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Chapter 1

Introduction

The recent exciting first detections of gravitational waves [1, 2], which marked a new
era in astrophysics and cosmology, have pushed the scientific community towards the
construction of ever more sophisticated ground and space based detectors [3, 4, 5, 6, 7]
to observe waves in a variety of ranges, possibly down to the cosmic background grav-
itational radiation. Detecting the latter would open the possibility to gain crucial
information about the universe at its very primordial stage, at about 10−22 s after
the Big Bang [8], where we expect our description of gravity to fail [9, 10], especially
because of its unclear relation with quantum matter.

Most gravitational waves (which can be thought of as small perturbations of the met-
ric propagating through spacetime at the speed of light [11, 12, 13, 14]) that arrive on
the Earth are produced by different unresolved mechanisms and sources [8, 15], and
thus result in a stochastic perturbation of the flat spacetime background. Within the
framework of quantum theory, this altered background affects the dynamics of matter
propagation [16, 17] and, when the quantum state is in a superposition, it leads to
decoherence effects, as it’s typical of any noisy environment.

In this scenario, the extreme sensitivity of matter waves [18, 19, 20, 21] to gravity
gradients [22, 23, 24, 25, 26, 27, 28] makes matter-wave interferometers a perfect can-
didate for exploring the gravitational wave background [8, 29, 30] and, at the same
time, for possibly answering some fundamental questions regarding the nature of grav-
ity [31, 32, 33, 34, 35], and its coupling to quantum matter. Besides the technological
challenge of building sensitive (therefore large) enough matter-wave interferometers,
which realistically would have to operate in outer space, even from the theoretical
point of view it is not clear how they would respond to a gravitational background pro-
duced by random sources, as no comprehensive dynamical description of the gravity
induced decoherence process has been so far proposed.

The decoherence effect of a stochastic (or quantum) perturbation of the metric has
in fact been studied by several authors [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
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each of whom has produced a different model for the evolution of off-diagonal elements
of the density matrix of a quantum state or, more generally, the loss of interference
in the system. However, that of giving a universal and meaningful description of the
phenomenon is still an open problem, as the different models so far proposed refer to
particular regimes of approximation and thus seem to lead to different and apparently
incompatible conclusions.
The goal of our work is to formulate a more general description of gravity induced
deocherence, in the form of a master equation, which is able to encompass the existing
literature and explain the apparent discrepancies, as well as extend the so far know
results. With a more general and unambiguous dynamics, we aim at assessing whether
and to what extent matter-wave interferometers constitute a viable platform for prob-
ing of the cosmic gravitational background.

We will start our thesis with an overview of the basic concepts and the literature
about gravitational decoherence in Chapter 2. Section 2.1 consists of a brief introduc-
tion to decoherence; we will make the reader familiar with the fundamental concepts
of reduced density matrix, interference terms and decoherence rate.
In Section 2.1.1 we will show how a weak gravitational fluctuations affects the dynam-
ics of a matter wave. In particular we will derive an equation for the induced phase
accumulation in the limit of large wavelength of such a weak gravitational fluctuation,
and show how this stochastic phase is responsible for a decoherence effect.
We will conclude the chapter with an essential review of the gravitational decoherence
literature in Section 2.2. There, we will sketch the essential steps necessary to under-
stand and reproduce some among the most relevant models present in the literature.
We will also classify the major models according to the different approximations and
assumptions employed in their derivation, as well as their final predictions: the eigen-
basis and rate of decoherence. We will motivate the need of a novel model for the
dynamics of the gravitational decoherence process in order to explain and overcome
such differences.
In chapter 3 we will derive a novel model for the description of the dynamics of a scalar
bosonic particle under the effects of a weak stochastic gravitational perturbation. The
specific details of the derivation are reported in Sections 3.1-3. Our model predicts
decoherence in the position, and momentum and energy eigenbasis as opposed to the
result in the present literature. In Sections 3.4 and 3.5, we will show that the apparent
contradictory results in the present literature can be described as different limiting case
of our more general model.
In chapter 4 we will extend the model derived in chapter 2 to describe spin 1/2 fermionic
particles interacting with an external electromagnetic field. The details of the deriva-
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tion are reported in Sections 4.1-3. As one might expect, the dynamics will predict
deocherence in position, momentum and energy also in this case. In Section 4.2.1 we
will discuss the differences with the bosonic model. We will conclude the chapter with
a discussion of the limits under which also this master equation describes decoherence
in only position or momentum and energy.
The results of Chapter 3 will be applied to matter-wave interferometry in Chapter
5. In section 5.1 we will provide the reader with very essential traits of Mach-Zehnder
atomic interferometry. We will also introduce the interferometric visibility, which is the
observable we will use to quantify the gravitational deocherence effect in such devices.
The details of the theoretical analysis are illustrated in Sections 5.2 and 5.3, where we
work out the dynamics of a wavepacket travelling through a symmetric Mach-Zehnder
interferometer in presence of respectively a scalar and a tensorial stochastic gravita-
tional perturbation.
In section 5.4 we will answer the question whether atom interferometers are a viable
platform to detect the cosmic gravitational background by simulating the visibility of
the interferometer for different values of the perturbation’s parameters for a selected
sample of actual and proposed interferometric experiments.
We will conclude the chapter with the analysis of environmental decoherence in space-
based atom interferometers.
Finally we will give our conclusions in chapter 6.
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Chapter 2

Gravitational decoherence: state of
the art

In this chapter we revise the state of the art literature on gravitational decoherence. We
start by providing the unfamiliar reader with a crash course on decoherence. For a more
extensive take on the subject, which is beyond the purpose of this thesis, we address
the reader to [48, 49]. Finally, we critically review the main models of gravitational
decoherence in the present literature and discuss their features. In particular, we
analyse their critical issues and open problems, thus providing the motivation for a
more general model able to solve the literature’s apparent contradictions.

2.1 Decoherence: a brief introduction
Before entering into the core of the thesis, it might be useful to recall some basic notions
about decoherence for the unfamiliar reader.
In a nutshell, decoherence is the mechanism that explains the classicality of the world
that we all experience in everyday life starting from a quantum microscopic dynamics.
On a more technical level, decoherence is the reduction of the quantum coherences in
a quantum system due to the interaction with the surrounding environment. In order
to better understand how it works, let’s consider for instance a very general quantum
system in a superposition of normalized states |α〉 and |β〉, interacting with a generic
environment described by the normalised state |χ〉, as shown in figure 2.1. We assume
the system and the environment to be uncorrelated at initial time, i.e.:

|ψt=0〉 =
|αt=0〉+ |βt=0〉√

2
⊗ |χt=0〉 (2.1)

6



Figure 2.1: Interaction between a quantum system and a surrounding environment.
Image realized with flaticon.com

or, alternatively, in the language of the density operator [48]:

ρt=0 ≡|ψt=0〉〈ψt=0|

=
1

2

(
|αt=0〉〈αt=0|+ |αt=0〉〈βt=0|+ |βt=0〉〈αt=0|+ |βt=0〉〈βt=0|

)
⊗ |χt=0〉〈χt=0|

= : ρ
(s)
t=0 ⊗ ρ

(E)
t=0

(2.2)

where the superscripts (s) and (E) stand for system and environment respectively. Note
that, as the system and the environment are uncorrelated at initial time t = 0, the
initial state is factorized and the description of the system can be completely decoupled
from that of the environment.
We then let the system evolve for a certain time τ . Due to the unavoidable interactions
between system and environment, the total state at time t = τ will take the form [48]:

|ψt=τ 〉 =
1√
2
|αχt=τ 〉 ⊗ |χαt=τ 〉+ |βχt=τ 〉 ⊗ |χ

β
t=τ 〉 (2.3)

where the superscripts α, β in the environmental states and χ in the system states
denote the fact that the interaction with the quantum state alters the initial state of
the environment and viceversa. In the language of the density operator, the above
expression equivalently reads:

ρt=τ =
1

2

(
|αχt=τ 〉〈α

χ
t=τ | ⊗ |χαt=τ 〉〈χαt=τ |+ |α

χ
t=τ 〉〈β

χ
t=τ | ⊗ |χαt=τ 〉〈χ

β
t=τ |

+|βχt=τ 〉〈α
χ
t=τ | ⊗ |χ

β
t=τ 〉〈χαt=τ |+ |β

χ
t=τ 〉〈β

χ
t=0| ⊗ |χ

β
t=τ 〉〈χ

β
t=τ |
) (2.4)
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Note that because of the interaction the state is no longer factorized and, in order to
obtain the effective state of the quantum system alone, one has then to integrate the
density operator (2.4) over the environmental degrees of freedom (dof). In the language
of density operator this is represented by taking the partial trace [48], whose result is
the reduced density operator of the system only (ρs):

ρs =
1

2

(
|αχt=τ 〉〈α

χ
t=τ |+ |β

χ
t=τ 〉〈α

χ
t=τ |〈χαt=τ |χ

β
t=τ 〉+ |αχt=τ 〉〈β

χ
t=τ |〈χ

β
t=τ |χαt=τ 〉+ |βχt=τ 〉〈β

χ
t=0|
)

(2.5)
The terms mixing |α〉 and |β〉 encode the ability of the particle to self interfere, its
quantum core. They are proportional to the overlap between the environment states
that have interacted respectively with the α and β component of the wavefunction:

〈χαt=τ |χ
β
t=τ 〉 =

∫
dηχ∗α(η, τ)χβ(η, τ) (2.6)

or its complex conjugate 〈χβt=τ |χαt=τ 〉, where η labels the environmental d.o.f. (e.g.
position, spin, momentum,...) and |η〉 is a complete basis of the environment’s Hilbert
space. Note that, if the presence of the quantum state shifts the environment into
states χα, χβ that are almost orthogonal, the interference terms become almost zero,
and the terms describing the quantum coherence between states |αt=τ 〉 and |βt=τ 〉 are
almost zero too. This means that the system has lost (nearly) all its quantum features,
and the reduced density operator effectively describes a statistical mixture of classical
states. This is the case, for example, of macroscopic objects, where the interaction with
the environment involves a large number, typically an Avogadro number, of molecules,
which may be scattered away by the object being in the state α(x) but not in state
β(x), and viceversa.

As an illustrative example, let us consider a table in a superposition of two differ-
ent positions x1 and x2 in a room full of air, as depicted in Fig. (2.2). We model
the quantum state of the center of mass of the table as a superposition of two (very
narrow) Gaussian states |α〉 and |β〉 localized in space around two macroscopically
different positions x1 and x2 respectively1. In Fig. (2.3) we report an illustrative plot
for the reduced density matrix at the initial time t = 0.
As for the environmental state, we assume it to be a product state of each of the air
molecules normalized states present in the room:

|χt=0〉 = |ξt=0〉1 ⊗ |ξt=0〉2 ⊗ |ξt=0〉3 ⊗ ... (2.7)

to keep the argument at a simple level. Furthermore, we assume that the table and the
air in the room do not interact at the initial time t = 0. It follows that the initial state
reads as in Eq. (2.2). As one might expect, as time passes and the air molecules move

1The state α represented in position reads α(x) = 〈x|α〉 = 1√
2πσ

e−
(x−x1)2

2σ2
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Figure 2.2: A table in a spatial superposition surrounded by air. Image realized with flati-
con.com. Note that air is made of mostly N2 and, in minor part, of other rare gasses, which
are not represented here.

Figure 2.3: Reduced density matrix of a Gaussian state in a spatial superposition at time
t=0.

around the room and scatter off the surface of the table, the description of the state
of the system and the environment will be of the form of Eq. (2.3). The superscript α
and β now denote the fact that the table being located around x1 or x2 might affect
the position (if the table is or isn’t in say x1 there cannot or has to be air there) and
the trajectory (air molecules moving towards say x1 might or not bounce off the table)
of the air molecules. Due to its way heavier mass, the state of table is practically not
affected by the air, therefore we can safely drop the superscript χ.
The reduced density operator describing the state of the table alone then reads as in
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Eq. (2.4), and the interference term reads:

〈χαt=τ |χ
β
t=τ 〉 =

∫
dxχ∗α(x, τ)χβ(x, τ) (2.8)

Because of the presence (absence) of the table around x1 and x2, the position of the air
molecules in the proximity of such locations differs in the |ξαt=τ 〉 and |ξβτ 〉 states, and
their overlap is:

〈ξα|ξβ〉 ∼ ε . 1 (2.9)

as we assumed all the single molecule states |ξ〉 to be normalized. Given the macro-
scopic size of the table, it is clear that there will be an order of an Avogadro number of
air molecules whose position is affected by the presence of the table. The interference
terms in the reduced density matrix will therefore be proportional to

〈χα|χβ〉 = 〈ξα|ξβ〉1〈ξα|ξβ〉2〈ξα|ξβ〉3... ∼ (ε)1023 ∼ 0 (2.10)

The reduced density operator will therefore diagonalize in the basis of Gaussian spa-
tially localized states, which are eigenstates of the position operator, so that the table
will be in a statistical mixture of classical, localized in position states.
In Fig. (2.4) it is shown the time evolution of the reduced density matrix relative to
a superposition of position Gaussian state whose off diagonal terms are exponentially
suppressed, as it is typical of many collisional decoherence models.

Even if the above presented example might trick the reader into thinking the contrary,
note that decoherence can be relevant even for single quantum particles since, as time
passes, the free time evolution drives the environmental states ever further apart. Fur-
thermore, the decoherence phenomenon does not occur in the position eigenbasis only,
but can in fact happen in any basis of the system’s Hilbert space. In the next chapters,
we will in fact encounter decoherence in the momentum and energy eignebasis.
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Figure 2.4: Time evolution of the reduced density matrix for a superposition of Gaussian
position states with exponential off diagonal suppression. Note that 0 < t1 < t2 < t3, and
that the full description of the time evolution of the reduce density matrix should also take
into account the free evolution of the diagonal terms.

2.1.1 Gravity and decoherence

We complete the introduction by adding gravity to the game: we illustrate how a grav-
itational perturbation affects the dynamics of a matter field, eventually leading to a
decoherence effect. In the following we will only consider a classical stochastic gravita-
tional perturbation for the simplicity of the argument. The extension to a (quantum)
graviton bath requires the introduction of quite some technical tools which lie beyond
the purpose of this thesis, and is thus not as illustrative as the classical case. Never-
theless, we address the interested reader to [38, 42] and the references therein included
for a complete treatment.

Let us begin by considering a matter wavepacket which we describe by means of a
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first quantized scalar field ψ(x). Such a wavepacket propagates in a region of space-
time in which the flat Minkowski background (with metric ηµν) is perturbed by a weak
stochastic gravitational fluctuation hµν(x). The fluctuation is in general a function of
spacetime (x), and by weak we mean that |hµν(x)| = ε� 1.
Due to the interaction between the matter field and the gravitational perturbation, the
scalar field satisfies the Klein Gordon equation minimally coupled to gravity:

gµν∇µ∂νψ(x)− m2c2

~2
ψ(x) = 0 (2.11)

where gµν = ηµν + hµν is the total metric tensor, whose spacetime dependence (gµν(x))
was made implicit for convenience, and ∇µ is the covariant derivative with respect to
the Christoffel connection. Following the work of Linet and Tourrenc [17] we write
the wave packet as ψ(x) = e

iφ(x)
~ . We then reformulate the Klein Gordon equation

as an equation for the wave’s phase φ(x) with the help of the semi-classical WKB
approximation [50] :

gµν∂mφ(x)∂νφ(x) =
m2c2

~2
(2.12)

Because of the weak field limit for the gravitational field |hµν | = ε, we are allowed to
expand the phase of the matter field as φ = φ(0)(x) + εφ(1)(x). Thus we obtain the
following system of coupled differential equations:

m2c2

~2
= ηµν∂µφ

(0)(x)∂νφ
(0)(x) (2.13)

0 = 2ηµν∂µφ
(0)∂νφ

(1)(x) + hµν(x)∂µφ
(0)(x)∂νφ

(0)(x) (2.14)

The first equation gives the expected plane wave solution in flat spacetime:

φ(0)(x) = ηµνξ
µxν + φ

(0)
0 (2.15)

where ξ is a constant four-vector whose components are ξ0 = E/(~c), ξi = pi/~, with
E and p respectively the energy and the momentum of the wavepacket, and φ

(0)
0 is a

constant. Upon plugging the above solution into Eq. (2.14), we get:

ξν∂νφ
(1)(x) =

1

2
hαβ(x)ξαξβ. (2.16)

The above equation can be conveniently simplified in the long wavelength limit, where
the typical wavelength of the gravitational perturbation (λgw) is much larger than the
typical length (λwp) of the wavepacket, i.e. λgw � λwp, so that the wavepacket can
be assimilated to a point-like particle. In this limit the particle follows a well defined
trajectory, which can be parametrized by a timelike parameter τ as: xµ = τξµ + xµ0 .
Since the dynamics of the particle is influenced only by the fluctuations h(x) that
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occurs on its path, we can also parametrize hµν(x) = hµν(x(τ)) in Eq. (2.16) to obtain:

dφ(1)

dτ
=

1

2
hµνξ

µξν , (2.17)

Its solution is:

φ(1) =
1

2

∫ t

0

dτ hµν(x(τ))ξµξν , (2.18)

whose physical interpretation is immediate: the presence of a gravitational perturbation
induces a change into the phase of matter waves.
Let us now suppose that the wavepacket is initially prepared in a spatial superposition
of Gaussian spatially localized quantum states |α〉 and |β〉, as in the previous section:

|ψ(t = 0)〉 =
|α(t = 0)〉+ |β(t = 0)〉√

2
(2.19)

It follows that, at a later time t, the state of the system plus environment will be:

|ψ(t)〉 =
(eiφ

(1)
α |α(t)〉+ eiφ

(1)
β |β(t)〉)√

2
(2.20)

where the subscripts α and β label the trajectories of the two different bunches of
the wavepacket. Note that the phase shifts φ(1)

i =
∫
dt hµν(x(i)(τ))ξµξν , i = α, β are

stochastic variables since they depend on the stochastic quantity hµν . As a consequence,
the expected value for every observable of the system is obtained upon taking the
stochastic average over the random phase probability distribution P (φ(1)). This of
course applies to the density operator describing the quantum system, which therefore
reads:

ρs(t) =
1

2

(
|α(t)〉〈α(t)|+ |β(t)〉〈α(t)|E[e−i(φ

(1)
α −φ

(1)
β )]

+ |α(t)〉〈β(t)|E[ei(φ
(1)
α −φ

(1)
β )] + |β(t)〉〈β(t)|

) (2.21)

with E[eiφ
(1)

] =
∫
dφ(1)P (φ(1))eiφ

(1) . The interference term then reads:

I = Re[|β(t)〉〈α(t)〉E[ei(φ
(1)
α −φ

(1)
β )]] (2.22)

By comparing Eq. (2.22) with Eq. (2.6), we can conclude that the interaction with
a stochastic gravitational perturbation will induce a decoherence phenomenon in the
matter wave dyinamics. Equations (3.13-14) also tell us that the characterization of the
decoherence effect depends crucially on the probability density for the phase shift. For
the typical case of interest, when the phase is accumulated in a series of non correlated
events, as it is reasonable to happen when the noise is produced by different unresolved
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astronomical or cosmological sources, the central limit theorem suggests that P (φ(1))
can be taken to be a normal distribution. It is then a standard result to show that:

E[eiφ
(1)

] = eiE[φ(1)]− 1
2

E[(δφ(1))2] (2.23)

with δφ(1) = φ(1)− E[φ(1)], and φ(1) = φ
(1)
α − φ(1)

β for short. The first term in Eq. (2.23)
(eiE[φ(1)]) is just a global phase, while the second (e−

1
2

E[(δφ(1))2]) is a damping that grows
with the accumulated phase, acting on the coherences of the quantum systems.

