defined as

vα = F T
vα · F vα , (16)

or each Maxwell element α. This tensor will be taken as the internal

ariable and shall satisfy detCvα = 1.

The dissipation inequality, which is the basis to formulate consti-

utive equations, can be written in local form as

=
[

S − ∂W

∂F

]
: Ḟ −

[
D0 + ∂W

∂E0

]
· Ė

0 −
∑
α

∂W

∂Cvα
: Ċvα ≥ 0, (17)

here the notation •̇ denotes the material time derivative. The dissi-

ation inequality must be valid for all admissible processes. Hence, a

ufficient condition for the non-viscous part of (17) to be fulfilled is

hat

= ∂W

∂F
− pF−T , D0 = − ∂W

∂E0
, (18)

here p is the hydrostatic pressure due to the incompressibility con-

traint. In order to fully characterise the material behaviour, it is nec-

ssary to formulate evolution equations for the internal variables,

hich describe the rate-dependence of the mechanical quantities.

It is assumed that the elastomer is an incompressible material,

o that J = 1, complying with a constitutive relation of neo-Hookean

ype under isothermal conditions. Assuming the nominal electrical

eld E0 as the independent electrical variable, the electric Gibbs po-

ential is considered to take the representation

(F ,E0,Cvα) = μ

2
[I1 − 3] + 1

2

∑
α

βα μ [I1vα − 3] − ∈
2

I5, (19)

ith I1 = trC,I1vα = tr(C · C−1
vα ) and I5 = E0 · C−1 · E0 = E · E. Here, μ

s the long-term shear modulus of the material and βα are positive

imensionless proportionality factors, which relate the shear modu-

us of the viscous element α to the long-term shear modulus μ. If the

ielectric permittivity ∈ is independent of the deformation, we can

epresent the permittivity as ∈= ∈0 ∈0
r , where ∈0

r is the relative per-

ittivity referred to the undeformed configuration. Otherwise, if the

ermittivity is stretch dependent, i.e. ∈ (λ1,λ2,λ3), the permittivity

akes the form ∈ (λ1,λ2,λ3) = ∈0 ∈r(λ1,λ2,λ3), where ∈r(λ1,λ2,λ3) is

he deformation dependent relative dielectric permittivity.

Based on Eq. (18), a necessary condition for the evolution equa-

ions of the internal variables to satisfy is

v = −
∑
α

∂W

∂Cvα
: Ċvα ≥ 0. (20)

he definition of a Mandel-type referential stress tensor as

vα = −Cvα · ∂W

∂Cvα
, (21)

llows to restate the dissipation inequality in the following form

v =
∑
α

Mvα : [C−1
vα · Ċvα] ≥ 0. (22)

possible format of the evolution equations which fulfills the dis-

ipation inequality and ensures the symmetry of Cvα , see Ask et al.

2012a) and Ask et al. (2012b), is given by

˙ vα = 
̇α Cvα · Mdev
vα

T
, (23)

here 
̇α are material parameters.
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Fig. 3. Viscoelastic behaviour of VHB-4910: stress response at different strain rates as

obtained from parameter identification. Dots: experimental data based on experiments

by Tagarielli et al. (2012); solid lines: simulated data.
. Calibration of the electro-viscoelastic model

The material taken into consideration is the polyacrylate dielectric

lastomer VHB-4910, produced by 3M TM , assumed to show incom-

ressible behaviour, i.e. J = 1. Using the energy function (19) and the

onstitutive Eqs. (18) 1,2, we obtain the following expressions

= −pF−T + μF +
∑
α

βα μF · C−1
vα + ∈ F−T · E0 ⊗ C−1 · E0, (24)

0 =∈ C−1E0. (25)

or the nominal stress S and for the nominal electric displacement
0. Furthermore, the Mandel-type referential stress tensor defined in

21) is given by

vα = 1

2
βα μC · C−1

vα , (26)

o that (23) results in

˙ vα = 1

2
βα μ
̇α

[
C − 1

3
[C : C−1

vα ]Cvα

]
. (27)

The material parameters are identified by separating mechanical

nd electrical behaviour. Experimental data by Tagarielli et al. (2012)

re used for the calibration of the electro-viscoelastic model.