We have thus shown that the presence of a gravitational perturbation affects the dy-
namics of a matter particle so that it induces a phase accumulation. In the case the
perturbation is stochastic, such a phase shift is then responsible for the loss of coher-
ence of the system.

The scheme implemented in this section for the description of gravity induced decoher-
ence is rather immediate and illustrative, but it surely is not a rigorous, comprehensive
and exhaustive treatment of the phenomenon. In the next section we will recap the
results proposed in the literature of the most relevant models describing the effects of
a (stochastic or quantum) gravitational perturbation on the dynamics of a particle or
a matter field.

2.2 Literature and state of the art
The literature concerning gravitational decoherence is a young but rather rich one.
Although the first isolated works [36, 37] trace back to the late ’80s and early ’90s,
the subject has gained the interest of a wider part of the scientific community only
since the turn of the century [38, 40, 41, 42, 43, 44, 45, 51, 46, 52, 47]. In what follows
we will revise the main features of some of the most relevant models present in the
literature. In particular, we highlight the main differences between the various models,
explaining how they give rise to some open issues and questions that will be addressed
throughout the rest of this thesis. For a complete classification of the literature, which
lies beyond the purpose of this work, we refer the reader to the following review [46].

The specific mathematical tools and techniques involved in the derivation of each of
the above cited models differ from work to work. However, it is possible to highlight
a common pattern (although not always followed by each model in the same order
as presented below) for the formulation of the dynamical equations describing gravity
induced decoherence.
The starting point is the promotion to a generally covariant setting of the flat scalar
bosonic field (φ) action (S), in order to account for curved spacetime effects [53]:

S =

∫
d4x c2(∂µφ

∗∂µφ− m2c2

~2
|φ|2) (2.24)
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ηµν → gµν

d4x→
√
−g d4x

∂µ → ∇µ

(2.25)

where ηµν and gµν are respectively the flat and the curved spacetime metric, and ∇µ

denotes the covariant derivative with respect to the Christoffel connection. The metric
is then expanded around a flat Minkowski background for small perturbations (hµν)
as: {

gµν = ηµν + hµν
|hµν | � 1

(2.26)

so that a new effective action for the scalar field can be derived at first order in the
gravitational perturbation hµν :

S ∼
∫
d4x

(
L
∣∣∣
g=η

+
∂(L
√
−g)

∂gµν

∣∣∣
g=η

hµν +O(h2)
)

(2.27)

Such an expression is then considerably simplified by fixing a particular gauge, and
restricting to a specific type of gravitational perturbation. For example, Anastopoulos
and Hu in [38] impose the Transverse Traceless (TT) gauge [11], Power and Percival
and Sanchez-Gomez consider only conformal gravitational perturbations in [41] and
[37] respectively, and Breuer et al. assume the typical wavelenght of the perturbation
to be much smaller than the resolution scale of the quantum particle that described by
the scalar bosonic field in [40].
Then, the equations of motions (EOM) for the scalar field are derived, either ex-
ploiting the Feynman-Vernon’s influence functional [54] in the path integral formalism
[37, 38, 42], or via a variational principle [40, 41], and subsequently projected to the
one particle sector.
The EOM are further expanded and specialized to the non relativistic limit |p| � mc,
where p is the momentum of the particle. Finally, if not already in this form, the
EOM are translated in the density matrix (ρ̂) formalism, where the quantum [38, 42]
or stochastic [41, 40, 37] average over a Gaussian gravitational noise can be taken,
provided the specific form of the noise’s two point correlation function (which again
varies from model to model).
The resulting master equations can at this point be regrouped in two distinct classes:
those that predict decoherence in the position eigenbasis, and those that predict deco-
herence in the energy ( E = p̂2

2m
) eigenbasis.

In the first class fall the models of Sanchez-Gomez [37]:

∂tρ(x,x′; t) =
i~
2m

(∇2
x −∇2

x′)ρ(x,x′, t)− 2m2α2Lc3

~2
(1− e−(x−x′)2/L2

)ρ(x,x′; t) (2.28)

of Power and Percival [41]:

∂tρ(x,x′; t) =
i~
2m

(∇2
x−∇2

x′)ρ(x,x′, t)−
√
πm2α4Lc3

√
2~2

(1−e−(x−x′)2/L2

)ρ(x,x′; t) (2.29)
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and of Blencowe [42]:

∂tρ(x,x′; t) =
[ i~

2M
(∇2

x −∇2
x′)−

KBΘG

~c

∫
d3r
(
m(r− x)−m(r− x′)

)2]
ρ(x,x′; t)

(2.30)

where KB is the Boltzmann constant, G the gravitational constant L is the correlation
length of the noise, α its amplitude, Θ its temperature, and τc its correlation time. In
the second class fall instead the models of Breuer et al [40]:

∂tρ̂(t) = − i
~

[ p̂2

2m
, ρ̂(t)

]
− τc

2~2

[ p̂2

2m
,
[ p̂2

2m
, ρ̂(t)

]]
(2.31)

and of Anastopoulos and Hu [38]:

∂tρ̂(t) = − i
~

[ p̂2

2m
, ρ̂(t)

]
− 16πKBGΘ

9~c

[ p̂2

2m
,
[ p̂2

2m
, ρ̂(t)

]]
(2.32)

We summarize the features of each of the above analyzed models in Table I.

Table I: Gravitational decoherence models
Nature of
perturba-
tion

Shape
and/or
size

Gauge correlation
function

decoherence
eigenbasis

Sanchez-
Gomez

classical conformal harmonic Gaussian position

Anastopoulos
and Hu

quantum generic TT thermal
bath

energy

Blencowe quantum smaller
than par-
ticle’s
size

harmonic thermal
bath

position

Breuer classical smaller
than par-
ticle’s
resolution

harmonic Gaussian energy

Power and
Percival

classical conformal harmonic Gaussian position

From the table is not possible to straigthforwardly assess whether and which par-
ticular assumption (for instance the gauge or the shape of the correlation function)
is responsible for the determination of the eigenbase of decoherence. As an example
in fact, both the Blencowe and Anastopoulos Hu models describe a quantum graviton
bath with thermal correlation function, but nevertheless do not agree on the basis of
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decoherence. Or, both the Breuer et al. and Power Percival ones choose the harmonic
gauge, but the first predicts decoherence in energy while the second in position, and
so on.
It follows that a general description of the underlying dynamics of gravitational deco-
herence able to encompass and connect the various results is needed.

In order to fill the gap in the literature and solve the decoherence eigenbasis puzzle,
in the next chapter we will derive a novel model describing the effects of a stochastic
gravitational perturbation on the dynamics of a scalar field in the non relativistic limit,
which predicts deocherence in a variety of eigenbasis including position and energy in
the appropriate limits. We will keep the treatment as general as possible and specialize
the properties of the gravitational perturbation only as the last step. With the appro-
priate choices for such properties, we will be able to quantitatively recover the results
of the literature.
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Chapter 3

Gravitational decoherence: bosonic
matter

In this chapter we develop a novel and general model for the decoherence induced by a
stochastic gravitational perturbation on non relativistic scalar matter. The dynamics
predicts decoherence in position, momentum and energy, depending on the properties
of the metric perturbation. We show how our master equation reproduces the results
present in the literature by taking appropriate limits, thus explaining the apparent
contradiction in their dynamical description.

3.1 Hamiltonian equations of motion
We begin our analysis by considering the effects of a weak gravitational perturbation
on the dynamics of scalar matter. We therefore derive the equations of motion (EOM)
for a scalar bosonic field minimally coupled to linearized gravity. Let us consider the
action for the charged Klein Gordon field in curved spacetime [53]:

S =

∫
d4x
√
−gL (3.1)

with the Lagrangian density:

L = (c2gµν∇µψ
∗∇νψ −

m2c4

~2
ψ∗ψ) (3.2)

where ∇µ is the covariant derivative with respect to the Christoffel connection. We
write the metric as the sum of a flat background ηµν = diag(+ − −−), and a pertur-
bation hµν :

gµν = ηµν + hµν (3.3)

We are interested in studying the dynamics of the Klein Gordon field in presence of a
weak gravitational perturbation. Therefore we perform a Taylor expansion of the action
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around the flat background metric and truncate the series at the first perturbative
order. Thus, we obtain the effective Lagrangian Leff acting on flat spacetime:

S =

∫
d4x
[
c2(ηµν∂µψ

∗∂νψ −
m2c2

~2
ψ∗ψ)(1 +

tr(hµν)

2
)− c2hµν∂µψ

∗∂νψ +O(h2)
]

= :

∫
d4x(Leff +O(h2))

(3.4)

Note that in doing so we are implicitely restricting the analysis to the class of refer-
ence frames in which the coordinates are described by rigid rulers, which are negligibly
affected by the gravitational perturbation. This assumption though reasonable, as
measuring devices are held together by intra and iter molecular forces, is arbitrary (it
may be possible that a gravitational perturbation bends a measuring device).
The equations of motion for the matter field are obtained (at first order in the pertur-
bation hµν) from the Euler-Lagrange equations:

∂Leff
∂ψ∗

− ∂α
∂Leff
∂∂αψ∗

= 0 (3.5)

and in the harmonic gauge1 they read:[
− ∂2

t + c2(1 + h00)∇2 + 2ch0i∂t∂i + c2hij∂i∂j −
m2c4

~2
(1 + h00) +O(h2)

]
ψ = 0 (3.6)

We are interested in the description of the dynamics of a positive energy particle system
in the non relativistic limit. In such a limit, the particle and antiparticle sectors are
non interacting with one another, that is to say, the EOM (3.6) can be recast to a
system of two uncoupled equations, one for each species sector. While this is evident
and straightforward for the free case, for an interacting theory the decoupling is very
complicated and achievable only perturbatively.
The first step is to explicitely express the field in a two component form. This can
be done following the Feshbach-Villars formulation [55]. Accordingly we define a new
field:

Ψ =

(
φ
χ

)
(3.7)

such that: {
ψ = φ+ χ

i~
(
∂t − ch0i∂i

)
ψ = mc2(φ− χ)

(3.8)

1The harmonic Gauge implies translational invariance of the infinitesimal volume in the chosen
coordinate system as e.g. in cartesian coordinates.
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We note that such a formulation does not allow for a probabilistic interpretation of
the field Ψ, as the conserved charged Q associated to the internal U(1) symmetry
(ψ → eieψ ; ψ∗ → e−ieψ∗) via Noether’s Theorem reads:

Q = 2e mc2

∫
d3x

(
φ χ

)
σ3(1 +

tr(hµν)

2
− h00)

(
φ
χ

)
(3.9)

instead of the required:

ρ = 2e mc2

∫
d3x

(
φ χ

)
σ3

(
φ
χ

)
(3.10)

We therefore apply the transformation:{
T = (1 + tr(h)

4
− h00

2
)

Ψ → TΨ
(3.11)

so that, in the new representation, the squared modulus of the field can be regarded
as a probability density in the non relativistic limit.
With the help of Eq. (3.8) and after some algebra (See Appendix A) the EOM (3.6)
read:

i~∂tΨ = [mc2σ3 + E +O]Ψ (3.12)

where:

E =
mc2

2
h00σ3 −

~2

2m
(1 + h00)σ3∇2 − ~2

2mc
∂t(h

0i)σ3∂i −
~2

2m
hijσ3∂i∂j + i~ch0i∂i

−i~
2
∂t(

tr(hµν)

2
− h00)−

[ ~2

4m
∇2(h00)− i~2

8m
∇2(tr(hµν))

)]
σ3

(3.13)

O =
imc2

2
h00σ2 −

i~2

2m
(1 + h00)σ2∇2 − i~2

2mc
∂t(h

0i)σ2∂i −
i~2

2m
hijσ2∂i∂j

−
[ i~2

4m
∇2(h00)− i~2

8m
∇2(tr(hµν))

]
σ2

(3.14)

are respectively the diagonal and antidiagonal parts of the Hamiltonian K = mc2σ3 +
E +O, and σi, i = 1, 2, 3 are the Pauli matrices.

In the next section we will decouple the EOM to then take the non relativistic limit.

3.2 Non relativistic limit and canonical quantization
We aim to find a representation of the two component field Ψ in which the EOM (3.12)
are diagonal. This representation can be found in the non relativistic limit following
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the Foldy-Wouthuysen Method [56], which allows one to write perturbatively (at any
order in v

c
) two decoupled equations, one for each component of the field. The method

is operatively characterized by the application of an appropriate transformation U :

Ψ→ Ψ′ = UΨ (3.15)

K → K ′ = U(K − i~∂t)U−1 = mc2σ3 + E′ +O′ +O(h2) (3.16)

such that, in the new representation, the antidiagonal part O′ is of higher order in
v
c
than the diagonal E′. By neglecting O′ one recovers two decoupled equations. By

performing iteratively the transformation, one can always find a representation of the
two component field for which the EOM are diagonal at any desired order in v

c
.

In our case, we have that the task is easily achieved by applying the subsequent trans-
formations: 

U = e−iσ3O/(2mc2)

U ′ = e−iσ3O′/(2mc2)

U ′′ = e−iσ3O′′/(2mc2)

(3.17)

after which, with some algebra (see Appendix B), the EOM read:

i~∂tΨ =HΨ

=
[
mc2(1 +

h00

2
)σ3 −

~2

2m
(1 +

h00

2
)∇2σ3 −

~2

2m
hij∂i∂jσ3 + i~ch0i∂i +

i~
2
∂t(h

00)

− i~
4
∂t(tr(h

µν)) +
~2

8m
∇2(tr(hµν))σ3

]
Ψ +O(c−4) +O(h2

µν)

(3.18)

Note that as the transformations (3.17) are generalized unitary [57], they preserve the
conserved charge in (3.9), i.e. the probability density in the non relativistic limit.
In the non relativistic limit the EOM (3.18) do not mix the two components φ and χ
of the field (up to a very small correction). As we are interested in the dynamics of
particles only, we restrict the analysis to the first field component φ.

Since the dynamics preserves the probability density, we are allowed to apply the
canonical quantization prescription and impose the equal time commutation relations:

[φ̂(t,x), φ̂(t,x′)] =[φ̂†(t,x), φ̂†(t,x′)] = 0

[φ̂(t,x), φ̂†(t,x′)] = δ3(x− x′)
(3.19)

to obtain the EOM for the quantum field. The equation thus obtained does not allow
for the creation or annihilation of particles. We can thus safely project it onto a single
particle sector to obtain the single particle Schrödinger equation:

i~∂t|φ(t)〉 = (Ĥ0 + Ĥp + Ĥd)|φ(t)〉 (3.20)
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with:

Ĥ0 =mc2 +
p̂2

2m

Ĥp =
mc2

2
h00(t, x̂)− ~2

8m
{h00(t, x̂), p̂2}+

c

2
{h0i(t, x̂), p̂i} −

1

4m
{hij(t, x̂), p̂ip̂j}

Ĥd =
~2

8m
∇2(tr[hµν(t, x̂)]) +

i~
2
∂t(h

00(t, x̂))− i~
4
∂t(tr[h

µν(t, x̂)])

(3.21)

where x̂, p̂ are respectively the single particle position and the momentum operator.
Note that the anticommutators between the gravitational perturbation (which is a
function of the position operator) and the particle’s momentum operator need to be
included in the quantization prescription in order to guarantee the hermiticity of the
Hamiltonian. The term H0 is the standard free Hamiltonian plus an irrelevant global
phase mc2 that can be reabsorbed with the transformation:

|φ(t)〉 → eimc
2t/~|φ(t)〉 (3.22)

The terms Ĥp and Ĥd are a perturbation of Ĥ0, and encode the interaction between the
scalar bosonic particle and a weak, otherwise generic, gravitational perturbation. We
note that Eq. (3.20) correctly reduces to the usual Schrödinger equation for a particle
in an external static Newtonian potential:{

i~∂t|φ(t)〉 =
(

p̂2

2m
−mΦ

)
|φ(t)〉

Φ = − c2h00

2

(3.23)

if we consider the external gravitational field to be of the same form of that of the Earth.

The generalization of Eq. (3.20) to an extended body is not an easy task, as one
needs to take into account the degrees of freedom of all the elementary particles that
constitute the body. However, it is rather simple to obtain the dynamics for just the
center of mass if we assume that the internal degrees of freedom are frozen and cannot
be excited by the gravitational perturbation as in the case of a rigid body. In such an
approximation it is convenient to define the center of mass (X̂) and relative coordinate
(r̂i) operators: {

X̂ =
∫
d3r r m̂(r)

M

r̂i = x̂i − X̂
(3.24)

and their canonical conjugates, respectively P̂ and k̂i, where m̂(r) is the mass density
operator 2 and M =

∫
d3r m̂(r) is the total mass. Upon tracing out the relative

2Under the assumption that the rigid body consists in an ensenble of a large number N of particles,
the density operator can be defined as m̂(x) =

∑
i

mi
(2π~)3

∫
dq e−

i
~ (x−x̂i)·q, where mi and x̂i are the

mass and the position operator of the i-th particle.
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degrees of freedom, the Hamiltonian for the center of mass of a rigid body reads:

Ĥ =Mc2 +
P̂2

2M
+

∫
d3r h00(r, t)m(X̂ + r)c2 −

∫
d3r h00(r, t)

{m(r + X̂), P̂2}
8M2

+ c

∫
d3r h0i(r, t)

{m(r + X̂), P̂i}
2M

−
∫
d3r hij(r, t)

{m(r + X̂), P̂ iP̂ j}
4M2

+
i~c2

2

∫
d3r ∂t

(
h00(r, t)− 1

2
tr(hµν(r, t))

)m(X̂ + r)

M

+
~2c2

8M

∫
d3r∇2(tr[hµν(r, t)])

m(X̂ + r)

M

(3.25)

Eq. (3.25) was derived following the reference [58] where, however, the authors only
consider the special case with h0i = hij = 0.
In the next section we will specialize to the case of a (weak) stochastic gravitational
background.