.1. Calibration of the mechanical behaviour

The mechanical response of the model is calibrated with experi-

ental data based on a uniaxial tensile loading test. In the absence

f electrical effects, i.e. E0 = 0, for a uniaxial stress state – where the

artesian base vectors {e1,e2,e3} are assumed to coincide with the

rincipal directions such that λ1 = λ(t),λ2 = λ3 = 1/
√

λ(t)– the vis-

oelastic stress in the loading direction can be computed using (24),

= μλ +
∑
α

βα μ
λ

λ2
vα

−
∑
α

μ
βα λvα + 1

λ2
, (28)

f. Ask et al. (2012a). Here λvα are the internal variables formally de-

ned as the square root of the eigenvalues of the respective Cvα =
2
vα e1 ⊗ e1 + λ−1

vα [I − e1 ⊗ e1].

In Tagarielli et al. (2012) three different strain rates δ̇m are con-

idered, namely δ̇1 = 7 × 10−3 s−1,δ̇2 = 1.5 × 10−2 s−1 and δ̇3 = 3 ×
0−2 s−1. The strain rate is held constant during the measurements,

isplacing the cross-head of the testing machine at a variable velocity

˙ m such that

˙
m = u̇m

l
= u̇m

l0 + um(t)
= const, (29)

here l0 is the initial length of the sample and where l is the ac-

ual length. From Eq. (29), the displacement of the cross-head um(t)

an be computed by solving the ordinary differential equation u̇m =
˙
m [l0 + um(t)] under the condition um(0) = 0, namely

m(t) = l0 [exp(δ̇m t) − 1].

his leads to the stretch ratio

(t) = l0 + um(t)

l0
= exp(δ̇m t).

The response of the model is compared to the experimental

ata obtained at discrete time points (i, j, k) for the three strain

ates δ̇m. The aim is to find the set of parameters {μ,βα ,
̇α} by

inimising, for all measured data points, the difference between
he stress Sexp determined experimentally and Ssim predicted by the

odel. In particular, the error to be minimised is computed using the

2-norm as

rror(μ,βα ,
̇α ) =
√∑

i

[�Si(δ̇1)]
2 +

∑
j

[�S j(δ̇2)]
2 +

∑
k

[�Sk(δ̇3)]
2
,

(30)

here �Si(δ̇1),�S j(δ̇2) and �Sk(δ̇3) denote the differences [Sexp
i

(δ̇1) −
sim
i

(δ̇1)],[Sexp
j

(δ̇2) − Ssim
j

(δ̇2)] and [Sexp

k
(δ̇3) − Ssim

k
(δ̇3)], respectively.

We use a simplex search method, i.e. the Nelder-Mead algorithm

or numerical minimisation. Only one Maxwell element is used in

he calibration, so that α = 1. Indeed, for the experimental data

onsidered, adding more Maxwell elements does not substantially

mprove the fitting. Fig. 3 shows the comparison between simu-

ated and experimental data. The solid lines represent the simu-

ated data, whereas the dots correspond to the experimental data, cf.

agarielli et al. (2012). The obtained material parameters are shown

n Table 1.

The relaxation time for the Maxwell’s rheological element can be

omputed according to the following relation

= 1
1
2
β μ
̇

. (31)

ith the calibrated material parameters, this equation renders τ
pproximately equal to 45 s. For a similar material, namely VHB-

9473PC, a relaxation time comparable with the value resulting from

ur calibration is found in Michel et al. (2010).

.2. Calibration of the electrical behaviour

In order to calibrate the electrical response of the model and

o assess the electrostrictive behaviour of VHB-4910, experimen-

al data are used for the relative dielectric permittivity at dif-

erent equi-biaxial stretches. In Tagarielli et al. (2012) two differ-

nt frequencies f are considered, namely 10−3 Hz and 200 kHz.

he experimental data, see Fig. 4, show that ∈0

r,10−3 Hz
= 6.4 and

0
r,200 kHz

= 3.8 and suggests to model the dependency of the
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Table 1

Mechanical material parameters.

μ [MPa] β 
̇ [s−1 MPa−1]

0.02746 1.46846 1.10174

Experimental data

Simulated data
Experimental data
Simulated data

R

Fig. 4. Dielectric permittivity of VHB-4910 at different equi-biaxial stretches for two

representative frequencies f as obtained from parameter identification based on ex-

periments by Tagarielli et al. (2012).

Table 2

Electrical and coupling material parameters.

A α0 α1 α2 α3

10−3 Hz 4.67636 0.85362 −0.18891 0.62074 −0.07079

200 kHz 0.88568 0.37447 −0.16267 1.20897 −0.12075
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relative dielectric permittivity ∈r on the mechanical deformation

through the first invariant I1 according to the following relation

∈r(λ1,λ2,λ3) = A

α0 + α1arctan(α2 + α3(I1(λ1,λ2,λ3) − 3))
, (32)

where A,α0,α1,α2,α3 are dimensionless constant parameters. The re-

sponse of the model is compared to the experimental data at differ-

ent stretch levels, with the aim to find the set {A,α0,α1,α2,α3} that

minimises the difference. Similar to the previous case, the error is

computed as the L2-norm and is then minimised by using a simplex

search method. Fig. 4 shows the comparison with experimental data.

The solid lines represent the prediction of the model while the dots

indicate the measured permittivity, cf. Tagarielli et al. (2012). The ob-

tained material parameters for the relative dielectric permittivity are

summarised in Table 2.

The analysis of the DEGs presented in the next section will be

based on values of the dielectric permittivity which follow the ex-

perimental data acquired at a frequency of 10−3 Hz.

5. Generator operating in the electrical circuit

The performance of a soft viscoelastic dielectric elastomer gen-

erator operating in the electrical circuit, as introduced in Section 2,

is analysed. The dielectric elastomer material is acrylic VHB-4910 as

presented above. We assume that the initial side length L0 and thick-

ness H0 are equal to 100 mm and 1 mm, respectively.

We postulate that the elastomer film is initially prestretched up to

a minimum value λmin = λo − , that is maintained for a sufficiently

long time to allow for full relaxation. Therefore, the dielectric elas-

tomer is connected to a source of mechanical work that stretches it

periodically up to a maximum value λmax = λo +  according to the
osinusoidal relation

(t) = −cos(ω t) + λo, (33)

here  represents the amplitude of the stretch oscillation. In ad-

ition, ω = 2π f is the angular frequency, f is the frequency of the

scillation and λo > 1 is the mean value of the stretch.

We solve the system of differential algebraic equations given by

he electric circuit (8), the nominal stress S(t) (24) and the evolution

q. (27) for given loading (33) using a DAE-solver. With all relevant

uantities at hand, it is possible to determine the energies in order to

valuate the generator performance. The input electrical energy Ein is

he integral over a cycle of the input power Pin, defined as the product

f the current through the battery ibattery(t) and the voltage φo of the

attery itself

in =
∫

cycle

Pin(t)dt =
∫

cycle

ibattery(t)φo dt . (34)

imilarly, we can calculate the total output electrical energy Eout as

he integral over a cycle of the output power Pout , defined as the prod-

ct of the current through the external resistor iload(t) and its voltage

Rext (t)

out =
∫

cycle

Pout (t)dt =
∫

cycle

iload(t)φRext (t)dt . (35)

ence, the electrical energy produced by the generator �E = Eout −
in is the difference between the electrical energy input and out-

ut. Obviously, if �E is positive the generator produces energy in the

ense that mechanical energy is converted to electrical energy. If �E

s negative, the generator dissipates energy, while if it is zero the gen-

rator does not convert mechanical to electrical energy.

The same net energy can be attained by subtracting the energy

issipated in the circuit (D) from the amount of energy in the capac-

tor generated by the dielectric elastomer (EC), i.e.

E = Eout − Ein = EC − D, (36)

here

C =
∫

cycle

PC(t)dt =
∫

cycle

iC(t)φC(t)dt . (37)

he energy dissipated throughout the circuit is the sum of the energy

issipated over the diode, and the two resistances Rs and Ri, namely,

= DD + DRs
+ DRi

, (38)

iven by

D =
∫

cycle

PD(t)dt =
∫

cycle

iD(t)φD(t)dt ,

Rs
=

∫
cycle

PRs
(t)dt =

∫
cycle

iDEG(t)φRs
(t)dt ,

Ri
=

∫
cycle

PRi
(t)dt =

∫
cycle

iRi
(t)φRi

(t)dt .