3.3 Stochastic gravitational perturbation: single par-
ticle master equation

The motivation to consider a stochastic weak gravitational perturbation is given by the
interest towards Stochastic Semi-classical Gravity (an attempt to self-consistently de-
scribe the back-reaction of the quantum stress-energy fluctuations on the gravitational
field, without having to invoke the quantization of the latter; see for example [59] and
[60] for a review and further references), and by the interest in a stochastic gravita-
tional background (see for instance [8, 15]), which we have already briefly introduced
in Chapter 1.

If the metric is random, Eq. (3.20) becomes a stochastic differential equation. As a con-
sequence the predictions are given by taking the stochastic average over the stochastic
gravitational field. We then need to specify its stochastic properties.
We assume the noise to be Gaussian and with zero mean. The first assumption is
justified by the law of large numbers, while the second by our choice of taking from the
very beginning the Minkowski spacetime as the background spacetime around which
the metric fluctuates. For the sake of simplicity, we also assume the different compo-
nents of the metric fluctuation to be uncorrelated. This means that the noise is fully
characterized by:

E[hµν(x, t)] =0

E[hµν(x, t)hµν(y, s)] =α2fµν(x,y; t, s)
(3.26)

where E[ · ] denotes the stochastic average and α represents the strength of the gravi-
tational fluctuations. The two point correlation function f(x,y; t, s) is a real function
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of order one, i.e. 0 ≤ |fµν(x,y; t, s)| ≤ 1.
We move to the density operator formalism 3:

Ω̂(t) = |φ(t)〉〈φ(t)| (3.27)

As the only characterization of the noise is given by the stochastic average (Eq. (3.26)),
we study the dynamics of the averaged operator:

ρ̂(t) = E[Ω̂(t)] (3.28)

Let us consider the von Neumann equation for the averaged density matrix :

∂tρ̂(t) =− i

~

[
Ĥ0(t), ρ̂(t)

]
− i

~
E
[
[Ĥp(t) + Ĥd(t), Ω̂(t)]

]
≡E
[
L[ ˆΩ(t)]

] (3.29)

where L[ · ] denotes the Liouville superoperator. Equation (3.29) is in general difficult
to tackle, because of the stochastic average, but it can be solved perturbatively by
means of the cumulant expansion [61] (see Appendix F). With the further help of
the Gaussianity, zero mean, uncorrelation of different components, we can rewrite

3We note that that of state vectors (and Schrödinger equation) is not the most appropriate for-
malism to adopt for the description of a quantum stochastic process in most experimental situation,
as it does not allow one to describe statistical mixtures of quantum states.
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Eq. (3.29) in Fourier space 4 as:

∂tρ̂ = − i
~

[Ĥ0, ρ̂(t)]

− α2

~8

∫
d3q d3q′

(2π)3

∫ t

0

dt1 f̃
00(q,q′; t, t1)

m(q)m(q′)

4M2
·

·
[{
eiq·X̂/~, (

P̂ 2

4M
+
Mc2

2
)
}
,
[{
eiq
′·X̂t1/~, (

P̂ 2

4M
+
Mc2

2
)
}
, ρ̂(t)

]]
− α2c2

~8

∫
d3q d3q′

(2π)3

∫ t

0

dt1 f̃
0i(q,q′; t, t1)

m(q)m(q′)

4M2
·

·
[{
eiq·X̂/~, P̂i

}
,
[{
eiq
′·X̂t1/~, P̂i

}
, ρ̂(t)

]]
− α2

~8

∫
d3q d3q′

(2π)3

∫ t

0

dt1 f̃
ij(q,q′; t, t1)

m(q)m(q′)

4M2
·

·
[{
eiq·X̂/~,

P̂iP̂j
2M

}
,
[{
eiq
′·X̂t1/~

P̂iP̂j
2M

}
, ρ̂(t)

]]
− α2

~8

∫
d3q d3q′

(2π)3

∫ t

0

dt1 f̃
µ
µ (q,q′; t, t1)

q2q′2

64M2

m(q)m(q′)

M2

[
eiq·X̂/~,

[
eiq
′·X̂t1/~, ρ̂(t)

]]
− α2

16~4

∫
d3q d3q′

(2π)3

∫ t

0

dt1 ∂t∂t1 f̃
µ
µ (q,q′; t, t1)

m(q)m(q′)

M2

[
eiq·X̂/~,

[
eiq
′·X̂t1/~, ρ̂(t)

]]
+O(tα4τ 3

c )

(3.30)

where x̂t1 = eiĤ0t1x̂e−iĤ0t1 . Note that the above equation becomes exact if [Ĥ0, Ĥp] = 0
(see Appendix G). The above equation describes the dynamics of the rigid body’s cen-
ter of mass is in the presence of a weak, stochastic and Gaussian gravitational field
with zero mean, and whose different components are uncorrelated.
In the following we will not consider the effect on the dynamics due to the derivatives
of the metric perturbation, as in typical experimental situations [1, 3, 4, 5, 6] they are
negligible and in any case they would not add any further informative content to the
analysis. This means that we neglect the last two lines of Eq. (3.30).

We now restrict our analysis to the Markovian case, i.e. we assume the noise to be
delta correlated in time:

fµν(x,y; t, s) = jµν(x,y; t)δ(t− s) (3.31)
4Our choice for the Fourier transform is:

f(x) =
1

(
√
2π~)3

∫
d3q f̃(q)eiq·x/~
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A further reasonable assumption, motivated by the homogeneity of spacetime itself, is
that of translational invariance of the two point correlation function:

fµν(x,y; t, s) = λuµν(x− y)δ(t− s) (3.32)

where the factor λ is in principle a generic coefficient with the dimension of a time.
Note that the white noise assumption makes physical sense only if the correlation
time (τc) of the gravitational fluctuations is much smaller than the free dynamics’
characteristic time (τfree), or in the case where the contribution to the dynamics due
to the gravitational perturbation is not affected by the free evolution dynamics, i.e.
the operators describing the perturbation commute with the free dynamics operator
Ĥ0 (See Appendix G). In such cases, as a first approximation, we can take λ to be:

λ = min(τc , t) (3.33)

Note that this choice does not affect the generality of the analysis as we leave uµν(x−y)
unspecified.
In such a regime Eq. (3.30) is exact and it is easy to show that it reduces to:

∂tρ̂ =− i

~
[Ĥ0, ρ̂(t)]

− α2λc4

4(2π)3/2~5

∫
d3q ũ00(q)m2(q)

[
eiq·X̂/~,

[
e−iq·X̂/~, ρ̂(t)

]]
− α2λ

(2π)3/2~5

∫
d3q ũ00(q)

m2(q)

M2

[{
eiq·X̂/~,

P̂2

4M

}
,
[{
e−iq·X̂/~,

P̂2

4M

}
, ρ̂(t)

]]
− α2λc2

2(2π)3/2~5

∫
d3q ũ00(q)

m2(q)

M

[
eiq·X̂/~,

[{
e−iq·X̂/~,

P̂2

4M

}
, ρ̂(t)

]]
− α2λc2

2(2π)3/2~5

∫
d3q ũ00(q)

m2(q)

M

[{
eiq·X̂/~,

P̂2

4M

}
,
[
e−iq·X̂/~, ρ̂(t)

]]
− α2λc2

(2π)3/2~5

∫
d3q ũ0i(q)

m2(q)

4M2

[{
eiq·X̂/~, P̂i

}
,
[{
e−iq·X̂/~, P̂i

}
, ρ̂(t)

]]
− α2λ

(2π)3/2~5

∫
d3q ũij(q)

m2(q)

M2

[{
eiq·X̂/~,

P̂iP̂j
4M

}
,
[{
e−iq·X̂/~,

P̂iP̂j
4M

}
, ρ̂(t)

]]
(3.34)

Eq. (3.34) describes decoherence both in position and in momentum, as it contains
double commutators of functions of the position, momentum and free kinetic energy
operators respectively with the averaged density matrix. In particular, we immediately
recognize the term in the second line of Eq. (3.34) to give decoherence in position, that
in the third line might give decoherence in energy (in the regime in which q·X̂

~ is small),
and that in the sixth line decoherence in momentum (in the same regime).

In the next section we will investigate under which conditions Eq. (3.34) reduces the
different models of gravitational decoherence present in the literature.
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3.4 Decoherence in the position eigenbasis
In this section we specialize Eq. (3.34) to the regime in which the dominant contribution
to the decoherence effect is in the position eigenbasis. This can be done under the
following assumptions: 

h00 & h0i

h00 & hij

∆E �Mc2 (1− u00(∆x))
(3.35)

where ∆x and ∆E are the quantum coherences of the system, respectively the position
and energy (E = P2

2M
). It is then easy to show that the leading contribution to Eq. (3.34)

is:

∂tρ̂ =− i

~
[Ĥ, ρ̂(t)]− α2τcc

4

(2π)3/2~5

∫
d3q ũ00(q)m2(q)

[
eiq·X̂/~,

[
e−iq·X̂/~, ρ̂(t)

]]
+O(hµi) +O(∆E)

(3.36)

where we have safely replaced λ = τc. The above equation describes decoherence in the
position eigenbasis as the Lindblad operator is a funciton of the position operator. It is
actually of the same form of the Gallis-Fleming master equation [62], which describes
the decoherence induced on a particle by collisions with a surrounding thermal gas,
allowing for a collisional interpretation of the result.
To compare with the previous literature on gravitational deocherence, we must further
characterize the spatial correlation function of the noise and the mass density distri-
bution. We start by considering the model proposed by Blencowe [42]. In order to
recover an analogous master equation we must assume the noise to be delta correlated
in space:

u00(x− x′) = l3δ3(x− x′) (3.37)

where l is a generic coefficient with the dimension of a length. Under this assumptions
Eq. (3.34), represented in the position eigenbasis, in fact becomes:

∂tρ(x,x′; t) =
[ i~

2M
(∇2

x −∇2
x′)−

α2τcc
4l3

4~2

∫
d3r

(
m(r− x)−m(r− x′)

)2]
ρ(x,x′; t)

(3.38)
which has the same form of the master equation obtained in [42], and describes decoher-
ence in position. The different rate is due to the different treatment of the gravitational
noise: Blencowe considers a quantum bosonic thermic bath whose correlation functions
can not be reproduced by our classical description of the noise. If we further take the
mass density function to be a Gaussian:

m(r) =
m

(
√

2πR)3
e−r

2/(2R2) (3.39)
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as it is done in the same work, Eq. (3.38) then reads:

∂tρ(x,x′; t) =
i~

2M
(∇2

x −∇2
x′)ρ(x,x′; t)− α2M2τcc

4l3

4(
√
π)3~2R3

(
1− e−

(x−x′)2

4R2

)
ρ(x,x′; t) (3.40)

To recover the results obtained by Sanchez Gomez [37], we need to restrict to the
point-like particle case:

m(r) = Mδ3(r) (3.41)

as in [37], and then to assume the spatial correlation function to be Gaussian:

ũ00(q− q′) = L3~3δ(q− q′)e−~
2q2L2/2 (3.42)

where L is the correlation length of the noise. With this choice for the spatial correlation
functions it is natural to assume

τc =
L

c
(3.43)

as it is the only time scale of the system left, and Eq. (5.2) represented in the position
basis reduces to:

∂tρ(x,x′; t) =
i~
2m

(∇2
x −∇2

x′)ρ(x,x′; t) +
2α2m2c3L

~2

(
e−

(x−x′)2

2L2 − 1
)
ρ(x,x′; t) (3.44)

and exactly recovers Sanchez Gomez’s result.
A very similar equation was also obtained by Power and Percival [41]. Our model is
able to qualitative recover the shape of the master equation, but not the specific rate
which depends of the fourth power of the noise’s strength, being the anlysis in [41] at
higher order in the gravitational perturbation expansion.

In the next section we will describe under which assumptions our model is able to
describe decoherence in the momentum and energy eigenbasis thus encompassing the
results of Breuer et al. [40] and of Anastopoulos and Hu [38] that predict gravitational
decoherence to occur in the energy eigenbasis.

3.5 Decoherence in the momentum eigenbasis
In this section we specialize Eq. (3.34) to the regime in which the dominant contribution
to the decoherence effect is in the momentum or energy eigenbasis. This is the case
when we can approximate:

eiq·X̂/~ ∼ 1̂ (3.45)
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i.e. in the regime of low momentum transfer. In this case Eq. (3.34) reduces to:

∂tρ̂ =− i

~
[Ĥ, ρ̂(t)]

− α2λ

(2π)3/2~5

∫
d3q ũ00(q)

m2(q)

M2

[ P̂2

2M
,
[ P̂2

2M
, ρ̂(t)

]]
− α2λc2

(2π)3/2~5

∫
d3q ũ0i(q)

m2(q)

M2

[
P̂i,
[
P̂i, ρ̂(t)

]]
− α2λ

(2π)3/2~5

∫
d3q ũij(q)

m2(q)

M2

[ P̂iP̂j
2M

,
[ P̂iP̂j

2M
, ρ̂(t)

]]
(3.46)

In order to recover the results of Breuer et al. [40], the following hierarchy of the
gravitational fluctuation must be verified:

hij � h00, h0i (3.47)

and the spatial correlation functions chosen to be:

ũij(q− q′) = δijL3~3δ(q− q′)e−~
2q2L2/2 (3.48)

Also in this case it is natural to choose τc = L/c. We also assume the mass density
distribution to describe a point-like particle as in Eq. (3.41).
Under these assumptions Eq. (3.46) in fact reduces to:

∂tρ̂(t) = − i
~

[Ĥ, ρ̂(t)]− α2λ

~2

[ P̂2

2M
,
[ P̂2

2M
, ρ̂(t)

]]
(3.49)

Eq. (3.49) is indeed the same as the one obtained by Breuer et al. with the identifica-
tion:

α2λ =
Tc
2

(3.50)

where Tc is the spatially averaged correlation time of the noise present in the same
paper 5.
With the same assumptions we are also able to reproduce the shape of the master
equation derived by Anastopoulos and Hu [38], but not the exact rate. As in the case
of the Blencowe model, this is due to their quantum treatment of the gravitational noise.

Our model has so far proven to be able to describe more general scenarios than those
present in the literature, as it is able to qualitative recover them as appropriate limit-
ing cases, thus solving the decoherence basis puzzle. However, it might not be general
enough to describe the outcome of a real experiment. The particles commonly em-
ployed in experiments (atoms, neutrons, electrons...) in fact have a charge, a spin and

5In the work of Breuer et al. the symbol used for the spatially averaged correlation time is τc. It
was here changed to Tc in order to avoid any confusion with our own notation.
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could be coupled to other external fields, like the Maxwell one for instance. For the
above reasons, in the next chapter we will derive an analogous model, this time for
spin 1/2 fermions interacting with both a gravitational perturbation and an external
electromagnetic field.
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Chapter 4

Gravitational decoherence: fermionic
matter

In this chapter we extend the results of the previous chapter by deriving a model to
describe the effects of a gravitational perturbation on a spin 1/2 fermionic matter field
in the non relativistic regime and interacting with an external electromagnetic field.

4.1 Hamiltonian equations of motion
We first derive the equations of motion (EOM) for a spin 1/2 fermionic field minimally
coupled to linearized gravity. We start from the action for the Dirac field in curved
spacetime [53]:

S =

∫
d4x
√
−gL (4.1)

with the Lagrangian density:

L =
i~c
2

[ψ̄γµeAµDAψ − eAµDAψ̄γµψ]−mc2ψ̄ψ (4.2)

where eAµ(x) is the so called vierbein field [63], an auxiliary field used in order to extend
the definition of fermions as irreducible spin 1/2 representations of the Poincaré group
to curved spacetimes (see appendix C), and

Dµψ = ∂µψ +
1

8
[γa, γb]ωµ

abψ +
ie

~c
Aµψ (4.3)

is the covariant derivative with respect to both the spin (ωµab) and the electromagnetic
(Aµ) connections. The pair (eA

µ, ωA
µν) allows for an equivalent geometrization of the

gravitational interaction to the standard one given in terms of the metric and the affine
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connection (gAB,Γ
A
BC)(see Appendix C) ; the relation between the two frameworks is

given by: {
eA

µηµνeB
ν = gAB

ωA
µν = eB

µηνρ∂Ae
B
ρ + eB

µηνρeCρΓ
B
AC

(4.4)

Note that Eq. (4.4) holds only for a torsion free, metric compatible connection [63].
We write the metric as the sum of a flat background ηµν = diag(+ − −−), and a
perturbation hµν :

gµν = ηµν + hµν (4.5)

We are interested in studying the dynamics of the Dirac field interacting with a weak
gravitational perturbation. We therefore perform a Taylor expansion of the action
around the flat background metric and truncate the series at the first perturbative
order (See Appendix D for the explicit calculation). Thus, we obtain the effective
Lagrangian Leff acting on flat spacetime:

S =

∫
d4x

(i~c
2

[ψ̄γµ∇µψ −∇µ(ψ̄)γµψ](1 +
tr(h)

2
)− (1 +

tr(h)

2
)mc2ψ̄ψ

− i~c
4
hµν [ψ̄γ

µ∇νψ −∇ν(ψ̄)γµψ]
)

+O(h2)

≡
∫
d4x Leff +O(h2)

(4.6)

where∇α is the flat covariant derivative with respect to the electromagnetic connection.
The EOM for the matter field are obtained (at first order in the perturbation hµν) from
the Euler Lagrange equations:

∂Leff
∂ψ̄

−∇α
∂Leff
∂∇αψ̄

= 0 (4.7)

and in the harmonic gauge they read:

i~∂tψ =eA0ψ +mc2(1 +
h00

2
)γ0ψ − mc2

2
h0jγ

jψ − i~c(1 +
h00

2
)γ0γi(∂i +

ie

~c
Ai)ψ

+
i~c
2
h0iγ

iγj(∂j +
ie

~c
Aj)ψ +

i~c
2
hijγ

0γi(∂j +
ie

~c
Aj)ψ +

i~c
2
h0i(∂

i +
ie

~c
Ai)ψ

− i~c
8
∂α(tr(h))γ0γαψ +O(h2)ψ

= : Hψ +O(h2)ψ

(4.8)

As for the scalar field discussed in the previous chapter, we note that we cannot give
a probabilistic interpretation of the field ψ, as the conserved charged Q associated to
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the internal U(1) symmetry (ψ → eieψ ; ψ̄ → e−ieψ̄) via Noether’s Theorem reads:

Q ≡ −ie
∫
d3x

( ∂Leff
∂(∇0ψ)

ψ − ψ† ∂Leff
∂(∇0ψ†)

)
= ~ec

∫
d3x

(
ψ†(1− tr(h)− h00

2
)ψ − ψ†h0i

2
γ0γiψ

) (4.9)

instead of the required:

ρ =

∫
d3x ψ†ψ (4.10)

We therefore apply the transformation: T = (1− tr(h)
2
− h00

4
− h0i

4
γ0γi)

ψ → Tψ
H → H := THT−1 + i~T∂t(T−1)

(4.11)

so that, in the new representation, the conserved charge can be expressed by the
standard for in Eq. (4.10), and the field admits a probabilistic interpretation in the
non relativistic limit.
After some algebra the EOM (4.8) read:

i~∂tψ = [mc2γ0 + E +O]ψ (4.12)

where

E =eA0 +
mc2

2
h00γ

0 + i~c h0i(∂
i − ie

~c
Ai) +

i~c
4
∂i(h

i
0) +

~c
4
εijk∂i(h0j)Σk

− 3i~
8
∂t(tr(h)) +

i~
4
∂t(h00)

(4.13)

O =− i~c(1 +
h00

2
)(∂j −

ie

~c
Aj)α

j +
i~
4
∂t(h0i)α

i +
i~c
2
hij(∂

j − ie

~c
Aj)αi

+
i~c
4
∂i(

tr(h)

2
− h00)αi

(4.14)

are respectively the even (diagonal) and odd (off diagonal) parts of the Hamiltonian
H, with αµ = γ0γµ and Σi = diag(σi, σi).
We are interested in the description of the dynamics of a positive energy particle sys-
tem in the non relativistic limit. In such a limit, the particle and antiparticle sectors
are non interacting with one another, that is to say, the EOM (4.8) can be recast to
a system of two uncoupled equations respectively for the large (ψL) and small (ψs)

component of the bispinor ψ =

(
ψL
ψs

)
. While this is evident and straightforward

for the free case [64], for an interacting theory the decoupling is very complicated and
achievable only perturbatively.