(39)

he mechanical work performed by periodically stretching the di-

lectric elastomer can be determined as

mech =
∫

cycle

[
S1(t)L0 H0 Ẋ1(t) + S2(t)L0 H0 Ẋ2(t)

]
dt

=
∫

cycle

[
S1(t)L2

0 H0 λ̇1(t) + S2(t)L2
0 H0 λ̇2(t)

]
dt ,

(40)

here the notation Si is used to indicate the normal component Sii of

he stress tensor, as depicted in Fig. 1.

A measure of the performance of the generator is given by the effi-

iency η, defined as the ratio of the electrical energy produced by the

enerator and the total input energy invested. The latter is computed

s the sum of mechanical work and electrical input energy,

= �E

Ein + Wmech

. (41)
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Fig. 5. Plot of loading cycles of a DEG (a) in the mechanical and (b) in the electrical

planes at different initial times ti , namely 10, 50, 100 and 200 s. Model VC, λo = 3.0, =
0.50, f = 0.1 Hz, R = 0.1 G�.
or different values of the characteristic parameters of the oscillation

λo,), we analyse the performance of the generator by varying the

xcitation frequency f in the range from 0.1 Hz to 10 Hz, and, as pre-

iously mentioned, the resistance of the external resistor Rext in the

ange from 0.001 G� to 1000 G�. Regarding the former range, we

otice that having disregarded the inertia effects will not affect the

utcome of the investigation, as an estimate of the kinetic energy

nvolved in the motion reveals that its maximum value in the more

evere case (f = 10 Hz, λo = 3, = 0.50) is only about 5 × 10−3 the

mount of change of elastic part of the strain energy in the material

long the oscillations.

To calculate the kinetic energy in the DEG we assume a homoge-

eous deformation in the plate with no superimposed rigid body mo-

ion, i.e. the centre of mass stays at a fixed point, see Fig. 1. This leads

s to deformation map components ϕi(X ,t) = λi(t)Xi with i = 1,2,3.

he kinetic energy is given by K = ∫
B0

1/2ρ0 ϕ̇ · ϕ̇dV and can be cal-

ulated, e.g., for the equi-biaxial load case defined as λ1(t) = λ2(t) =
(t) and λ3(t) = 1/λ2(t), see next section, together with Eq. (33).

fterwards, its maximum value max(K) is compared with the max-

mum of the change of the elastic part of the total strain energy

ax(
∫
B0

Wel(λ(t)) − Wel(λmin)dV ) during one load cycle.

As the relaxation time is approximately 45 s, see Section 4, the

enerator efficiency η is computed for one cycle after 200 s from the

eginning of the stretch oscillation. In this context the viscous effects

an be considered to be fully stabilised.

In the analysis, we compare the behaviour of the generator mod-

lled with three constitutive responses:

1. hyperelastic (HYP), with constant dielectric permittivity: the en-

ergy corresponds to (19) without the viscous part and with ∈0
r =

6.4.

2. viscoelastic, with constant dielectric permittivity (VC): the energy

refers to (19) with ∈0
r = 6.4.

3. viscoelastic, with electrostriction (VE): the energy is determined

by (19), with deformation-dependent permittivity ∈r(λ1,λ2,λ3) as

discussed in Eq. (32).

n the following the performance of the generator is evaluated for

ifferent loading conditions.

.1. Equi-biaxial loading

We assume that the generator is subjected to equi-biaxial loading

n the e1- and e2-directions, i.e. S3 = 0. Imposing the incompressibil-

ty constraint, the principal stretches are λ1(t) = λ2(t) = λ(t) and

3(t) = 1/λ2(t) with λ(t) given by Eq. (33). Hence, the deforma-

ion gradient tensor becomes F = λ(t) [I − e3 ⊗ e3] + λ−2(t)e3 ⊗ e3.

n this case the capacitance, as defined in (1), takes the following

orm

=∈ L2
0

H0

λ4(t) (42)

nd is thus proportional to the fourth power of the stretch.