In the next section we will provide a standard prescription for the diagonalization
of the EOM in the non relativistic limit.
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4.2 Non relativistic limit and canonical quantization
We aim to find a representation of the bispinor field ψ in which the EOM (4.12)
are diagonal. This representation can be found in non relativistic limit following the
Foldy-Wouthuysen Method [56], which allows one to write perturbatively (at any order
in v

c
) two decoupled equations, one for each component of the field. The method is

operatively characterized by the application of an appropriate unitary transformation
U :

ψ → ψ′ = Uψ (4.15)

H→ H′ = U(H− i~∂t)U−1

=mc2γ0 + E′ +O′ +O(h2)
(4.16)

such that, in the new representation, the antidiagonal part O′ is of higher order in
v
c
than the diagonal E′. By neglecting O′ one recovers two decoupled equations. By

performing iteratively the transformation, one can always find a representation of the
bispinor field for which the EOM are diagonal at any desired order in v

c
.

In our case, the task is easily achieved by applying the subsequent transformations:
U = e−iγ

0O/(2mc2)

U ′ = e−iγ
0O′/(2mc2)

U ′′ = e−iγ
0O′′/(2mc2)

(4.17)

after which, with some algebra (see Appendix E) and by neglecting the terms containing
the derivatives of the gravitational perturbation of order v3

c3
or higher1, the Hamiltonian

1For the sake of compactness we relegate such terms to Appendix E. Note also that in most
experimental situations such contributions are negligible in the case of gravity, and they wouldn’t add
any further informative content to the analysis in any case.
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density to order v4

c4
reads:

H =eA0 + γ0

[
mc2(1 +

h00

2
)− ~2

2m
(1 +

h00

2
)(∇− ie

~c
A)2 − ~e

2mc
(1 +

h00

2
)BkΣk

− ~2

2m
hij(∂

i − ie

~c
Ai)(∂j − ie

~c
Aj) +

~e
4mc

εijlhjkFi
kΣl

]

+
i~2e

4m2c2
(1 +

h00

2
)
(∇

2
× E− E×∇

)
·Σ− (1 + h00)

~2e

8m2c2
∇ · E

− i~2e

16m2c2
εiklhij∂

j(Ek)Σl −
i~2e

8m2c2
εiklhijEk(∂

j − ie

~c
Aj)Σl

+
i~2e

4m2c2
εijlh0kFj

k(∂i −
ie

~c
Ai)Σl −

~2e

8m2c2
h0j∂i(F

ij) +
i~2e

8m2c2
εijlh0k∂i(Fj

k)Σl

− γ0

8m3c6

[
~4c4(1 + 2h00)(∇− ie

~c
A)4 + ~2ec2(1 + 2h00)B2

+ 2~4c4hij(∇−
ie

~c
A)2(∂i − ie

~c
Ai)(∂j − ie

~c
Aj)− ~3ec3

2
εijlhjmFi

mBk{Σk,Σl}

+
~3ec3

2
εijl{(∇− ie

~c
A)2, hjkFi

k}Σl − ~3ec3(1 + 2h00){(∇− ie

~c
A)2, Bk}Σk

]

+Hd +O(h2) +O(∂h) +O(
v5

c5
)

(4.18)

where B and E are the magnetic and electric field, and in terms of the four-potential
they read: 

E = −∇A0 − 1
c
Ȧ

B = ∇×A
Bk = −1

2
εijkFij

Fij = −εijkBk

(4.19)

εijk represent the Levi-Civita symbol, and

Hd =− ~2

8m
∂i(h00)(∂i − ie

~c
Ai)γ0 − ~2

16m
∂i∂i(h00)γ0 +

i~c
4
∂i(h

i
0)

+
~c
4
εijk∂i(h0j)Σk −

3i~
8
∂t(tr(h)) +

i~
4
∂t(h00)

+ γ0

[
~2

2m
∂i(h00)∇i −

~2

4m
∂i(hij)∇j − ~2

2m
∂i(

tr(h)

2
− h00)∇i

− i~2

4m
εijk
(
∂i(h00)∇j − ∂i(hjl)∇l

)
Σk −

~2

4m
∂i∂i(

tr(h)

2
− h00)

]
(4.20)
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Note that as the transformations (4.17) are unitary [57], they preserve the conserved
charge in (4.9), i.e. the probability density in the non relativistic limit.
In the non relativistic limit the EOM (4.18) do not mix the two components ψL and
ψs of the field (up to a very small correction). As we are interested in the dynamics of
particles only, we restrict the analysis to the first field component ψL, that we rename
as ψ in what follows.
Since the dynamics preserves the probability density, we are allowed to apply the
canonical quantization prescription and impose the equal time commutation relations:

[ψ̂(t,x), ψ̂(t,x′)] =[ψ̂†(t,x), ψ̂†(t,x′)] = 0

[ψ̂(t,x), ψ̂†(t,x′)] = δ3(x− x′)
(4.21)

to obtain the EOM for the quantum field. The equation thus obtained does not allow
for the creation or annihilation of particles. We can thus safely project it onto a single
particle sector to obtain the single particle Schrödinger like equation:

i~∂t|φ(t)〉 = (Ĥ0 + Ĥr + Ĥp + Ĥrp + Ĥd)|φ(t)〉 (4.22)

with:

Ĥ0 =mc2 +
1

2m

(
p̂− e

c
A(x̂)

)2

+ eA0(x̂)− ~e
2mc

B(x̂) · σ

Ĥr =
~e

4m2c2

( p̂

2
× E(x̂)− E(x̂)× p̂

)
· σ − ~2e

8m2c2
∇ · E(x̂)

− γ0

8m3c6

[
c4(p̂− e

c
A(x̂))4 + ~2ec2B2(x̂)− ~ec3{(p̂− e

c
A(x̂))2, Bk(x̂)}σk

]

Ĥp =
mc2

2
h00(t, x̂)− 1

8m
{h00(t, x̂) ,

(
p̂− e

c
A(x̂)

)2

}+
c

2
{h0i(t, x̂) , p̂i}

− 1

4m
{hij(t, x̂) ,

(
p̂i −

e

c
Ai(t, x̂)

)(
p̂j −

e

c
Aj(t, x̂)

)
} − ~e

4mc
εiklhij(x̂, t)F

j
k(x̂)σl

− ~e
4mc

h00(x̂, t)B(x̂) · σ
(4.23)
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and

Ĥrp =
~e

16m2c2
{h00(x̂, t),

( p̂

2
× E(x̂)− E(x̂)× p̂

)
· σ}

− i~2e

16m2c2
εiklhij(x̂)∂j(Ek(x̂))Σl −

~2e

8m2c2
h00(x̂)(x̂, t)∇ · E(x̂)

− ~e
16m2c2

εikl{hij(x̂, t), Ek(x̂)(p̂j − e

c
Aj(x̂))}Σl+

+
~e

8m2c2
εijl{h0k(x̂), Fj

k(p̂i −
e

c
Ai)}Σl −

~2e

8m2c2
h0j(x̂)∂i(F

ij(x̂))

+
i~2e

8m2c2
εijlh0k(x̂)∂i(Fj

k(x̂))Σl

− γ0

8m3c6

[
c4{h00(x̂), (∇− e

c
A(x̂))4 + 2~2ec2h00(x̂)B2(x̂)

+ c4{hij(x̂), (p̂− e

c
A(x̂))2(p̂i − e

c
Ai(x̂))(p̂j − e

c
Aj(x̂))}

− ~3ec3

2
εijlhjm(x̂)Fi

m(x̂)Bk(x̂){Σk,Σl}

+
~ec3

2
εijl{(p̂− e

c
A)2, hjk(x̂)Fi

k(x̂)}Σl − ~ec3{h00(x̂){(p̂− e

c
A)2, Bk}}Σk

]

Ĥd =− ~
16m
{∂i(h00(x̂)), (p̂i − e

c
Ai(x̂))}γ0 − ~2

16m
∂i∂i(h00(x̂))γ0 +

i~c
4
∂i(h

i
0(x̂))

+
~c
4
εijk∂i(h0j(x̂))σk −

3i~
8
∂t(tr(h(x̂))) +

i~
4
∂t(h00(x̂))

+ γ0

[
~2

4m
{∂i(h00(x̂)), (p̂i −

e

c
Ai(x̂))} − ~2

8m
{∂i(hij(x̂)), (p̂j − e

c
Aj(x̂))}

− ~2

4m
{∂i(

tr(h(x̂))

2
− h00(x̂)), (p̂i − e

c
Ai(x̂))} − ~2

4m
∂i∂i(

tr(h(x̂))

2
− h00(x̂))

− i~2

8m
εijk
(
{∂i(h00(x̂)), (p̂j −

e

c
Aj(x̂))} − {∂i(hjl(x̂)), (p̂l − e

c
Al(x̂))}

)
σk

]
(4.24)

where x̂, p̂ are respectively the single particle position and the momentum operator.
The term Ĥ0 is the usual Pauli Hamiltonian [64] plus an irrelevant global phase mc2

that can be reabsorbed with the transformation:

|φ(t)〉 → eimc
2t/~|φ(t)〉 (4.25)

The term Ĥr encodes the standard relativistic corrections [57] due to the presence
of the electromagnetic field up to order v4

c4
. Finally, Ĥp, Ĥd and Ĥrp account for the

corrections due to the presence of the weak gravitational field respectively to Ĥ0 and Ĥr.
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4.2.1 Differences with the bosonic model

Equation (4.18) is rather instructive as it extends the non relativistic Hamiltonian
obtained in the previous chapter for the scalar field, namely Eq. (3.21), which we recall
below 2:

Ĥ
(B)
0 =mc2 +

p̂2

2m

Ĥ(B)
p =

mc2

2
h00(t, x̂)− ~2

8m
{h00(t, x̂), p̂2}+

c

2
{h0i(t, x̂), p̂i} −

1

4m
{hij(t, x̂), p̂ip̂j}

Ĥ
(B)
d =

~2

8m
∇2(tr[hµν(t, x̂)]) +

i~
2
∂t(h

00(t, x̂))− i~
4
∂t(tr[h

µν(t, x̂)])

(4.26)

to describe the dynamics of a quantum particle subject to a gravitational perturbation
and to an external electromagnetic field. It is however as instructive to consider the
electromagnetic free case , i.e. the limit A(t, x̂)→ 0, in order to directly compare the
fermionic and bosonic Hamiltonians. By taking the limit A(t, x̂)→ 0 of Eq. (4.18), we
obtain:

Ĥ
(F )
0 =mc2 +

p̂2

2m

Ĥ(F )
p =

mc2

2
h00(t, x̂)− ~2

8m
{h00(t, x̂), p̂2}+

c

2
{h0i(t, x̂), p̂i} −

1

4m
{hij(t, x̂), p̂ip̂j}

Ĥ
(F )
d =− ~

16m
{∂i(h00(x̂)), (p̂i − e

c
Ai(x̂))}γ0 − ~2

16m
∂i∂i(h00(x̂))γ0 +

i~c
4
∂i(h

i
0(x̂))

+
~c
4
εijk∂i(h0j(x̂))σk −

3i~
8
∂t(tr(h(x̂))) +

i~
4
∂t(h00(x̂))

+ γ0

[
~2

4m
{∂i(h00(x̂)), (p̂i −

e

c
Ai(x̂))} − ~2

8m
{∂i(hij(x̂)), (p̂j − e

c
Aj(x̂))}

− ~2

4m
{∂i(

tr(h(x̂))

2
− h00(x̂)), (p̂i − e

c
Ai(x̂))} − ~2

4m
∂i∂i(

tr(h(x̂))

2
− h00(x̂))

− i~2

8m
εijk
(
{∂i(h00(x̂)), (p̂j −

e

c
Aj(x̂))} − {∂i(hjl(x̂)), (p̂l − e

c
Al(x̂))}

)
σk

]
(4.27)

As expected, the bosonic and the fermionc description match for the gravity free case
(Ĥ(B)

0 = Ĥ
(F )
0 ). They also match for the terms proportional to the gravitational per-

turbation hµν . This is also to be expected: suppose in fact that there were actually a
difference in the terms h00p̂

2/2m ormc2h00. This would imply that e.g. a simple change
form Cartesian to Rindler [12] coordinates would predict for a boson and a fermion to

2We have added the superscripts (B) and (F) for respectively bosonic and fermionic in order to
avoid confusion
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fall with the same acceleration in the first (Cartesian) but not the second (Rindler)
reference frame, which would violate the weak equivalence principle. The same line
of reasoning can be applied to the other terms containing hijand h0i. It is interesting
however to notice that some differences arise for the terms containing the derivatives of
the gravitational perturbation ∂hµν . Such differences originated when we required the
matter field to allow for a probabilistic interpretation in order to canonically quantize
the system.

4.3 Master equation with electromagnetic field
In this section we derive a master equation to describe the decoherence effect induced
by a weak stochastic gravitational perturbation on a spin 1/2 fermionic particle, as done
for the scalar case in the previous chapter. For the sake of simplicity and compactness of
the result, we will restrict our analysis to the Pauli Hamiltonian Ĥ0 and its gravitational
corrections Ĥp, as the terms Ĥr and Ĥrp are of higher order in the non relativistic
expansion 3, and the term Ĥd contains derivatives of the gravitational perturbations,
as in typical experimental situations [1, 3, 4, 5, 6] they are negligible and would not
add any further informative content to the analysis in any case.
This means that we approximate Eq. (4.22) to:

i~∂t|φ(t)〉 = (Ĥ0 + Ĥp)|φ(t)〉 (4.28)

If the metric is random, Eq. (4.28) becomes a stochastic differential equation. As a
consequence the predictions are given by taking the stochastic average over the random
gravitational field. We then need to specify its stochastic properties.
As done for the bosonic particle case, we assume the noise to be Gaussian and with
zero mean. For the sake of simplicity, we also assume the different components of the
metric fluctuation to be uncorrelated. This means that the noise is fully characterized
by:

E[hµν(x, t)] =0

E[hµν(x, t)hµν(y, s)] =α2fµν(x,y; t, s)
(4.29)

where we recall that E[ · ] denotes the stochastic average, α represents the strength of
the gravitational fluctuations, and f(x,y; t, s) is the two point correlation function.
We move to the density operator formalism, and write the von Neumann equation for
the averaged density matrix :

∂tρ̂(t) =− i

~

[
Ĥ0(t), ρ̂(t)

]
− i

~
E
[
[Ĥp(t), Ω̂(t)]

]
≡E
[
L[ ˆΩ(t)]

] (4.30)

3Note however that one needs to be careful when applying the results of this section to a real
experimental situations, as the term Ĥr might dominate over Ĥp (depending on the size of E,B, and
hµν) and should therefore be taken in consideration.
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Also in this case we solve the above equation perturbatively exploiting the cumulant
expansion [61]. With the further help of the Gaussianity, zero mean, uncorrelation of
different components, we can rewrite Eq. (4.30) in Fourier space 4 as:

∂tρ̂ = − i
~

[Ĥ0, ρ̂(t)]+

− α2

~8

∫
d3q d3q′

(2π)3

∫ t

0

dt1
f̃ 00(q,q′; t, t1)

4
·

·
[{
eiq·x̂/~,Ξ00(x̂, p̂)

}
,
[{
eiq
′·x̂t1/~,Ξ00(x̂t1 , p̂)

}
, ρ̂(t)

]]
− α2c2

~8

∫
d3q d3q′

(2π)3

∫ t

0

dt1
f̃ 0i(q,q′; t, t1)

4

[{
eiq·x̂/~, p̂i

}
,
[{
eiq
′·x̂t1/~, p̂i

}
, ρ̂(t)

]]
− α2

~8

∫
d3q d3q′

(2π)3

∫ t

0

dt1
f̃ ij(q,q′; t, t1)

4
·

·
[{
eiq·x̂/~,Ξij(x̂, p̂)

}
,
[{
eiq
′·x̂t1/~,Ξij(x̂t1 , p̂)

}
, ρ̂(t)

]]
+O(tα4τ 3

c )

(4.31)

where we have introduced:

Ξ00(x̂, p̂) =
(p̂− e

c
A(t, x̂))2

4m
+
mc2

2
− ~e

2mc
B(t, x̂) · σ (4.32)

Ξij(x̂, p̂) =
(p̂i − e

c
Ai(t, x̂))(p̂j − e

c
Aj(t, x̂))

4m
+
mc2

2
+

~e
2mc

εkilF
k
j(t, x̂)σl (4.33)

for the sake of compactness.
The above equation describes the dynamics of a point-like spin 1/2 fermionic particle
in presence of an external weak, stochastic gravitational field (with the further assump-
tions made in this section) and an external electromagnetic field.