Bearing in mind that E0 = E0(t)e3, with E0(t) = φC(t)/H0, and us-

ng (24) and (25), we can write the nominal electric displacement and

he nominal stress in the loading directions as

0(t) =∈ φC(t)

H0

λ4(t), (43)

1(t) = S2(t) = μ
[
λ(t) − 1

λ5(t)

]
+ β μ

[
λ(t)

λ2
v(t)

− λ4
v(t)

λ5(t)

]

− ∈ φ2
C (t)

H2
0

λ3(t). (44)
The internal variable λv(t), with Cv(t) = λ2
v(t) [I − e3 ⊗ e3] +

−4
v (t)e3 ⊗ e3, is computed for the case α = 1 and by using (27)

hich results in the differential equation

˙ v(t) = 2 
̇ β μλv(t)

[
λ2(t)

2λ2
v(t)

− 1

3

[
λ2(t)

λ2
v(t)

+ λ2
v(t)

2λ2(t)

]]
(45)

ith the initial condition λv(0) = λmin.

.1.1. Cycle characterisation of a viscoelastic DEG

The evolution with time of the mechanical and electrical quanti-

ies of the generator is best captured by plotting, for one loading cycle,

onjugated quantities like stretch λ vs nominal stress S and charge Q

s voltage φC + φRs
. These are illustrated in Figs. 5 and 6 for two dif-

erent frequencies, i.e. f = 0.1 Hz and f = 1 Hz, for a viscoelastic ma-

erial following model VC, assuming a prestretch λo = 3.0, = 0.50

nd Rext = 0.1 G�.

In Figs. 5.a and 6.a cycles starting at different times ti = 10,50,100

nd 200 s are sketched in the λ − S diagram. The times ti are

omputed relative to the full-charge of the battery occurring at

.5T . The viscous behaviour causes a perceptible hysteresis with

stabilisation occurring after almost 200 s. The downward shift-

ng of the stress is also highlighted by the crossing point in the

rst depicted cycle in Fig. 5(a), starting at ti = 10 s. This cross-

ng point results from the fact that, under cyclic loading, the re-

ulting nominal stress S is not periodical at the beginning of

he loading until the above mentioned stabilisation occurs. In
ext
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Fig. 6. Plot of loading cycles of a DEG (a) in the mechanical and (b) in the electrical

planes at different initial times ti , namely 10, 50, 100 and 200 s. Model VC, λo = 3.0, =
0.50, f = 1 Hz, Rext = 0.1 G�.

Table 3

Energy produced by the generator and mechanical work invested at two

different frequencies, f = 0.1 Hz and f = 1 Hz, computed after 200 s

for the three material models considered: λo = 3, = 0.50,∈0
r = 6.4,Rext =

0.1 G�. The reference volume V0 is given by L2
0H0.

λo = 3.0,  = 0.5, Rext = 0.1 G�

f [Hz] �E/V0 [kJ/m3] Wmech/V0 [kJ/m3] η (%)

HYP 0.1 1.763 1.792 13.48

1.0 2.456 2.482 55.95

VC 0.1 1.763 3.419 11.99

1.0 2.456 2.645 53.94

VE 0.1 0.374 2.068 3.01

1.0 1.661 2.032 44.32
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contrast, the electrical quantities, see Figs. 5.b and 6.b, show almost

no change over the number of loading cycles.

The analysis of the dissipation in the generator is depicted in

Fig. 7. We computed during one loading cycle at time t = 200 s for dif-

ferent excitation frequencies the specific viscous dissipation Dv and

the dissipation DRi
due to the leakage current iRi

. Contrary to Foo et al.

(2012), and due to the low voltage applied to the circuit, we observe

that dissipation due to viscosity is always dominant in comparison to

the dissipation resulting from the leakage current in the investigated

range of frequencies.

In view of the energy performance of the investigated DEGs,

Table 3 summarises the net energy, the mechanical work and the
Fig. 7. Plot of the viscous dissipation Dv and the leakage dissipation DRi
at different

frequencies f. Model VC, λo = 3.0, = 0.50,Rext = 0.1 G�.

f

i



1

v

t

t

u

t

(

fficiency. All values are computed for one load cycle at t = 200 s.

e note that the net converted energy turns out to be identical for

YP and VC models as, for both, the electric permittivity is indepen-

ent of the stretch, even though it is necessary for the viscoelastic

EG to carry out more mechanical work. Clearly, the VE model pre-

icts a strong reduction in the produced energy due to the decrease

f the permittivity with the stretch. More specific comments on the

fficiency η are made in Section 5.1.2.

We close this subsection with a comment on the maximum ad-

issible amplitude of the oscillation . Once an initial prestretch is

pplied, followed by an in-plane tensile stress imposed in the dielec-

ric elastomer film, a sufficient requirement along the cosinusoidal

ycles is that the stress should always remain positive at any time of

he loading history in order to avoid any kind of buckling or wrinkling

nstability. For a hyperelastic formulation, this is achieved by simply

ontrolling that λ > 1, whereas, for a viscoelastic material, the max-

mum amplitude max must be computed carefully for the selected

aterial, depending on the mean stretch λo and the excitation fre-

uency. For VHB-4910 a numerical estimation is reported in Table 4

or Rext = 0.1 G� using model VC. At a given λo, the corresponding

max was obtained by letting the system oscillate until stabilisation

f the cycle and then taking the value at which mint{Si(t)} ≈ 0. We

bserve that this relation is dependent on both the frequency and the

xternal electric resistance, in particular it depends on the product of

hese two parameters. The values summarised in Table 4 clearly show

he influence of viscoelasticity on the limitation of the admissible os-

illation width.

.1.2. Efficiency analysis

The generator efficiency η calculated by means of (41) and by

sing (40) and (44) is now investigated in terms of the imposed

requency and the external electrical resistance. Plots of η( f ,Rext )

or the three considered constitutive models and λo = 3 are shown

n Fig. 8 . Three amplitudes  are analysed in every chart, namely

= 0.50, = 0.25 and  = 0.10. The frequency is examined up to

0 Hz, even though the maximum operational frequency for DEG de-

ices of the type analysed here is usually in the order of a few Hz.

Firstly, we note that the efficiency η could be either posi-

ive or negative depending on the values of the external resis-

ance Rext . Negative values for η are observed for Rext taking val-

es greater than 30 G� in the case of small oscillation ampli-

udes . An evident outcome of the data is that the hyperelastic

HYP) model always predicts higher efficiency in comparison to both
Table 4

Maximal oscillation amplitude max achievable in an equi-biaxial test without

inducing in-plane negative stresses. Model VC, Rext = 0.1 G�, f = 1 Hz.

λo 1.8 2.0 3.0 4.0

max 0.30 0.38 0.69 0.88
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Fig. 8. Plot of the efficiency η(Rext , f ) for the three different material models: (a) hy-

perelastic, HYP, (b) viscoelastic, VC, and (c) electrostrictive viscoelastic, VE. Equi-biaxial

loading conditions with λo = 3.0; = 0.50, = 0.25 and  = 0.10.
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Fig. 9. Plot of the efficiency η versus (a) frequency f at Rext = 1 G�, and (b) ex-

ternal resistance Rext at f = 1 Hz. Equi-biaxial loading conditions with λo = 3.0; =
0.50, 0.25, 0.10. Dashed, continuous and dotted lines are referred respectively to HYP,

VC and VE models.
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iscoelastic models. Moreover, larger amplitudes are always associ-

ted with larger efficiency, irrespective of the material model. The

eason for this is that the capacitance of the generator depends on the

tretch to the power of four which results in considerable increase of

he output electrical energy. On the contrary, the energy supplied to

he system shows a less than proportional increase in the oscillation

mplitude .

Table 5 shows these energy figures for the three selected ampli-

udes. In addition, we observe that the difference between the three

aterial models is more pronounced for high values of , as shown

n Figs. 9(a) and 9(b).

Fig. 9(a) displays the efficiency comparison for the three consti-

utive models in the case of λo = 3 and Rext = 1G�, as data show

hat the highest efficiency values lie close to this value, cf. Fig. 8.
able 5

nergy produced by the generator and mechanical work invested for the three selected

mplitudes  = 0.10, = 0.25 and  = 0.50, computed after 200 s for the VC model:

o = 3, f = 1 Hz, ∈0
r = 6.4,Rext = 0.1 G�. The reference volume V0 is given by L2

0H0.