Also in this case we specialize Eq. (4.31) to the Markovian limit, with the further
assumptions of isotropy and homogeneity of the noise, so that its correlation function
again reads:

fµν(x,y; t, s) = τuµν(x− y)δ(t− s) (4.34)
4Recall that our choice for the Fourier transform is:

f(x) =
1

(
√
2π~)3

∫
d3q f̃(q)eiq·x/~
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In such a regime Eq. (4.31) is exact and it is easy to show that it reduces to:

∂tρ̂ =− i

~
[Ĥ, ρ̂(t)]

− α2λ

(2π)3/2~5

∫
d3q ũ00(q)

[{
eiq·X̂/~,Ξ00(x̂, p̂)

}
,
[{
e−iq·X̂/~,Ξ00(x̂, p̂)

}
, ρ̂(t)

]]
− α2λc2

(2π)3/2~5

∫
d3q ũ0i(q)

[{
eiq·X̂/~, P̂i

}
,
[{
e−iq·X̂/~, P̂i

}
, ρ̂(t)

]]
− α2λ

(2π)3/2~5

∫
d3q ũij(q)

[{
eiq·X̂/~,Ξij(x̂, p̂)

}
,
[{
e−iq·X̂/~,Ξij(x̂, p̂)

}
, ρ̂(t)

]]
(4.35)

Eq. (4.35) describes decoherence in an intricate combination of position momentum
and energy bases, as it contains double commutators of functions of the position, mo-
mentum and free kinetic energy operators with the averaged density matrix.

In what follows we will specialize Eq. (4.35) to determine under which approxima-
tions it recovers decoherence in the position or momentum eigenbasis only.
As for the bosonic case, the conditions:

h00 & h0i

h00 & hij

∆E �Mc2 (1− u00(∆x))
(4.36)

are sufficient for our master equation to describe decoherence in the position eigenbasis
only, where in this case the energy coherence needs to be modified to take into account
the presence of the electromagnetic field, as E =

(p− e
c
A)2

2m
.

Under the above assumptions, Eq. (4.35) reads:

∂tρ̂ = − i
~

[Ĥ, ρ̂(t)]− α2λ

(2π)3/2~5

∫
d3q ũ00(q)·

·
[
eiq·X̂/~

(mc2

2
− ~eσ

2mc
·B(t, x̂)

)
,
[{
e−iq·X̂/~

(mc2

2
− ~eσ

2mc
·B(t, x̂)

)
, ρ̂(t)

]]
(4.37)

Contrary to the bosonic case, the condition of low momentum transfer

eiq·X̂/~ ∼ 1̂ (4.38)

is necessary but not sufficient to recover deocherence in the momentum or energy
eigenbasis starting from Eq. (4.35). One in fact needs the further condition:{

|p| � | e
c
A|

p2

2m
� | ~eσ

2mc
·B| (4.39)
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In this regime, Eq. (4.35) can be approximated as:

∂tρ̂ =− i

~
[Ĥ, ρ̂(t)]

− α2λ

(2π)3/2~5

∫
d3q ũ00(q)

[ p̂2

2m
,
[ p̂2

2m
, ρ̂(t)

]]
− α2λc2

(2π)3/2~5

∫
d3q ũ0i(q)

[
p̂i,
[
p̂i, ρ̂(t)

]]
− α2λ

(2π)3/2~5

∫
d3q ũij(q)

[ p̂ip̂j
2m

,
[ p̂ip̂j

2m
, ρ̂(t)

]]
(4.40)

where λ is defined as in Eq. (3.33).

In this and in the previous chapter, we have set firm theoretical grounds for an un-
ambiguous and comprehensive description of the decoherence phenomenon caused on
a quantum particle by a stochastic gravitational perturbation. In the next chapter we
will apply our novel results to matter-wave interferometery in order to discuss their
sensitivity to cosmic gravitational perturbations.
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Chapter 5

Application: matter-wave
interferometry and gravitational
decoherence

In this chapter we analyse the effect of a stochastic gravitational perturbation on
matter-wave Mach-Zehnder interferometers by applying our gravitational deocherence
model to such setups. There is another study [43] in the literature concerning the effects
of a stochastic gravitational perturbation on a Mach-Zehnder atom interferometer, the
HYPER interferometer [65]. Such a study however deals only with a specific type
of gravitational noise, the so called Binary Confusion Background. Our work is also
intended to extend such an analysis. We therefore develop a scheme for quantifying
the gravity induce loss of contrast in the interference fringes in particular regimes of
interest. Finally, we apply our analysis to a selected sample of proposed and actual
experiments in order to assess to which kind of cosmic perturbation the state of the
art technology is sensitive to.

5.1 Mach-Zehnder interferometry
A Mach-Zehnder interferometer is a device used to determine a path dependent phase
variation between two branches of a matter-wave that originate from the same source.
We do not provide here a complete and detailed description of such a class of devices,
as that lies beyond the purpose of this thesis. We will limit ourselves to sketch the
essential traits of its functioning mechanism in order to keep up with our analysis. We
refer the reader to the following work [66] and the references therein included for a
comprehensive discussion.
Given the above premise, in a nutshell a Mach-Zehnder interferometer works as follows:
a wavepacket is produced at the source, is collimated, and then goes through a beam
splitter; the two partial waves travel the same distance before they are reflected by
two mirrors to eventually collimate at a second beam splitter and be directed towards
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a screen (or, more generally, one or more detectors) where the interference fringes are
observed. A variation in the optical path (caused by a sample with different refractive
index, the motion of the mirrors, gravity, ecc..) in one or both of the two arms deter-
mines a shift in the interference fringes.
In the case of decoherence in the position eigenbasis, it is well know [62, 67] that the
effect on such a device is a loss of contrast in the interference pattern produced at the
detector. To quantify this loss we use the interferometric visibility ν, which is defined
in terms of the maximum (Pmax) and minimum (Pmin) intensity of the interference
pattern:

ν =
Pmax − Pmin

Pmax + Pmin
(5.1)

We therefore implement a model for the evolution of the probability density to then
determine the visibility. Motivated by experimental interest, we consider only the pure
position (P) and energy (E) decoherence cases described by the simpler Eqs. (3.36,
3.46). Furthermore, we take the spatial correlation function of the noise to be a Gaus-
sian, as in Eqs. (3.42, 3.48).
For the sake of simplicity, we will only consider in our analysis symmetric Mach-Zehnder
interferometers, like the one schematically depicted in Fig. (5.1). Furthermore, we re-

Figure 5.1: Symmetric Mach-Zehnder atom interferometer.

strict the analysis to point-like particles, as Mach-Zehnder interferometry is currently
bound to neutrons, atoms and Bose-Einstein condensates (BEC) due to technical lim-
itations [68]. We also assume the matter-wave to be collimated and the interaction
time with the mirrors to be negligible, thus we can rely on the longitudinal-eikonal ap-
proximation and reduce the study to a one dimensional problem along the transverse
axis of propagation, i.e. the x-axis in Fig. (5.1).
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5.2 Mach-Zehnder interferometry: decoherence in the
position eigenbasis

The positional decoherence process induced by the scalar component of the gravita-
tional perturbation is described by Eq. (3.36):

∂tρ̂ = − i
~

[ P̂2

2M
, ρ̂(t)

]
− α2τcc

4

(2π)3/2~5

∫
d3q ũ00(q)m2(q)

[
eiq·X̂/~,

[
e−iq·X̂/~, ρ̂(t)

]]
(5.2)

We apply the above equation to a Mach-Zehnder set up, like the one described in Fig.
(5.1), in order to quantify the effect of decoherence on the visibility. We therefore
specialize Eq. (3.36) by means of the longitudinal-eikonal approximation and of the
point-like particle assumption m(r) = mδ(r). Furthermore, we assume the spatial
correlation function to be a Gaussian ũ00(q) = L3~3e−q

2L2/(2~2). It is then only natural
to take τc = L/c. When represented in the position eigenbasis, the equation then reads:

∂tρt(x, x
′) = − i~

2m
(∇x

2 −∇x′
2)ρt(x, x

′)− 2α2m2τcc
4

~2

(
1− e

(x−x′)2

2L2

)
ρt(x, x

′) (5.3)

We solve the above equation with the help of the characteristic function [69, 70], which
is defined in terms of the statistical operator ρ̂t as:

χt(s, q) =Tr[ei(x̂q−p̂s)/~ρ̂t]

=
1

h

∫
dxdpdy eip(y−s)/~eiqx/~ρt(x−

y

2
, x+

y

2
)

=

∫
dxeiqx/~ρt(x−

s

2
, x+

s

2
)

(5.4)

and is connected to the probability density, and thus the interference fringes, through
the relation:

Pt(x) =
1

h

∫
χt(0, q)e

−iqx/~dq (5.5)

In this formalism the Eq. (5.3) reads:

∂tχt(s, q) =

(
− q

m
∂s −

2α2m2Lc3

~2

(
1− e

s2

2L2

))
χt(s, q) (5.6)

The formal solution to the above equation is:

χt(s, q) = R′t,P(s)χ0(s− q

m
t, q) (5.7)

with R′t,P(s, q) = e
∫ t
0 Γτ−t,P (s,q)dτ , and Γt,P(s, q) is the transformed decoherence rate

function:
Γt,P(s, q) =

(
1− e−(qt/m+s)2/(2L2)

)
(5.8)
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Note that this result holds true independently of the choice of the initial state, and for
any decoherence rate funtion such that Γt,P(x, x′) = Γt,P(x− x′).

It follows that in a Mach-Zehnder interferometer the evolution of the system from
the first beam splitter to the mirrors is easily described by Eq. (5.7). The state of the
system right before the reflection at the mirrors therefore looks like:

χtref (s, q) = R′tref ,P(s)χ0(s− q

m
tref , q) (5.9)

The reflection at the mirrors is instead modelled, following the principles of the "image
charge" and exploiting the symmetries of the apparatus, as the sudden transformation:

χtref(s, q)→ χmir(s, q) = χtref(−4a− s,−q) + χtref(4a− s,−q) + 2 cos
(aq
~

)
χtref(−s,−q)

(5.10)

which corresponds to{
ψtref(x)→ ψtref(2a− x) + ψtref(−2a− x)

p→ −p (5.11)

at the level of the wavefunction, where 2a is the distance between the two mirrors.
Finally, the evolution from the mirrors, just after the reflection, to the second beam
splitter is again governed by Eq. (5.7), and the state therefore reads:

χttot(s, q) = R′ttot,P(s)χmir(s−
q

m
(ttot − tref ), q) (5.12)

For the purpose of detecting the effects of decoherence, it is convenient to perform the
measurement immediately after or in place of the second beam splitter, when the two
beams are still overlapped and an interference pattern can be detected. For this reason
we decide not to include the transformation induced by the second beam splitter1, nor
the subsequent evolution to the screen in the analysis.
This results into the following interference pattern at the screen:

P (P)
scr (x) =

1

h

∫
dq e

i
~ qxe

∫ tref
0 (ΓP ( q

m
τ))dτ

[
e
∫ tref
0 ΓP ( q

m
τ+4a)dτχ0

(
− 4a− 2aq

k
,−q

)
+

+ e
∫ tref
0 ΓP ( q

m
τ−4a)dτχ0

(
4a− 2aq

k
,−q

)
+ 2 cos

(aq
~

)
χ0

(
− 2aq

k
,−q

)]
(5.13)

that can be used to estimate the visibility as in Eq. (5.1), given the explicit form of
the state at the first beam splitter χ0(s, q). We choose it to be a Gaussian wavepacket

1The transformation is ρ̂ → cos(x̂k/~)ρ̂ cos(x̂k/~). Note that it has no impact on the effects of
decoherence on the probability density ρ(x, x).
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of spread σ in a superposition of momenta ±k (because of the action of the first beam
splitter of Fig. (5.1)):

χ0(s, q) =

e−
q2σ2

4~2 −
s2

4σ2

(
e−

k2σ2

~2 cosh
(
kqσ2

~2

)
+ cos

(
ks
~

))
e−

k2σ2

~2 + 1
(5.14)

which corresponds to

ψ0(x) =

√
1

2
√
πσ[1 + exp(−k

2σ2

~2 )]
exp(− x2

2σ2
) cos

(kx
~

)
(5.15)

in terms of the wavefunction. With this initial state, the time at which the reflection
occurs trivially reads tref = a/v where v = k/m. Below, we report a series of plots for
the probability density obtained with such a choice for the initial state.
In the two series, the experimental parameters are set according to the figures’ cap-

Probability density for Mach-Zehnder interferometer

Figure 5.2: Plots of the probability density with running α and fixed L. The parameters
are relative to a proposed Mach-Zehnder interferometer, the STE-QUEST interferometer, and
are: σ = 3 ∗ 10−5 m; m = 1.6 ∗ 10−25 kg; k = 3.4 ∗ 10−27 kg m

s ; ttot = 10.0 s; a = 10.4 cm.

tion [71] and varying respectively α with fixed L, and L with fixed α. Such plots
highlight how the sole effect on the interference fringes due to a scalar gravitational
perturbation is a reduction of the peaks.
The resulting formula for the visibility is very complicated. However, in the longitudinal-
eikonal approximation the spread of the wavepacket (σ) is much smaller than the su-
perposition distance, i.e. σ � a, and the formula can be simplified. Indeed, the initial
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Probability density for Mach-Zehnder interferometer

Figure 5.3: Plots of the probability density with running L and fixed α.The parameters are
relative to a proposed Mach-Zehnder interferometer, the STE-QUEST interferometer, and
are: σ = 3 ∗ 10−5 m; m = 1.6 ∗ 10−25 kg; k = 3.4 ∗ 10−27 kg m

s ; ttot = 10.0 s; a = 10.4 cm.

state can be approximated in Eq. (5.13) as χ0(s, q) '
√
πσδ(s), in which case we are

able to write the visibility as:

ν(P) ' e
∫ a/v
0 dτΓP (2vτ) (5.16)

with

∫ a/v

0

dτ ΓP(2vτ) =
α2c3Lm2

(√
2πL erf

(√
2a
L

)
− 4a

)
2v~2

(5.17)

This formula shows a reduction of the visibility proportional to square of the mass
of the particle, meaning that a small increase in the latter will give an important
gain in the sensitivity to spacetime fluctuations. For the sake of completeness we also
analyse the interferometer sensitivity in the regime in which the spacial correlation
of the stochastic perturbation is much bigger than the size of the superposition, i.e.
a� L. In this regime Eq. (5.16) simplifies to:

ν(P) ' exp

(
−4a3α2c3m3

3kL~2

)
(5.18)

It is interesting to notice that the effect scales with the cube power of the superposition
distance a, or alternatively with the cube power of the of the experimental time (indeed
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a = ttotk/2m), while in gravimetry with atom interferometers it depends on the square
of time [72]. In the opposite regime instead, where the size of the superposition is much
larger than the spatial correlation of the noise, i.e. a� L, the visibility simplifies to:

ν(P) ' exp

(
−2aα2c3Lm3

k~2

)
(5.19)

and, as expected, an increase of the size of the superposition will not give any significant
improvement to the sensitivity.

5.3 Mach-Zehnder interferometry: decoherence in the
energy eigenbasis

The energy decoherence process induced by the tensor component of the gravitational
perturbation is described by Eq. (3.46) of the main text with the further assumption
hij � h0i, h00:

∂tρ̂ = − i
~

[ P̂2

2m
, ρ̂(t)

]
− α2λ

(2π)3/2~5

∫
d3q ũij(q)

m2(q)

m2

[ P̂iP̂j
2m

,
[ P̂iP̂j

2m
, ρ̂(t)

]]
(5.20)

where we recall2 λ = min (τc, t). As done for the position decoherence case, we
apply the above equation to a Mach-Zehnder set up, in order to quantify the ef-
fect of decoherence on the visibility. We therefore specialize Eq. (3.46) by means
of the longitudinal-eikonal approximation and of the point-like particle assumption
m(r) = mδ(r). Furthermore, we assume the spatial correlation function to be a Gaus-
sian: ũij(q) = L3~3e−q

2L2/(2~2)δij as a first approximation. Also in this case it is natural
to take τc = L/c. When represented in the momentum eigenbasis, the equation then
reads:

∂tρt(p, p
′) = − i

2m
(p2 − p′2)ρt(p, p

′)− 2α2λ(p2 − p′2)2

4m2~2
ρt(p, p

′) (5.21)

We again solve the above equation with the help of the characteristic function defined
in Eq. (5.4). In this formalism, Eq. (5.21) reads:

∂tχt(s, q) =

(
q

m
∂s +

2α2λq2

m2
∂2
s

)
χt(s, q) (5.22)

The solution to the above equation is:

χt(s, q) =
1

h

∫
dpds′eip(s

′−s+ q
m
t)/~Rt,E(−2pq)χ0(s′, q) (5.23)

with Rt,E(p, p
′) = e−ΓE(p,p′)t, where ΓE(p, p

′) is the decoherence rate function:

ΓE(p, p
′) =

α2λ(p2 − p′2)2

2m2~2
(5.24)

2see Eq. (3.33) in Sec. 3.3
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and we have used the property RE(p, p′) = RE(p
2 − p′2) that can be easily checked to

be valid for the decoherence kernel in Eq. (5.24). Note that, also in this case, the above
Eq. (5.23) is valid independently of the choice of the initial state.
The application to Mach-Zehnder interferometry follows as for the position decoherence
case: the evolution of the system from the first beam splitter to the mirrors and from
the mirrors to the second beam splitter is easily described by Eq. (5.23), while the
reflection by Eq (5.10):

χtref (s, q) = 1
h

∫
dpds′eip(s

′−s+ q
m
tref )/~Rtref ,E(−2pq)χ0(s′, q)

χmir(s, q) = χtref(−4a− s,−q) + χtref(4a− s,−q) + 2 cos
(
aq
~

)
χtref(−s,−q)

χttot(s, q) = 1
h

∫
dpds′eip(s

′−s+ q
m

(ttot−tref ))/~Rttot,E(−2pq)χmir(s
′, q)

(5.25)

Also in this case, we neglect the action of the second beam splitter and the subsequent
evolution to the screen for the reason stated in the previous section. The resulting
interference pattern at the screen is:

P (E)
scr (x) =

∫
dqdpds′

(2π~)2
e
i
~ qxe−2ΓE(p− q

2
,p+ q

2
)trefe

ip
~ ( 2aq

k
−s′)2

[
cos
(4ap

~

)
+cos

(aq
~

)]
χ0(s′,−q)

(5.26)
that can be used to estimate the visibility as in Eq. (5.1), given the explicit form of the
state at the first beam splitter χ0(s, q). We choose it to be a Gaussian wavepacket, Eq
(5.14), as for the case of position decoherence. Upon plugging Eq. (5.14) into Eq. (5.26)
and performing the integration in the s′ and p variables, the probability density reads:

P (E)
scr (x) =

∫
dq

(
σe

(
−
k2(32a2~2+q2σ4)+12a2q2~2+8akq~2(2a+Γmq3σ2)

4k~2(8aΓmq2~2+kσ2)

)
(
e
k2σ2

~2 + 1
)
~

√
k~2

8aΓmq2~2 + kσ2
eiqx/~·

·

[
e

(
4a2k2~2+2a2q2~2+k4σ4

8aΓkmq2~4+k2σ2~2

)[
e

8a2q

8aΓmq2~2+kσ2 cos

(
2akσ2(2k − q)

8aΓmq2~3 + kσ2~

)
+

+ 2 cos
(aq
~

)
e

4a2(k+q)

8aΓmq2~2+kσ2 cos

(
akqσ2

8aΓmq2~3 + kσ2~

)
+ cos

(
2akσ2(2k + q)

8aΓmq2~3 + kσ2~

)]
+ cosh

(
kqσ2

~2

)(
e

2a2(2k2+q2)
k(8aΓmq2~2+kσ2) + e

2a2(2k2+4kq+q2)
k(8aΓmq2~2+kσ2) + 2 cos

(aq
~

)
e

2a2(4k2+2kq+q2)
k(8aΓmq2~2+kσ2)

)])
(5.27)

where we have rewritten ΓE(p − q
2
, p + q

2
) = 4Γp2q2 for simplicity. The above formula

is very complicated, and we were not able to obtain a simpler analytical expression for
it nor for the visibility, even in the long wavelength and longitudinal-eikonal regimes
of approximation. However, Eq. (5.27) can be used to determine the visibility via
a numerical analysis. In Fig. (5.4) we report a series of plots for the probability
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Figure 5.4: Numerical plots of the probability density with running α and fixed L = 1015

m. The parameters are relative to a proposed Mach-Zehner interferometer, the STE-QUEST
interferometer, and are σ = 3 ∗ 10−5 m; m = 1.6 ∗ 10−25 kg; k = 3.4 ∗ 10−27 kg m

s ; ttot = 10.0
s; a = 10.4 cm.

density in order to illustrate the qualitative effect of a tensorial stochastic gravitational
perturbation on the interference pattern.
Fig. (5.4) shows how the effect of decoherence is not a simple reduction of the peaks,
as in the case of pure positional decoherence. Furhtermore, the tails of the probability
density seem to be more affected than the center.
In the next section we will apply the results of this and the previous section to Mach-
Zehnder interferometers.