λo = 3.0, f = 1 Hz, Rext = 0.1 G�, VC model



Ein/V0

[kJ/m3]

Eout /V0

[kJ/m3]

�E/V0

[kJ/m3]

Wmech/V0

[kJ/m3] η

0.10 1.067 1.142 0.075 0.085 6.49 %

0.25 1.303 1.771 0.468 0.516 25.74 %

0.50 1.906 4.362 2.465 2.645 53.94 %
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or  = 0.5 the efficiency difference between models HYP and VC

s around 15% while that between HYP and VE is approximately 23%.

his difference reduces respectively to 5.3% and 9.5% for  = 0.25,

nd to 0.6% and 2.4% for  = 0.1. The stretch dependency of the

ermittivity accounted in model VE reduces η to approximately 8%

2%) with respect to the efficiency of the classical electro-viscoelastic

odel VC for  = 0.5 ( = 0.1).

The same comparison for λo = 3 and f = 1 Hz in terms of the ex-

ernal resistance Rext is depicted in Fig. 9(b). As already observed, η is

egative for high values of the external resistance Rext , depending on

he value of the oscillation amplitude , in the range between 30 and

00 G� (increasing values for increasing ’s).

In these cases, the output electrical energy is lower than the input

ne. An explanation is that the voltage of the connected battery, φo

1 kV, is not sufficient to power the mechanical energy conversion.

s a result, the charge exchanged by the generator at every cycle is

elatively low and inadequate to feed the external resistor. For a bat-

ery operating at a higher voltage, the threshold value of Rext , beyond

hich η < 0, increases accordingly.

Among the three models, hyperelasticity predicts a wider range

here the efficiency is positive. For small values of Rext , the VC model

ehaves similarly to the hyperelastic one up to a peak value, which

ccurs at lower values of the external resistance Rext increasing the

mplitude . Moreover, it is noted that, for the model with elec-

rostriction (VE), the values of the efficiency are always lower in com-

arison to the hyperelastic model within the whole considered range

f Rext .

The influence of the mean stretch λo on the efficiency in

erms of the external frequency f is outlined in Fig. 10 for Rext =
G� and for a generator based on the viscoelastic (VC) consti-

utive assumption. When λo is equal to 1.8 the behaviour of the

enerator is noticeably different between frequencies lower and

igher than 1 Hz: the change in η through the frequency range is
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Fig. 10. Plot of the efficiency η versus frequency f for two values of the mean value

of the oscillation stretch λo = 1.8 and λo = 3. Equi-biaxial loading conditions with

Rext = 1 G�, VC model.

C

Fig. 11. Plot of the efficiency η(Rext , f ) for an external resistance Rext = 1 G� and

λo = 3.0, = 0.50 and  = 0.25. Dashed, continuous and dotted lines are referred re-

spectively to HYP, VC and VE models.
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approximately 19% for  = 0.1 raising to 33% for  = 0.25. On the

contrary, for a higher mean stretch (λo = 3), the behaviour of the gen-

erator is more stable, the efficiency variation is up to 6% for the con-

sidered values of the amplitude. Hence, for a viscoelastic DEG, when

the average value of the oscillation λo increases, the behaviour of the

generator becomes more stable and less dependent on the other elec-

trical and mechanical parameters.

5.2. Uniaxial loading

The soft dielectric elastomer here is subjected to uniaxial load-

ing conditions in the direction e1 so that S2 = S3 = 0. Imposing

the incompressibility constraint, the principal stretches are λ1(t) =
λ(t) and λ2(t) = λ3(t) = 1/

√
λ(t). Hence, the deformation gradient

tensor becomes F = λ(t)e1 ⊗ e1 + 1/
√

λ(t) [I − e1 ⊗ e1]. Compared

with the biaxial case, the capacitance is lower as it shows only a direct

proportionality to the axial stretch, i.e.

=∈ L2
0

H0

λ(t). (46)

Bearing in mind that E0 = E0(t)e3, with E0(t) = φC(t)/H0, we can

write the nominal electric displacement and the nominal stress in the

loading direction as

D0(t) =∈ φC(t)

H0

λ(t), (47)

while the relation between stress, stretch and voltage turns out to be

S1(t) = μ

[
λ(t) − 1

λ(t)
2

]
+ β μ

[
λ(t)

λv(t)
2

− λv(t)

λ(t)
2

]
− ∈ φC(t)

2

H2
0

.

(48)

The internal variable λv(t) is computed by integrating the evolution

Eq. (27) which, in the incompressible uniaxial case, reduces to

λ̇v(t) = 1

4

̇ β μλv(t)

[
λ(t)

2

λv(t)
2

− 1

3

[
λ(t)

2

λv(t)
2

+ 2
λv(t)

λ(t)

]]
, (49)

with the initial condition λv(0) = λmin.

Three-dimensional plots of the efficiency, i.e. graphical repre-

sentations of the function η( f ,Rext ), are not given here for con-

ciseness. But it is found that at the same supplied voltage φo

and compared with the equi-biaxial loading, the uniaxial excita-

tion leads to overall lower values of the efficiency. Additionally,

the range of points ( f ,Rext ) with positive efficiency is more lim-

ited. As in the case of equi-biaxial loading, the HYP constitutive

model always predicts higher values of the efficiency with respect

to the two kinds of viscoelasticities. However, in this uniaxial loading
ase, the efficiency of the generator is greater than zero only for few

alues of the variables f and Rext . When the amplitude of the oscilla-

ion  is small, i.e.  = 0.10, the efficiency is always lower or equal

o zero, i.e. η ≤ 0, even in the case of hyperelasticity.

Fig. 11 , obtained for λo = 3 and Rext = 1G� with  = 0.25 and

= 0.50, shows negative values of efficiency at low frequencies. As

n the case of equi-biaxial loading, the efficiency computed with the

YP model is greater than the predicted by VC and VE models. The

ifference between the three different models decreases for decreas-

ng values of the oscillation amplitude . For  = 0.5, the differ-

nce in efficiency between HYP and VC models is approximately 1.3%

hile the difference between HYP and VE models is approx. 3.1%. For

= 0.25 we obtained 0.2% and 0.9%, respectively. As mentioned be-

ore, the analysis clearly demonstrates that, by applying the same os-

illation conditions  and λo the uniaxial loaded generator shows a

onsiderably lower efficiency than the equi-biaxially loaded genera-

or.

To relate the two loading conditions we investigate the DEG per-

ormance when the capacitance changes during a cycle are equal.

e choose the hyperelastic (HYP) model under equi-biaxial loading

o = 1.8 and  = 0.1 as a reference. An equal capacitance change is

bserved in a DEG subjected to the uniaxial loading for λo = 10.621

nd  = 2.34. The computed efficiency with Rext = 1 G� and f =
Hz are η = 15.16% for equi-biaxial and η = 13.04% for uniaxial

oading.

. Conclusions

Soft materials usually employed in dielectric elastomer gen-

rators show a remarkable viscoelastic behaviour and may dis-

lay a deformation-dependent permittivity, a phenomenon known

s electrostriction. Therefore, the design and the analysis of

oft energy harvesters, which undergo a high number of elec-

romechanical cycles at frequencies in the range of one Hertz,

ust be based on reliable models that include such behaviour.

n this paper, a large strain electro-viscoelastic model for a

olyacrilate elastomer, VHB-4910 produced by 3M, is proposed

nd calibrated based on experimental data available in the

iterature.

The model is used to simulate the performance of a soft pre-

tretched dielectric elastomer generator operating in a circuit where

battery at constant voltage supplies the required charge at each cy-

le and where an electric load consumes the produced energy. Two

eriodic in-plane loading conditions, namely homogeneous states

nder equi-biaxial and uniaxial deformation, are considered for the

oft capacitor.

Application of the proposed model provides for the genera-

or (i) the assessment of viscous and electrostrictive effects in the
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omputation of efficiency and amount of net energy gained after each

ycle and (ii) the evaluation of energy losses in all dissipative sources

f the device as a function of the imposed mechanical frequency.

The main outcome of this analysis is that, compared with a hy-

erelastic model, the efficiency is reduced by viscoelasticity for high

alues of the mean stretch and of the amplitude of stretch oscillation.

he reduction is almost insensitive of the mechanical frequency while

he efficiency is further reduced by electrostrictive properties of the

aterial. We observed a range of values of the external electric load

ith a maximal efficiency. Furthermore, at low applied voltage, the

iscous dissipation of the material dominates the energy loss stem-

ing from the leakage current across the filled soft capacitor.
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