5.4 Case studies
To make the study more concrete, we now apply the above results to test the sensi-
tivity of a sample set of operative and proposed atom interferometry experiments, i.e.
we study for which pairs of parameters (α,L) a gravitational perturbation induces a
reduction of the visibility bigger than 10% (ν = 90%). If such a reduction were actually
to be measured in a real experiment, and an accurate analysis of the noise (thermal,
electrical, vibrational) in the experimental apparatus performed, it would allow one to
use Eqs. (5.26) and (5.18) to set possibly stringent bounds on the pair of the pertur-
bation’s parameters (α, L).
We accordingly set the parameters of our simulated experiment for each of the selected
experiments as reported in Table II:
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Table II: Interferometers’ parameters
m [kg] k [kg m

s ] ttot [s] σ [m]
HYPER [65] 2.5 ∗ 10−25 8.8 ∗ 10−28 1.5 6.4 ∗ 10−7

STE-QUEST [71] 1.6 ∗ 10−25 3.4 ∗ 10−27 10.0 3.0 ∗ 10−5

Xu [73] 2.5 ∗ 10−25 1.5 ∗ 10−27 20.0 3.9 ∗ 10−6

Muntiga [74] 1.6 ∗ 10−25 1.9 ∗ 10−27 0.6 5.0 ∗ 10−5

Kovachy [75] 1.6 ∗ 10−25 8.5 ∗ 10−28 2.1 5.6 ∗ 10−5

In order to determine the reduction of the visibility, we use Eqs. (5.16,5.17) in the case
of the pure position decoherence induced by the scalar component of the gravitational
perturbation. In the case of pure energy decoherence instead, we numerically integrate
Eq. (5.27) to get an expression for the probability density and from that we estimate
its minimum and maximum to plug in Eq. (5.1). Since the effect of decoherence is
more prominent on the tails of the interference figure (see Sec. 5.3), we take the rel-
ative minimum and maximum of just the tails, which we define as the areas in which
the probability density is less or equal than a quarter of its absolute maximum value
(which instead always corresponds to x = 0 m) in absence of decoherence.
The main results are summarized by Figs. (5.5, 5.6) and Figs.(5.7,5.8) respectively.
Our analysis shows a reduction of visibility of more than 10%, which can be detected
in a real interferometric experiment [65, 74, 73, 76, 75], in presence of scalar fluctu-
ations with correlation length and strength respectively down to L ' 10−1 m, and
α ∼ 10−22 for state of the art matter-wave interferometers. In the case of the tensorial
perturbation, we had to resort to a numerical analysis, as we were not able to find
an analytic expression for the probability density and therefore the visibility. Such
an analysis shows a much lower sensitivity to tensorial gravitational perturbation, as
expected from [43]. A clear sign of decoherence can be observed only for perturbations
whose strength α is of the order of 10−5, which is too large to be produced by any
expected source of tensorial fluctuations. As a final remark, note that the sensitivity
curves in Fig. 5.8 are straight horizontal lines, as for all experiments the characteristic
time of the fluctuations τ = L

C
is greater than the time of the experiment ttot, thus

λ = t and ν becomes L independent.
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5.4.1 Other sources of decoherence

The study so far was carried out assuming no other source of decoherence except
gravitational fluctuations, while in real experiments different sources of decoherence
are always present [49]. We show that the most relevant source of decoherence, i.e.
thermal gas collisions, gives a negligible effect in a spaced-based setup. We will not
consider other sources of decoherence because they strongly depend on the specific
setup.
The decoherence function Γcoll(x) describing gas collision can be quite complex [49],
however in an interferometric experiment usually the superposition distance is much
bigger than the typical thermal De Broglie wavelength of the gas allowing one to rely
on the simplified expression [77]:

Γcoll =
4πΓ(9/10)

5 sin(π/5)

(
9πβcβgIgI

64~ε0(I + Ig)

)
pgv

3/5
g

KbTg
(5.28)

where Tg,pg, mg are the temperature, the pressure and the mass of the gas, I, Ig are
the ionization energies, βc and βg the static polarizabilities of the matter-wave and gas
particle and vg =

√
2KbTg/mg is the thermal velocity of the gas particle.

Upon plugging in the values of the parameter relative to a space based experiment,
which are summarized in Table III, we get Γcoll ' 7.6 ∗ 10−30s−1, our analysis shows
that the decoherence induced by thermal gas collisions is practically absent in such a
setup.

Table III: Collisional parameters
Ig [eV] βg [m3] Tg [K] pg [Pa] Ic [eV] βc [m3]
13.6 7.42 ∗ 10−41 20 10−11 3.89 59.42∗10−30
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Figure 5.5: Colored plots showing the visibility as a function of the scalar perturbation’s
strength (α) and correlation length L. One plot for each interferometer of Table II
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Figure 5.6: The different shaded area represent the region of parameters α and L in which
a scalar gravitational perturbation induces a reduction of more that 10% in visibility for
different experimental scenarios (see the legend).
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Figure 5.7: Colored plots showing the visibility as a function of the tensor perturbation’s
strength (α) and correlation length L. One plot for each interferometer of Table II
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Figure 5.8: The different shaded areas represents the region of parameters alpha and L
in which a tensorial gravitational perturbation induces a reduction of more that 10% of the
interference fringes for different experimental scenarios (see the legend).
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Chapter 6

Conclusions

In this thesis we have analyzed the decoherence effect induced on non relativistic quan-
tum matter by a stochastic gravitational perturbation.
We have started by giving in chapter 2 an overview of the literature of gravitational
decoherence models. Such models can be regrouped in two distinct classes: those that
predict the gravitational decoherence phenomenon to occur in the position eigneba-
sis, and those that predict decoherence in the momentum or energy eigenbasis. The
different models also disagree on the rate of decoherence, i.e. the typical time scale
over which a quantum system interacting with a gravitational perturbation becomes
classical.
In order to solve such apparent contradictions and to determine the general underlying
dynamics of gravitational decoherence, we have derived in chapter 3 a general model of
decoherence for a non relativistic quantum particle interacting with a weak stochastic
gravitational perturbation. We have specialized such an equation to the Markovian
limit under some further reasonable assumptions on the stochastic properties of the
gravitational noise motivated by simplicity arguments, cosmological models and obser-
vations.
We have extended our model to the description of the center of mass of a rigid extended
body, which is a more realistic and experimentally interesting scenario.
Our Markovian master equation predicts decoherence in position, momentum and en-
ergy as it contains, among other terms, double commutators of functions of the position,
momentum and free kinetic energy operators with the averaged density matrix. With
such a novel model, we were able to successfully recover other results present in the
literature as appropriate limiting cases of our general master equation (thus resolving
the decoherence rate and eigenbasis puzzles), and to determine the regimes of validity
for the gravitational decoherence phenomenon to occur in the position or momentum
(energy) eigenbasis.
In chapter 4, we have extended the model derived in chapter 3 in order to describe the
gravitational decoherence effect on a spin 1/2 fermionic particle under the influence
of an external electromagnetic field. The resulting Hamiltonian and master equation
correctly reproduce the results of the bosonic model up to very small corrections. Such
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corrections account for relativistic effects (different spin of the two kind of particles)
and the different quantization scheme employed.
Motivated by the interest to assess if and to what extent matter-wave interferometers
can be used to probe the cosmic gravitational background, in chapter 5 we have applied
the gravitational decoherence model developed in chapter 3 to atom interferometry. We
have modelled the behaviour of the interferometric visibility as a function of the gravi-
tational perturbation’s parameters in order to quantify the decoherence effect. Among
other results, with such an analysis we have provided a practical formula to estimate
the sensitivity of such a class of experiments to stochastic scalar fluctuations of the
metric.
We have applied our analysis to a selected sample of actual and proposed matter-wave
interferometers, showing that state of the art technology is sensitive to scalar pertur-
bation with strength and correlation length down to α ∼ 10−23, L ∼ 1 m, while it is
practically unaffected by tensorial perturbations.
We have analysed the most relevant competing decoherence effect, namely thermal gas
collisional decoherence, and shown that it is negligible with respect to gravitational
decoherence.
Although based on strongly simplifying assumptions, this study shows that matter-
wave interferometry is a promising avenue for testing the interface of quantum mechan-
ics and gravity, and for the detection of a scalar gravitational stochastic background.
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Chapter 7

Appendices

Appendix A: Feshbach Villars formalism
Here we provide explicit calculation for the derivation of Eq. (3.12).
Let us first rewrite Eq. (3.6) as:

(i~∂t − i~ch0i∂i)
2ψ =

[
~2c∂t(h

0i)∂i − ~2c2(1 + h00)∇2 − ~2c2hij∂i∂j +m2c4(1 + h00)
]
ψ

+O(h2)

(A.1)

and the system of Eq. (3.8) as{
i~(∂t − ch0i∂i)ψ +mc2ψ = 2mc2φ
i~(∂t − ch0i∂i)ψ −mc2ψ = −2mc2χ

(A.2)

Casting Eq. (A.1) in the above system we get :

i~(∂t − ch0i∂i)φ =
mc2

2
(φ− χ)

m2c4

2mc2
(1 + h00)(φ+ χ)− ~2

2m
(1 + h00)∇2(φ+ χ)

− ~2

2m
hij∂i∂j(φ+ χ) +

~2

2mc
∂t(h

0i)∂i(φ+ χ)

(A.3)

i~(∂t − ch0i∂i)χ =− mc2

2
(φ− χ)− m2c4

2mc2
(1 + h00)(φ+ χ) +

~2

2m
(1 + h00)∇2(φ+ χ)

+
~2

2m
hij∂i∂j(φ+ χ)− ~2

2mc
∂t(h

0i)∂i(φ+ χ)

(A.4)
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Recalling now that Ψ =

(
φ
χ

)
and exploiting the Pauli matrices, the system reduces

to:

i~∂tΨ =
[
mc2σ3 +

mc2

2
h00[σ3 + iσ2] + i~ch0i∂i −

~2

2m
(1 + h00)[σ3 + iσ2]∇2+

− ~2

2mc
∂t(h

0i)[σ3 + iσ2]∂i −
~2

2m
hij[σ3 + iσ2]∂i∂j

]
Ψ

= : HΨ

(A.5)

Upon applying the transformation (3.11), the EOM transform as:

H→ K := THT−1 + i~T∂t(T−1) (A.6)

and read exactly as Eq. (3.12) of the main text.

Appendix B: FoldyWouthuysen method - bosonic model
Here we illustrate the Fouldy Wouthuysen method applied to Eq. (3.12). Let us con-
sider the transformations:

K → K ′ = U(K − i~∂t)U−1 (B.1)

and specialize U to Eq. (3.17), i.e.

U = e−iσ3O/(2mc2) =: eiS (B.2)

With the help of the BCH identity:

K ′ =eiS(K − i~∂t)e−iS = K + i[S,K] +
i2

2!
[S[S,K]]+

+
i3

3!
[S[S[S,K]]] + ...

+ ~(−Ṡ − i

2
[S, Ṡ] +

1

6
[S, [S, Ṡ]] + ...)

(B.3)

Recalling that:
K = mc2σ3 + E +O (B.4)

and noticing that:

[σ3,E] = 0 (B.5)
{σ3,O} = 0 (B.6)

[σ3O, σ3] = −2O (B.7)
[σ3O,E] = σ3[O,E] (B.8)
[σ3O,O] = 2σ3O2 (B.9)
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it is not difficult to check that:

K ′ = mc2σ3 + E′ +O′ (B.10)

where:

E′ =E + σ3(
O2

2mc2
− O4

8m3c6
)− i

8m2c4
[O, Ȯ]− 1

8m2c4
[O, [O,E]] + ... (B.11)

O′ = 1

2mc2
σ3[O,E]− O3

3m2c4
+

i

2mc2
σ3Ȯ + ... (B.12)

We note that O′ is of order c−1, meaning that we need to perform a further transfor-
mation if we want non trivial diagonal EOM. The transformation that we perform is:

U ′ = e−iσ3O′/(2mc2) (B.13)

after which the Hamiltonian reads:

K ′′ = mc2σ3 + E′ +O′′ + ... (B.14)

with:
O′′ = σ3

2mc2
[O′,E′] +

i

2mc2
σ3Ȯ′ + ... (B.15)

As O′′ ∼ O(v
3

c3
) we need to perform a final transformation:

U ′′ = e−iσ3O′′/(2mc2) (B.16)

Finally the Hamiltonian reads:

H := K ′′′ = mc2σ3 + E′ +O(c−4) (B.17)

It is easy to note that the only (other than E) contribution to E′ at the desired order
is:

σ3

2mc2
O2 =

σ3

2mc2
{imc

2

2
h00σ2 , −

i~2

2m
∇2σ2}+O(h2) +O(c−4)

=
~2

4m
(h00∇2 +∇2(h00))σ3 +O(h2

µν) +O(c−4)

(B.18)

so that the Hamiltonian becomes:

H =mc2(1 +
h00

2
)σ3 −

~2

2m
(1 +

h00

2
)∇2σ3 −

~2

2m
hij∂i∂jσ3 + i~ch0i∂i +

i~
2
∂t(h

00)

− i~
4
∂t(tr(h

µν)) +
~2

8m
∇2(tr(hµν))σ3 +O(c−4) +O(h2

µν)

(B.19)

as in Eq. (3.18) of the main text.
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Appendix C: Vierbein (or tetrad) formulation of grav-
ity

We illustrate the basic ingredients of the tetrad formalism of the General Relativity
theory. For a more complete treatment we address the reader to [63, 78].

The standard geometrical interpretation of the gravitational interaction is based on
the notion of the Riemannian metric (g) and the Christoffel connection (Γ). The
spacetime curvature, its dynamical evolution and the interaction with matter sources
are described through differential equations involving g and Γ.
It is possible though to equivalently describe the geometry of a Riemannian maniflod
(M) using the notion of vierbein and local connection. Such a formalism is particu-
larly convenient when one wants to formulate a theory of gravity as a gauge theory,
and wants to accomodate the notion of particles as irreducible representations of the
Poincaré group in curved spacetimes [79, 80, 81].
We know that locally the laws of special relativity are valid. This translates into the
consideration that we can attach at each and every point p of the Riemannian manifold
M a flat tangent manifold equipped with the flat Minkowski metric.
There is a natural choice for the basis of such a tangent space (TpM), the coordinate
(or differential) basis:

ê(µ) = ∂(µ) (C.1)

given by the partial derivatives of the coordinates. It follows that a given 4-vector
A ∈ TpM has components:

A = Aµê(µ) = Aµ∂(µ) (C.2)

The dual basis:
ê(µ) = dx(µ) (C.3)

spans the cotangent space, and it is given by the differential of the coordinates. A dual
vector B ∈ TpM then has components:

B = Bµê
(µ) = Bµdx

(µ) (C.4)

As TpM is a vector space, we are in principle free to choose any orthonormal basis
to span it, as long as TpM preserves the appropriate signature of the manifold. We
therefore introduce a set of basis vectors êa, which we choose as non coordinate unit
vectors, and we denote this choice by using capital Latin letters for indices of the non
coordinate frame. Such a non coordinate basis is called a tetrad basis. The condition
for preserving the signature of the metric therefore reads:

g(êA, êB) = ηAB = diag(+,−−−) (C.5)

With this choice, we can clearly find a fixed orthonormal basis that is independent
of position. Then, form a local prospective, any vector can be expressed as a linear
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combination of the fixed tetrad basis vectors at the point in the following way:

êµ(x) = eµ
A(x)ê(A) (C.6)

V A = eµ
AV µ (C.7)

The 4x4 invertible matrix eµ
A(x) is called a vierbein field (or tetrad), and it is the

transformation matrix that maps the tangent space TxM into Minkowski space pre-
serving the inner product.
The inverse vierbein field (or tetrad) has components eµA(x), and satisfies the orthonor-
mality condition:

eµAeν
A = δµν

eµ
AeµB = δAB (C.8)

which come from the preservation of the inner product.
The vierbein fields are mixed indices objects, in the sense that they carry one Minkowski
spacetime index (A), and one Riemannian index (µ). Accordingly, they transform
under coordinate and Lorentz transformations respectively as:

eµ
A coord−→ e′µ

A
=
∂xν

∂x′µ
eν
A (C.9)

eµ
A(x)

Lorentz−→ e′µ
A

(x) = ΛA
Beµ

B (C.10)

We now consider the covariant derivative ∇X of a vector (X) in the Minkowski frame.
It will be given by the standard derivative (∂X) plus a correction given by the affine
connection of the Minkowski frame:

(∇µX
A)dxµ ⊗ ê(A) = (∂µX

A + ωµ
A
BX

B)dxµ ⊗ ê(A) (C.11)

The expression for the covariant derivative in the coordinate basis instead reads:

∇X =(∇µx
ν)dxµ ⊗ ∂ν

=(∂µX
ν + ΓνµαX

α)dxµ ⊗ ∂ν
=(∂µX

ν + ΓνµαX
α)dxµ ⊗ eνA(x)ê(A)

=eν
A(x)

(
∂µ(eνB(x)XB) + Γνµαe

α
B(x)XB

)
dxµ ⊗ ê(A)

(C.12)

Upon comparing Eq. (C.11) with Eq. (C.12), we can express the Minkowski frame or
local affine connection in terms of the tetrads and the usual affine connection as:

ωµ
A
BX

B = eν
A(x)∂µe

ν
B(x)XB + eν

A(x)eαB(x)ΓνµαX
B (C.13)

Note that the above relation implies the metric compatibility condition:

∇µe
ν
B(x) = 0

∇µgαβ = 0 (C.14)
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Observing that ∇µX
A must transform under a Lorentz boost as XA, it follows:

∇µ(ΛA
B) =0

=∂µ(ΛA
B) + ωµ

A
CΛC

B − ωµCBΛA
C

(C.15)

Upon multiplying the last line of Eq. (C.15) by ΛB
D on the left, we obtain the following

relation:
ωµ

A
D = ΛB

DΛA
Cωµ

C
B − ΛB

D∂µ(ΛA
B) (C.16)

which tells us that the affine connection transforms inhomogeneously under Lorentz
transformations.
One can construct the usual geometric objects from (e, ω), as it is typically done from
(g, Γ), such as the Curvature Tensor:

RAB
µν = ∂µων

A
B − ∂νωµAB + ωµ

A
Cων

C
B − ωνACωµCB (C.17)

and the Torsion:

TAµν = ∂µeν
A − ∂νeµA + ωµ

A
Beν

B − ωνABeµB (C.18)

The field equations for the vierbein field can be derived from a variational principle in
the same fashion it is typically done for the metric. In order to show it, Let us recall
the inner product-signature preservation condition Eq. (C.5), which can be equivalently
recast into:

gµν = eµ
AηABeν

B (C.19)
It then follows that the variation of the metric can be expressed in terms of the variation
of the vierbein filed as:

δgµ = eνAδeµ
A + eµAδeν

A = −(gµλeν
A + gνλeµ

A)δeλ
A (C.20)

The variation of the Einstein-Hilbert action (S = 1
8πG

∫
d4x
√
−gR [12]) then reads:

∂gS =
1

8πG

∫
d4x
√
−g(Rµν − 1

2
gµνR)δgµν

=
1

8πG

∫
d4x e(Rµν − 1

2
gµνR)

∂gµν
∂eλA

δeλA

=
1

8πG

∫
d4x e

(
Rλ

νeν
A − 1

2
Rδνλeν

A +Rµ
λeµ

A − 1

2
Rδµλeµ

A
)
δeλA

=
1

8πG

∫
d4x e

(
Rµ

ν −
1

2
δµλR

)
eµ
AδeλA

(C.21)

Recalling the expression for the Einstein tensor (Gµν = Rµν − 1
2
gµνR), the above

equation yields:
Gµνeµ

A = 0 (C.22)
which must be interpreted as the Einstein’s equations for the vierbein field e. Note that
in order to switch back to the usual metric formulation it is sufficient to multiply the
above equation by eλA. We have thus shown that the vierbein formulation of General
relativity is equivalent to the standard metric one.
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Appendix D: EOM for the spin 1/2 fermionic field
We present the explicit steps for the derivation of the effective action of a spin 1/2
fermionic matter field coupled to a weak gravitational perturbation.

Consider the action for the Dirac field in curved spacetime:

S =

∫
d4x
√
−gLD (D.1)

with the Lagrangian density:

LD =
i~c
2

[ψ̄γµeAµDAψ − eAµDAψ̄γµψ]−mc2ψ̄ψ (D.2)

where eAµ(x) is the so called vierbein field, the field that maps the tangent space
to the manifold M at point x TxM (coordinate basis ∂A) into Minkowski space (non
coordinate basis eµ), and

Dµψ = ∂µψ +
1

8
[γa, γb]ωµ

abψ +
ie

~c
Aµψ (D.3)

is the covariant derivative with respect to both the spin and the electromagnetic connec-
tions. The pair (eA

µ, ωA
µν) allows for an equivalent geometrization of the gravitational

interaction to the standard one given in terms of the metric and the affine connection
(gAB,Γ

A
BC); the relation between the two frameworks is given by:{

eA
µηµνeB

ν = gAB
ωA

µν = eB
µηνρ∂Ae

B
ρ + eB

µηνρeCρΓ
B
AC

(D.4)

Note that (D.4) holds only for a torsion free, metric compatible connection.
We write the metric as the sum of a flat background ηµν = diag(+ − −−), and a
perturbation hµν :

gµν = ηµν + hµν (D.5)

We are interested in studying the dynamics of the Dirac field in presence of a weak
gravitational perturbation. We therefore perform a Taylor expansion of the action
around the flat background metric and truncate the series at the first perturbative
order:

S ≈
∫
d4x (

√
−gL)

∣∣∣
g=η
− hµν

(∂(
√
−gL)

∂gµν

)∣∣∣
g=η

+O(h2) (D.6)

In order to work out the explicit expression for ∂(
√
−gL)

∂gµν
, we look at the variation of the

action with respect to the metric tensor:

δgS = −1

2

∫
d4x
√
−gTABδgAB

=

∫
d4x

∂(
√
−gL)

∂gAB
δgAB

(D.7)
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Notice that the above expression can be equivalently rewritten for a torsion free, metric
compatible connection as:

δgS =

∫
d4x

∂(
√
−gL)

∂eCα
δeCα +

∂(
√
−gL)

∂ωAµν
δωAµν

=

∫
d4x
√
−g ∂L

∂eCα
δeCα +

√
−g ∂L

∂ωAµν
δωAµν + L

(∂√−g
∂eCα

δeCα +
∂
√
−g

∂ωAµν
δωAµν

)
(D.8)

By noticing that ∂
√
−g

∂ωAµν
= 0, and defining ∂L

∂eCα
=: TCα and ∂L

∂ωAµν
=: SAµν , we rewrite

the above equation as:

δS =

∫
d4x
√
−g
[
TCαδeCα + SAµνδωAµν + 2eC

αLDδeCα
]

=

∫
d4x
√
−g
[(
TCα −DA[SAC

α − SAαC + SCAα + SαAC − SCαA − SαCA]+

+ 2eC
αLD

)
δeCα

]
=

∫
d4x
√
−g(BC

α + 2eC
αLD)δeCα

=:

∫
d4x
√
−gΘC

αδeCα

(D.9)

where BC
α is the Belinfante stress energy tensor [82]. In the case of a fermionic field

it reads [83]:

BC
α =

i~c
4

[ψ̄γαDCψ −DCψ̄γαψ + ψ̄γCDαψ −Dαψ̄γCψ]

=
1

2
(TCα + T αC)

(D.10)

Comparing Eq. (D.7) and Eq. (D.9), we notice:

ΘC
αδeCα = −1

2
TABδgAB

=
1

2
TAB(gACeB

α + gBCeA
α)δeCα

= TC
αδeCα

(D.11)
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Thus we can write Eq. (D.6) as:

S ≈
∫
d4x
[
(
√
−gLD)

∣∣∣
g=η

+
∂(LD

√
−g)

∂gAB

∣∣∣
g=η

hAB +O(h2)
]

=

∫
d4x
[
(
√
−gLD)

∣∣∣
g=η
− 1

2
(ΘAαeBα)

∣∣∣
g=η

hAB +O(h2)
]

=

∫
d4x

(i~c
2

[ψ̄γµ∇µψ −∇µ(ψ̄)γµψ](1 +
tr(h)

2
)− (1 +

tr(h)

2
)mc2ψ̄ψ

− i~c
4
hµν [ψ̄γ

µ∇νψ −∇ν(ψ̄)γµψ]
)

+O(h2)

=:

∫
d4x Leff +O(h2)

(D.12)

and recover Eq. (4.6) of the main text.

Appendix E: FoldyWouthuysen method - fermionic model
Here we illustrate the Fouldy Wouthuysen method applied to Eq. (4.12). Let us con-
sider the transformations:

H→ H′ = U(H− i~∂t)U−1 (E.1)

and specialize U to Eq. (4.17), i.e.

U = e−iγ
0O/(2mc2) =: eiS (E.2)

With the help of the BCH identity:

H′ =eiS(H− i~∂t)e−iS = H + i[S,H] +
i2

2!
[S[S,H]]+

+
i3

3!
[S[S[S,H]]] + ...

+ ~(−Ṡ − i

2
[S, Ṡ] +

1

6
[S, [S, Ṡ]] + ...)

(E.3)

Recalling that:
H = mc2γ0 + E +O (E.4)

and noticing that:

[γ0,E] = 0 (E.5)
{γ0,O} = 0 (E.6)

[γ0O, γ0] = −2O (E.7)
[γ0O,E] = γ0[O,E] (E.8)
[γ0O,O] = 2γ0O2 (E.9)
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we get:
H′ = mc2γ0 + E′ +O′ (E.10)

where:

E′ =E + γ0(
O2

2mc2
− O4

8m3c6
)− 1

8m2c4
[O, [O,E] + i~Ȯ] + ... (E.11)

O′ = 1

2mc2
γ0[O,E]− O3

3m2c4
+

i

2mc2
γ0Ȯ + ... (E.12)

We note that O′ is of order c−1, meaning that we need to perform a further transfor-
mation if we want non trivial diagonal EOM. The transformation that we perform is:

U ′ = e−iγ
0O′/(2mc2) (E.13)

after which the Hamiltonian reads:

H′′ = mc2γ0 + E′ +O′′ + ... (E.14)

with:
O′′ = γ0

2mc2
[O′,E′] +

i

2mc2
γ0Ȯ′ + ... (E.15)

As O′′ ∼ O(v
3

c3
) we need to perform a final transformation:

U ′′ = e−iγ
0O′′/(2mc2) (E.16)

Finally the Hamiltonian reads:

H := H′′′ = mc2γ0 + E′ +O(
v5

c5
) (E.17)

In order to calculate the explicit expression of the Hamiltonian in Eq. (E.17), we pick
the Pauli representation for the Dirac gamma matrices:

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, αi ≡ γ0γi =

(
0 σi

σi 0

)
, Σi =

(
σi 0
0 σi

)
(E.18)

By exploiting the identities:[
(∂j − ie

~c
Aj), (∂k −

ie

~c
Ak)
]

= − ie
~c
F j

k (E.19)

αiαj = −ηij + εijkΣk

{αi, αj} = −2ηij

ηij = −δij
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it only takes a bit of algebra to show that:

γ0

2mc2
O2 =

γ0

2mc2

(
− i~c(1 +

h00

2
)(∂j −

ie

~c
Aj)γ

0γj +
i~c
2
hij(∂

j − ie

~c
Aj)γ0γi

− i~c
4
∂i(

tr(h)

2
− h00)γ0γi +

i~
4
∂t(h0i)γ

0γi
)2

=γ0

[
− ~2

2m
(1 + h00)(∇− ie

~c
A)2 − ~e

2mc
(1 + h00)BkΣk

− ~2

2m
hij(∂

i − ie

~c
Ai)(∂j − ie

~c
Aj) +

~e
4mc

εijlhjkFi
kΣl

]
+

+ γ0

[
~2

2m
∂i(h00)∇i −

~2

4m
∂i(hij)∇j − ~2

2m
∂i(

tr(h)

2
− h00)∇i

− i~2

4m
εijk
(
∂i(h00)∇j − ∂i(hjl)∇l

)
Σk −

~2

4m
∂i∂i(

tr(h)

2
− h00)

]
+O(h2)

(E.20)

As the above term is of order γ0 O2

2mc2
∼ O(v

2

c2
), it follows that the next term in Eq. (E.11)

is of order γ0 O4

8m3c6
∼ O(v

4

c4
). After some algebra it reads:
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O4 =

(
~2c2(1 + h00)(∇− ie

~c
A)2 − ~ec(1 + h00)BkΣk −

i~2c2

2
εijk∂i(h00)(∂j −

ie

~c
Aj)Σk

+
~2c2

2
∂i(h00)(∂i −

ie

~c
Ai)− ~2c2hij(∂

i − ie

~c
Ai)(∂j − ie

~c
Aj) +

~ec
2
εijlhjlFi

kΣl

− ∂i

(
hij)(∂

j − ie

~c
Aj) +

i~2c2

2
εijl∂i(hjk)(∂

k − ie

~c
Ak)Σl − ~2c2∂i(

tr(h)

2
− h00)∂i

− ~2c2

2
∂i∂i(

tr(h)

2
− h00)

)2

=~4c4(1 + 2h00)(∇− ie

~c
A)4 + ~2ec2(1 + 2h00)B2

− ~3ec3(1 + 2h00){(∇− ie

~c
A)2, Bk}Σk +

~3ec3

2
εijl{(∇− ie

~c
A)2, hjkFi

k}Σl

+ 2~4c4hij(∇−
ie

~c
A)2(∂i − ie

~c
Ai)(∂j − ie

~c
Aj)

− ~3ec3

2
εijlhjmFi

mBk{Σk,Σl}+
i~4c4

2
εijk{(∇− ie

~c
A)2, ∂i(h00)(∂j −

ie

~c
Aj)}Σk

− i~4c4

2
{(∇− ie

~c
A)2, ∂i(h00)(∂i −

ie

~c
Ai)}

+
~4c4

2
{(∇− ie

~c
A)2, ∂i(hij)(∂

j − ie

~c
Aj)}

− ~4c4

2
εijl{(∇− ie

~c
A)2, ∂i(hjk)(∂

k − ie

~c
Ak)}Σl

+ ~4c4{(∇− ie

~c
A)2, ∂i(

tr(h)

2
− h00)∂i}

+
~4c4

2
{(∇− ie

~c
A)2, ∂i∂i(

tr(h)

2
− h00)}+

~3ec3

2
{Bk, ∂i(hij)(∂

j − ie

~c
Aj)}Σk

+
i~3ec3

e
εijl{BkΣk, ∂i(h00)(∂j −

ie

~c
Aj)Σl} −

i~3ec3

e
{Bk, ∂i(h00)(∂i −

ie

~c
Ai)}Σk

+
i~3ec3

e
εijl{BkΣk, ∂i(hjm)(∂m − ie

~c
Am)Σl}+ ~3ec3{Bk, ∂i(

tr(h)

2
− h00)∂i}Σk

+
~3ec3

2
{Bk, ∂i∂

i(
tr(h)

2
− h00)}Σk

(E.21)

The last term in Eq. (E.11) requires lengthy intermediate calculations in order to get
to the final result. We start by considering the expressions [O,E] and Ȯ separately.
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With the help of Eqs. (E.19) and some algebra:[
O,E

]
=
[
− i~c(1 +

h00

2
)(∂j −

ie

~c
Aj)γ

0γj +
i~c
2
hij(∂

j − ie

~c
Aj)γ0γi +

i~c
4
∂t(h0i)γ

0γi

+
i~c
4
∂i(

tr(h)

2
− h00)γ0γi , eA0 +

mc2

2
h00γ

0 + i~c h0i(∂
i − ie

~c
Ai) +

i~c
4
∂i(h

i
0)

+
~c
4
εijk∂i(h0j)Σk −

3i~
8
∂t(tr(h)) +

i~
4
∂t(h00)

]
= i~mc3h00∇iγ

i +
i~mc3

2
∂i(h00)γi − i~ec h0jFi

jαi + ~2c2∂i(h0j)∇jαi

− i~ec(1 +
h00

2
)∂i(A0)αi +

i~ec
2
hij∂

j(A0)αi

+
~2c2

2

(
∂j(h0i)∇iαj − ∂j(h0i∇jαi)

)
− i~2c2

4
εjkl∂i∂j(h0k)α

iΣl −
3~2c

8
∂i∂t(tr(h))αi +

~2c

4
∂i∂t(h00)αi

(E.22)

Ȯ =− i~c
2
∂t(h00)∇iα

i − e

2
h00∂t(Ai)α

i +
i~c
2
∂t(hij)∇jαi +

e

2
hij∂t(A

j)αi

+
i~c
4
∂t∂i(

tr(h)

2
− h00)αi

(E.23)

Upon plugging the Eq. (E.22,E.23) into the last term in Eq: (E.11), exploiting again
the identities in Eqs. (E.19), and with a lot of algebra, we arrive at the final expression:
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− [O, [O,E] + i~Ȯ]

8m2c4
= +

~2

4m
h00(∇− ie

~c
A)2γ0 +

e~
4mc

h00B · γ0Σ

+
i~2e

4m2c2
(1 +

h00

2
)
(∇

2
× E− E×∇

)
·Σ− (1 + h00)

~2e

8m2c2
∇ · E

− i~2e

16m2c2
εiklhij∂

j(Ek)Σl −
i~2e

8m2c2
εiklhijEk(∂

j − ie

~c
Aj)Σl

+
i~2e

4m2c2
εijlh0kFj

k(∂i −
ie

~c
Ai)Σl −

~2e

8m2c2
h0j∂i(F

ij) +
i~2e

8m2c2
εijlh0k∂i(Fj

k)Σl

− ~2e

16m2c2
∂i(h00)Ei − i~2e

16m2c2
εijk∂i(h00)EjΣk −

~2e

16m2c2
∂i(hij)E

j

+
i~2e

16m2c2
εijl∂i(hjk)E

kΣl +
~2

8m
∂i(h00)(∂i − ie

~c
Ai)− i~2

8m
εijk∂i(h00)(∂j −

ie

~c
Aj)Σk

− ~2e

8m2c2
∂i(h0j)Fi

j +
i~2e

8m2c2
εijl∂i(h0k)Fj

kΣl −
i~2e

16m2c2
εijk∂i

(
tr(h)

2
− h00

)
EjΣk

− i~3

16m2c
εjklεima∂m(h0j){(∂i −

ie

~c
Ai), (∂k −

ie

~c
Ak)}ΣaΣl

− i~3

8m2c
εjklεl

im∂m(h0j)(∂k −
ie

~c
Ak)(∂k −

ie

~c
Ai)ΣaΣ

a +
i~2e

8m2c2
εjkl∂i(h0j)FkiΣl

− ~3

8m2c
εjkl∂i(h0j)(∂k −

ie

~c
Ak)(∂i −

ie

~c
Ai)Σl

+
~3

16m2c
εjkl∂i∂i(h0j)(∂k −

ie

~c
Ak)Σl −

i~2e

16m2c2
εikl∂i(h0j)F

j
kΣl

− i~3

8m2c
∂i∂i(h0j)(∂

j − ie

~c
Aj) +

~3

8m2c
εjki∂i(h0j)(∂k −

ie

~c
Ak)(∂

l − ie

~c
Al)Σl

− ~3

16m2c
εkjl∂k∂i(h0j)(∂

i − ie

~c
Ai)Σl +

h3

16m2c
εjkl∂i∂j(h0k)(∂i −

ie

~c
Ai)Σl

+
i~3

16m2c
εjklεima∂m∂j(h0k)(∂i −

ie

~c
Ai)ΣlΣa −

~3

16m2c
εjkl∂i∂i∂j(h0k)Σl

− ~2

8m
∂i(h00)(∂i − ie

~c
Ai)γ0 − ~2

16m
∂i∂i(h00)γ0 − i~3

16m2c2
∂i∂t(h00)(∂i − ie

~c
Ai)

− ~3

16m2c2
εijk∂j∂t(h00)(∂i −

ie

~c
Ai)Σk −

i~2e

8m2c3
εijl∂t(hjk)Fi

kΣl

+
i~3

16m2c2
εijk∂t∂j(tr(h)− h00)(∂i −

ie

~c
Ai)Σk +

i~3

32m2c2
∂t∂

i(tr(h)− h00)(∂i −
ie

~c
Ai)

+
i~3

32m2c2
∂i∂i∂t(tr(h)− h00) +

i~3

32m2c2
∂i∂t(hij)(∂

j − ie

~c
Aj)

+
i~3

32m2c2
εijl∂i∂t(hjk)(∂

k − ie

~c
Ak)Σl

(E.24)
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So that the total Hamiltonian reads:

H =eA0 + γ0

[
mc2(1 +

h00

2
)− ~2

2m
(1 +

h00

2
)(∇− ie

~c
A)2 − ~e

2mc
(1 +

h00

2
)BkΣk

− ~2

2m
hij(∂

i − ie

~c
Ai)(∂j − ie

~c
Aj) +

~e
4mc

εijlhjkFi
kΣl

]

+
i~2e

4m2c2
(1 +

h00

2
)
(∇

2
× E− E×∇

)
·Σ− (1 + h00)

~2e

8m2c2
∇ · E

− i~2e

16m2c2
εiklhij∂

j(Ek)Σl −
i~2e

8m2c2
εiklhijEk(∂

j − ie

~c
Aj)Σl

+
i~2e

4m2c2
εijlh0kFj

k(∂i −
ie

~c
Ai)Σl −

~2e

8m2c2
h0j∂i(F

ij) +
i~2e

8m2c2
εijlh0k∂i(Fj

k)Σl

− γ0

8m3c6

[
~4c4(1 + 2h00)(∇− ie

~c
A)4 + ~2ec2(1 + 2h00)B2

+ 2~4c4hij(∇−
ie

~c
A)2(∂i − ie

~c
Ai)(∂j − ie

~c
Aj) +

~3ec3

2
εijl{(∇− ie

~c
A)2, hjkFi

k}Σl

− ~3ec3

2
εijlhjmFi

mBk{Σk,Σl} − ~3ec3(1 + 2h00){(∇− ie

~c
A)2, Bk}Σk

]

− ~2

8m
∂i(h00)(∂i − ie

~c
Ai)γ0 − ~2

16m
∂i∂i(h00)γ0 +

i~c
4
∂i(h

i
0)

+
~c
4
εijk∂i(h0j)Σk −

3i~
8
∂t(tr(h)) +

i~
4
∂t(h00)

+ γ0

[
~2

2m
∂i(h00)∇i −

~2

4m
∂i(hij)∇j − ~2

2m
∂i(

tr(h)

2
− h00)∇i

− i~2

4m
εijk
(
∂i(h00)∇j − ∂i(hjl)∇l

)
Σk −

~2

4m
∂i∂i(

tr(h)

2
− h00)

]

+Hdd +O(h2) +O(
v5

c5
)

(E.25)

with

Hdd = − ~2e

16m2c2
∂i(h00)Ei − i~2e

16m2c2
εijk∂i(h00)EjΣk −

~2e

16m2c2
∂i(hij)E

j

+
i~2e

16m2c2
εijl∂i(hjk)E

kΣl +
~2

8m
∂i(h00)(∂i − ie

~c
Ai)− i~2

8m
εijk∂i(h00)(∂j −

ie

~c
Aj)Σk

− ~2e

8m2c2
∂i(h0j)Fi

j +
i~2e

8m2c2
εijl∂i(h0k)Fj

kΣl −
i~2e

16m2c2
εijk∂i

(
tr(h)

2
− h00

)
EjΣk

− i~3

16m2c
εjklεima∂m(h0j){(∂i −

ie

~c
Ai), (∂k −

ie

~c
Ak)}ΣaΣl
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− i~3

8m2c
εjklεl

im∂m(h0j)(∂k −
ie

~c
Ak)(∂k −

ie

~c
Ai)ΣaΣ

a +
i~2e

8m2c2
εjkl∂i(h0j)FkiΣl

− ~3

8m2c
εjkl∂i(h0j)(∂k −

ie

~c
Ak)(∂i −

ie

~c
Ai)Σl

+
~3

16m2c
εjkl∂i∂i(h0j)(∂k −

ie

~c
Ak)Σl −

i~2e

16m2c2
εikl∂i(h0j)F

j
kΣl

− i~3

8m2c
∂i∂i(h0j)(∂

j − ie

~c
Aj) +

~3

8m2c
εjki∂i(h0j)(∂k −

ie

~c
Ak)(∂

l − ie

~c
Al)Σl

− ~3

16m2c
εkjl∂k∂i(h0j)(∂

i − ie

~c
Ai)Σl +

h3

16m2c
εjkl∂i∂j(h0k)(∂i −

ie

~c
Ai)Σl

+
i~3

16m2c
εjklεima∂m∂j(h0k)(∂i −

ie

~c
Ai)ΣlΣa −

~3

16m2c
εjkl∂i∂i∂j(h0k)Σl

− ~2

8m
∂i(h00)(∂i − ie

~c
Ai)γ0 − ~2

16m
∂i∂i(h00)γ0 − i~3

16m2c2
∂i∂t(h00)(∂i − ie

~c
Ai)

− ~3

16m2c2
εijk∂j∂t(h00)(∂i −

ie

~c
Ai)Σk −

i~2e

8m2c3
εijl∂t(hjk)Fi

kΣl

+
i~3

16m2c2
εijk∂t∂j(tr(h)− h00)(∂i −

ie

~c
Ai)Σk

+
i~3

32m2c2
∂i∂i∂t(tr(h)− h00) +

i~3

32m2c2
∂i∂t(hij)(∂

j − ie

~c
Aj)

+
i~3

32m2c2
εijl∂i∂t(hjk)(∂

k − ie

~c
Ak)Σl +

i~3

32m2c2
∂t∂

i(tr(h)− h00)(∂i −
ie

~c
Ai)
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ie
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tr(h)

2
− h00)}+
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ie

~c
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ie
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(E.26)
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By neglecting the terms containing derivatives of the gravitational field of order v3

c3
or

higher (namely the term Hdd), we recover Eq. (4.18) of the main text.

Appendix F: Cumulant Expansion Method
In this section we derive Eqs. (3.30, 4.31) and Eqs. (3.34,4.35) with the help of the Cu-
mulant Expasion method [61]. We start by giving a brief presentation of the method,
which is generally speaking a very useful tool for the solution of Stochastic Differential
Equations (SDEs), to eventually apply it to our specific cases of interest.

Let us consider the rather generic multiplicative SDE:

∂tΩ̂(t) = [A+ αB(t)]Ω̂(t) (F.1)

with Ω̂ being generic density operator, A a constant superoperator, B(t) a random
superoperator with finite correlation time τc, and α the parameter measuring the mag-
nitude of the fluctuations. Of this form are Eqs. (3.29) and (4.30) of the main text.
Our goal will be to solve such an equation.
In the interaction picture, Eq. (F.1) reads:

Ω̂(t) = etA
˜̂
Ω(t) (F.2)

∂t
ˆ̃Ω(t) = αe−tAB(t)etA ˆ̃Ω ≡ αB̃(t) ˆ̃Ω(t) (F.3)

Its formal solution is:
ˆ̃Ω(t) = T [eα

∫ t
0 B̃(s)ds] ˆ̃Ω(0) (F.4)

Note that Eq. (F.4) represents the solution only for a given realization of the random
process, while in experiments one is typically interested into averaged effects. We
therefore consider the averaged differential equation:

∂t ˆ̃ρ(t) = E[αB̃(t)Ω̂(t)] (F.5)

where we recall ρ̂ = E[Ω̂]. Its formal solution reads:

ˆ̃ρ(t) = E

[
T
[
eα
∫ t
0 B̃(s)ds

] ]
ˆ̃Ω(0) (F.6)

which is in most cases though of any practical use. In order to alternatively solve the
averaged dynamics we note that, as B(t) is indeed a random variable, by definition it
follows that E

[
eα
∫ t
0 B̃(s)ds

]
is a moment generating function. We can then apply the

standard cumulant expansion method (for all practical purposes a series expansion of
the exponential, for more details see chapter III.4 of [61]). With such a method, we
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intend to find the generator of the averaged dynamics governing the statistical operator
ρ̂(t), i.e. the non stochastic superoperator G such that:

∂t ˆ̃ρ(t) = G(t)ˆ̃ρ(t) (F.7)

Upon applying the cumulant expansion to Eq. (F.6), we obtain:

ˆ̃ρ(t) = T
[

exp
{
α

∫ t

0

dt1〈〈B̃(t1)〉〉+
α2

2

∫ t

0

dt1dt2〈〈B̃(t1)B̃(t2)〉〉+ ...

+
αm

m!

∫ t

0

dt1...dtm〈〈B̃(t1)...B̃(tm)〉〉+ ...
}]

Ω̃(0)

(F.8)

where 〈〈 B̃(t1)...B̃(tm) 〉〉 denotes the mth cumulant. Note that each term in the cu-
mulant expansion is of order O(αmτm−1

c t). In the case of a Gaussian and white noise
however, all terms with m greater than 2 vanish [84]. Furthermore, In most physically
interesting cases (like for Eq. (3.29), where the the stochastic noise has zero mean),
the dominant contribution to Eq. (F.8) is given by the second order term. Eq. (F.8)
therefore reads:

ˆ̃ρ(t) = T

[
e
α2

2

∫ t
0

∫ t1
0 dt1dt2E[B̃(t1)B̃(t2)]

]
ˆ̃Ω(0) (F.9)

Eq. (F.9) is simpler than Eq. (F.8), but we are still not able to straightforwardly extract
the generator of the averaged dynamics G from it. In order to do so, we make use of the
Disentangling Theorem [85] as it is presented in [86]. We therefore define a generic non
stochastic time dependent superoperator K(t) and the relative evolution superoperator:

V(t, t1) = T

[
e
∫ t
t1
dt′ K(t′)

]
(F.10)

With the help of V(t, t1) we can define a new representation for ˆ̃Ω(t) and B̃(t) as:

ˆ̃Ω(t) =V(t, 0) ˆ̃Ωk(t) (F.11)

B̃k(t) =V(t, 0)−1B̃(t)V(t, 0) (F.12)

so that Eq. (F.9) reads:

ˆ̃ρ(t) = T

[
e
∫ t
0 K(t1)dt1

]
T

[
e
α2

2

∫ t
0

∫ t1
0 dt1dt2E

[
B̃k(t1)B̃k(t2)

]
−
∫ t
0 K

k(t1)dt1

]
ˆ̃Ω(0) (F.13)

We then conveniently choose K(t) such that:

Kk(t1) =
α2

2

∫ t1

0

dt2E[B̃k(t1)B̃k(t2)] (F.14)
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and we are able to cancel the terms of order α2τc in the second factor of Eq. (F.13)
[86]. Note that the superoperator K(t) is to be intended as a time local superoperator,
i.e. even if defined through the integral expression in eq. (F.14), the time ordering in
eq. (F.13) will order the whole operatorK(t) only according to the time t. Furthermore,
note that the expression for K is implicit:

K(t1) =
α2

2

∫ t1

0

dt2E[B̃(t1)V(t1, t2)B̃(t2)V(t1, t2)−1] (F.15)

as on the r.h.s. V(t1, t2) depends on K itself. Noticing that K is of O(α2τc), we perform
a perturbative expansion in ατc (K = K1 +K2 +K3 + ...) in order to obtain its explicit
expression. The first term (K1) is obtained by neglecting the action of V(t1, t2) on
B̃(t2) in Eq. (F.14) so that:

K1(t) =
α2

2

∫ t1

0

dt2E[B̃(t1)B̃(t2)] (F.16)

The next term (K2) is of order O(α4τ 2
c ), and is obtained upon plugging the above

expression in Eq. (F.10):

K2(t1) =

∫ t1

0

dt2E

[
B̃(t1)T

[
e
∫ t1
t2
dt′K1(t′)

]
B̃(t2)T

[
e−

∫ t1
t2
dt′K1(t′)

]]
(F.17)

Higher order terms can be obtained in a similar fashion. This procedure can be repeated
for the other terms of the cumulant expansion, so to obtain a disentangled expression
at the desired order in α and τc, see [86] for the explicit construction in a more general
case. It follows that at O(α2τc) Eq. (F.9) reads:

ˆ̃ρ(t) =

(
T

[
e
∫ t
0 K(t1)dt1+O(α4τ2

c )

]
T

[
e
α2

2

∫ t
0

∫ t1
0 dt1dt2E[B̃k(t1)B̃k(t2)]−

∫ t
0 K

k(t1)dt1

])
ˆ̃Ω(0) (F.18)

Eq. (F.18) is the formal solution of the differential equation:

∂t ˆ̃ρ(t) =
α2

2

∫ t

0

dt′E[B̃(t)B̃(t′)] ˆ̃ρ(t) +O(α4τ 3
c t) (F.19)

which in the original representation reads:

∂tρ̂(t) =
(
A+

α2

2

∫ t

0

dt′E[B(t)eA(t−t′)B(0)e−A(t−t′)]
)
ρ̂(t) +O(α4τ 3

c t) (F.20)

In order to apply this result to Eqs. (3.29, 4.30), the mapping from Eq. (F.20) is given
by:  A → − i

~

(
Ĥ

(B)
0,L − Ĥ

(B)
0,R

)
αB → − i

~

(
Ĥ

(B)
p,L + Ĥ

(B)
d,L − Ĥ

(B)
p,R − Ĥ

(B)
d,R

) (F.21)
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and:  A → − i
~

(
Ĥ

(F )
0,L − Ĥ

(F )
0,R

)
αB → − i

~

(
Ĥ

(F )
p,L − Ĥ

(F )
p,R

) (F.22)

in the two respective case, where the subscripts L and R denote the fact that the
operator is acting respectively on the left and on the right of the density operator
Ω̂ (i.e. ALARΩ̂ = AΩ̂A), while the superscripts (B) stands for bosons and (F ) for
fermions. The final result (at order α2τc) is:

∂tρ̂ = − i
~

[Ĥ
(B)
0 , ρ̂(t)]− 1

~2

∫ t

0

dt1·

· E

[[(
Ĥ(B)
p (t) + Ĥ

(B)
d (t)

)
,
[
eiĤ

(B)
0 (t1−t)

(
Ĥ(B)
p (t1) + Ĥ

(B)
d (t1)

)
e−iĤ

(B)
0 (t1−t), ρ̂(t)

]]]
(F.23)

∂tρ̂ = − i
~

[Ĥ
(F )
0 , ρ̂(t)]− 1

~2

∫ t

0

dt1E

[[
Ĥ(F )
p (t),

[
eiĤ

(F )
0 (t1−t)Ĥ(F )

p (t1)e−iĤ
(F )
0 (t1−t), ρ̂(t)

]]]
(F.24)

precisely as in Eqs. (3.30, 4.31) of the main text.

Appendix G: Recovering Markovian master equation
In this section we specialize Eq. (F.20) to interesting limiting cases. We also recover
the Markovian master equations (3.34, 4.35) of the main text.

We start by considering the special case in which the stochastic superoperator B can
be factorized as:

B(t) = hi(t)F i(t) (G.1)

where hi(t) is a (collection of) stochastic process(es) and F i(t) a non stochastic super-
operator. Of this form are in fact the stochastic superoperators defined in Eqs. (F.21,
F.22) through the explicit expressions of Eqs. (3.25, 4.23) of the main text.
We then notice that Eq. (F.20) becomes exact if [A,B] = 0. In this case in fact
[B̃(t), B̃(t1)] = 0 = [B̃k(t)B̃k(t1)], so that K = K1, and the factor inside the second time
ordering in Eq. (F.20) vanishes. It follows that Eq. (F.20) can be further simplified
as:

∂tρ̂(t) =
(
A+

α2

2

∫ t

0

dt′Dij(t, t
′)F i(0)F j(0)

)
ρ̂(t) (G.2)
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where Dij(t, t
′) = E[hi(t)hj(t − t′)] is the time correlation function of the noise. As

a very rough approximation we take the time correlation function to be an Heaviside
theta function 1:

Dij(t) = σijΘ(t− τc) (G.3)

where τc is the correlation time of the noise, and σij depends on the explicit form of
B. In this case Eq. (G.2) reads:

∂tρ̂(t) =
(
A+

α2λσij
2
F i(0)F j(0)

)
ρ̂(t) (G.4)

where λ = min(t, τc).

A different interesting scenario to consider is when the Markovian limit of Eq. (F.20)
can be taken, i.e. when the correlation time (τc) of the noise is much smaller than the
characteristic time (τfree) of the free dynamics, and the limit τc/τfree → 0 can be taken.
I this limit the action of eA(t1−t) on B (and more generally of any of the evolution
superoperators employed in the derivation of Eq. (F.20)) will vanish to zero and the
equation Eq. (F.20) reads2:

∂tρ̂(t) =
(
A+

α2

2

∫ ∞
0

dt′Dij(t, t
′)F i(0)F j(0)

)
ρ̂(t) (G.5)

This equation can be further simplified noticing that in the limit τc/τfree → 0 the time
correlation function is naturally replaced by a Dirac delta function:

Dij(t) = σijδ(t− τc) (G.6)

and Eq. (G.5) consequently reads:

∂tρ̂(t) =
(
A+

α2τcσij
2
F i(0)F j(0)

)
ρ̂(t) (G.7)

As a final remark, note that the factor τc in the above equation can be safely replaced
with λ, as the error made lies within the boundaries of the validity of the Markovian
approximation.
Upon subsituting the explicit expression for hi(t) and F i(t) according to Eqs. (G.1, F.21,
F.22, 3.25, 4.23) and given the stochastic properties of the noise (Eqs. (3.26, 3.32)), we
recover Eqs. (3.34,4.35) of the main text.

1A more physically meaningful result can be obtained by taking the correlation function as an
exponential decay

2Note that we have safely replaced the upper limit of integration t with∞, as the integrand vanishes
anyway [61].
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